
Workflow Scheduling in Cloud and
Edge Computing Environments with

Deep Reinforcement Learning

Amanda Jayanetti

Submitted in total fulfilment of the requirements of the degree of

Doctor of Philosophy

School of Computing and Information Systems
THE UNIVERSITY OF MELBOURNE

August 2023

ORCID: 0000-0002-7178-3386

Copyright © 2023 Amanda Jayanetti

All rights reserved. No part of the publication may be reproduced in any form by print,
photoprint, microfilm or any other means without written permission from the author.

Workflow Scheduling in Cloud and Edge Computing
Environments with Deep Reinforcement Learning

Amanda Jayanetti
Principal Supervisor: Prof. Rajkumar Buyya

Co-Supervisor: Prof. Saman Halgamuge

Abstract

Cloud computing has firmly established itself as a mandatory platform for deliver-

ing computing services over the internet in an efficient manner. More recently, novel

computing paradigms such as edge computing have also emerged to complement the

traditional cloud computing paradigm. Owing to the multitude of benefits offered by

cloud and edge computing environments, these platforms are increasingly used for the

execution of workflows. The problem of scheduling workflows in a distributed system

is NP-Hard in the general case. Scheduling workflows across highly dynamic cloud and

edge computing environments is even more complex due to inherent challenges associ-

ated with these environments including the need to satisfy diverse contradictory objec-

tives, coordinating executions across highly distributed infrastructures and dynamicity

of the operating conditions. These requirements collectively give rise to the need for

adaptive workflow scheduling algorithms that are capable of satisfying diverse opti-

mization goals amid highly dynamic conditions.

Deep Reinforcement Learning (DRL) has emerged as a promising paradigm for deal-

ing with highly dynamic and complex problems due to the ability of DRL agents to

learn to operate in stochastic environments. Despite the benefits of DRL, there are

multiple challenges associated with the application of DRL techniques including multi-

objectivity, curse of dimensionality, partial observability and multi-agent coordination.

In this thesis, we propose novel DRL algorithms and architectures to efficiently over-

come these challenges. This thesis advances the state-of-the-art by making the following

key contributions:

1. A comprehensive taxonomy and literature review on the scheduling of workflows

across cloud and edge computing environments with the use of Reinforcement

Learning

iii

2. A joint host and network optimization technique for scheduling workflows in

cloud data centers with the objective of minimizing energy consumption

3. A DRL technique for minimizing the energy consumption and makespan of work-

flow executions in edge-cloud environments

4. A multi-agent DRL technique for optimizing green energy utilization in the exe-

cution of workflows across multi-cloud environments

5. The design and implementation of a DRL agent capable of scheduling workflows

in a cost efficient manner and its integration to an enterprise-grade workflow en-

gine

6. A detailed study that outlines challenges and research directions associated with

the scheduling of workflows in cloud and edge computing environments with the

use of reinforcement learning

iv

Declaration

This is to certify that

1. the thesis comprises only my original work towards the PhD,

2. due acknowledgement has been made in the text to all other material used,

3. the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliogra-

phies and appendices.

Amanda Jayanetti, August 2023

v

Preface

Main Contributions

This thesis research has been carried out in Cloud Computing and Distributed Systems

(CLOUDS) Laboratory, School of Computing and Information Systems, The University

of Melbourne. The main contributions of the thesis are discussed in Chapters 2-7 and

are based on the following publications:

• Amanda Jayanetti, Saman Halgamuge, Rajkumar Buyya, ”Reinforcement Learn-

ing based Workflow Scheduling in Cloud and Edge Computing Environments: A

Taxonomy, Review and Future Directions”, ACM Computing Surveys (CSUR), 2023

(submitted, August 2023).

• Amanda Jayanetti, Rajkumar Buyya, ”J-opt: A joint host and network optimiza-

tion algorithm for energy-efficient workflow scheduling in cloud data centers”,

Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Com-

puting, Pages: 199–208, Auckland, New Zealand, December 2-5, 2019.

• Amanda Jayanetti, Saman Halgamuge, Rajkumar Buyya, ”Deep reinforcement

learning for energy and time optimized scheduling of precedence-constrained tasks

in edge–cloud computing environments”, Future Generation Computer Systems, Vol-

ume 137, Pages: 14–30, 2022.

• Amanda Jayanetti, Saman Halgamuge, Rajkumar Buyya, ”Multi-agent Deep Rein-

forcement Learning Framework for Renewable Energy aware Workflow Schedul-

ing in Distributed Cloud Data Centres”, IEEE Transactions on Parallel and Distributed

vii

Systems, 2024 (accepted for publication).

• Amanda Jayanetti, Saman Halgamuge, Rajkumar Buyya, ”A Deep Reinforcement

Learning Approach for Cost Optimized Workflow Scheduling in Cloud Comput-

ing Environments”, IEEE Transactions on Parallel and Distributed Systems, 2024 (sub-

mitted, January 2024).

viii

Acknowledgements

I would like to thank my supervisors, Professor Rajkumar Buyya and Professor Saman
Halgamuge for providing me with the opportunity of pursuing a PhD under their su-
pervision. I appreciate the support, encouragement and guidance they provided on my
PhD. I would also like to thank my advisory committee chair Professor Alistair Moffat
for his valuable feedback and suggestions. I would like to express my sincere gratitude
to my former advisory committee chair Professor Shanika Karunasekara, for the great
assistance that was provided me to get through the challenging phases of my PhD jour-
ney.

I would also like to thank current and former members of CLOUDS Laboratory at
the University of Melbourne for their support and friendship. In particular, I thank Dr.
Shashikant Ilager, Dr. Muhammed Tawfiqul Islam, Dr. TianZhang He, Dr. Mohammad
Goudarzi, Dr. Redowan Mahmud, Dr. Sara Kardani, Dr. Maria Rodriguez, Samodha
Pallewatta, Anupama Mampage, Rajeev Muralidhar, Kwangsuk Song, Jie Zhao, Ming
Chen, Siddharth Agarwal, Tharindu Bandara, Thanh-Hoa Nguyen, Yu- lun Huang,
Zhiyu Wang, Kalyani Pendyala, Duneesha Fernando, Jayath Seneviratne, Chun Wei
Lim, and Thakshila Mohottige.

I acknowledge the University of Melbourne for providing me with the scholarship
and resources to pursue my doctoral studies. My research is also supported by a Discov-
ery Project grant from the Australian Research Council (ARC) awarded to my principal
supervisor.

I would like to express my heartfelt gratitude to my mother Dammika Jayanetti,
my father Mahinda Jayanetti and my sister Achala Jayanetti for their endless support
and love. I would also like to thank my lovely children Riley Nakandala and Deon
Nakandala for inspiring me to be a better and stronger person than I could have ever
imagined. Finally, and most importantly, I would like to thank my dearest husband
Dulan Nakandala for being my pillar of strength, and for providing me with endless
emotional support. My Ph.D. journey was extraordinary, and without you by my side, I
could not have completed it.

Amanda Jayanetti

ix

Melbourne, Australia
August 2023

x

Contents

List of Figures xiv

List of Tables xvii

1 Introduction 1
1.1 Background . 3

1.1.1 Workflow Scheduling . 3
1.1.2 Cloud and Edge Computing . 4
1.1.3 Reinforcement Learning . 5

1.2 Motivation . 8
1.3 Evaluation Methodologies . 11
1.4 Research Questions and Objectives . 12
1.5 Thesis Contributions . 14
1.6 Thesis Organization . 16

2 A Taxonomy and Review on Workflow Scheduling with Reinforcement Learn-
ing 19
2.1 Introduction . 19
2.2 Taxonomy . 22

2.2.1 Taxonomy based on the specific problem for which RL is used . . . 22
2.2.2 Taxonomy based on RL algorithm 27
2.2.3 Taxonomy based on RL objective . 30
2.2.4 Taxonomy based on agent architecture 31
2.2.5 Taxonomy based on the RL agent training and execution architecture 33
2.2.6 Taxonomy based on scheduling objective 34

2.3 Review of Reinforcement Learning based workflow scheduling techniques 38
2.4 Summary . 45

3 Joint Host and Network Optimization Algorithm for Workflow Scheduling 47
3.1 Introduction . 47
3.2 Related Work . 49

3.2.1 Energy-Efficient Workflow Scheduling 49
3.2.2 Network Aware Energy-Efficient Scheduling 51

3.3 Problem Modeling . 52

xi

3.3.1 Application Model . 52
3.3.2 System Model . 54
3.3.3 Power Model . 55
3.3.4 Problem Formulation . 56

3.4 Proposed Algorithm . 56
3.4.1 Task Prioritization . 57
3.4.2 Topology Aware Resource Allocation 58
3.4.3 Desirability Score . 61

3.5 Performance Evaluation . 64
3.5.1 Simulation Environment . 67
3.5.2 Datasets . 67
3.5.3 Results and Analysis . 69

3.6 Summary . 70

4 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environ-
ments 73
4.1 Introduction . 74
4.2 Related Work . 77

4.2.1 Cloud Computing Environments . 77
4.2.2 Edge-Cloud Environments . 78
4.2.3 A Qualitative Analysis . 79

4.3 System Model . 81
4.3.1 Application Model . 82
4.3.2 Network Model . 82
4.3.3 Delay Model . 83
4.3.4 Energy Consumption Model . 84
4.3.5 Deadline Model . 85
4.3.6 Objective . 87

4.4 Deep Reinforcement Learning based Application Scheduling Framework 88
4.4.1 Reinforcement Learning Oriented Problem Formulation 88
4.4.2 Actor-Critic based Scheduling Framework with Proximal Policy

Optimization . 92
4.5 Performance Evaluation . 97

4.5.1 Experimental Setup . 98
4.5.2 Dataset . 98
4.5.3 Comparison Algorithms . 100
4.5.4 Hyper-parameters and Network Configurations 101
4.5.5 Analysis of Convergence . 102
4.5.6 Analysis of Performance on Experimental Dataset 105
4.5.7 Analysis of Performance at Different Workflow Arrival Rates . . . 109
4.5.8 Analysis of Performance at Different Computational Workloads . . 110

4.6 Overall Analysis . 111
4.7 Summary . 112

xii

5 Multi-agent Deep Reinforcement Learning Framework for Workflow Schedul-
ing 115
5.1 Introduction . 117
5.2 Related Work . 120
5.3 System Model . 122
5.4 Reinforcement Learning . 126

5.4.1 Background . 126
5.4.2 Proposed Multi-Agent Actor-Critic Scheduling Framework 127

5.5 Performance Evaluation . 133
5.5.1 Experimental Setup . 133
5.5.2 Dataset . 133
5.5.3 Comparison Algorithms . 135
5.5.4 Experimental Results . 135

5.6 Summary . 140

6 Cost Optimized Workflow Scheduling in Cloud Computing Environments 141
6.1 Introduction . 141
6.2 Problem Formulation . 144
6.3 Proposed approach . 146

6.3.1 Kubernetes . 146
6.3.2 Argo Workflow Engine . 147
6.3.3 Reinforcement Learning . 148
6.3.4 Proposed RL Framework . 150

6.4 Performance Evaluation . 156
6.4.1 Experimental testbed . 156
6.4.2 Experimental dataset . 156
6.4.3 DRL Scheduler Implementation . 156
6.4.4 Comparison Algorithms . 157
6.4.5 Experimental Results . 157

6.5 Summary . 158

7 Conclusions and Future Directions 161
7.1 Summary of Contributions . 161
7.2 Future Research Directions . 164

7.2.1 Supporting multiple objectives with multi-policy RL algorithms . . 164
7.2.2 Designing Multi-agent RL solutions for complex scheduling prob-

lems . 164
7.2.3 Estimating task execution times accurately 165
7.2.4 Using asynchronous RL methods for improving training efficiency 166
7.2.5 Handling large action spaces more efficiently 166

7.3 Final Remarks . 167

xiii

List of Figures

1.1 DAG structures of real-world scientific workflows [1] 2
1.2 High level overview of workflow scheduling in a cloud datacenter with

Actor-Critic method . 8
1.3 Thesis Organization . 17

2.1 Taxonomy of Workflow Scheduling in Cloud and Edge Computing Envi-
ronments with Reinforcement Learning [CTE - Centralized Training and
Execution, CTDE - Centralized Training and Distributed Execution, DTE
- Distributed Training and Execution, SORL - Single-Objective Reinforce-
ment Learning, MORL - Multi-Objective Reinforcement Learning] 23

3.1 Proposed energy-efficient workflow scheduling model 51
3.2 A comparison of topology aware and unaware energy efficient workflow

scheduling approaches . 53
3.3 Example workflows . 54
3.4 Fat tree network topology . 58
3.5 Energy consumption of scientific workflow executions 62
3.6 Performance of algorithms during heavy job loading data center occu-

pancy state for scientific workflow executions 65
3.7 Performance of algorithms during light job loading data center occupancy

state for scientific workflow executions . 66
3.8 Performance of algorithms on a sample of 1000 workflows from Alibaba

cluster traces . 68

4.1 System Architecture . 83
4.2 Traditional actor-critic based scheduling . 91
4.3 Proposed scheduling framework . 93
4.4 Learning progress with training (Convergence of DRL model) 103
4.5 Comparison of performance of scheduling algorithms on experimental

dataset . 104
4.6 Comparison of performance of scheduling algorithms at different work-

flow arrival rates . 106
4.7 Comparison of performance of scheduling algorithms at different compu-

tational workloads . 108

xv

5.1 A high-level overview of workflow scheduling on distributed cloud dat-
acenters . 125

5.2 A multi-agent actor-critic architecture in which every critic is augmented
with actions and observations of other agents 128

5.3 Proposed multi-agent actor-critic architecture where shared actions and
observations are limited to a local neighborhood 131

5.4 Comparison of learning efficiency of the proposed framework and a generic
algorithm (as evidenced through the number of episodes required for re-
ward convergence) . 134

5.5 Comparison of performance of scheduling algorithms on an experimental
dataset derived from the synthetic workflow structures provided by the
popular Peagusus workflow framework [2] 136

5.6 Comparison of performance of scheduling algorithms as workflow arrival
rate varies . 137

5.7 Comparison of performance of scheduling algorithms as the size of com-
putational workload varies . 139

6.1 System Architecture . 146
6.2 Proposed hierarchical action space and multi-actor DRL model 152
6.3 Sequence diagram of DRL based scheduling framework 153
6.4 Comparison of performance of scheduling algorithms on an experimental

dataset . 155

xvi

List of Tables

2.1 Analysis of existing literature based on proposed taxonomy for workflow
scheduling with DRL [CTE - Centralized Training and Execution, CTDE -
Centralized Training and Distributed Execution, DTE - Distributed Train-
ing and Execution, MORL - Multi-Objective Reinforcement Learning, SORL
- Single-Objective Reinforcement Learning] 37

3.1 Problem Notation . 55

4.1 Summary of Literature Review . 78
4.2 Host configurations derived from SPEC benchmark [3] for experimental

setup . 98
4.3 Hyper-parameters used for the DRL model 99

5.1 A comparison of relevant literature with proposed work 123
5.2 Host configurations derived from SPEC benchmark [3] for experimental

setup . 133

6.1 Resource configurations of Kubernetes cluster 156

xvii

Chapter 1

Introduction

Workflow is an application model that facilitates the representation of data in a dis-

tributed and structured manner. Therefore, the workflow application model is used for

modeling the computations and data dependencies of a wide variety of applications

ranging from scientific applications that are used in astronomical, biological and medic-

inal fields to commercial applications that are used in emerging fields such as IoT (In-

ternet of Things). The DAG structures of some real-world scientific workflows [1] are

shown in Figure 1.1.

Cloud computing has emerged as an efficient computing platform used for provi-

sioning services over the internet. Cloud computing offers a multitude of benefits to

users, including on-demand access to a pool of shared resources, rapid elasticity to

suit demand variations, reduced start-up costs, elimination of infrastructure manage-

ment overhead, and so on. Owing to the aforementioned benefits, cloud computing

environments are widely used for the execution of workflows. Workflow scheduling

in cloud computing is a well studied topic. A plethora of approaches have been pro-

posed in academia for enhancing the performance of scientific workflow executions in

cloud computing environments with respect to different optimization objectives includ-

ing makespan, cost, energy-efficiency and so on.

Recently, distributed computing paradigms such as edge computing has emerged to

complement the traditional cloud computing paradigm. Edge computing complements

the cloud by extending computing resources to the network edge thus allowing data to

be processed closer to where it is generated. While these new computing paradigms

significantly enhance the capabilities of traditional cloud computing offerings with re-

duced latency, improved security, increased cost-effectiveness and so on, a number of

1

2 Introduction

(a) CyberShake (b) Epigenomics (c) Inspiral

Figure 1.1: DAG structures of real-world scientific workflows [1]

new challenges are also introduced. In order to leverage the full potential of these tech-

nologies, adaptive and computationally efficient workflow scheduling algorithms that

are capable of satisfying diverse optimization goals amid highly dynamic conditions are

needed.

Reinforcement Learning (RL) is a branch of machine learning that is based on au-

tonomous and experience-driven learning. The RL agent learns through feedback re-

ceived from its interactions with the environment, and thereby improves its capabilities

for making desirable decisions over time. This leads to an intelligent autonomous agent

that can adapt to changing conditions. Despite the benefits of RL, the application of

RL techniques to high-dimensional real-world problems has been constrained by limi-

tations such as lack of scalability and curse of dimensionality. The emergence of deep

learning led to a significant advancement in multiple areas of machine learning resulting

in a dramatic improvement in tasks such as voice recognition, language processing and

object detection. The combination of deep learning and reinforcement learning gave

rise to the field of Deep Reinforcement Learning (DRL). DRL significantly accelerated

the progress of the traditional RL paradigm through the use of deep neural networks

for function approximation. The reduction of memory and computational complexities

enabled the application of DRL to problems that were formerly intractable with RL.

DRL techniques have been successfully applied for solving complex decision-making

and control tasks including robotics, autonomous driving, healthcare and natural lan-

guage processing. The ability of DRL agents to learn from experience and utilize real-

1.1 Background 3

time data for making decisions makes it an ideal candidate for dealing with the complex-

ities associated with the problem of workflow scheduling in highly dynamic cloud and

edge computing environments. Despite the benefits of DRL, there are multiple chal-

lenges associated with the application of DRL techniques including multi-objectivity,

partial observability, curse of dimensionality and coordination. Off-the-shelf DRL al-

gorithms are unlikely to be efficient at overcoming the aforementioned challenges and

therefore more problem specific novel DRL techniques need to be formulated.

Accordingly, this thesis focuses on devising novel DRL techniques for addressing

a set of challenges associated with scheduling workflows in cloud and edge comput-

ing environments. Firstly, we perform a baseline study on scheduling workflows in a

cloud datacenter. Then we consider more complex problems associated with workflow

scheduling in edge and distributed cloud environments. We propose novel single-agent

as well as multi-agent DRL architectures and algorithms for efficiently addressing the

unique challenges associated with the problems under consideration. Finally, we pro-

pose a reinforcement learning architecture that is generalizable to a wide range of de-

ployments and integrate the proposed DRL technique with an industry grade workflow

engine.

1.1 Background

In this section, a high-level overview of the main concepts related to the problem ad-

dressed in this thesis is presented.

1.1.1 Workflow Scheduling

A workflow can be modeled as a weighted Directed Acyclic Graph (DAG), G = (T, E)

where T represents the set of vertices and E represents the set of directed edges. Each

vertex in T represents a computing task, tn. Each edge ei,j ∈ E represents a data de-

pendency between tasks ti and tj such that the execution of tj cannot be commenced

until the execution of ti completes. Accordingly, a precedence constraint exists between

the two tasks and ti is a predecessor of tj and tj is a successor of ti. A task may have

4 Introduction

multiple predecessors and its execution can only be commenced when all of its prede-

cessors have completed execution and all the data dependencies are satisfied. When

all the precedence constraints of a task are satisfied, it is said to be in ready state. The

bottom most task of the workflow which has no successors is referred to as a sink task.

The problem of scheduling workflows in a distributed system is NP-Complete in the

general case. Workflow schedulers operating in distributed computing environments

primarily focus on mapping tasks to nodes for execution while ensuring data depen-

dencies are satisfied. Depending on the context of the problem the scheduling algo-

rithm may attempt to optimize one or more performance objectives including energy,

makespan, cost and QoS (Quality of Service). Scheduling algorithms can be categorised

as static (offline) or dynamic (online) depending on their mode of operation. Static algo-

rithms analyze the whole workflow and resource capacities and create a fixed schedule

(i.e. task to node mapping) prior to the commencement of workflow execution, whereas

dynamic algorithms operate based on information available at runtime.

1.1.2 Cloud and Edge Computing

Cloud services are provisioned to users through three delivery models: Software as a

Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS), and

users are charged for the utilisation of these services following a pay-as-you-go model.

In SaaS delivery model, applications are offered to users over the internet in a fully man-

aged manner. This eliminates the need for users to engage in downloading, installing,

managing or maintaining the applications by themselves. PaaS delivery model offers a

computing platform for the development of software. It relieves application developers

from the burden of having to manage underlying computing infrastructures, thus al-

lowing them to fully focus on software development activities. In IaaS delivery model,

users are offered access to a pool of computing resources (servers, networking, storage

etc.) that can be scaled up and down based on demand. With IaaS, users need not main-

tain or manage the infrastructures physically, but they are responsible for managing

certain aspects such as middleware, operating systems, storage etc.

As opposed to the centralized cloud, edge computing is a fully decentralized com-

1.1 Background 5

puting architecture that brings computation closer to the sources of data generation. In

essence, edge computing aims at leveraging the computing, networking, and storage

resources of any device (e.g. routers, switches, access points, base stations, nano data

centers, etc.) that resides between the cloud and terminal devices to provision cloud-

like services with minimal latency. In addition to low latency, the distributed computing

architecture of edge computing allows it to facilitate real-time interactions, mobility sup-

port, location awareness, and widespread geographical coverage.

1.1.3 Reinforcement Learning

Reinforcement learning is a branch of Machine Learning which operates by training an

agent to learn a desired behavior in an interactive environment based on the experiences

it encounters. Essentially, the agent receives a reward for each action that it performs in

a particular state and this reward serves as an indication of the success of the chosen

action in that state.

For instance, taking the action, at in the current state, st transitions the environment

to a new state, st+1 and the agent receives a reward, rt. With sufficient training the agent

learns to perform actions which result in the highest accumulated reward over time.

Markov Decision Process (MDP) is commonly used for modelling the environment in

which the RL agent operates. Accordingly, state transitions and rewards are considered

to be governed by Markov Property, which assumes that the next state and reward de-

pends solely on the current state, and the action taken by the agent in the current state.

Goal of an RL agent is to maximize the expected cumulative discounted rewards. A

policy, π(at|st) is the strategy which dictates the course of actions to be followed by an

agent to achieve the desired goal. vπ(s) is the value function of a state, s under a policy,

π. It’s a function for estimating the desirability of an RL agent to be in a certain state,

and can be represented in terms of expected return when following a policy π starting

from state, s.

vπ(s) = Eπ[Gt|st = s] (1.1)

where, Gt is the sum of discounted rewards after time, t and is expressed as:

6 Introduction

Gt =
∞

∑
k=0

γkrt+k+1 (1.2)

γ is the discounting factor which reflects the importance of future rewards, and γ ∈
(0, 1). A similar notation can be used to define the state action value function, qπ(s, a)

which represents the expected return when action, at is taken at state, st and policy, π is

followed thereafter.

qπ(s, a) = Eπ[Gt|st = s, at = a] (1.3)

Owing to the high dimensionality of the complex environment associated with our

problem, it is impossible to store data (states, actions) in a tabular format due to space

constraints associated with storing experiences as well as the in-feasibility for an agent

to explore all states during the training process. The use of neural networks as function

approximators has emerged as a remarkably successful way of overcoming the afore-

mentioned problems. Accordingly, the policy π(at|st) can be modelled as a parameter-

ized function with respect to an adjustable parameter θ, as πθ(at|st). In order to evaluate

the performance of the policy, we define a performance objective J(θ), which can be de-

fined as the expected return starting from the start state of the episode, s0 and thereafter

following the policy πθ . This in fact is the value function of state, s0 as expressed in

Equation 1.4.

J(θ) = vπθ
(s0) (1.4)

Policy gradients are a branch of RL algorithms that directly learn the parameterized

policy. This is done by estimating the gradient of J(θ) with respect to each policy pa-

rameter, and updating the policy parameter in the direction of the gradient as shown

below.

θt+1 = θt + α∇J(θt) (1.5)

where α is the learning rate. From the policy gradient theorem [4], the gradient of

J(θ) can be expressed in the following manner:

1.1 Background 7

∇J(θ) = Eπ[∑
a

qπ(st, a)∇π(a|st, θ)]

= Eπ[∑
a

π(a|st, θ)qπ(st, a)
∇π(a|st, θ)

π(a|st, θ)
]

= Eπ[qπ(st, at)
∇π(at|st, θ)

π(at|st, θ)
]

= Eπ[Gt
∇π(at|st, θ)

π(at|st, θ)
]

(1.6)

REINFORCE [5] is a popular policy gradient algorithm which uses the above deriva-

tion for updating policy parameters via gradient ascent as shown in Equation 1.7. This

however gives rise to slow convergence and high variance in gradient estimates due to

the possibility of high deviations between trajectories. Therefore, we used Actor-Critic

technique as the basis of our scheduling frameworks. Figure 1.2 shows a high-level vi-

sion for a holistic DRL based scheduling framework that can be adopted in a cloud dat-

aceneter. For the formulation of state of the environment, data from multiple sources can

be collected. Real time renewable energy availability as well as predicted energy levels

can be acquired from the renewable energy estimator. The network manager provides

the current status of the datacenter network whereas cooling system manager provides

details on thermal aspects. The utilization levels of the servers are provided by the re-

source manager. The state of pending workflows as well as workflows under execution

is provided by the workflow analyzer. Dispatching component is responsible for man-

aging the execution order of workflows, and for each ready task dispatched, the DRL

scheduler selects the node for allocation. The selected action is executed by provisioner,

and the outcome of the action is evaluated and provided as reward to the DRL model.

θt+1 = θt + αGt
∇π(at|st, θt)

π(at|st, θt)

= θt + αGt∇ ln π(at|st, θ)

(1.7)

8 Introduction

Figure 1.2: High level overview of workflow scheduling in a cloud datacenter with
Actor-Critic method

1.2 Motivation

The traditional workflow scheduling problem operates with the objective of finding an

allocation of tasks to execution nodes such that the precedence constraints are satis-

fied and the workflow completes execution within the minimum completion time. The

problem of scheduling workflows in a distributed system is NP-Complete in the gen-

eral case [6]. Scheduling workflows across highly dynamic cloud and edge computing

environments adds a further layer of complexity atop the general problem of workflow

scheduling across distributed computing environments. From a consumer point of view,

more efficient workflow scheduling strategies are needed for satisfying the delay re-

quirements of executions while also minimizing the monetary cost associated with leas-

ing the underlying infrastructures from vendors. Whereas from a vendor perspective,

efficient scheduling strategies are needed for distributing consumer workflows across

their infrastructures such that the cost of operations including energy consumption of

the infrastructure is minimized while also satisfying the Quality of Service (QoS) guar-

1.2 Motivation 9

antees.

Traditional heuristic and meta-heuristic approaches to workflow scheduling have

several weaknesses that limit the efficacy and applicability of these scheduling algo-

rithms. A common drawback of heuristic techniques is that they are more prone to

human errors. While the developers of heuristics may possess sufficient domain exper-

tise to formulate efficient heuristics, these methods aren’t guaranteed to be optimal. In

contrast, techniques such as integer linear programming which guarantees optimal re-

sults are highly computationally complex. Existing methods also lack adaptability since

they typically assume a predefined model of the operational environment. Therefore

they are unable to mimic the dynamics of real-world scenarios including time variant

environmental factors such as the availability of renewable energy. Another weakness

of a majority of existing approaches is that they are agnostic to unique challenges of

the underlying environments. For instance, as opposed to cloud servers with uninter-

rupted power supplies, a majority of terminal devices as well edge nodes deployed in

certain locations (e.g. remote areas) tend to have limited power supplies and therefore

extending the lifetime of power constrained edge nodes is imperative for preventing

service disruption. Furthermore, as opposed to cloud, edge infrastructures are resource

constrained and these factors need to be considered in the formulation of workflow

scheduling policies. It is imperative that the scheduling algorithm is sensitive to the

nature of the workflow execution environment since each environment imposes unique

challenges that need to be taken into account for efficiently scheduling workflows.

Incorporating intelligence to resource allocation policies through learning techniques

is an efficient way of addressing the aforementioned challenges. DRL has emerged as a

promising paradigm for dealing with highly dynamic and complex problems due to the

ability of DRL agents to learn to operate in stochastic environments. Well formulated

DRL solutions have outperformed traditional methods in highly complex problems in-

cluding robotics, and games such as Alpha-Go and Dota. DRL agents are capable of

interacting with the environments where they get exposed to the real-world dynam-

ics and thereby build an internal model which is a more accurate representation of the

operating environment. This in turn leads to self-adaptability and improved decision

making amid changing conditions and uncertainties.

10 Introduction

However, straightforward application of RL algorithms in workflow scheduling prob-

lems in distributed cloud computing environments is non-trivial both due to the previ-

ously discussed challenges of the workflow scheduling problem in distributed cloud

computing environments, and also due to the complexities and limitations associated

with the RL paradigm in general. Some such challenges are described below.

Curse of Dimensionality

Curse of dimensionality refers to the problem of exponential growth in the state and

action spaces when the dimensionality of the problem increases, that impedes the learn-

ing of the agent. This issue particularly bedeviled the applicability of RL algorithms

to real-world problems in early stages. The emergence of deep reinforcement learning

alleviated this problem to some extent. However, efficient state and action space repre-

sentations are still needed for achieving faster convergence to optimal policies.

Multi-objectivity

Multi-objective DRL methods are inherently more complex to design as well as train

compared to their single objective counterparts [7]. However, multi-objectivity is essen-

tial for efficiently capturing the diverse conflicting requirements that should be satisfied

by workflow schedulers when formulating scheduling decisions in distributed cloud

computing environments.

Multi-Agent Coordination

Single-agent scheduling frameworks maybe sufficient for satisfying the centralized schedul-

ing requirements of the traditional cloud computing paradigm. However, such ap-

proaches are not efficient when workloads are to be scheduled across more complex

distributed infrastructures such as federated clouds and emerging fog computing en-

vironments [8]. Multi-Agent Systems (MAS) in which interactions between multiple

agents are leveraged, are proven to be a better fit for problem-solving in highly dis-

tributed and stochastic environments compared to its single-agent counterpart [9]. The

1.3 Evaluation Methodologies 11

direct implementation of single agent RL algorithms in multiple agents leads to a non-

stationary environment which prevents such methods from converging to an optimal so-

lution [7]. Therefore the design of efficient multi-agent RL (MARL) algorithms requires

overcoming multiple challenges including nonstationarity and partial observability of

the environment, scalability issues that arise as the joint action space grows with the

increasing number of agents, and communication between agents which is particularly

challenging in partially observable environments [7].

Decentralized Execution

A majority of existing RL-based cloud workflow scheduling algorithms require the RL

agents to be trained and executed in a centralized manner. Such centralized execution-

based algorithms may not be ideal for highly distributed and stochastic computing en-

vironments [10]. However, designing and training DRL algorithms that can be executed

in a decentralized manner is non-trivial due to challenges such as availability of only

local information and partial intentions of other agents during execution time.

1.3 Evaluation Methodologies

Discrete-event simulation is one of the main methods used for evaluating the perfor-

mance of algorithms in large scale experiments due to cost and management issues as-

sociated with performing such large-scale evaluations in real test beds. In this thesis

an extension of the popular CloudSim [11] simulator was used for evaluating the algo-

rithms. We have also implemented new modules for simulating the proposed workflow

scheduling frameworks and interacting with the deep learning algorithms implemented

using the deep learning library Keras [12]. With the use of the simulator, a series of ex-

periments were conducted to evaluate each of the proposed techniques in a number

of different scenarios. A small scale practical testbed was also used for evaluating the

performance of the algorithms.

12 Introduction

1.4 Research Questions and Objectives

In this thesis, we investigate the manner in which DRL techniques can be leveraged

for addressing the challenges associated with scheduling workflows across distributed

cloud computing environments. Initially, we perform a baseline study to investigate

how energy consumption of workflow executions in a centralized datacenter can be op-

timized with a heuristic technique. In the subsequent works, we study more complex

workflow scheduling problems, and explore how DRL techniques can be leveraged for

efficiently solving those. More specifically, the following problems are investigated in

this thesis:

• Q1. How to jointly optimize host and network energy consumption of workflow execu-

tions in a centralized cloud datacenter? Although servers are the primary source of

energy consumption in cloud datacenters, datacenter networks also account for a

considerable percentage. Studies have revealed that the DCN consumes 10-20% of

the total data center power, and this percentage could rise much higher depend-

ing on the utilization level of the data center [13]. In this research question, we

propose an energy-efficient workflow scheduling approach that jointly optimizes

the power consumption of servers and networking elements in cloud data centers.

The proposed technique takes into account the precedence constraints and data de-

pendencies among workflow tasks as well as communication requirements among

task instances in the formulation of topology-aware scheduling decisions.

• Q2. How to dynamically schedule workflows across edge-cloud computing environments

while satisfying complex contradictory objectives? As opposed to cloud servers with

uninterrupted power supplies, a majority of terminal devices as well fog nodes de-

ployed in certain locations (e.g. remote areas) tend to have limited power supplies.

Therefore, it is imperative to design energy-efficient resource allocation policies

for workflows that are executing across cloud and fog computing environments.

However, it is equally important that the optimization policies do not compromise

the QoS requirements such as delay sensitivity. Accordingly, an efficient trade-off

between energy consumption and execution delay needs to be established. In this

research question, we propose a scheduling policy that is capable of enhancing the

1.4 Research Questions and Objectives 13

energy-efficiency of workflow executions across cloud and edge computing infras-

tructures while also meeting workflow deadlines in a best-effort manner. We use

Deep Reinforcement Learning (DRL) techniques which have proven to be efficient

at handling highly dynamic and complex environments [14]. Inherent characteris-

tics of the Reinforcement Learning (RL) paradigm such as learning through expe-

rience coupled with the use of neural networks for function approximation, makes

DRL an ideal candidate for handling the unpredictable dynamicity associated with

edge computing environments.

• Q3. How to devise self-adaptable algorithms for scheduling workflows on distributed cloud

datacenters while optimizing renewable energy utilization? The use of renewable en-

ergy for powering datacenters has emerged as a promising solution for minimizing

brown energy consumption. However, due to the intermittent nature of renewable

energy sources, incorporating renewable energy awareness to resource allocation

policies is inherently challenging [15]. The problem becomes further challenging,

when the workflow executions are to be coordinated across geo-distributed cloud

datacenters. Consequently, traditional heuristic and meta-heursitic based algo-

rithms as well as single agent reinforcement learning algorithms are incapable of

efficiently meeting the decentralized and adaptive control required for schedul-

ing workflows across distributed cloud datacenters powered through renewable

energy sources. In this research question, we have leveraged the recent advance-

ments in the paradigm of MARL (Multi-Agent Reinforcement Learning) for de-

signing and developing a multi-agent RL framework for optimizing the green en-

ergy utilization of workflow executions on distributed cloud datacenters.

• Q4. How to devise cost-optimized workflow scheduling policies and integrate them in

state-of-the-art workflow engines? The intelligent use of a mix of on-demand and spot

instances for workflow executions is a potential means of achieving high cost effi-

ciencies without adversely affecting performance expectations. Spot instances are

offered by cloud providers at steep discounts compared to their on-demand coun-

terparts in exchange for reduced reliability. This is because the cloud providers

utilize spare computing capacities available for provisioning spot instances, and

14 Introduction

therefore when the capacity is needed back, the instances are interrupted. Fur-

thermore, as opposed to on-demand instances with fixed prices, the prices of spot

instances are not guaranteed to be fixed, as the pricing is dependent on long term

supply and demand. The possibility of interruptions and pricing variations adds

a layer of complexity that needs to be efficiently handled for enjoying the cost sav-

ings without compromising the underlying business requirements. In this research

question, we design a DRL agent capable of establishing an efficient balance be-

tween the use of spot instances and on-demand instances for cost optimized work-

flow scheduling in cloud computing environments. Then, we present an end-to-

end means of training and deploying the DRL agent proposed in this work in an

open source container native workflow engine.

1.5 Thesis Contributions

A summary of contributions made by this thesis for addressing the aforementioned re-

search problems are as follows:

1. A taxonomy on the scheduling of workflows across cloud and edge computing

environments with the use of Reinforcement Learning

2. An energy-efficient workflow scheduling algorithm that jointly optimizes the power

consumption of servers and networking elements in cloud data centers (addresses

Q1).

3. A DRL technique for optimizing energy consumption of workflow executions across

cloud and edge computing environments while meeting workflow deadlines in a

best-effort manner (addresses Q2).

• An RL framework for energy and time-optimized scheduling of precedence-

constrained tasks in edge-cloud environments.

• Energy and deadline integrated reward model for training the DRL agent

to establish a desired trade-off between the conflicting objectives of energy

1.5 Thesis Contributions 15

optimization and time minimization in workflow executions across cloud and

edge computing environments.

• A novel hierarchical action space formulation. Different from existing studies

in which all edge and cloud nodes are considered together in non-hierarchical

action spaces, the proposed hierarchical action space promotes a clear distinc-

tion between edge and cloud nodes.

• A hybrid DRL model comprising of two actor networks and one critic net-

work. As opposed to the general case where a single actor network deter-

mines the node to which a task is assigned, the multi-actor network finely

divides the responsibility of determining the tier (cloud/edge) and determin-

ing the node to separate actors, thus greatly enhancing the learning process.

The critic network is used to guide both actor networks.

4. A multi-agent DRL framework for optimizing the green energy utilization of work-

flow executions on distributed cloud datacenters (addresses Q3).

• A hierarchical design for the workflow scheduling problem in which a global

RL agent assigns tasks to datacenters and local RL agents assign tasks to

nodes. Coupled with this, we present a novel formulation of the agent en-

vironment comprising of state space, action space and reward as a Partially

Observable Markov Decision Process (POMDP).

• A MARL framework capable of scheduling workflows across the the partially

observable and highly distributed cloud environments in an efficient manner

by sharing extra information during training, and operating solely based on

local information during execution. Furthermore, we propose a shared re-

ward structure which motivates agents to act cooperatively for achieving a

common goal.

• A novel approach to handling curse of dimensionality and thereby improving

training efficiency by leveraging the hierarchical nature of distributed cloud

scheduler for limiting the observations shared by agents to a local neighbor-

hood.

16 Introduction

5. A DRL technique for cost optimized workflow scheduling in a cloud cluster and

its integration to an enterprise-grade workflow engine (addresses Q4).

• A DRL model for cost optimized scheduling of workflows in a cloud com-

puting environment with the use of a balanced mix of on-demand and spot

instances.

• A logical organization of the cluster in a hierarchical manner, along with a

novel representation of the action selection process as a tree structure.

• An end-to-end means of training and deploying the proposed DRL agent in

a workflow engine. To the best of our knowledge, this is the first attempt at

embedding an intelligent agent in an open source container-native workflow

engine.

1.6 Thesis Organization

The structure of this thesis is shown in Figure 1.3 The remaining part of this thesis is

organized as follows:

• Chapter 2 presents a taxonomy and literature review on workflow scheduling in

cloud and edge computing environments with RL. This chapter is derived from:

– Amanda Jayanetti, Saman Halgamuge, Rajkumar Buyya, ”Reinforcement Learn-

ing based Workflow Scheduling in Cloud and Edge Computing Environments:

A Taxonomy, Review and Future Directions”, ACM Computing Surveys (CSUR),

2023 (submitted, August 2023).

• Chapter 3 presents a joint host and network optimization algorithm for optimizing

the energy-efficiency of workflow executions in cloud computing environments.

This chapter is derived from:

– Amanda Jayanetti, Rajkumar Buyya, ”J-opt: A joint host and network op-

timization algorithm for energy-efficient workflow scheduling in cloud data

centers”, Proceedings of the 12th IEEE/ACM International Conference on Utility

1.6 Thesis Organization 17

Figure 1.3: Thesis Organization

and Cloud Computing, Pages: 199–208, Auckland, New Zealand, December

2-5, 2019.

• Chapter 4 presents a technique for optimizing energy consumption of workflow

executions across cloud and edge computing environments, while meeting work-

flow deadlines in a best effort manner with the use of DRL. This chapter is derived

from:

– Amanda Jayanetti, Saman Halgamuge, Rajkumar Buyya, ”Deep reinforce-

ment learning for energy and time optimized scheduling of precedence-constrained

tasks in edge–cloud computing environments”, Future Generation Computer

Systems, Volume 137, Pages: 14–30, 2022

• Chapter 5 presents a multi-agent RL framework for optimizing the green energy

18 Introduction

utilization of workflow executions on distributed cloud datacenters. This chapter

is derived from:

– Amanda Jayanetti, Saman Halgamuge, Rajkumar Buyya, ”Multi-agent Deep

Reinforcement Learning Framework for Renewable Energy aware Workflow

Scheduling on Distributed Cloud Datacenters”, IEEE Transactions on Parallel

and Distributed Systems, 2024 (accepted for publication).

• Chapter 6 presents a DRL technique for optimizing cost of workflow executions,

and integrates it in the open source container native Argo workflow engine.

– Amanda Jayanetti, Saman Halgamuge, Rajkumar Buyya, ”A Deep Reinforce-

ment Learning Approach for Cost Optimized Workflow Scheduling in Cloud

Computing Environments”, IEEE Transactions on Parallel and Distributed Sys-

tems, 2024 (submitted, January 2024).

• Chapter 7 concludes the thesis by summarising the findings and identifies future

research directions.

Chapter 2

A Taxonomy and Review on
Workflow Scheduling with

Reinforcement Learning

Deep Reinforcement Learning (DRL) techniques have been successfully applied for solving com-

plex decision-making and control tasks in multiple fields including robotics, autonomous driving,

healthcare and natural language processing. The ability of DRL agents to learn from experience and

utilize real-time data for making decisions makes it an ideal candidate for dealing with the complexi-

ties associated with the problem of workflow scheduling in highly dynamic cloud and edge computing

environments. Despite the benefits of DRL, there are multiple challenges associated with the appli-

cation of DRL techniques including multi-objectivity, curse of dimensionality, partial observability

and multi-agent coordination. In this chapter, we comprehensively analyze the challenges and op-

portunities associated with the design and implementation of DRL oriented solutions for workflow

scheduling in cloud and edge computing environments. Based on the identified characteristics, we

propose a taxonomy of workflow scheduling with DRL. We map reviewed works with respect to the

taxonomy to identify their strengths and weaknesses. Based on taxonomy driven analysis, we pro-

pose novel future research directions for the field.

2.1 Introduction

A wide variety of heuristics are proposed in academia for scheduling workflows across

cloud computing environments with different optimization goals. HEFT [16] is one

This chapter is derived from:

• Amanda Jayanetti, Saman Halgamuge, Rajkumar Buyya, ”Reinforcement Learning based Workflow
Scheduling in Cloud and Edge Computing Environments: A Taxonomy, Review and Future Direc-
tions”, ACM Computing Surveys (CSUR), 2023 (submitted, August 2023).

19

20 A Taxonomy and Review on Workflow Scheduling with Reinforcement Learning

popular heuristic designed for makespan minimization in static workflow scheduling.

This heuristic is used as a basis for task ordering in many workflow scheduling and

resource provisioning algorithms. For instance, W. Zheng et. al [17] used HEFT for

deriving an initial task to host mapping, post to which DVFS (Dynamic Voltage and Fre-

quency Scaling) technique [18] was applied to selected hosts in a greedy manner. DVFS

technique has been used in multiple other studies for energy-efficient workflow schedul-

ing in cloud computing environments [19], [20]. In [21] a migration-based resource al-

location policy for energy-efficient workflow scheduling across cloud VMs is proposed.

Researchers have also proposed heuristics based on VM scaling [22] and task merging

[23] for scheduling workflows with the objectives of enhancing energy efficiency and

cost, while meeting deadline constraints.

A number of heuristics are proposed for scheduling workflows in cloud and edge en-

vironments [24], [25]. In [24] S. Ljaz et. al proposed a heuristic algorithm for energy and

makespan-optimized scheduling of workflows across cloud-edge environments. Firstly,

tasks ranked based on optimistic processing times are enqueued to a priority queue. For

selecting nodes, a weighted bi-objective function based on minimum completion time

and energy consumption is formulated, and tasks are allocated to the node with the

minimum value. Deadline aware stepwise frequency scaling approach is also incorpo-

rated for further minimizing energy consumption by leveraging the unused time slots

between multiple tasks scheduled on the same node.

Meta-heuristics are widely used in the design of scheduling algorithms in cloud com-

puting environments. Particle Swarm Optimization (PSO) is a popularly used meta-

heuristic in cloud workflow scheduling. For instance, in [26] PSO is used for scheduling

workflows with the objective of minimizing execution costs without violating deadline

constraints. Z. Li [27] also used PSO for designing a workflow scheduling algorithm

for minimizing workflow execution cost while adhering to deadline and security con-

straints. In [28], an artificial neural network was integrated with NSGA-II meta-heuristic

algorithm to develop a scheduling algorithm that is capable of adapting to the inherent

dynamicity associated with cloud computing environments.

Meta-heuristics techniques are increasingly used for designing workflow schedul-

ing algorithms across cloud and edge/fog computing environments. P. Hosseinioun

2.1 Introduction 21

et. al [29] used an invasive weed optimization and culture evolutionary algorithm for

ordering tasks with precedence constraints prior to allocating them for execution in

DVFS-enabled fog nodes. The authors have leveraged slack times of tasks for setting

low frequencies to processing nodes without compromising pre-defined deadlines to

achieve considerable energy savings. M. Mokini et. al [30] also ordered tasks taking

into account the precedence relations with the use of a Topological Sort Algorithm [31].

Afterward, Genetic Algorithm was used for scheduling tasks with the objectives of min-

imizing makespan and cost while optimizing resource utilization. In a work by C. Wu et.

al [32] workflows are partitioned to two parts, only one of which is offloaded to the fog

and cloud tiers. The other partition remains in the terminal layer in which IoT devices

are residing. Partitioning is done for the purpose of minimizing data transfer among

terminal and fog/cloud layers which is important for reducing energy-consumption as

well as network traffic. The proposed approach uses EDA (Estimation of Distribution

Algorithm) technique for scheduling the tasks among fog and cloud tiers with the objec-

tives of minimizing energy consumption and makespan. Y. Xie et. al [33] used PSO for

scheduling workflows in a hybrid cloud and edge computing environment with the ob-

jectives of minimizing execution cost and makespan. A weighted bi-objective function

is used to establish the desired balance between makespan and cost. In [34], N. Bacanin

et. al improved the limitations of firefly meta-heuristic algorithm by the incorporation

of genetic operators and a learning prodedure based on quasi-reflection. The enhanced

algorithm was then used for scheduling workflows across cloud and edge computing

environments with the objectives of minimizing makespan and cost.

Despite the satisfactory results achieved by heuristic-based workflow scheduling al-

gorithms, there are inherent limitations associated with heuristic techniques. The design

of a heuristic requires advanced domain expertise and may require the collaboration of

multiple experts. Regardless of the level of domain expertise possessed by the experts,

the fact that heuristics are designed by humans makes them prone to human errors.

Furthermore, the chosen heuristics are not guaranteed to be optimal and the selected

heuristics could produce results that are far from the optimal achievable results. Al-

though scheduling algorithms based on meta-heuristics are typically capable of over-

coming the aforementioned limitations of heuristics, they are less appropriate for highly

22 A Taxonomy and Review on Workflow Scheduling with Reinforcement Learning

dynamic cloud environments due to high computational costs and time complexities.

Several studies have integrated meta-heuristics with popular heuristics such as HEFT

for developing efficient workflow scheduling algorithms [35], [36].

Owing to the ability of RL-oriented algorithms for identifying optimal behaviors in

highly dynamic and unpredictable environments, researchers are increasingly using RL

for solving a wide variety of resource management problems in cloud and edge comput-

ing environments. Resource scaling is a fundamental characteristic of the cloud com-

puting paradigm that differentiates it from previous utility computing infrastructures

such as grids. The power of RL is leveraged in multiple works for designing efficient

auto-scaling algorithms for cloud applications executing in traditional VMs [37] and

spot instances [38], as well as more recent serverless computing environments [39]. VM

scheduling and migration is another area that seems to benefit from the capabilities of

RL. N. Liu et. al [40] proposed a hierarchical RL framework comprising a global tier of

VM allocation and a local tier of Dynamic Power Management (DPM) [41] of servers for

optimizing the energy-efficiency of the underlying cloud computing environment. RL

was also used by B. Wang [42] for designing a VM scheduling and migration algorithm

for cloud datacenters.

RL is increasingly becoming a popular candidate for resolving the resource manage-

ment problems of upcoming edge and fog computing environments. Q learning was

used in multiple works for designing load-balancing algorithms for fog computing en-

vironments [43], [44]. In [45], Deep Q Learning is used for handling mobility-aware VM

migration in edge computing. Deep Q learning was also used in [46] for IoT network

clustering.

2.2 Taxonomy

2.2.1 Taxonomy based on the specific problem for which RL is used

In this section, we analyse the Agent Action branch of the taxonomy shown in Figure

2.1. Reinforcement learning algorithms are used in workflow schedulers to perform

many different types of actions. An action as previously discussed results in the state

2.2 Taxonomy 23

Figure 2.1: Taxonomy of Workflow Scheduling in Cloud and Edge Computing Environ-
ments with Reinforcement Learning [CTE - Centralized Training and Execution, CTDE
- Centralized Training and Distributed Execution, DTE - Distributed Training and Exe-
cution, SORL - Single-Objective Reinforcement Learning, MORL - Multi-Objective Rein-
forcement Learning]

of the environment being transitioned from the current state to the next state, and the

agent receives either an immediate reward or a delayed reward (usually at the end of

the episode) which reflects the desirability of the action with respect to the objective of

the scheduling algorithm.

An important pre-requisite for the successful application of RL in problem-solving

is to identify which areas of the problem being solved would benefit from the advanced

capabilities of the RL paradigm. In the case of workflow scheduling across distributed

computing infrastructures, the most straightforward and common use of RL is the selec-

tion of a node for task execution, however, authors in surveyed literature have explored

the power of RL in several other areas of workflow scheduling as discussed in the sub-

sections below.

24 A Taxonomy and Review on Workflow Scheduling with Reinforcement Learning

Execution Node Selection

In a majority of existing studies, RL is used for determining the node to which a task can

be allocated for execution. Such a decision requires the consideration of multiple factors

including system objective, specific resource requirements of the task which is to be al-

located to the selected execution node, the current resource utilization levels of the node

as well as the size of the waiting queue. A well-trained RL agent is capable of finding

the right match by taking into account all the aforementioned factors and therefore, RL

is heavily used for selecting the node for task executions in workflow schedulers.

The size of the action space is a parameter that influences the training speed of the

algorithm as well as the decision speed [47]. Therefore, in some works, multiple actions

are permitted in a single time step so that the size of the action space is constrained.

Execution Environment Selection

The selection of the execution environment is a high-level action for which RL is used

in hierarchically designed schedulers and it is often combined with a lower-level action

such as execution node selection. In schedulers that are operating across multi-cloud

environments, an action of an RL agent corresponds to the selection of a particular data-

center for allocation of a task, or an entire workflow. In a cloud datacenter where execu-

tion nodes are grouped into clusters, an action would be the selection of a server cluster

for task allocation. For schedulers that operate across cloud and edge computing envi-

ronments, an action corresponds to the selection of the particular layer (cloud/edge) to

which the task will be allocated [48].

Task Admission

Task admission includes the selection of a task to be scheduled. In a multi-tenant work-

flow scheduling system at a particular time step, there may be multiple tasks that have

their precedence constraints satisfied, and therefore ready to be scheduled. In such sce-

narios, the selection of a task from multiple ready tasks is an important factor that im-

pacts the resource utilization of the underlying system as well as the makespan of the

2.2 Taxonomy 25

workflows that are submitted to the system. Accordingly, in order to perform the admis-

sion of a task while taking into account the system objective, resource utilization levels

as well as user-defined constraints such as deadlines, the power of RL is leveraged in

multiple studies. In [49], an action of the RL agent corresponds to the selection of a task

to be scheduled in the cluster. The agent is also allowed to select a movement action

which causes the system to run one more time-step (without admitting a new task to the

system). Similar to the case in which RL is used for the selection of an execution node,

in task admission as well it is important to limit the size of action space to prevent the

impediment to the training process. For instance, if there are N tasks to be scheduled

at a certain point, the size of the action space would be 2N . By allowing the agent to

take multiple actions during a single time step the size of action space can be kept linear

in N. This approach is adopted in [49] to prevent the expansion of action space, thus

facilitating the training process. In [50], RL is used for task selection (i.e. admission) in

a scenario where an RL agent is assigned to each resource, and the action of the agent is

to select a task to be executed on the relevant resource.

Task Sorting

As opposed to independent tasks, a workflow consists of multiple tasks with complex

data inter-dependencies. Depending on the structure of the workflow, completion of cer-

tain tasks may be more crucial for minimizing the makespan of the workflow. Ordering

tasks of a workflow that is to be executed in a heterogeneous platform is an NP-complete

problem and therefore a number of heuristics have been proposed to find approximate

solutions for this problem [51]. HEFT is one such heuristic that is popularly used for task

prioritization in cloud workflow schedulers [51]. HEFT is a greedy scheduling algorithm

which evaluates the lengths of critical paths of tasks and ranks them accordingly, and

then, the best processor is allocated to the highest ranked task yet to be scheduled. It is

a static method since the workflow is processed and scheduling decisions are made of-

fline. In QL-HEFT authors combine RL with HEFT algorithm for designing a workflow

scheduling algorithm capable of minimizing makespan [52]. In the proposed approach,

the upward ranks of tasks computed according to the HEFT technique are used as imme-

26 A Taxonomy and Review on Workflow Scheduling with Reinforcement Learning

diate rewards for training the RL agent. A. Kaur [53] used Deep Q learning coupled with

HEFT heuristic for ordering the tasks of workflows which seemed to have produced sig-

nificantly better results compared to QL-HEFT. Despite improved makespan guarantees,

static scheduling algorithms are not suitable for scheduling workflows across the highly

dynamic cloud and edge computing environments. [54, 55] proposed online scheduling

algorithms for ordering tasks of workflows using RL. In these approaches, an RL agent

assigned to the workflow learns to assign values to nodes through multiple rounds of

training and the values are then used for task prioritization prior to resource provision-

ing phase. In [55], multiple agents are assigned to parts of the workflow for speeding

up the learning process involved in task prioritization. This is particularly useful when

it comes to large workflows with complex inter-dependencies.

Composite Actions

In a majority of surveyed works, one of the aforementioned single discrete actions is the

output of the RL agent. However, such action space designs are prone to the ’curse of

dimensionality as the system becomes more complex and the output of the RL agent

becomes multi-dimensional leading to a combinatorial increase in the number of poten-

tial actions. More advanced action space designs involving composite actions are then

useful for preventing the explosion of action space leading to in-efficient learning [56].

Hierarchical RL is another means of designing RL models such that a more complex

high-level problem is decomposed into multiple sub-problems thus restricting the num-

ber of discrete actions that need to be considered by lower-level agents [57]. One such

work that leveraged the power of hierarchical RL is [48] in which the authors presented

the design of a hierarchical action space for task allocation in edge-cloud computing en-

vironments. In the proposed hierarchical design, the upper-level agent is responsible

for determining if a task should be executed in cloud or edge, and the lower-level agent

then decides which node in the selected tier should be selected for task execution.

2.2 Taxonomy 27

2.2.2 Taxonomy based on RL algorithm

In this section, we discuss the RL algorithm branch of the taxonomy shown in Figure

2.1. Reinforcement learning algorithms can be broadly classified into two categories;

Model-based reinforcement learning algorithms and model-free reinforcement learning

algorithms. As the name implies model-based algorithms rely on a predictive model

of the environment which provides the state transition probabilities and rewards, thus

enabling agents to make informed decisions and plan ahead. However, it is impractical

to formulate predictive models as such for highly dynamic cloud computing environ-

ments. Accordingly, all the surveyed RL algorithms used in cloud workflow scheduling

fall into the model-free category in which an agent learns completely through the experi-

ence it gathers by interacting with the environment. A number of popular RL algorithms

are considered in this section of the taxonomy.

SARSA

SARSA is a Temporal Difference based RL algorithm that uses the following equation

for learning the Q values after every state transition:

Q(s, a) = Q(s, a) + α[R(s, a, s′) + γQ(s′, a′)−Q(s, a)] (2.1)

Since the behavior policy is updated based on the actions taken and rewards re-

ceived, SARSA is an on-policy RL algorithm.

Q Learning

Q learning is a popular TD (Temporal Difference) control based off-policy RL algorithm

which starts with arbitrary Q values and iteratively uses the update rule in equation 2.2

for converging to the optimal Q value function (Q∗(s, a)).

Q(s, a) = Q(s, a) + α[R(s, a, s′) + γ max
a′∈A

Q(s′, a′)−Q(s, a)] (2.2)

The optimal Q function can then be used for deriving the optimal policy as denoted

28 A Taxonomy and Review on Workflow Scheduling with Reinforcement Learning

in the equation below.

π∗(a|s) = max
a∈A

Q∗(s, a) (2.3)

However, Q learning relies on storing data in a tabular format which limits its suit-

ability for complex environments with high dimensional state spaces due to space con-

straints associated with storing experiences as well as the in-feasibility for an agent to

explore all states.

Deep Q Learning

DQN is a well known off-policy reinforcement learning algorithm which leverages a

neural network for approximating the Q-value function. Neural network is initialized

with arbitrary weights which are updated during the course of training thus allowing

the network to learn the actual Q value function. This is done by iteratively minimizing

the mean squared difference between network predicted Q values and target Q values

as shown in equation 2.4. The parameterized Q-value function can be represented as:

Q(s, a|θ).

L(θ) =
1
N ∑

i∈N
(Q(si, ai|θ)− (Q′(si, ai|θ))2

where (Q′(si, ai|θ) = R(si, ai) + γ max
a′∈A

Q(s′i, a′i|θ)
(2.4)

The neural network, takes as input the state of the environment (s ∈ S) and outputs

the Q value of each action (a ∈ A). The action with maximum Q value can then be

selected to derive the optimal policy as follows:

π∗(a|s, θ) = max
a∈A

Q∗(s, a|θ) (2.5)

REINFORCE

REINFORCE [5] is a fundamental policy gradient algorithm that uses a trajectory sam-

pled using the current policy for obtaining the cumulative discounted reward, vt which

2.2 Taxonomy 29

in turn is used as an unbiased estimate of Q(st, at). The policy parameters are updated

with gradient ascent. Since the update takes place after a complete trajectory, REIN-

FORCE is an off-policy algorithm. Owing to the differences between sampled trajecto-

ries, the gradient estimates could have a high variance giving rise to slow convergence.

A baseline function deducted from the return is used as a means of reducing variance in

gradient estimates.

Actor-Critic

Actor critic methods are a branch of policy gradient algorithms which combine the ben-

efits of value based and policy based RL through the use of two interacting functions

termed actor and critic. The actor takes the state of the environment as input and out-

puts the probability distribution of the actions to be followed for achieving a particular

objective. The Critic provides an evaluation of the desirability of the action taken with

respect to the set objective, and the feedback is used by actor for updating the policy pa-

rameters in the direction suggested by the critic. In essence, the actor learns the policy

and critic learns the value function. Neural networks are typically used for parameter-

izing both functions.

Proximal Policy Optimization

Vanilla policy gradients suffer from sample inefficiency since a sample is only used once

for updating the policy. The PPO method [58] enables performing multiple epochs of

updates with mini-batches of samples through the use of a clipped surrogate objective

function. Since large policy updates could lead to sub-optimal convergence, the objec-

tive function of PPO restricts the degree to which new policy is allowed to deviate from

the old policy by clipping the ratio between current policy and new policy in a range, [1

- ϵ, 1 + ϵ].

30 A Taxonomy and Review on Workflow Scheduling with Reinforcement Learning

2.2.3 Taxonomy based on RL objective

In this section, we analyse the RL objective branch of the taxonomy shown in Figure 2.1.

Workflow scheduling problems in cloud and edge computing environments for which

RL is used could have a single objective or multiple objectives that may or may not be

of equal importance.

Single Objective RL (SORL)

A majority of RL-based workflow schedulers that have been proposed in academia be-

long to the single objective category. Most of the existing single-objective RL algorithms

have attempted to optimize scheduling objectives such as energy, makespan, cost, SLA,

and resource utilization. An in-depth discussion of these objectives is included in sec-

tion 2.2.6. It is realistically impossible to map the diverse and conflicting requirements of

workflow schedulers deployed in highly dynamic cloud and edge computing environ-

ments to a single objective scheduling problem. Therefore, a popular technique is to use

scalarization for transforming the multi-objective scheduling problem into a single ob-

jective RL problem with the use of a weighted additive reward function and then using

single-objective value-based methods such as Q-learning or policy search-based meth-

ods such as A2C for handling multiple objectives [59, 60]. Naturally, this approach leads

to a single-policy solution since the underlying single-objective methods are designed

to find a single optimal solution. The techniques that have used a weighted reward

function, although capable of incorporating multiple objectives, do not have the same

flexibility as a system with multiple objectives that includes multiple agents [61]. Deter-

mining the right weights to assign for each of the objectives requires domain expertise,

and even the guesses made by experts are not guaranteed to be optimal. Furthermore,

with a weighted reward function, a change in preferences cannot be accommodated flex-

ibly. It is also costly to run multiple combinations for identifying the most appropriate

distribution of weights.

2.2 Taxonomy 31

Multi-Objective RL (MORL)

Multi-objective RL though inherently more complex to design as well as train compared

to their single objective counterparts [7], may be essential for efficiently capturing the

diverse conflicting requirements that should be satisfied by workflow schedulers when

formulating scheduling decisions in the cloud and edge computing environments. In

[61], authors argue that designing an explicitly multi-objective system from the begin-

ning leads to the reduction of computation time and sample complexity. Particularly

in the presence of highly dynamic conditions such as those in the cloud and edge com-

puting environments, it is impractical to assume that the desired trade-offs between

objectives will remain constant. RL frameworks designed explicitly in a multi-objective

manner are better suited for such environments since the agents can be trained so that

they can adapt to such changes, this eliminates the need to retrain the model to identify

a different policy every time an external factor causes a change in objective preferences.

2.2.4 Taxonomy based on agent architecture

In this section, we analyse the Agent Architecture branch of the taxonomy shown in Fig-

ure 2.1. When designing an RL-oriented solution, complex scheduling problems may re-

quire coordination among multiple agents (cooperating or competing) whereas a single-

agent architecture may be more suitable for other more general scenarios. Despite the

advantages of multi-agent methods, they do have certain limitations such as hindrance

to learning which may occur due to the actions of multiple concurrent agents making

the environment non-stationary and curse of dimensionality due to exponential growth

in joint state and action spaces with the number of agents [7].

Single-Agent Systems

As the name implies, a single agent system comprises of a single RL agent that interacts

with the environment and performs an action for which a reward is received. Single-

agent systems are less complex to design as well as train since they are free from the

common challenges associated with multi-agent coordination described above. Despite

32 A Taxonomy and Review on Workflow Scheduling with Reinforcement Learning

the success of single-agent RL methods, their applicability to a large number of real-

world problems is limited since they cannot be solved with a single agent [7].

Multi-Agent Systems (MAS)

In multi-agent systems, multiple agents interact with the environment and learn to solve

a problem concurrently. Multi-agent RL can be categorized into three groups based on

whether the nature of interactions between agents is cooperative or competitive.

Cooperative multi-agent systems RL based schedulers of this category leverage the

cooperation among multiple agents for solving parts of a larger problem. The agents

may work independently on different parts of the problem or in parallel on parts of a sin-

gle problem distributed among them [62]. The concurrent processing of sub-problems

by multiple agents enhances the scalability of the system which is particularly important

for larger problems. Also, the use of multiple agents working in parallel makes the sys-

tem more robust since the system is tolerant to the failure of a single agent. For instance,

in [55] both aforementioned types of multi-agent co-ordinations are leveraged to design

an integrated task scheduling and resource provisioning with RL. In the task ordering

phase, multiple parallel agents are used for efficiently analyzing parts of a workflow,

and ordering the tasks such that tasks with higher ranks can be prioritized in the re-

source provisioning phase. Since different agents analyze different parts of a workflow,

the search space handled by each agent is reduced, leading to faster learning. In cases

where the same part of the workflow is analyzed by multiple agents, the weighted av-

erage of the Q value estimates of agents is taken. The use of parallel agents in this man-

ner has been particularly useful for speeding up the learning process especially when

workflows with a large number of complex interdependencies are involved. In the next

phase of the same work, multi-agent coordination is again leveraged for provisioning re-

sources to the ordered tasks. In this case, an agent is assigned to each resource, and the

action is the selection of a task to be executed on the resource. Each agent operates with

the objective of maximizing its reward, so to ensure the global objective of system-wide

cost and energy minimization is achieved, a Markov game is formulated to converge the

2.2 Taxonomy 33

agents to a globally optimal solution.

Competitive multi-agent systems Competitive multi-agent systems are generally

modelled as zero sum Markov games where the sum of returns of all agents is zero [63].

In the common case where there are two competing agents [64], the reward received by

one agent is equivalent to the loss of the other.

Mixed cooperative-competitive multi-agent systems Mixed settings are character-

ized by a combination of features from competitive and cooperative settings and in-

cludes a general-sum reward [7]. In mixed settings agents are self-motivated and may

have rewards that are conflicting with those of others [63].

2.2.5 Taxonomy based on the RL agent training and execution architecture

In this section, we analyse the Training and Execution Architecture branch of the tax-

onomy shown in Figure 2.1. Multi-agent coordination in RL is an active research area,

therefore the categorizations considered in this part of the taxonomy are not exhaus-

tive. We have limited the scope of analysis to three main types of training and execution

methods although other hybrid variants are recently being explored for multi-agent co-

ordination [65].

Centralized Training and Execution

A majority of RL-based algorithms considered in this survey belong to the category of

centralized training and centralized execution as they are straightforward single-agent

algorithms. As the name implies, in the case of a single-agent scenario, the agent is

trained and executed in a centralized manner. In multi-agent scenarios, this type of

learning is typically based on a joint action and observation model in which a joint ob-

servation of all agents is mapped to a joint action by a centralized policy. This in turn

could lead to an exponential growth in the action and observation spaces with the num-

ber of agents [66]. The multi-agent workflow scheduling algorithm proposed in [48]

leverages hierarchical RL [57] for addressing the aforementioned problem. In the pro-

posed approach, the action space is designed in a hierarchical manner such that the

action spaces of agents at each level are confined.

34 A Taxonomy and Review on Workflow Scheduling with Reinforcement Learning

Centralized Training and Distributed Execution

Despite the promising experimental results, centralized execution-based RL algorithms

may not be ideal for highly distributed and stochastic edge computing environments

[10]. In centralized training and distributed execution (CTDE) paradigm, additional

information that is only available at training time is leveraged to learn decentralized

policies such that during execution time the agents operate solely based on local ob-

servations and partial information about the intentions of other agents, thus alleviating

the need for complex communications between agents [67]. The paradigm of CTDE

is utilized in [68] for coordinating multi-agent training and execution in the schedul-

ing of concurrent requests modeled as DAGs across edge networks. A policy learning

technique based on value decomposition networks [69] is adopted for decomposing the

value function of the team into individual value functions. This helps overcome prob-

lems associated with independent learning such as when the learning of a particular

agent is discouraged since its exploration leads to the hindrance of another agent that

has already learned a useful policy [69].

Distributed Training and Execution

As the name implies, in the paradigm of distributed training and execution, both learn-

ing as well as execution takes place in a decentralized manner. Popular Multi-Agent

RL algorithms such as A3C [70] and more recent developments such as IMPALA [71]

as well as algorithms such as Gorila (General Reinforcement Learning Architecture) [72]

that leveraged parallel computations to enhance the efficiency of single-agent training

falls into this category.

2.2.6 Taxonomy based on scheduling objective

In this section, we analyse the Scheduling Objective branch of the taxonomy shown in

Figure 2.1.

2.2 Taxonomy 35

Makespan

Makespan minimization is one of the most commonly studied objectives in workflow

scheduling across distributed computing infrastructures. Makespan refers to the total

time it takes for a workflow to complete execution, and it is dependent on multiple

factors including the size of tasks, processing speeds of nodes to which tasks are allo-

cated for execution, the volume of data dependencies among tasks, and bandwidth of

underlying networking infrastructures. Makespan minimization across heterogeneous

and distributed infrastructures is a complex problem, it is even more complicated when

workflows are to be scheduled across multi-tenant cloud computing environments [73].

Several RL-oriented methods have been proposed by researchers for solving this prob-

lem efficiently. One such approach is to use RL for sorting tasks of workflows prior to

resource provisioning, another more common method is to incorporate makespan min-

imization objective to the reward of an RL agent so that resources are allocated to tasks

with the long term objective of minimizing the overall makespan.

Energy efficiency

The ever-increasing popularity of the cloud computing paradigm has resulted in the

development of hyper-scale data centers that consume significantly high levels of en-

ergy. High energy consumption leads to undesirable consequences including raised

levels of CO2 emissions and increased monetary costs associated with high electricity

consumption [74]. Energy efficiency is equally important for the emerging edge com-

puting paradigm since a majority of edge devices are likely to be powered with batteries

with limited capacities and the collective energy consumption of rapidly growing vol-

umes of edge nodes is estimated to be significantly high [75]. Therefore, a plethora of

research efforts has been focused on enhancing the energy efficiency of cloud and edge

computing infrastructures through a variety of different mechanisms including dynamic

power management [41], thermal aware scheduling [76] and renewable energy utiliza-

tion [15]. Accordingly, energy efficiency has been considered a primary objective in a

large number of workflow scheduling algorithms proposed in academia [77]. More re-

cently, researchers have leveraged the advanced capabilities of RL for enhancing the

36 A Taxonomy and Review on Workflow Scheduling with Reinforcement Learning

energy efficiency of workflow executions across distributed cloud computing environ-

ments.

Cost

A majority of cloud services are billed using the pay-as-you-go approach. Cloud com-

puting platforms offer virtual machines (VM) with different flavors (processing capabili-

ties including the number of virtual CPUs, memory, and storage) and therefore different

prices are charged for their utilization. Execution cost depends on the total number of

VMs used for the execution of workflow tasks and their respective flavors, which is de-

termined by the underlying resource provisioning and scheduling policy. In addition to

minimizing overall cost as a primary objective, some studies have attempted to satisfy

budget constraints in a best-effort manner, while primarily optimizing different objec-

tives such as makespan and/or energy [78].

Resource Utilization

Optimized resource utilization is an intrinsic objective that goes in hand with many

other objectives. For instance, optimized network and host (virtual or physical) re-

sources lead to lower energy-efficiency, since unused resources can be put into dormant

state. This in turn reduces cost of operations as well.

SLA/Deadline

Deadline is an important objective particularly when it comes to delay sensitive work-

flows such as those used in IoT (Internet of Things). In some studies deadlines are also

used for establishing an upper bound to the degree to which makespan of workflows

are allowed to extend for achieving objectives such as energy-efficiency [48].

2.3
R

eview
ofR

einforcem
entLearning

based
w

orkflow
scheduling

techniques
37

Table 2.1: Analysis of existing literature based on proposed taxonomy for workflow scheduling with DRL [CTE - Centralized
Training and Execution, CTDE - Centralized Training and Distributed Execution, DTE - Distributed Training and Execution,
MORL - Multi-Objective Reinforcement Learning, SORL - Single-Objective Reinforcement Learning]

Work Agent Action RL Algorithm RL Objective Agent Architecture Training-Execution Architecture Scheduling Objectives

A. Asghari et al [55] Task Sorting Q Learning MORL Multi-Agent Cooperative CTDE Makespan, Energy-Efficiency

Task Admission Cost, Resource Utilization

Y. Wang et al [79] Execution Node Selection Deep Q Learning MORL Multi-Agent Cooperative DTE Makespan, Cost

A. Asghari et al [50] Task Sorting SARSA MORL Multi-Agent Cooperative CTDE Resource Utilization, Makespan

Task Admission

Y. Qin [78] Execution Node Selection Q Learning MORL Single-Agent CTE Makespan, Energy-Efficiency,

Cost

A. Nascimento et al [80] Execution Node Selection Q Learning SORL Single-Agent CTE Makespan

A. Asghari et al [54] Task Sorting Q Learning MORL Multi-Agent Cooperative CTDE Makespan, Energy-Efficiency,

Task Admission Resource Utilization

Z. Tong et al [52] Task Sorting Q Learning SORL Single-Agent CTE Makespan

A. Kintsakis et al [81] Execution Node Selection REINFORCE SORL Single-Agent CTE Makespan

T.Dong et al [82] Execution Node Selection Deep Q Learning SORL Single-Agent CTE Makespan

Z. Pheng et al [83] Execution Node Selection Deep Q Learning MORL Single-Agent CTE Energy-Efficiency, Makespan

A. Orehan et al [84] Execution Node Selection Q Learning, SARSA SORL Single-Agent CTE Makespan

Q. Wu et al [85] Execution Node Selection REINFORCE SORL Single-Agent CTE Makespan

Y. Hu et al. [49] Task Admission Actor-Critic SORL Single-Agent CTE Makespan

H. Li et al. [86] Composite Action Double Deep Q Learning MORL Multi-Agent Cooperative CTE Makespan, Cost

(Task Admission, Execution Node Selection)

F. Hue et al [87] Execution Node Selection Deep Q Learning SORL Single-Agent CTE Makespan

Y. Zhang et al. [68] Task Admission Deep Q Learning MORL Multi-Agent Cooperative CTDE Energy, Delay,

Throughput

Y. Zhang et al. [88] Execution Node Selection TD-Learning MORL Single-Agent CTE Energy-Efficiency, Delay

Z. Hu [?] Task Sorting Deep Neural Networks SORL Single-Agent CTE Makespan

Z. Tong [89] Execution Node Selection Deep Q Learning SORL Single-Agent CTE Makespan

A. Jayanetti et al. [48] Execution Env Selection Proximal Policy Optimization MORL Multi-Agent Cooperative CTDE Makespan, Energy-Efficiency

Execution Node Selection

38 A Taxonomy and Review on Workflow Scheduling with Reinforcement Learning

2.3 Review of Reinforcement Learning based workflow schedul-
ing techniques

In this section, we review the RL-based workflow scheduling techniques in the context

of the taxonomy presented in the previous section.

In [79] the problem of scheduling workflows in cloud computing is handled with the

optimization objectives of minimizing makespan and cost. For this, the authors have

proposed a multi-agent deep reinforcement learning framework. The multi-agent col-

laboration is modeled as a Markov game with a correlated equilibrium. As opposed to

Nash equilibrium, in a correlated equilibrium, the agents are not motivated to deviate

from the ’joint distribution in a unilateral manner’ hence they are capable of collaborat-

ing together to optimize different objectives. Each agent attempts to optimize one of the

scheduling objectives. It is assumed that the actions and rewards of agents are visible to

other agents. The state of the system includes VMs that are available for execution cur-

rently, and the successors of tasks that have been scheduled for execution in the previous

state. The action space consists of the probabilities of a task to be allocated to a particular

VM. The reward of the makespan agent and the cost agent is designed to encourage the

minimization of makespan and cost, respectively.

A DRL-based task scheduling and resource provisioning framework for workflow

execution in the cloud is proposed in [50]. In the task scheduling step, an agent is as-

signed to each workflow for evaluating the values of nodes after a number of episodes.

In this case, each node of the workflow is a state and an action is the selection of the

next node (successor). A reward that depends on the computation cost of the next node

and the communication cost between the current node and the next node is received by

the agent and the values in the Q table are updated accordingly. The agent uses SARSA

algorithm and after a number of iterations, the maximum cost from the start node to all

other nodes is obtained. The tasks are then sorted in ascending order of their start times.

In the resource provisioning phase, an agent is assigned to each resource. A state in this

case is the sequence of tasks that was the result of the previous phase. An action cor-

responds to the selection of a task to be executed on the relevant resource. The reward

received by the agent is the resource utilization of the resource post to the allocation

2.3 Review of Reinforcement Learning based workflow scheduling techniques 39

of the selected task to the resource. Since the agents are operating independently, this

method formulates the reward in a manner such that long-term resource utilization is

optimized rather than sub-optimal greedy allocations. To ensure model convergence,

and the selection of a globally optimal solution GA is used. Accordingly, the assign-

ment of tasks to a resource is represented as a chromosome. Tradition GA operators

(crossover, mutation, etc.) are then used for achieving model convergence. The results

of a comparison study on a simple use case clearly demonstrate the superiority of using

cooperative agents over the random selection and independent agents.

An end-to-end RL-oriented framework for resource provisioning and scheduling

workflows in cloud computing environments is proposed in [55]. The first RL model

is for ordering the execution order of tasks in a workflow such that the scheduling al-

gorithm will pick tasks for scheduling from the ordered list. For this, a multi-agent RL

framework is used, where multiple agents are assigned to a workflow, thereby reducing

the search space of the problem for faster convergence. A state of the environment is a

node of the workflow, and the state space comprises the set of all nodes of a workflow.

An action includes selecting a child node and the reward is the sum of the current ex-

ecution time of the node and the data transfer time to the selected child node. Where

multiple agents have traversed through the same path, the value of a node is the aver-

age value of all the agents. In the resource provisioning phase, tasks are assigned to a

cluster of resources. Again RL is used to determine which tasks are assigned to which

resources in the cluster. In this model, a markov game is formulated where each agent is

a resource and each action corresponds to selecting a task to be executed on the resource.

A local reward based on the resulting allocation’s ability to meet task SLA and the state

of the resource (normal, overloaded, under-loaded) post to the assignment is given to

each agent. Virtual machine migration and DVFS techniques are is incorporated into the

resource provisioning scheme to further enhance the energy efficiency of the system.

In [78] authors aim to minimize the makespan and energy consumption of work-

flows within a budget constraint. Tasks in a workflow are sorted based on a priority

value calculated considering the task execution time and communication dependencies.

The sorted tasks are then scheduled using Q learning algorithm. The agent environment

considers VM utilization at each time step as the current state and an action corresponds

40 A Taxonomy and Review on Workflow Scheduling with Reinforcement Learning

to the selection of a VM for task execution. A budget constraint is imposed on the action

space to limit available actions at each time step. A multi-vector reward in which one

vector is the ratio of fastest and actual finish times of task and the other vector is the

ratio of least and actual energy consumption of task execution is received by the agent.

Since the reward consists of two vectors (a weight selection problem arises), this work

uses the Chebyshev scalarization function to secularise the Q values of state-action pairs

and then selects the smallest scalarized Q value in a greedy manner. At the end of each

episode, the corresponding solution is added to the Pareto set if it isn’t dominated by

any other solutions, and all solutions that are dominated by it are removed.

In [80], a unique approach is proposed where Q learning is used to schedule tasks

which are referred to as activations, to VMs with the objective of minimizing the makespan.

However, different from existing works, in this approach, an episode corresponds to

scheduling the activations of a single workflow. Hence the states are limited to avail-

able, unavailable, successfully finished, and terminated with failure. The action space

only comprises of two actions which include scheduling an activation to a VM or doing

nothing. A reward based on the performance of an assignment of activation to a VM

compared to the overall performance of the workflow is used for promoting actions that

improve the efficiency of the workflow.

The proposed DRL framework in [54] is somewhat similar to that of[50]. The main

difference is that work used SARSA whereas this used Q learning. Initially, DRL agents

are assigned ’parts’ of workflows, and they traverse the workflow to find the cost from

each node to the sink node. The agents are rewarded based on the sum of the compu-

tation cost of the next node and the communication cost for sending data between the

nodes. The sorted tasks are then allocated to resources using multiple RL agents each of

which is assigned to a resource, and the agents operate with the objective of improving

long-term resource utilization. If the task deadline is exceeded in a given resource, then

the corresponding agent receives a large penalty thus encouraging agents to select tasks

that leads to better resource utilization while also meeting deadlines. The reward for

achieving the aforementioned goals consists of two components; the frequency of the

processor to which the task is assigned and the negative value of the remaining unused

frequency of the resource post to task allocation. The two components are combined

2.3 Review of Reinforcement Learning based workflow scheduling techniques 41

through a normalized weight factor which can be used for adjusting the priority accord-

ing to system requirements. As an added advantage of the increased resource utilization,

higher energy savings are also achieved.

In [52], a static task scheduling algorithm is proposed. It uses a combination of Q

learning together with the popular HEFT algorithm for obtaining optimal task ordering.

For each workflow, an entry task is randomly chosen which is considered the current

task (current state), one of the previously unselected successor tasks is then selected and

an immediate reward is calculated which is equivalent to the upward rank proposed

in the HEFT algorithm. Q table is updated accordingly. The selected successor then

becomes the next state. The process repeats until the Q table converges. The final Q table

is then used to obtain the optimal task order. For the execution of a task, the processor

which is capable of completing the task earliest is selected.

In [81], supervised learning techniques are used for predicting the probability of

failure and runtime estimations of tasks at different execution sites. These predictions

coupled with the cost of communicating input data to a particular site and the number

of task successors are formulated as a feature vector. For each of the ready tasks, and

for each of the available execution sites, such vectors are constructed and all of these

together form the input sequence. An action would be the assignment of ready tasks to

execution sites, and the work assumes that a task can be assigned to one site and a site

can only execute one task at a time. The size of the action space would then be equiva-

lent to the number of execution sites that are capable of executing a task. For handling

the input and output sequences which are of variable size a pointer network is used in

this work. The size of action space is reduced by formulating the output of the pointer

network to select one task to execution site allocation at a time. The model is executed

until all ready tasks are assigned to sites for execution. The reward is equivalent to the

negative workflow makespan and from this, a baseline of the average execution time

of a workflow based on past observation is deducted to stabilize the training process.

The proposed model is trained in a simulated environment and deployed and tested in

a practical environment.

[82] presents a straightforward application of DQN for scheduling tasks with prece-

dence relations in a cloud manufacturing environment. Tasks are sorted prior to the use

42 A Taxonomy and Review on Workflow Scheduling with Reinforcement Learning

of DQN for scheduling using upward ranks. State space comprises the server workloads

and tasks allocated to servers and the tasks’ start and finish times. The action space con-

sists of all the servers to which a task can be allocated and the makespan difference

between the current and next state forms the reward.

The work proposed in [83] uses DQN with a weighted reward function for establish-

ing a desired tradeoff between energy consumption and makespan in scheduling tasks

with precedence relations. More specifically, the makespan component of the reward

is the inverse of the total wait and execution times of a node at the selected server and

the energy component is the difference in energy consumption between the current and

previous time steps. Min-max normalization was used to normalize the two compo-

nents prior to their application of them in the weighted reward function. The state space

comprises the number of VMs available in servers and the waiting time at each server

for a task to be deployed, the set of servers available for task execution forms the action

space.

In [84], authors proposed an RL framework for scheduling workflows in distributed

computing environments. A multi-threaded java based pluggable scheduling module is

presented such that multiple clients can be served by leveraging the parallel processing

capabilities. The authors have implemented Q-learning and SARSA algorithms in the

presented module. The scheduling environment is designed such that the state space

consists of the load level of server queues defined in relation to a precision percentage,

and an indication of whether a predecessor or a sibling of the task already resides in a

particular server queue. An episodic reward of total execution time in comparison to

a base value is awarded to the agent at the terminal state. As opposed to most work-

flow scheduling papers which have simply failed to include an indication of the node in

which a particular task’s predecessors and successors are residing, this work has incor-

porated that information into the state space, and that in turn enables the agent to learn

to make better allocations such that the resulting allocations result in lower makespans

due to minimized communication times and improved parallel executions. Since this

work has used, Q-learning and SARSA it is important to prevent the expansion of state

space, and that is achieved through the use of a precision percentage to indicate the

number of tasks in a queue and also, rather than including the specific characteristics of

2.3 Review of Reinforcement Learning based workflow scheduling techniques 43

the task to be scheduled, a task classifier is used to assign a task type to each task. This

type of state space discretization although lowers accuracy is crucial when algorithms

such as Q-learning and SARSA are used.

[85] uses REINFORCE algorithm to schedule precedence-constrained tasks in dis-

tributed computing environments. To formulate the state space in a compact manner,

they have incoporated the earliest start time of a task in each of the available servers.

The earliest start time serves as an indication of both the load on the processor as well as

the cost of communication. Additionally, the number of tasks that are to be scheduled is

also included in the state. Where multiple tasks are ready to be scheduled, upward ranks

are used for prioritizing the selection of tasks. An immediate reward of the increase in

schedule length after taking the current action compared to the previous schedule length

is used.

The authors of [49] use images for state-space representation, similar to the popular

job scheduling framework presented in [14]. The resource availability and usage of the

cluster together with resource requirements of the tasks to be scheduled and the number

of scheduled tasks are included in the state. In order to include inter-task dependencies

in the state, such that the agent is capable of learning better, a critical path-based tech-

nique is proposed. In the proposed approach, a workflow is divided into multiple stages

and processed with a depth-first search. Using the critical path information computed

during the division process, a stage number matrix and a critical path matrix are com-

puted for each task and these matrices are also included in state representation. An

action corresponds to the selection of a task to be scheduled in the cluster and in one

time step multiple such selections are permitted to prevent the action space from being

too large. The agent is also allowed to select a movement action that causes the system

to run one more time-step (without admitting a new task to the system) An episodic re-

ward equivalent to N/makespan where N is the number of tasks scheduled is awarded

to the agent.

In [86], authors propose a multi-level multi-agent reinforcement learning framework

for scheduling workflows in cloud computing environments with the objectives of min-

imizing makespan and cost. Furthermore, the paper also presents a mechanism for ad-

justing the models’ attention to each objective as preferred by users during the training

44 A Taxonomy and Review on Workflow Scheduling with Reinforcement Learning

process so that the diversity of the resulting solutions is enhanced. The state space in-

cludes the features of ready tasks, VMs available as well as corresponding time and

cost of executions. In the multi-level scheduling strategy, first, a task is selected from

amongst the ready tasks and then a VM is selected for executing the selected task. Since

the number of ready tasks is variable, a pointer network is used in the first level so that

an input state with variable length can be handled. The second level uses a traditional

deep neural network. For each of the objectives, a separate sub-agent each with a sep-

arate reward is used at each level. The work also proposes the use of a normalized

weight factor for combining the probabilities of selecting a candidate action for time

and cost agents at each level (task selection and VM selection). The authors have also

used a weighted double-deep Q learning network with a dynamic coefficient. Double

deep Q learning (DDQN) method reduces overestimation of action values (associated

with traditional deep Q learning method) and weighted double deep Q learning (WD-

DQN) further improves accuracy by reducing the underestimation bias associated with

DDQN. To establish a desirable balance between over-estimation and underestimation

issues associated with DQN and DDQN respectively, a dynamic coefficient that can be

changed during the training process according to the two types of errors in estimations

is proposed.

The authors of [87] combined DQN and genetic algorithm to design a scheduling al-

gorithm with high convergence speed in an edge computing environment. More specif-

ically, DQN is used to generate the initial population of the Genetic Algorithm and this

in turn improves the convergence speed of the algorithm by eliminating the random-

ness of the initial population. The state space of the DQN model comprises the start

and finish times of tasks in edge servers, cost of communication, and computations. An

action corresponds to the selection of a server and the reward is the difference between

makespan in the current and next states.

In [68], a multi-agent DRL framework for scheduling DAG-based user requests in

edge computing environments is proposed. In order to handle the problem of non-

stationary environments that occurs when independent DQN agents are operating in an

environment, a value decomposition network coupled with Centralized Training and

Distributed Execution (CTDE) training method is used. Accordingly, the authors use

2.4 Summary 45

the linear summation of individual Q values of agents to derive the team Q value. As

opposed to more complex ways of computing the team Q value with techniques such as

neural network fitting, a linear summation simplifies implementation and also provides

an intuitive evaluation of each agent’s contribution to the global objective. Furthermore,

to avoid the problem associated with non-stationary environments, the authors have

trained the model in a Centralized Training and Distributed Execution manner (CTDE).

Accordingly, all agent training tuples are stored in a shared replay buffer from which

random samples are selected and used for training all agents through the replay. The

state of each agent comprises of resource capacity of the node, communication cost to

other nodes, and the details of ready tasks. Action is the joint actions of all edge nodes,

and at each epoch, only the first N tasks are selected (one edge node can only select one

task). The reward is the weighted sum of the average delay and energy consumption of

edge nodes and a penalty that is dependent on the number of tasks that exceeded the

temporal dependence.

2.4 Summary

Reinforcement Learning has emerged as a promising paradigm for dealing with highly

dynamic and complex problems due to the ability of reinforcement learning agents to

learn to operate in stochastic environments. More recently, well formulated deep rein-

forcement learning solutions have outperformed traditional methods in highly complex

problems including robotics, and games such as Alpha-Go and Dota. Reinforcement

learning agents are capable of interacting with the environments where they get exposed

to the real-world dynamics and thereby build an internal model which is a more accu-

rate representation of the operating environment. This in turn leads to self-adaptability

and improved decision making amid changing conditions and uncertainties. Despite

the benefits, there are multiple challenges associated with the application of reinforce-

ment learning techniques including multi-objectivity, curse of dimensionality, scalabil-

ity and coordination. Off-the-shelf algorithms are unlikely to be efficient at overcoming

the aforementioned challenges and therefore more problem specific novel reinforcement

learning techniques need to be formulated.

46 A Taxonomy and Review on Workflow Scheduling with Reinforcement Learning

In this chapter, we reviewed the state-of-the art of workflow scheduling algorithms

with reinforcement learning in cloud and edge computing environments. Based on the

analysis we identified the merits and weaknesses of existing works, and potential areas

of improvements along with some of the latest developments in the field of reinforce-

ment learning that can be pursued by the research community.

Chapter 3

Joint Host and Network Optimization
Algorithm for Workflow Scheduling

Existing approaches to energy-efficient workflow scheduling in cloud computing environments

have primarily focused on the optimization of server utilization. The majority of works have ignored

the impact of scheduling decisions on the data center network (DCN). However, studies have revealed

that the DCN consumes 10-20% of the total data center power, and this percentage could rise much

higher depending on the utilization level of the data center. This chapter proposes an energy-efficient

workflow scheduling approach (J-OPT) that jointly optimizes the power consumption of servers and

networking elements in cloud data centers. J-OPT considers precedence constraints and data de-

pendencies among workflow tasks as well as communication requirements among task instances in

the formulation of topology-aware scheduling decisions. The proposed approach is evaluated using

synthetic and real world workflow traces in a simulated environment. Results of the experiments

demonstrate that J-OPT outperforms state-of-the-art algorithms in terms of total power savings by

8% and 30% under high and low data center utilization levels, respectively.

3.1 Introduction

While servers are the major source of power consumption in data centers, data center

networks (DCNs) also account for 10%-20% of total power consumption. This percent-

age could rise as high as 50% in data centers with energy-proportional servers, under

light job loading conditions [13]. Therefore, energy consumed by datacenter networks

This chapter is derived from:

• Amanda Jayanetti, Rajkumar Buyya, ”J-opt: A joint host and network optimization algorithm for
energy-efficient workflow scheduling in cloud data centers”, Proceedings of the 12th IEEE/ACM Inter-
national Conference on Utility and Cloud Computing, Pages: 199–208, Auckland, New Zealand, Decem-
ber 2-5, 2019.

47

48 Joint Host and Network Optimization Algorithm for Workflow Scheduling

and networking devices that facilitate communications among hundreds of thousands

of concurrently executing instances is a non-trivial factor that contributes to increasing

the overall energy consumption of data centers considerably. Furthermore, over-utilized

network devices lead to the creation of congestion hotspots resulting in undesirable

packet losses, and imbalanced use of network links reduces the overall utilization of

the data center networks. Scheduling algorithms that are agnostic to the communication

patterns of underlying workloads are unlikely to be efficient at exploiting the power sav-

ings that can be achieved by the joint optimization of compute and networking elements

in cloud data centers.

Not only scientific workflows but also a wide variety of batch workloads and dis-

tributed applications can be modeled using the DAG (Directed Acyclic Graph) execu-

tion model [90]. Although a large body of literature on workflow scheduling techniques

in cloud environments exist, only a minor proportion have considered energy efficiency

as a primary objective.

A significant majority of historically proposed WaaS (Workflow as a Service) sched-

ulers primarily focus on coarse-grain assignment of workflow tasks to virtual machines,

and the assignment of virtual machines to physical servers [21], [91]. Several studies

have adopted container virtualization [92], [93]. In most of these approaches multi-

ple containers are grouped together on virtual machines which in turn are assigned to

physical nodes. This is the predominantly used model in conventional public cloud in-

frastructures due to security concerns associated with allowing containers to directly

execute on bare metal nodes.

With the invention of lightweight micro virtual machine (micro VM) based tech-

nologies such as AWS Firecracker [94], cloud platforms are able to enjoy the best of both

worlds as micro VMs offer the speed and resource efficiency of containers while simulta-

neously provisioning the security and workload isolation of virtual machines. Inspired

by the aforementioned developments, the architecture proposed in this work models a

system in which each task executes in a micro VM.

Motivated by the aforementioned opportunities, we propose a topology-aware schedul-

ing algorithm that jointly optimizes the utilization of computing and networking ele-

3.2 Related Work 49

ments for energy-efficient scheduling of workflows in multi-tenant public cloud plat-

forms. To the best of our knowledge, this is the first work to perform a thorough disag-

gregated analysis of the power consumption behavior of workflow executions in cloud

computing environments.

The rest of the chapter is organized as follows: In section 3.2, we review the literature

on state-of-the-art approaches related to the scope of this chapter. In section 3.3, we

formulate the power model and energy optimization problem. In section 3.4, we present

the proposed algorithm. Followed by this, we present the performance evaluation of the

algorithm in section 3.5. Finally, in section 3.6, we conclude the chapter with a summary

of contributions.

3.2 Related Work

The problem of workflow scheduling in cloud computing environments has been exten-

sively studied in a large number of research studies [95]. Hence, we have limited the

scope of this literature review to focus on a set of selected workflow scheduling algo-

rithms that consider energy efficiency as a primary objective. We have also reviewed a

number of joint host and network optimization algorithms which have not been oriented

towards a specific application type.

3.2.1 Energy-Efficient Workflow Scheduling

A number of studies have proposed meta-heuristic based techniques for scheduling

workflows in an energy-efficient manner in cloud infrastructures [96], [97], [98], [99],

[100].

For instance, multi-objective Particle Swarm Optimization (PSO) has been used in

a study by S. Yassa et. al. [100] to schedule workflows considering the objectives of

minimizing cost, execution time and energy consumption. K. Bousselmi et. al. [96]

used a workflow partitioning algorithm coupled with Cat Swarm Optimization (CSO) to

minimize the energy consumption and makespan of workflows. The proposed approach

aims to minimize network energy by partitioning the workflows such that the amount

50 Joint Host and Network Optimization Algorithm for Workflow Scheduling

of data transferred between the workflow partitions is minimized. CSO is then used for

scheduling the generated partitions.

Although scheduling algorithms based on meta-heuristics are capable of attaining

better solutions compared to list based and clustering based algorithms, they are less

appropriate for highly dynamic cloud environments due to high computational costs

and time complexities.

A number of heuristic algorithms have also been proposed for energy-efficient work-

flow scheduling [21], [101], [102], [103], [19], [104], [21], [17], [105]. Zotkiewicz et. al.

[105] presented an energy and communication aware scheduling strategy for SaaS (Soft-

ware as a Service) applications in a cloud data center by modeling the applications as

dynamic workflows. The proposed scheduling strategy operates with the objectives of

minimizing energy consumption and average makespan of all submitted workflows.

Inter-task communication aspects are considered in the proposed approach by incopo-

rating network awareness as a secondary condition used in the event of a tie between

multiple equally energy efficient servers.

X. Qu et. al. [102] proposed an energy-efficient scheduling heuristic for data-intensive

workflows considering a cloud environment in which computation and storage are dis-

aggregated. The authors describe how factors such as bandwidth and speed of network

connections impact the total data transferring time, and thereby increase the processing

time and energy-consumption of data-intensive workflows. The proposed algorithm

operates in two phases; VM deployment and task-VM mapping. In the stage of VM

deployment, compute nodes and storage nodes among which data can be transferred

with minimal energy consumption, are selected for VM deployment and data storage,

respectively. Afterward, tasks are mapped to VMs based on ranks assigned to VMs as

well as tasks for minimizing energy consumption.

In a study by X. Xu et. al. [21] an energy aware resource allocation has been pre-

sented in which task requests are always allocated to the host with lowest baseline en-

ergy consumption. This study relies on the assumption that all the instances of a task

should be scheduled on the same physical server to minimize the cost of inter-task com-

munication. While, this approach would incur gains when all instances can be accom-

modated on a single server, it will fail to support workflows with tasks which contains

3.2 Related Work 51

Figure 3.1: Proposed energy-efficient workflow scheduling model

hundreds of thousands of parallel instances. A migration based resource allocation pol-

icy is used in this work to enhance the efficiency of resource utilization. However, over-

heads caused by frequent migrations could adversely impact the energy efficiency.

3.2.2 Network Aware Energy-Efficient Scheduling

DENS methodology introduced by D. Kliazovich et. al [106], presents an energy effi-

cient scheduling method with network awareness which monitors the status of network

elements (switches, links) and incorporates their feedback to scheduling decisions. This

study considers the tradeoffs between consolidating workloads on to a minimum num-

ber of servers and the impact of that on hardware reliability of servers and hotspot cre-

ation in data center networks.

S. Vakilinia [107] proposed a joint optimization approach for power minimization in

large-scale multi-tenant cloud datacenters taking into account multiple factors including

power consumption of servers, network communications, cost of VM migrations, het-

erogeneity of servers and resource constraints. This work suggests that rather than per-

forming VM placement and migration in two steps, higher efficiencies can be achieved

by jointly considering placement and migration decisions in each scheduling iteration.

NICE [108] presented by B. Cao et. al., is a joint optimization technique that consists

of three subroutines, each of which is solved by a different algorithm. In the first sub-

routine, VMs are sorted in the order of decreasing computational resources and packed

into a set of virtual hosts. The assignments of VMs to virtual hosts are readjusted in the

second subroutine to minimize inter-host traffic. In the third subroutine, a greedy al-

gorithm is used to map virtual hosts to physical hosts that result in minimal traffic and

52 Joint Host and Network Optimization Algorithm for Workflow Scheduling

migration costs. This study attempts to localize traffic flows in the DCN by minimiz-

ing communication distances so that unused switches can be put into dormant state to

achieve additional power savings.

VMPlanner [109] proposed by W. Fang et. al. is a technique which incoporates three

substeps to optimize VM placement and flow routing. Initially, VMs are grouped such

that VM pairs that frequently communicate with each other are in the same group. VM

groups are then mapped to server racks which leads to the minimization of inter-rack

traffic. Afterward, traffic flows are consolidated into a minimum number of links so

that unused networking elements can be put into dormant state. A joint host-network

optimization method for energy efficient VM consolidation is presented by H. Jin et. al.

in [110]. In order to achieve the objectives of optimal server placement and flow routing,

the VM placement problem is converted to a routing problem and a single solution is

developed to address both requirements.

All the above approaches have focused on the general problem of joint host and

network optimization. They have not considered the potential power savings achievable

by fine-tuning the algorithms to suit the characteristics and communication patterns of

the underlying workloads.

The workflow scheduling algorithms reviewed in section 3.2.1 have attempted to

improve the energy efficiency of task schedules with little or no consideration about the

impact of scheduling decisions on the data center network. In contrast, we attempt to

enhance overall energy efficiency by jointly optimizing the utilization of servers as well

as switches used in workflow executions. Our method also differs from topology-aware

resource allocation methods reviewed in section 3.2.2, since we take into account the

distinct features of workflows in the formulation of scheduling decisions.

3.3 Problem Modeling

3.3.1 Application Model

A workflow can be modeled as a Directed Acyclic Graph (DAG) G = (V, E), where

V = T1, T2, ..Tn is the set of tasks and E is the set of edges which represent the data

3.3 Problem Modeling 53

dependencies among tasks in a workflow and the weight of an edge ei,j = (Ti, Tj) rep-

resents the size of data to be transmitted from Ti to Tj. The edge ei,j also represents a

precedence relation between tasks Ti and Tj such that Ti is the parent task of Tj and Tj is

the child task of Ti. Accordingly, the execution of Tj can only start after the execution of

Ti is completed.

(a) Topology-unaware scheduling

(b) Topology-aware scheduling

Figure 3.2: A comparison of topology aware and unaware energy efficient workflow
scheduling approaches

In this work, we have considered a divisible task model in which a task is composed

of one or more instances which can be scheduled to execute in parallel on one or more

physical resources. The execution of a task is considered to be complete when all the

instances of it has finished execution, and a task is considered to be in ready state when

all the instances of its parent tasks have completed execution.

54 Joint Host and Network Optimization Algorithm for Workflow Scheduling

3.3.2 System Model

The system architecture proposed in this work is oriented towards a scenario in which

the WaaS platform and the underlying cloud infrastructure are managed by a single

cloud service provider. Similar system models have been proposed in literature [23].

In contrast to these approaches, the architecture proposed in this work envisions a sys-

tem in which each task executes within a dedicated micro virtual machine (micro VM).

Figure 3.1 illustrates a high level overview of the proposed system model.

Workflow applications are submitted by tenants through an online portal. QoS (Qual-

ity of Service) and other application specific requirements desired by the tenants are

specified in the application descriptions. Upon the analysis of a workflow description,

the analyzer generates a workflow profile which is submitted to a centralized applica-

tion repository. Application repository consists of a collection of workflow profiles. A

workflow profile consists of multiple records, one for each task of the workflow. Each

task record consists of the submission time of the workflow, task ID, workflow ID, ex-

ecution status of the task (e.g. pending execution, ready for execution, in-execution,

execution completed), rank, data dependencies of the task, resource requirements, ex-

ecution details (e.g. machine IDs of executed task instances) and QoS requirements of

the workflow task. Ranks are generated using the HEFT algorithm [16] described in the

next section.

Workflow dispatcher periodically polls the workflow repository to retrieve details of

tasks in ready state. In each iteration, the set of ready tasks are ordered based on the

ranks and submitted to a global service queue. Tasks with stringent QoS requirements

are submitted to a priority queue. Workflow scheduler respects the insertion order of

the global task queue and operates in a FCFS (First Come First Serve) basis to ensure

Figure 3.3: Example workflows

3.3 Problem Modeling 55

Table 3.1: Problem Notation

Parameter Value

M Total number of servers

N Total number of switches

ui CPU utilization percentage of server i

Pserver
i Power consumption of server i

Pidle
i Idle power consumption of server i

Pdynamic
i Peak power consumption of server i

Pswitch
k Power consumption of switch k

Pstatic
k Power consumption of switch k without traffic

Pport
k Power consumption of each port of switch k

nk Number of active ports on switch k

fairness in multi-tenant environments. However, the insertion order is disregarded if

a task with a higher priority arrives at the priority queue. The workflow scheduler

coordinates with the resource manager and allocates resources to tasks in the service

queue using the proposed topology aware resource allocation algorithm. The details

required for the operation of the scheduling algorithm are retrieved from the respective

task records in the application repository.

3.3.3 Power Model

In this section we formulate the joint server and network power optimization as a mono-

objective optimization problem. Notations used in this chapter for the formulation of

optimization problem is presented in Table 3.1. For the calculation of power consump-

tion of servers, we used the CPU utilization based power model presented in [111]. Ac-

cordingly, power consumption of server i is defined as shown in the following equation.

56 Joint Host and Network Optimization Algorithm for Workflow Scheduling

Pserver
i =

Pidle
i + (Pdynamic

i − Pidle
i).ui, if ui > 0

0, otherwise
(3.1)

Idle power consumption is a constant factor which incurs irrespective of the utiliza-

tion level of a server and it can only be eliminated by turning off the servers. Dynamic

power consumption of a server can be accurately computed by considering that the CPU

utilization and the power consumption of a server follows a linear relationship [111].

The power model presented in [112] is used to compute the power consumption of

switches. This model computes the power consumption of a switch as the sum of static

power and the port power based on the number of active ports as shown in the following

equation.

Pswitch
k =

Pstatic
k + Pport

k .nk, if switch k is on

0, otherwise
(3.2)

3.3.4 Problem Formulation

The focus of this work is on system wide minimization of energy consumed by servers

and networking elements. Hence, the optimization objective can be formulated as:

Minimize:
M

∑
i=1

Pserver
i +

N

∑
k=1

Pswitch
k (3.3)

Note that we have ignored the energy consumption of external and internal commu-

nications among tasks from the problem formulation since they are negligible in com-

parison to the total power consumption of servers and switches [21].

3.4 Proposed Algorithm

Scheduling techniques that are agnostic to the impact of resource allocation strategies on

the DCN are less effective in terms of total power savings that can be achieved by work-

load consolidation. Aforementioned scenario is illustrated through the simple example

3.4 Proposed Algorithm 57

in Figure 3.2. Figure 3.2a and Figure 3.2b illustrate possible outcomes of a schedul-

ing iteration in which workflows shown in Figure 3.3 are scheduled by a topology-

unaware and a topology-aware energy-efficient resource allocation technique, respec-

tively. This example demonstrates the manner in which the topology-aware resource

allocation technique achieves comparatively more power savings by putting unused

networking elements into dormant state.

The proposed topology-aware heuristic-based algorithm, J-OPT aims to schedule

precedence constrained tasks in an energy-efficient manner by jointly optimizing the

utilization of servers and networking elements. We have complemented J-OPT with

Dynamic Power Management (DPM) techniques [41] which operate by switching off

idle servers and switches to save energy.

3.4.1 Task Prioritization

Task prioritization uses the concept of upward rank presented in the well-known low

complexity algorithm HEFT [16]. In each scheduling iteration, tasks of a job in ready

state are ordered in decreasing order of upward rank (ranku) before being submitted to

the global service queue. The upward rank of a task Ti, is computed recursively using

the following equation:

ranku(Ti) = wi + max
Tj∈succ(Ti)

(ci,j + ranku(Tj) (3.4)

where wi is the average computation cost of Ti, ci,j is the average communication cost

of edge ei,j = (Ti, Tj) and succ(Ti) is the set of parent tasks of Ti. For the exit task (a task

with no children), rank can be computed as follows:

ranku(exit) = wexit (3.5)

The average communication cost of an edge ei,j can be computed as follows:

ci,j = L +
datai,j

R
(3.6)

where L is the average communication start up time and R is the average communi-

58 Joint Host and Network Optimization Algorithm for Workflow Scheduling

Figure 3.4: Fat tree network topology

cation rate among servers and datai,j is the amount of data to be transferred from task Ti

to task Tj.

3.4.2 Topology Aware Resource Allocation

In this section we present the topology-aware resource allocation technique used for

mapping computing resources to tasks in the global service queue. The data center

network can be represented as an undirected graph GDCN(V
′
, E
′
) where V

′
is the set of

vertices and E
′

is the set of edges. The set of vertices represent both servers as well as

switches and the set of edges represent communication links between pairs of switches

and between servers and switches.

Tasks in a workflow may have data dependencies giving rise to inter-task commu-

nications and associated communication costs. Furthermore, in the multi-instance task

model considered in this work, a single task may have multiple instances that can be

mapped on to one or more physical nodes and the instances may be communicating

with each other during the period of execution.

To minimize the cost of communication, resource allocation algorithm should at-

tempt to place instances of the same task on physical nodes that are as close as possible

to each other in terms of the number of network hops. The placement is further com-

plicated since it should be such that the aggregate distance to physical nodes in which

the predecessor tasks with data dependencies executed is minimized. Accordingly, this

resource allocation problem reduces to a variant of the proven NP hard problem in [113].

3.4 Proposed Algorithm 59

Algorithm 1 TASK-SCHEDULING

Input: PM: List of servers
Input: GDCN(V

′
, E
′
): Data center network

Input: Ri: Total resource requirements of task Ti
Input: PMconn: List of hosts in which predecessors of task Ti with data dependencies
executed
Output: allocMap: Resource allocation map

1: subgraphList← ∅
2: subgraphList← NEIGHBOR-GEN(PM, PMconn, GDCN(V

′
, E
′
))

3: for each PMcand ∈ subgraphList do
4: Order servers in PMcand in descending order of desirability score
5: while PMcand ̸= ∅ do
6: P← PM with highest desirability score in PMcand
7: for each r ∈ Ri do
8: if allocation(r, P) is successful then
9: if P ̸∈ PMconn then

10: PMconn ← PMconn ∪ P
11: Ri ← Ri − r
12: PMcand ← PMcand − P
13: if Ri = ∅ then
14: return true
15: return false

Algorithm 1 operates with the local optimization perspective of placing communi-

cating instances of a particular workflow on servers which are in close proximity such

that the total number of networking elements used during the execution of a workflow

is minimized. To achieve this, we introduce the concept of a dynamically expanding set

of servers (PMconn) which is provided as an input to the algorithm. PMconn is initialized

with the set of servers in which predecessors of the current task with data dependen-

cies executed. PMconn expands dynamically as more and more servers are selected for

satisfying the resource requests of a newly arrived task.

Next we introduce the concept of neighbor subgraph of a server at a pre-defined

hierarchical level in the DCN. Hierarchical level is defined in a topology specific manner

and in this study we have considered a fat tree topology [114] with 3 hierarchical levels

(Rack, Pod and DCN) as indicated in Figure 3.4. For a particular server, the neighbor

subgraph at level 1 constitute the set of servers on the rack in which the server resides.

Neighbor subgraph at level 2 includes the set of servers located in the pod (group of

60 Joint Host and Network Optimization Algorithm for Workflow Scheduling

Algorithm 2 NEIGHBOR-GEN

Input: PM: List of all servers
Input: PMroot: A list of servers, the sub-graphs of which are to be generated
Input: GDCN(V

′
, E
′
): Data center network

Output: A list of neighbor subgraphs of servers in PMroot
1: currLevel ← 1
2: subgraphList← ∅
3: Mark all H ∈ PM as unassigned
4: while currLevel < 3 do
5: for each P ∈ PMroot do
6: neighSubgraph← ∅
7: if P is unassigned then
8: neighSubgraph← {P}
9: for each unassigned H ∈ PM do

10: paths← getPaths(P, H, currLevel)
11: if paths ̸= ∅ then
12: neighSubgraph← neighSubgraph ∪ {H}
13: Mark H as assigned
14: subgraphList← subgraphList ∪ neighSubgraph
15: currLevel ← currLevel + 1
16: for each unassigned H ∈ PM do
17: subgraph← subgraph ∪ {H}
18: subgraphList← subgraphList ∪ subgraph ▷ append the subgraph of all unassigned

servers to subgraphList
19: return subgraphList

racks) to which the server belongs, and the neighbor subgraph at level 3 comprises all

the servers in the data center.

Algorithm 2 is used to obtain the set of neighbor subgraphs of the servers in PMconn

at hierarchical levels 1 and 2 of the DCN. Depending on the topology of the data center

network, Algorithm 2 can be replaced with a more sophisticated subgraph generation

method. It should be noted that the sub-graph generation overhead can be completely

eliminated by pre-computing the subgraphs of all servers at each hierarchical level of

the DCN.

Lines 3-15 of Algorithm 1 attempts to find an allocation that can satisfy the total re-

source requirements of the current task by iterating through the neighbor subgraph list

(subgraphList). In each iteration, the set of servers in a neighbor subgraph are consid-

3.4 Proposed Algorithm 61

ered as the candidate server list (PMcand) for resource allocation. The desirability score

described in section C is computed for each server in the PMcand list, and the server

with the highest score is selected first. The algorithm attempts to assign as many re-

source requests as possible to the selected server. With each successful allocation, if the

considered server is not currently in PMconn, then it is added to PMconn.

If the number of servers is denoted by |H|, the Algorithm 1 has a worst-case time

complexity of O(|H|2) given that a sorting algorithm with worst-case time complexity

of O(|H|2) is used in Line 4. Time complexity of Algorithm 2 can be ignored, since the

neighbor sub-graphs can be pre-computed for eliminating the dynamic performance

overhead.

As a further improvement, desirability scores can be recomputed for remaining ele-

ments of PMcand set per each new addition to PMconn (Line 10). This would be particu-

larly useful if the workflow application to be scheduled is, for example, a SaaS applica-

tion in which inter-task communication is frequent. However, inclusion of this step in

the scheduling algorithm should be carefully determined based on the nature of appli-

cations to be scheduled and the scale of underlying cloud infrastructure as it leads to a

significant rise in the worst case time complexity of the algorithm.

3.4.3 Desirability Score

The desirability score is used to rank the servers by considering the power efficiency of a

server based on its current utilization and its physical location with respect to the set of

servers in PMconn . Performance per watt is used to determine the energy efficiency of a

server. Servers become most energy efficient when they are operating close to maximum

capacity without being over-utilized [115]. Based on this observation, the desirability

score is designed to favor servers that are more loaded compared to others without being

over utilized.

It is also important that the server selection is not agnostic to the impact of the new

assignment on network utilization. Hence, the new server additions to PMconn should

minimize the use of links and switches, such that energy savings can be realized by

putting the unused links and switches that do not carry traffic into power saving mode.

62 Joint Host and Network Optimization Algorithm for Workflow Scheduling

(a) Total energy consumption

(b) Percentage improvement over the baseline algorithm
(RandomFF)

Figure 3.5: Energy consumption of scientific workflow executions

3.4 Proposed Algorithm 63

Accordingly, the desirability score also aims to better align the traffic distribution by

favoring the selection of servers that minimize the aggregate physical distance between

the final PMconn list in terms of the number of hops.

In order to achieve both aforementioned goals, we formulate the desirability score as

a bi-objective function which combines server utilization efficiency and network utiliza-

tion efficiency with the use of a normalized weight factor (α) that indicates which factor

should be given more prominence for minimizing overall energy consumption. The

first term of the bi-objective function is based on HEROS [115] which in turn is based

on DENS [106]. It is composed of the product of the server selection function Hs(l) and

communication potential function Q(u) shown below:

Hs(l) = Ps(l) ∗ (1− γ.
⟨1⟩

⟨(1 + exp− µ
maxls (l − β.maxls)

(3.7)

where Ps(l) is the performance per watt of the server at load l and the second term is a

sigmoid function which is aimed at preventing the over utilization servers. Following

the reference work [115], values 110, 0.9 and 1.2 were used for the coefficients µ, β and

γ in our experiments.

The communication potential is based on the actual link load u and maximum link

capacity Umax, and is defined as:

Q(u) = exp−(
2u

Umax
)2 (3.8)

The second term of the desirability score is the distance function which is defined as:

D(i) =
W

∑
j=1

di,j (3.9)

where W is the total number of servers currently present in PMconn of task Ti, and di,j

is the aggregate distance in terms of the number of network hops between a candidate

server and the set of servers in PMconn.

Finally, the desirability score which represents the desirability of a server to be se-

lected for scheduling one or more instances of a task Ti is defined as:

64 Joint Host and Network Optimization Algorithm for Workflow Scheduling

α.
Hs(l).Q(u)

H f
+ (1− α).

(D(i) + ϵ)−1

D f
(3.10)

where H f and D f are two factors introduced to normalize the server selection func-

tion and distance function. ϵ is a very small positive real number.

3.5 Performance Evaluation

We evaluated the proposed algorithm in a simulated environment. For comparison pur-

poses, we used three algorithms.

1. RandomFF - This is a baseline algorithm based on greedy first fit referred to as

RandomFF in this chapter. RandomFF assigns requests to the first available host

with adequate resources without attempting to improve either server utilization

efficiency or network utilization efficiency.

2. HEROS-DAG - This algorithm is based on the independent task scheduling algo-

rithm HEROS [115]. HEROS is designed to perform a random server selection if

multiple equally desirable servers are among eligible candidates for resource al-

location with respect to a decision function. We have adapted HEROS to cater to

the requirements of workflows and incorporated network awareness by extend-

ing the server selection mechanism based on the physical location of the server as

suggested in [105] for tie-breaking. Accordingly, in case of a tie, the server which

is within a minimum hop distance to servers in which predecessors of the current

task executed are selected from amongst the eligible candidates. The extended

algorithm is referred to as HEROS-DAG in this chapter.

3. EnREAL - This is a state of the art algorithm [21] specifically formulated for energy-

efficient scheduling of workflows in cloud computing environments. EnREAL

uses a migration based resource allocation policy for achieving a high resource

utilization efficiency.

3.5 Performance Evaluation 65

Figure 3.6: Performance of algorithms during heavy job loading data center occupancy
state for scientific workflow executions

66 Joint Host and Network Optimization Algorithm for Workflow Scheduling

Figure 3.7: Performance of algorithms during light job loading data center occupancy
state for scientific workflow executions

3.5 Performance Evaluation 67

3.5.1 Simulation Environment

For conducting the experiments we used CloudSimSDN [11] which is a simulation tool

based on the widely used CloudSim toolkit [116]. CloudSimSDN is specifically designed

as a network simulation tool which facilitates SDN features such as dynamic network

configuration, programmable controller and so on. We extended CloudSimSDN such

that it can be used as a software-defined cloud environment in which the SDN controller

can interact with the resource scheduler for performing scheduling decisions and related

actions.

For the simulation, we used a homogeneous data center configuration. Equations 3.1

and 3.2 were used for modeling the power consumed by servers and switches, respec-

tively. Fat Tree topology [114] was used for connecting servers in the simulated cloud

data center.

3.5.2 Datasets

We conducted two sets of experiments using two different DAG workloads. In the first

set of experiments we used a number of well known scientific workflow benchmarks

with different resource requirements: Montage, CyberShake, Inspiral, Epigenomics and

SIPHT. We used the synthetic workflow traces provided by Pegasus group which are

generated using traces from actual executions of scientific workflows [1]. For evaluating

the performance of algorithms we created a composite workload using the aforemen-

tioned scientific workflows. To model the arrival pattern of the workflows we used a

Poisson distribution.

In addition to modeling scientific workflows, the DAG execution model can be used

to model a wide variety of distributed applications and batch workloads. The second

experiment was performed to evaluate the performance and suitability of J-OPT for

scheduling non-scientific DAG workloads. For this experiment, we used a sample of

1000 workflows from workload traces extracted from a production cluster of Alibaba

cloud [117].

68 Joint Host and Network Optimization Algorithm for Workflow Scheduling

(a) Total energy consumption

(b) Switch level network utilization

(c) Execution time

Figure 3.8: Performance of algorithms on a sample of 1000 workflows from Alibaba
cluster traces

3.5 Performance Evaluation 69

3.5.3 Results and Analysis

Figure 3.5a illustrates the energy consumption incurred from the execution of the com-

posite scientific workload. Compared to the baseline RandomFF, all other algorithms

have achieved significant savings in terms of total energy consumption. This is the ex-

pected behavior since EnREAL, HEROS-DAG and J-OPT incorporate multiple strategies

specifically designed for enhancing the energy efficiency of scheduled workflows.

When analyzing the percentage improvements of the algorithms by disaggregating

total energy consumption into its constituent components as depicted in Figure 3.5b, it

can be observed that J-OPT far exceeds EnREAL and HEROS-DAG with respect to en-

ergy savings incurred from switch utilization. J-OPT has been able to achieve nearly

80% improvement over the switch energy consumption of RandomFF, while EnREAL

and HEROS-DAG have only been able to achieve an improvement of 49% and 19% re-

spectively. J-OPT has also surpassed other algorithms by 8% with respect to percentage

improvement in server energy consumption over the baseline.

Although the importance of switch energy savings may appear less significant com-

pared to total energy savings, it should be noted that as servers become fully energy

proportional, the network energy consumption could rise as high as 50% of total data

center energy consumption under light job loading conditions [13]. This is common in

data centers since they are typically over-provisioned to meet peak load. Figure 3.6 and

Figure 3.7 depict a comparison of the performance of algorithms under a heavy and

light job loading scenario, respectively. Note that we have excluded the baseline algo-

rithm’s energy consumption from these comparisons since this situation occurs when

servers are fully energy proportional, which is not the case with the baseline algorithm

(RandomFF).

As illustrated in Figure 3.7, in the light job loading scenario network switches have

consumed as much power as the servers with EnREAL and HEROS-DAG. In contrast,

the topology-aware resource allocation strategy of J-OPT has been able to reduce the

power consumption of network switches by a significant proportion, leading to an over-

all reduction of 30%-40% in the total energy consumption compared to state-of-the-art

algorithms. Switch level network utilization is also reduced by a factor of 2 and 3 com-

pared to HEROS-DAG and EnREAL, respectively.

70 Joint Host and Network Optimization Algorithm for Workflow Scheduling

In Figures 3.6 and 3.7, it can be observed that compared to other algorithms, J-OPT

performs better with respect to total execution time of workflows. This is particularly

because J-OPT allocates resources in a manner that greatly reduces the communication

distance between dependent tasks as well as communicating task instances. This, in

turn, reduces delays caused by bulk-data transfers leading to a significant reduction in

the waiting time of data-intensive workflows.

Figure 3.8 depicts the results obtained with the application of J-OPT and other com-

parison algorithms to a sample workload containing 1000 workflows from Alibaba cloud

traces. Note that although we have included EnREAL in this experiment, it is specifi-

cally designed for scientific workflows, and the migration based resource allocation pol-

icy of EnREAL is less appropriate for scheduling short spanned tasks in Alibaba work-

flows. As illustrated in Figure 3.8a, J-OPT has outperformed the comparison algorithms

in terms of total energy consumption. As previously discussed, the significance of power

savings achievable with J-OPT would be even more prominent under light job loading

conditions. J-OPT has also achieved the lowest execution time.

The superiority of J-OPT in terms of minimizing switch level network utilization can

be observed in Figure 3.8b. J-OPT has been able to reduce the switch level network

utilization by over 70% compared to the other algorithms. This is because the topology-

aware resource allocation mechanism of J-OPT attempts to place the tasks of a workflow

in a group of closely located servers. This, in turn, minimizes the number of aggregate

and core switches used during the execution of workflows.

3.6 Summary

In this chapter, we presented J-OPT, a novel topology-aware resource allocation tech-

nique for energy-efficient workflow scheduling in cloud data centers. J-OPT operates

with the objective of minimizing total data center power consumption by jointly op-

timizing the utilization of servers and networking elements used in the execution of

workflows. We have evaluated J-OPT in a simulated environment using synthetic and

real-world workflow traces of scientific as well as commercial applications, and the re-

sults clearly demonstrate the effectiveness of the proposed algorithm compared to state-

3.6 Summary 71

of-the-art approaches.

Despite the satisfactory results achieved with the heuristic proposed in this chapter,

there are inherent limitations associated with heuristic techniques. For instance, the

design of an efficient heuristic requires advanced domain knowledge and the chosen

heuristics are not guaranteed to be optimal. Although scheduling algorithms based on

meta-heuristics are typically capable of overcoming the aforementioned limitations of

heuristics, they are less appropriate for highly dynamic cloud environments due to high

computational costs and time complexities. Therefore in the remaining chapters of this

thesis, we have leveraged RL techniques for designing efficient workflow scheduling

algorithms. In next chapter, we study the problem of workflow scheduling across cloud

and edge computing environments, and propose a DRL framework for energy and time

optimized scheduling of workflows.

Chapter 4

Energy and Time Optimized
Scheduling of Workflows in
Edge-Cloud Environments

Workflow scheduling is an NP hard problem in distributed infrastructures. It is further com-

plicated when scheduling framework needs to coordinate workflow executions across resource con-

strained and highly distributed edge-cloud environments.In this work, we leverage Deep Reinforce-

ment Learning for designing a workflow scheduling framework capable of overcoming the aforemen-

tioned challenges. Different from all existing works we have designed a novel hierarchical action

space for promoting a clear distinction between edge and cloud nodes. Coupled with this a hybrid

actor critic based scheduling framework enhanced with proximal policy optimization technique is pro-

posed to efficiently deal with the complex workflow scheduling problem in edge-cloud environments.

Performance of the proposed framework was compared against several baseline algorithms using en-

ergy consumption, execution time, percentage of deadline hits and percentage of jobs completed as

evaluation metrics. Proposed Deep Reinforcement Learning technique performed 56% better with

respect to energy consumption and 46% with respect to execution time compared to time and energy

optimized baselines, respectively. This was achieved while also maintaining the energy efficiency in

par with the energy optimized baseline and execution time in par with the time optimized baseline.

The results thus demonstrate the superiority of the proposed technique in establishing the best-trade

off between the conflicting goals of minimizing energy consumption and execution time.

This chapter is derived from:

• Amanda Jayanetti, Saman Halgamuge, Rajkumar Buyya, ”Deep reinforcement learning for en-
ergy and time optimized scheduling of precedence-constrained tasks in edge–cloud computing
environments”, Future Generation Computer System, Volume 137, Pages: 14–30, 2022

73

74 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

4.1 Introduction

Recent advances in IoT (Internet of Things) facilitates a degree of intelligence infused

connectivity between physical devices (Things) and the external environment that has

revolutionized the manner in which digital services in the world operates. Accordingly,

IoT has become an integral component that greatly enhances the convenience and effi-

ciency of not only industrial operations, but also the day to day activities of individuals.

Despite numerous benefits offered by the Cloud computing paradigm, the tradi-

tional cloud computing architectures are largely agnostic to certain design requirements

of emerging IoT applications. These include ultra low response time requirements,

location-awareness, privacy and security concerns associated with sending data through

public cloud platforms and so on. The inherently centralized architecture of the cloud

computing paradigm necessitates the transmission of data between IoT devices and

cloud over congestion prone wide area networks thus introducing additional delays.

Furthermore, the unprecedented growth of IoT devices continues to impose a signif-

icant strain on cloud due to a multitude of factors including the need for processing

and storing massive volumes of generated data, and complexities associated with the

transmission of huge volumes of data over networks with limited bandwidths.

Edge computing extends computational resources to the edge of the networks thus

enabling data to be processed and analyzed closer to the sources of generation. This en-

ables the integrated cloud-edge paradigm to meet the QoS (Quality of Service) demands

of latency-sensitive and bandwidth-hungry IoT applications while fully leveraging the

benefits of public cloud platforms for compute-heavy processing and storage require-

ments. Furthermore, processing data at the edge of the networks cuts-down the volume

of data that should be transmitted and stored in cloud, thus greatly reducing the over-

head imposed on networks. Along with the promise of ultra-low latency processing, and

reduced bandwidth usage, the edge computing paradigm itself introduces a fresh set of

challenges. Scheduling dynamic workloads with diverse QoS requirements among het-

erogeneous and resource constrained edge nodes and cloud is one such challenge that

should be efficiently addressed for fully harnessing the power of this novel computing

paradigm.

4.1 Introduction 75

In the existing literature, there are contradictory arguments about the energy-efficiency

of edge computing infrastructures compared to centralized cloud datacenters. Some

studies have concluded that edge computing solutions are more energy-efficient [118]

while others have suggested that depending on the network infrastructure and appli-

cation characteristics it could be less energy-efficient in certain scenarios [119]. How-

ever, an obvious fact is that, although a single node (terminal, edge) may not consume

a high level of power, the combined energy consumption of billions of edge nodes (e.g.

IoT devices, service nodes) will impose a non-negligible impact on the underlying in-

frastructures, thereby threatening the end-to-end sustainability of the entire computing

paradigm. Furthermore, owing to the need for decentralized deployment as well as

other design requirements such as portability, ease of installation and maintenance, a

significant proportion of edge nodes may be powered through batteries or energy har-

vesting devices with limited capacities.

Both academia as well as industry have rendered significant research efforts for ef-

ficiently addressing the aforementioned challenges. However, a vast majority of pro-

posed scheduling techniques are aimed at independent task oriented workloads [120],

[10], [121], [122]. Only very few studies have considered more complex workloads, such

as those with precedence relations [88], [123]. In the remainder of this chapter, we use

the term workflow to refer to workloads with precedence-constrained tasks. Workflow

is an application model that can be used to represent a wide variety of IoT applications

(health care, stream processing, smart city applications). Therefore, in this chapter we

focus on addressing the conflicting objectives of time minimization and energy opti-

mization in scheduling DAG (Directed Acyclic Graphs) based workflows across cloud

and edge computing environments.

Specifically, we use Deep Reinforcement Learning (DRL) techniques which have

proven to be efficient at handling highly dynamic and complex environments [14]. In-

herent characteristics of the Reinforcement Learning (RL) paradigm such as learning

through experience coupled with the use of neural networks for function approxima-

tion, makes DRL an ideal candidate for handling the unpredictable dynamicity associ-

ated with edge computing environments. We model the problem of energy and time op-

timized workflow scheduling in edge-cloud environments as a Markov Decision Process

76 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

(MDP). Since energy-efficiency and time minimization are generally conflicting goals, it

is crucial to emphasize the importance of establishing a balanced trade-off between these

goals to the DRL agent. We achieve this by training the DRL agent to produce schedul-

ing actions which minimize energy consumption of the system while meeting workflow

deadlines in a best-effort manner.

The main contributions of this work are as follows:

• We present an RL model for energy and time optimized scheduling of precedence

constrained tasks in edge-cloud environments. We design an energy and deadline

integrated reward model for training the DRL agent to establish a desired trade-off

between the conflicting objectives of energy optimization and time minimization

in workflow executions across cloud and edge computing environments.

• We propose a novel hierarchical action space formulation. Different from exist-

ing studies in which all edge and cloud nodes are considered together in non-

hierarchical action spaces, the proposed hierarchical action space promotes a clear

distinction between edge and cloud nodes.

• We propose a hybrid DRL model comprising of two actor networks and one critic

network. As opposed to the general case where a single actor network determines

the node to which a task is assigned, the multi-actor network finely divides the

responsibility of determining the tier (cloud/edge) and determining the node to

separate actors, thus greatly enhancing the learning process. The critic network is

used to guide both actor networks.

• For efficiently training the proposed DRL framework we use Proximal Policy Opti-

mization (PPO) technique which is capable of overcoming the inherent sample in-

efficiency associated with traditional actor-critic methods with the use of a clipped

surrogate objective function.

• We conduct extensive simulations for evaluating the performance of proposed al-

gorithms. With experimental results thus obtained, we demonstrate that the pro-

posed algorithms significantly outperform baseline scheduling algorithms.

4.2 Related Work 77

The rest of the chapter is organized as follows: In Section 4.2 we review background

of the addressed problem along with relevant literature. In Section 3 we present the

system model and formulate the objective of this work mathematically. Followed by

this, the DRL oriented framework for scheduling is presented in Section 4. Section 5 and

Section 6 present the evaluation of the proposed technique and conclusion of the study,

respectively.

4.2 Related Work

In this section we review related works that uses RL for dependent and independent

task scheduling in cloud and edge computing environments.

4.2.1 Cloud Computing Environments

A number of studies [124], [125] have used RL for addressing the problem of task schedul-

ing in cloud computing environments. In [124] Q-learning is used for prioritizing tasks

allocated to servers so that energy efficiency of cloud resources are maximized. Q-

learning was also used in [125] together with queuing theory for scheduling tasks in

cloud computing environments under the presence of resource constraints.

RL based scheduling algorithms are proposed in several works [55], [50], [79], [126],

[78], [127] for scheduling dependent tasks of workflows in cloud computing environ-

ments. In [55] Q-learning was used for sorting the tasks of a workflow prior to provi-

sioning resources for its execution. Multiple reinforcement learning agents were used

to compute an average Q-value of each node in a workflow which was then used to

sort tasks in ascending order. In the resource provisioning phase, co-operative multi-

agent coordination was achieved through a Markov game for determining the tasks

which should execute on a particular resource, with the objectives of optimizing en-

ergy consumption and cost. A combination of multi-agent coordination together with

the on-policy RL algorithm SARSA and genetic algorithm was used for a similar work-

flow scheduling problem in [50]. In [79], a multi-agent reinforcement learning frame-

work for multi-objective workflow scheduling in cloud infrastructures is proposed. The

78 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

Work Application Model Edge-Cloud Algorithm Heterogeneous Objectives

Workflow Bag of Tasks

D. Ding et al. (2020) ✓ Q-Learning ✓ energy

Z. Peng et al. (2015) ✓ Q-Learning ✓ response time

M. Cheng et al. (2018) ✓ Deep Q-Learning ✓ energy

A. Asghari et al. (2020) ✓ Q-Learning ✓ energy, cost

A. Asghari et al. (2021) ✓ SARSA, Genetic Algorithm ✓ makespan, resource utilisation

Y. Wang et al. (2019) ✓ Deep Q-Learning ✓ cost, makespan

A. Kaur et al. (2020) ✓ Deep Q-Learning ✓ makespan

Q. Yao et al. (2020) ✓ Deep Q-Learning ✓ makespan, energy

T. Sen et al. (2019) ✓ ✓ Q-Learning ✓ delay, energy

S. Tuli et al. (2020) ✓ ✓ Asynchronous Advantage Actor Critic ✓ delay, energy, cost

P. Gazori et al. (2019) ✓ ✓ Deep Q-Learning ✓ delay, cost

G. Rjoub et al. (2020) ✓ ✓ Deep Q-Learning ✓ delay, resource utilisation

Y. Zhang et al. (2020) ✓ ✓ Temporal Difference Learning delay, energy

H. Lu et al. (2020) ✓ ✓ Deep Q-Learning system cost

Proposed ✓ ✓ Proximal Policy Optimization ✓ energy, makespan

Table 4.1: Summary of Literature Review

proposed approach uses separate Deep Q Learning agents for each objective (cost and

makespan) and the scheduling problem is designed as a Markov game with a correlated

equilibrium. Deep Q Learning coupled was also used in [126] for workflow scheduling

in cloud with the objectives of minimizing response time and makespan. A multi-stage

Deep Q Learning framework has been proposed in [127] for scheduling tasks of DAG

based jobs with the objectives of minimizing energy cost of cloud service providers. In

the first stage, the server farm to which a task should be allocated is determined. Second

stage determines the exact server to which the task is allocated for execution.

4.2.2 Edge-Cloud Environments

A number of studies [120], [10], [121], [122] have used RL for task scheduling in edge-

cloud environments. A number of studies have used the popular TD learning based

Q learning algorithm for enhancing the performance of task scheduling in edge cloud

systems. Q learning was used in [120] to determine if a task should be assigned to the

same edge node in which it originated, or to the nearby fog layer or to cloud to achieve

the highest energy-efficiency while meeting the real-time processing requirements of the

task. To reduce the dimension of the state space, they have discretized the vales of the

state parameters (Bandwdith, CPU, stored energy) to a pre-defined number of levels.

4.2 Related Work 79

The use of function approximators such as neural networks for approximating the Q

function is a better alternative for overcoming inherent disadvantages associated with

state-space discretization. [121] proposed a Double Deep Q Learning algorithm for task

scheduling in fog computing environment with the objectives of minimizing delay and

computation cost. In [10], A3C (Asynchronous Advantage Actor Critic) technique is

used together with R2N2 (Residual Recurrent Neural Networks for task scheduling and

migration in edge-cloud environment. [122] used Deep Q Learning coupled with LSTM

(Long Short Term Memory Networks) for task scheduling in cloud computing environ-

ments with the aims of optimizing resource utilization and minimizing execution delay.

Several studies [88], [123] used RL for scheduling dependent tasks in edge-cloud

environment. [88] used a TD (Temporal Difference) learning based RL algorithm for

scheduling dependent tasks of requests modeled as DAGs (Directed Acyclic Graphs) in

an edge cloud environment with the objective of minimizing energy consumption while

meeting user specified time constraints. However, this work assumes that the decision of

offloading task executions to the cloud is made beforehand, and therefore only addresses

the problem of scheduling tasks among multiple edge nodes. In [123], Deep Q Learning

and LSTM networks were used to select the service nodes of dependent tasks in IoT

applications with the objective of minimizing overall system cost.

4.2.3 A Qualitative Analysis

Q learning is one of the most fundamental off-policy RL algorithms which forms the ba-

sis of many state-of-the art RL algorithms including Deep Q Learning. A large number of

studies have used Q learning for dependent and independent task scheduling in cloud

and edge computing environments [120], [124], [125], [55]. The scheduling algorithm

proposed in [50] used the on-policy RL algorithm SARSA. An obvious advantage of Q

learning and SARSA over model-based techniques such as dynamic programming is

that they are model-free RL algorithms which do not require complete knowledge about

the dynamics of the environment. Therefore scheduling techniques based on these RL

algorithms are capable of operating in highly unpredictable cloud and edge computing

environments. However, these techniques also have a number of limitations. Q learning

80 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

as well as SARSA require the RL agent to visit all states during the training process and

store the state transition data in a tabular format which is both time as well as space con-

suming. To overcome this issue in [120] state space discretization is used. The drawback

of this approach is that discretization could lead to the loss of information.

The combination of RL with deep learning which is referred to as Deep Reinforce-

ment Learning (DRL) has successfully proven to overcome the aforementioned issue

through function approximation, thereby eliminating the need for agents to visit all

states during the training process and for storing state transition data in space consum-

ing tabular formats. Deep Q Learning is one of the most popular DRL algorithms used

for task scheduling in cloud and edge computing environments [79], [126], [127]. DQN

based scheduling algorithms are more cost effective compared to Q learning and SARSA

based techniques since they require less time for training as the agents need not visit all

states of the environment. One drawback associated with DQN algorithms is that they

tend to overestimate the Q values of actions since the same function approximator is

used for both action evaluation and selection. Double Deep Q Learning algorithm used

in [121] for task scheduling overcomes this overestimation bias by decoupling action

selection from evaluation with the use of two function approximators [128].

DQN typically requires complete state information which is not readily available in

mobile edge computing environments which tend to be partially observable due to high

complexity and dynamicity of the environment. To address this issue DQN is coupled

with LSTM networks in [123], [122]. The recurrent nature of LSTM networks facilitates

the integration of long term historical data for accurately estimating the system state.

An inherent weakness associated with Q learning based algorithms is the need to per-

form a maximization over all the actions in the action space, which is intractable with

very large action spaces. Policy gradients are a branch of RL algorithms that are better

suited for environments with very large action spaces. As opposed to value based RL

algorithms such as Q learning and DQN that derive a policy from a learnt value func-

tion, policy gradients directly learn a parameterized policy. Despite the aforementioned

advantages, vanilla policy gradients could take prohibitively long durations for learn-

ing complex policies due to the inherent sample inefficiency associated with them. To

mitigate this issue [10] used Asynchronous Advantage Actor Critic (A3C) technique in

4.3 System Model 81

which multiple agents are trained in parallel and a global network with shared param-

eters are updated periodically thus speeding up the training process. As opposed to

training a single agent, training multiple agents asynchronously consumes more com-

putational power.

Regardless of the underlying RL algorithm, a common limitation in all reviewed

techniques is that the service nodes are considered together in the same action space

with no distinction between those that belong to cloud and edge tiers. This limits the

applicability of the techniques for different scenarios. For instance, consider a commonly

encountered scenario where tasks of certain workflows are restricted to execute only on

edge due to security constraints. With existing single-agent RL techniques [120], [10],

[121], [122], this situation cannot be handled since the trained model cannot distinguish

between edge and cloud nodes. In the proposed work we design the action space in a

hierarchical manner, so that the trained model can easily accommodate the aforemen-

tioned scenario with no modifications. We propose a novel multi-actor framework with

a single critic for handling the hierarchical action space in an efficient manner. As ev-

idenced by the results of extensive simulation experiments in Section 5, compared to

the traditional single-actor method, the use of two actors has led to improved perfor-

mance with respect to all evaluation metrics. For efficiently training the proposed DRL

framework we use Proximal Policy Optimization (PPO) technique [58] which is capable

of overcoming the inherent sample inefficiency associated with traditional actor-critic

methods with the use of a clipped surrogate objective function. The following sections

elaborate the design and implementation of the proposed scheduling framework.

4.3 System Model

In this section, we present the system model and the formulation of the workflow schedul-

ing problem in the edge-cloud environment, which forms the basis of the DRL frame-

work proposed in this chapter.

82 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

4.3.1 Application Model

Directed Acyclic Graph (DAG) is a popular execution model that can be used to repre-

sent a wide variety of applications. A workflow can be modelled as a DAG, G = (T, E)

where T represents the set of vertices and E represents the set of directed edges. Each

vertex in T represents a computing task, tn. Each edge ei,j ∈ E represents a data de-

pendency between tasks ti and tj such that the execution of tj cannot be commenced

until the execution of ti completes. Accordingly, a precedence constraint exists between

the two tasks and ti is a predecessor of tj and tj is a successor of ti. A task may have

multiple predecessors and its execution can only be commenced when all of its prede-

cessors have completed execution and all the data dependencies are satisfied. When

all the precedence constraints of a task are satisfied, it is said to be in ready state. The

bottom most task of the workflow which has no successors is referred to as a sink task.

4.3.2 Network Model

By nature, a majority of edge nodes are likely to be resource constrained and there-

fore efficient collaboration among multiple edge nodes with heterogeneous processing

capabilities is inarguably beneficial for optimizing the efficiency of the entire system.

A cluster of edge nodes with diverse computing capabilities and energy efficiencies col-

laborating with each other for provisioning on-demand compute and network resources

to IoT devices in the vicinity. Figure 4.1 illustrates a high level overview of the system

architecture. We consider a master worker architecture in which a gateway node with

an embedded scheduler acts as the master node and the rest of the edge nodes in the

cluster act as slave nodes. The considered architecture comprises of a non-hierarchical

topology in which all edge nodes have direct connectivity with the gateway node. The

gateway node acts as a virtual controller for managing and scheduling resources in the

edge cluster. All nodes periodically share their resource availability (CPU, Memory etc.)

with the gateway node, so that the real-time status of the network and edge nodes are in-

corporated in the formulation of scheduling decisions. Further details on the proposed

DRL framework for scheduling will be discussed in latter sections of this chapter.

4.3 System Model 83

Figure 4.1: System Architecture

4.3.3 Delay Model

In the considered architecture, a task maybe executed in an edge node or in the cloud.

The execution time of a task mainly depends on the computation delay and communi-

cation delay. Computation time (CT) of a task depends on the size of the task and the

processing power of the node to which it is assigned for execution. If the task is assigned

to a node with no idle capacity, then waiting time also contributes to total delay associ-

ated with task execution. Accordingly, computation time of task, tj with size L(tj) in a

server with processing rate F can be expressed as follows:

CT(tj) =
L(tj)

F
+ WT(tj) (4.1)

84 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

where WT(tj) is the waiting time of the task at the server before its execution com-

mences.

In order for the execution of task, tj to be commenced, all the precedence constraints

of the task must be satisfied. This means all the predecessors of tj must have completed

execution and the output data from predecessors required for the execution of tj, must

be available at the node to which tj is assigned. Let ti be an immediate predecessor of

task tj and the size of data to be transferred from ti to tj be D(ti, tj). If the bandwidth

between the execution nodes of ti and tj is B,the total transmission time (TT) can be

denoted by the following equation:

TT(ti, tj) =
D(ti, tj)

B
(4.2)

Accordingly, the earliest start time (EST) of task, tj can be represented as follows:

EST(tj) = max
ti∈pred(tj)

(FT(ti) + TT(ti, tj)) (4.3)

where FT(ti) is the completion time of task ti and pred(tj) is the set of predecessors

of task tj. The finish time (FT) of task tj can then be represented as:

FT(tj) = EST(tj) + CT(tj) (4.4)

The completion time (MT) of a workflow will then be equivalent to the completion

time of the task that completes execution last as represented by the following equation:

MT = max
tj∈T

(FT(tj)) (4.5)

where T represents the set of all tasks of the workflow.

4.3.4 Energy Consumption Model

Energy consumed during the execution of a workflow is the aggregate of the compu-

tation energy and communication energy incurred during the execution of workflow

tasks. With CPU utilization based power consumption model [111] the energy con-

4.3 System Model 85

sumed during the computation of task, tj can be expressed as follows:

ECOMP(tj) = CT(tj)× [U × Pactive + Pidle] (4.6)

where Pactive and Pidle are the power consumption rates at active and idle states of the

processors and U is the current CPU utilization level of the server. Energy consumption

associated with the transmission of data from the predecessor tasks is denoted as below:

ECOMM(tj) = ∑
ti∈pred(tj)

TT(ti, tj)× Pcomm (4.7)

where Pcomm is the power consumption associated with the transmission of data.

Accordingly. the total energy consumed during the execution of a workflow can be

denoted by the following equation:

E = ∑
tj∈T

(ECOMP(tj) + ECOMM(tj)) (4.8)

4.3.5 Deadline Model

The primary goal of this work is to minimize energy consumption associated with work-

flow executions, and reduction in energy consumption is usually achieved at the ex-

pense of increased execution times. This is because when the scheduling algorithm op-

erates with the sole objective of minimizing energy consumption, tasks maybe allocated

to more energy-efficient yet relatively slower servers thus lengthening task execution

times. However, it’s important to impose a limit on the extension of execution time to

prevent the degradation of user experience. Deadlines are used in this work to establish

a soft upper bound on the degree to which execution time is allowed to increase in ex-

change for higher energy savings. This means while the primary focus of the scheduler

is to minimize energy consumption, it will also attempt to formulate allocation decisions

such that the workflows complete execution close to their deadlines.

As opposed to individual jobs, a workflow consists of multiple tasks all of which

cannot be executed in parallel owing to the presence of precedence constraints among

86 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

them. As discussed in latter sections of this chapter, we transform the workflow schedul-

ing problem to a task scheduling problem so that the scheduling decisions can be made

in real time as tasks become ready for executions with the fulfilment of their precedence

constraints. Therefore, it is important to decompose workflow deadlines to individual

task deadlines, so that the scheduler can make informed decisions, taking into account

the deadline of tasks.

The upward rank, rj of a task tj [16] can be computed recursively with the following

equation:

r(j) = max
tk∈succ(tj)

(TT(tj, tk) + r(tk) + w(tk)) (4.9)

where succ(tj) is the set of successors of tj, w(tk) is the average execution time of tk

and TT(tj, tk) is the transmission time computed with equation 4.2. The length of critical

path of a task is equivalent to its upward rank. For a workflow submitted to the system

at time ST with deadline D, the deadline d(tj) of a task tj can simply be represented as

follows [105]:

d(tj) = ST + r(A) + w(A)− r(j) (4.10)

where A is the source task of the workflow and w(A) is the average execution time of

A. Clearly the deadline derivation presented above is not appropriate for this work since

the satisfaction of such deadlines will lead to the minimization of makespan rather than

energy. The CP-P technique presented in [105] addresses the aforementioned problem

by setting the deadlines of tasks to the maximum values. Slack time is divided evenly

among all tasks by setting the deadlines proportionally to their ranks. Accordingly, the

deadline of a task is calculated as below:

d(tj) = ST + (D− ST) ∗ r(A) + w(A)− r(j)
r(A) + w(A)

(4.11)

4.3 System Model 87

4.3.6 Objective

The objective of this work is to minimize the completion time of workflows submitted

to the system while also minimizing the total energy consumption of the entire system.

Therefore the scheduling objective can be represented as a bi-objective function consid-

ering completion time and energy consumption of workflows as follows:

Minimize:
N

∑
i=1

αMi + (1− α)Ei

Subject to: Mi ≤ Di

(4.12)

where N is the total number of workflows submitted to the system, and Mi and Ei

are makespan and energy consumed during the execution of a workflow i, respectively.

Di is the deadline of the workflow. Since delay and energy are conflicting goals, in the

above bi-objective function we use a normalized weight factor α for determining the

degree of prominence that should be given to each goal based on system requirements.

With the deadline decomposition technique introduced in previous subsection, an

individual deadline, d(tj) is assigned to each sub task, tj. Accordingly, constraint in

equation 4.12 can be rewritten as:

∀tj∈T FT(tj) ≤ d(tj) (4.13)

If task deadlines were set to minimize makespan as in equation 4.10, it will be pos-

sible to meet workflow deadlines even if some task deadlines are exceeded. In that case

the constraint imposed by the condition in equation 4.13 is tighter than that in equation

4.12. However, since task deadlines are already set to maximum values by CP-P tech-

nique, the constraint imposed by the the condition in equation 4.13 is equivalent to that

in equation 4.12. The use of deadline constraints in this manner allows the expansion

of makespan within predefined upper bounds, so that further gains in energy efficiency

can be achieved.

Accordingly for a system that schedules a set of workflows (W), the objective func-

tion can be reformulated as:

88 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

Algorithm 3 Workflow Analyzing and Dispatching

1: upon event Submission of a workflow do
2: Decompose workflow deadline to individual task deadlines
3: for Each task in the workflow do
4: if task is in Ready state then
5: Dispatch the task to task scheduler
6: Update global waiting-task map

7: upon event Receipt of a task completion notification do
8: if Completed task is a Sink task then
9: Send results to user

10: else
11: Use the waiting-task map to identify successors
12: for Each successor of completed task do
13: if task is Ready then
14: Dispatch the task to task scheduler
15: Update global waiting-task map

return

Minimize:
N

∑
i=1

Ei

Subject to: ∀w∈W∀tj∈T FT(tj) ≤ d(tj)

(4.14)

4.4 Deep Reinforcement Learning based Application Schedul-
ing Framework

In this section, we provide a brief overview of the RL paradigm. Followed by this,

we present an RL-oriented formulation of the energy and time optimized workflow

scheduling problem in the edge-cloud environment. We then describe the proposed

DRL framework for efficiently handling the workflow scheduling problem.

4.4.1 Reinforcement Learning Oriented Problem Formulation

Now we propose an RL oriented formulation of the workflow scheduling problem in

edge-cloud environment. As opposed to individual jobs, a workflow cannot be executed

4.4 Deep Reinforcement Learning based Application Scheduling Framework 89

at once owing to the complex precedence relations amongst workflow tasks. Although,

some studies have attempted to determine in advance, the servers in which all the work-

flow tasks are to be executed [103], such approaches are less appropriate in a highly dy-

namic edge-cloud environment as the conditions may have significantly changed from

the time scheduling decisions were made to the time the tasks (particularly the ones to-

wards the bottom of the workflow) are actually scheduled for execution. Therefore, in

this work we design the RL model in a manner such that all scheduling decisions are

made in real time when workflow tasks are actually ready for execution.

For this we transform the complex workflow scheduling problem to a task schedul-

ing problem, such that each scheduling decision corresponds to an allocation of a task

whose precedence constraints are met, to an edge or cloud node for execution. Accord-

ingly, the scheduler in gateway node maintains a map of pending tasks which await the

completion of their predecessors for commencing execution. Whenever a task completes

execution in an edge node or in the cloud, the gateway node is notified. With the receipt

of this notification, the scheduler uses the proposed DRL based resource scheduling

framework to determine where to execute any successors of the completed task which

may now be in ready state. In the context of this problem, the DRL agent is the task

scheduler which resides in the cluster manager. Algorithm 3 summarizes the sequence

of events involved in the execution of aforementioned steps.

State Space All the worker nodes periodically share their power consumption rates,

queue statuses and resource capacities with the gateway node as described in Section

4.3.2. Accordingly, a comprehensive state-representation which includes the real time

status of the network together with the resource requirements and deadline of the task to

be scheduled is provided to the DRL agent as described below. Specifically, the following

properties will be incorporated in the state:

1. Total CPU and Memory requirements of the task, tj

2. Deadline of task, tj. The ultimate objective of the scheduling problem is to ensure

the QoS requirements (e.g. deadlines) of workflows are satisfied while minimizing

energy consumption. Since the workflow scheduling problem is mapped to a task

scheduling problem, from the perspective of the DRL agent, the goal would be to

90 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

meet the deadlines of individual tasks whilst minimizing system energy consump-

tion. Therefore we decompose workflow deadlines to individual task deadlines so

that the scheduling actions of the agents could be rewarded or penalized depend-

ing on their propensity to meet the deadline of the task in consideration.

3. An array (d1, d2, ..., di) each element of which represents the amounts of data to

be transferred from each node, i to the node in which the current task will be

allocated before its execution can commence. Specifically, the amount of data to

be transferred from node i is the sum of total input data from all predecessors that

executed in node i. If none of task’s predecessors executed in node i, then di = 0.

4. Total capacity and utilization of CPU, Memory and Bandwidth of each node

5. CPU frequency in Million Instructions per Second (MIPS) of each node

6. Rate of power consumption at idle and active states of each node

7. Approximate time at which a newly scheduled task can commence execution at

each node (This is equivalent to the sum of execution times of tasks queued for

execution at the node and the time remaining for tasks which are already in exe-

cution to complete)

Accordingly, the size of state space is 3 + 11 * total number of nodes.

Action Space We formulate a hierarchical action space for determining the task al-

location node in cloud-edge environment. As opposed to the commonly used approach

[10], [120] where all edge and cloud nodes are considered together in the same action

space, the proposed hierarchical action space formulation enables the RL framework to

clearly distinguish between cloud and edge nodes. Furthermore, it substantially reduces

the action space of each agent, hence greatly expediting the training process.

Accordingly, a complete action produced by the RL framework can be represented

as (a1, a2) where a1 is the action which indicates the layer (cloud/edge) to which the task

under consideration (tj) should be allocated, and a2 indicates the node (in the tier given

by a1) to which tj should be assigned for execution. Therefore the action space can be

defined as follows:

4.4 Deep Reinforcement Learning based Application Scheduling Framework 91

Figure 4.2: Traditional actor-critic based scheduling

A = {(a1, a2)|a1 ∈ {Cloud, Edge} & a2 ∈ {1, 2, ..., Na1}} (4.15)

where Na1 is the total number of nodes that belong to the tier given by action a1. We

then adapt the hybrid actor critic technique proposed in [129] for parameterized action

spaces, to the hierarchical action space in our problem. Details on the proposed DRL

framework will be presented in the next section.

Note that the state space only includes details of one ready task, and each action is

for mapping this task to a node in either cloud or edge. But in reality at each actual time

step, the Ready Task Queue (RTQ) will have one or more tasks ready to be scheduled for

execution. If the details of all ready tasks are to be incorporated, the size of state space

as well as action space would increase which in turn could impede the speed of agent’s

learning process. Therefore, in each actual time-step, we use the DRL agent multiple

times to determine the nodes in which all tasks in RTQ are to be scheduled [14].

Reward It is imperative to design a reward that is inline with the objective of the

scheduling problem, so that with sufficient training the agent learns to optimize the ob-

jective while meeting any constraints. The problem addressed in this work requires the

agent to minimize the energy consumption of the system whilst ensuring QoS require-

ments as defined by the deadlines are met in a best effort manner. Accordingly, we

define the reward with the following two components:

92 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

1. R1: Total energy consumption of the system during the time elapsed since last

action. Negative sign is required since we need the DRL agent to minimize energy

consumption.

2. R2: A constant positive or negative reward depending on whether the selected

node is capable of meeting task deadline, d(tj) or not:

R2 =

+1, if FT(tj) ≤ d(tj)

−1, otherwise
(4.16)

where FT(tj) is the estimated completion time of task tj at the selected node. It can

be calculated as in equation 4.4.

Accordingly, at each time step the reward (rt) received by the DRL agent is R1 and

aggregate of R2 for all the tasks scheduled in that time step.

4.4.2 Actor-Critic based Scheduling Framework with Proximal Policy Opti-
mization

Actor-critic is a branch of policy gradient algorithms that have proven to be efficient

at overcoming the limitations of vanilla policy gradients by combining the advantages

of value based methods and policy based methods. As the name implies, actor-critic

algorithms consist of two main components; an actor and a critic. Actor is responsible

for learning the policy, πθ(at|st) which determines the action to be taken in each state for

achieving the desired objective whereas critic is responsible for providing constructive

criticism on the actions taken by the actor. In advantage actor critic method [130], the

return, Gt of REINFORCE is replaced with the advantage function, Aπ(s, a) = qπ(s, a)−
vπ(s). If Ât represents an estimator of the advantage function at time t, the equation for

updating policy parameters of the actor network can be denoted as follows:

θt+1 = θt + αÂt∇ ln π(at|st, θt) (4.17)

In this work, as the estimator, Ât of the advantage function we used the Generalized

4.4 Deep Reinforcement Learning based Application Scheduling Framework 93

Figure 4.3: Proposed scheduling framework

Advantage Estimator, GAE(γ, λ) presented in [130], with λ = 0. Let V be an approxi-

mate value function, and Rt be the return then Ât can be defined as follows:

GAE(γ, 0) : Ât := δt = Rt + γV(st+1)−V(st) (4.18)

As expressed in equation 4.18, Ât is equal to δt in the special case where λ = 0. Note

that we have used θ and ω to represent the set of adjustable parameters of the actor

and critic networks respectively. The critic network is trained to learn the state-value

function, vπ(st|ω). It is initialized with arbitrary weights which are updated during the

course of training thus allowing the critic to learn the actual state-value function. This

is done by iteratively minimizing the mean squared difference (TD error) between net-

work’s predictions (vπ(st|ω)) and target values (Rt + vπ(st+1|ω)) as shown in equation

4.19. And then updating the network parameters with TD error as shown in equation

4.20.

L(ω) =
1
2
[vπ(st|ω)− (Rt + vπ(st+1|ω))]2 (4.19)

ω ← ω + βδt∇vπ(st|ω)

where δt = Rt + vπ(st+1|ω)− vπ(st|ω)
(4.20)

94 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

where β is the learning rate of the critic network. As training progresses, the critic

network learns to more accurately predict the value of a given state. By incorporating

the feedback from critic for updating policy parameters in the direction of improvements

as shown in Equation 4.17, the actor-network also learns to produce actions that result

in higher rewards.

Despite the fact that actor critic methods solve problems associated with vanilla

policy gradients such as high variance, the straightforward application of actor critic

method did not work well for our problem. In fact these methods could take pro-

hibitively long durations for learning complex policies due to the inherent sample inef-

ficiency associated with them. The step size, α∇θ J(θt) in vanilla policy gradient (Equa-

tion 1.5) cannot be made too large since that could lead to large policy updates that

collapses performance. Trust Region Policy Optimization (TRPO) [131] techniques ad-

dress the aforementioned problem by maximizing a surrogate objective function subject

to a constraint, σ as shown in Equation 4.21. KL indicates the Kullback-Leibler diver-

gence in equation 4.21. The constraint restricts the degree to which new policy, πθ(at|st)

is allowed to change from the old policy, πθold(at|st) hence enabling the policy to mono-

tonically improve (approximately). In an algorithm that alternates between sampling

and optimization, the expectation Êt[..] indicates the empirical average computed over

a finite batch of samples. However, the theories which forms the basis of TRPO requires

complex and computationally expensive calculations. Hence, we used Proximal Pol-

icy Optimization (PPO) [58] technique which is proven to provide the benefits of TRPO

techniques, with the added advantages of less complexity, improved sample complexity

and generalizability.

Maximize: Êt

[
πθ(at|st)

πθold(at|st)
Ât

]
Subject to: Êt[KL[πθold(.|st), πθ(.|st)]] ⩽ σ

(4.21)

If the surrogate objective function of TRPO in Equation 4.21 is maximized without

a constraint, it could lead to large policy updates that in turn may adversely impact

performance. Hence, the constraint is an imperative condition that should be satisfied

when optimizing the objective. PPO attempts to find an alternate means for solving

4.4 Deep Reinforcement Learning based Application Scheduling Framework 95

essentially the same problem, but without using an external constraint. It achieves this

by limiting the degree to which new policy is allowed to change from the old policy by

clipping the objective function as shown in equation 4.22. This is achieved through the

clip function, clip(µt(θ), 1− ϵ, 1 + ϵ)Ât which removes the desirability of large policy

updates that changes the rt(θ) ratio beyond the interval [1− ϵ, 1 + ϵ].

LCLIP(θ) = Êt[min(µt(θ)Ât, clip(µt(θ), 1− ϵ, 1 + ϵ)Ât]

where µt(θ) =
πθ(at|st)

πθold(at|st)

(4.22)

As described in Section 4.4.1, we have proposed a novel hierarchical action space

for the task scheduling problem in edge-cloud environment. We then adapted a hybrid

actor-critic technique [129] designed for parameterized action spaces to the hierarchical

action space in our problem.

Figure 4.2 and Figure 4.3 illustrate high level overviews of traditional actor-critic

based scheduling and the proposed hierarchical scheduling framework, respectively.

As opposed to the traditional actor-critic technique which comprises of a single actor

network and a single critic network, the proposed framework consists of two actors

and one critic. Both actor networks use the same state space described in Section 4.4.1.

Critic network also uses the same state space since it is trained to learn the state-value

function and not the state-action value function which requires action input as well.

The advantage given by the critic network is used to update the two stochastic actor

networks.

Different from traditional actor-critic technique which only performs one gradient

update with each experience sample, the use of PPO technique enables the proposed

framework to store experience samples in memory and perform multiple rounds of

gradient updates with mini-batches of samples. As training progresses, the first actor-

network learns to make the binary decision of whether to allocate a task either to cloud

tier or to edge tier. Since there are multiple nodes in the tier selected by the first actor,

the second actor-network learns to decide which node is most appropriate for task exe-

cution. Accordingly, the integrated output of which node in which tier is to be selected

for task allocation is determined by the proposed hierarchical RL framework.

96 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

Algorithm 4 Actor-Critic based Scheduling Framework with PPO

1: Initialize actor networks π(a|s, θ1), π(a|s, θ2) and critic network V(s|ω) with ran-
dom weights

2: Initialize the training parameters: α, β, γ
3: for episode = 1 to N do
4: Reset the environment
5: for step = 1 to T do
6: Input the state of the environment to actor networks π(a|s, θ1), π(a|s, θ2)
7: Select action a1 (tier) from first actor network
8: Select action a2 (node) from second actor network
9: Execute the combined action (a1, a2) and observe the corresponding reward

rt and next state of the system st+1

10: Store the most recent transition (st, at, rt, st+1) in memory D

11: Compute advantage estimates Â1 to ÂT
12: for j = 1 to K do
13: Randomly sample a mini-batch of samples of size S from D
14: for i = 1 to S do
15: Update critic network:

ω ← ω + βδt∇vπ(st|ω)

16: Update first actor network:
θ1 ← θ1 + αÂi∇ ln π(a1|s, θ1)

17: Update second actor network:
θ2 ← θ2 + αÂi∇ ln π(a2|s, θ2)

18: Clear memory D
return

Pseudocode of the training process of the proposed multi-actor scheduling frame-

work is presented in Algorithm 4. As indicated in lines 1-2 we first initialize the actor

networks and critic network with random weights. Then the training parameters are

also initialized. We train the DRL model for a total of N episodes (line 3), and at the

beginning of each episode, the environment state is reset. Since, the problem is modeled

as an input driven MDP, each time-step of the episode actually corresponds to schedul-

ing of a task from Ready Task Queue. As indicated in lines 6-8, at each time-step the

current state of the environment is given as input to the actor networks, and the output

of the first actor network provides the tier to which the task should be allocated, and the

second actor network’s output provides the node in the selected tier to which the task

should be allocated. Upon the execution of combined action (allocation of task to the se-

4.5 Performance Evaluation 97

Algorithm 5 Online Scheduling

1: upon event Submission of a task do
2: Enqueue task in waiting-task queue
3: while Waiting-task queue is not empty do
4: Deque a task from queue
5: Get the latest status updates of all worker nodes
6: Get resource requirements and predecessor relations of task
7: Formulate the state space
8: Action (a1, a2) = Agent(state)
9: Submit the task description with the location of input data to the tier and worker

node specified in Action
10:

return

lected node), the agent receives a reward and the environment transitions to a new state

(line 9). Details of the transition which includes state of the environment, combined

action, reward and next state are stored in memory as indicated in line 10. For each

transition, the advantage estimates are also calculated and stored. At the end of each

episode, we train the networks K times with randomly sampled mini-batch samples of

size S (line 12-18). As opposed to techniques such as Deep Q Learning in which samples

in memory are persisted over multiple episodes, with PPO technique the samples in the

memory are cleared before starting the next episode of training.

Algorithm 5 summarizes the steps involved in online task scheduling process. As

training the DRL model is a resource intensive and time consuming process, the DRL

model is pre-trained and used in real time for obtaining the scheduling decisions. Real-

time network status of all nodes together with the resource requirements of the task to

be scheduled (dequeued from ready task queue) are merged for formulating the current

state of the environment. It is then provided as input to the actor networks. The task

is then allocated to the tier and node given by the combined action output of the actor

networks.

4.5 Performance Evaluation

In this section we present a comprehensive analysis of the performance of the proposed

DRL framework in comparison to several baseline algorithms in a number of different

98 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

Layer Server Name Processor Cores MIPS RAM Bandwidth Power (Watts)
(GB) (GB/s) Idle Active

Cloud Dell Inc. PowerEdge
R740

Intel Xeon Plat-
inum 8280 2.70
GHz

56 604.8k 64 1.5 50 432

Cloud IBM System x iData-
Plex dx360 M2

Intel Xeon X5570
2.933 GHz

16 187.712k 48 1 116 475

Edge Fujitsu FUJITU Server
PRIMERGY TX1320 M3

Intel Xeon E3-
1230 v6 3.50 GHz

4 56k 8 1 9 51

Edge Hewlett-Packard Com-
pany ProLiant DL385
G5

AMD Opteron
processor 2356
2.3 GHz

8 55.2k 16 1 178 299

Edge Hewlett-Packard Com-
pany ProLiant ML110
G4

Intel Xeon Pro-
cessor 3040 1.86
GHz

2 14.88k 16 0.1 86 117

Table 4.2: Host configurations derived from SPEC benchmark [3] for experimental setup

scenarios.

4.5.1 Experimental Setup

For evaluating the performance of proposed workflow scheduling framework, we used

used an extension [11] of the popular CloudSim simulation toolkit. We have also im-

plemented new modules for simulating the proposed workflow scheduling framework

and interacting with the deep learning algorithms implemented using the deep learning

library Keras [12].

The simulated scenario comprises of a highly heterogeneous cluster with 16 edge

nodes and 8 cloud nodes. We used the SPEC benchmark [3] for obtaining the resource

configurations and power consumption rates of nodes as shown in Table 4.3. Following

the simulation experiments of similar works [10] based on empirical studies, communi-

cation delay between edge-edge nodes and edge-cloud nodes was considered to be 1ms

and 10ms respectively.

4.5.2 Dataset

Evaluation dataset was created based on synthetic workflow structures [2] provided

by the popular Peagasus workflow framework. Task length in terms of number of in-

4.5 Performance Evaluation 99

Parameter Value
General
Discount factor (γ) 0.2
Mini-batch size (S) 64
No. of mini-batch iterations per
episode (K)

50

No. of training episodes (N) 550
Optimizer Adam
Critic network
Learning rate (β) 0.00005
No. of input layers 1
No. of output layers 1
No. of hidden layers 2
No. of neurons in each hidden
layer

100

First actor network
Learning rate (α) 0.00001
No. of input layers 1
No. of output layers 1
No. of hidden layers 2
No. of neurons in each hidden
layer

100

Second actor network
Learning rate (α) 0.00001
No. of input layers 2
No. of output layers 2
No. of hidden layers 4
No. of neurons in each hidden
layer

100

Table 4.3: Hyper-parameters used for the DRL model

100 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

structions (as per CloudSim nomenclature) and the sizes of precedence constraints (in

megabytes) were randomly selected from the ranges 0.5k to 1000k, and 0.1k to 10k re-

spectively. A total of 1000 workflows comprising of 5292 tasks was used for the experi-

ments. For simulating workflow arrival times, we used a Possion distribution.

Rather than using random deadlines we used a workflow aware process for setting

realistically achievable deadlines considering the resources available in the simulated

cluster. Critical path of a workflow is the longest execution path which essentially de-

termines the total execution time of the workflow. For each workflow, we obtain the

nodes in the critical path of the workflow [16]. Then we calculate the total execution

time of the critical path using the processing speed of a randomly selected node in the

cluster. The reason for using a random node’s processing power rather than the average

processing power of the cluster is to improve the diversity of the deadlines. We then add

a deadline base [121] which is a constant value for each resulting critical path execution

time, to derive deadlines that are realistically achievable in the simulated environment.

For this we used a trial and error method where the target being the selection of a dead-

line base with which EFT (Earliest Finish Time) algorithm (described in Section 4.5.3)

can meet approximately 90% of deadlines.

4.5.3 Comparison Algorithms

We used the following four algorithms for evaluating the performance of the proposed

scheduling framework.

1. Random: This is a baseline algorithm which assigns tasks to a randomly selected

node.

2. EFT: This algorithm is similar to the popular HEFT [16] algorithm except for the

insertion based scheduling policy which is impractical in the considered edge-

cloud scenario due to the lack of control over the processors of the distributed edge

and cloud nodes. (i.e. once a task is allocated for execution to an edge or cloud

node by the cluster manager, we do not assume it has further control over the

manner in which tasks are actually scheduled for execution at the remote nodes.)

It uses equations 4.1, 4.2, 4.3 and 4.4 for computing the estimated end times of

4.5 Performance Evaluation 101

the task to be scheduled in all of the nodes, and assigns the task to the node with

the earliest finish time. Where there are multiple ready tasks, tasks are prioritzed

based on their upward ranks.

3. EDA This is an energy and delay aware algorithm which operates by assigning

tasks to nodes that can reduce both delay as well as energy associated with task

execution. Accordingly, it uses Equations 4.4 and 4.6 to compute the product of

estimated delay and energy for executing a task at each of the nodes and selects

the highest ranked node based on a score calculated as follows:

SCORE = FT(ti)× ECOMP(ti) (4.23)

4. EES This is an energy efficient scheduling algorithm that solely aims to minimize

energy consumption in a greedy manner by assigning the task to the node which

requires the least amount of energy for its execution. It uses Equation 4.6 to com-

pute the energy consumed at each node for task execution.

5. Single-Actor This is a DRL model in which all edge and cloud nodes are con-

sidered together in the same non-hierarchical action space. In this comparison

method we used a traditional actor critic network and trained it using the same

hyper-parameters as the DRL model proposed in this work.

4.5.4 Hyper-parameters and Network Configurations

Table 4.3 lists the hyper-parameters used for training the agents. The critic network

is set to learn at a faster rate than the actor networks, since the actor networks rely

on the guidance of the critic network, a critic network with a relatively faster learning

rate speeds up the learning process. Furthermore, a step learning curve is used for the

second actor, and thereby the first actor is set to learn at a slower rate than the second

actor for the first 100 episodes. This is because during early episodes of training the

reward largely depends on the actions produced by the second actor, so regardless of

how good first actor’s action is in a given state, the reward could still be bad due to

second actor’s action. Therefore, large weight updates for the first actor at early stages

102 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

of training more often leads to sub-optimal convergence. In the training process of the

DRL agent we only considered computation energy consumption in the calculation of

total energy consumption of the system (R1) since energy consumed for communication

was negligible in comparison to energy consumed for computations. In communication

intensive environments, the reward should include energy cost of communications as

well. Remaining hyper-parameters were chosen in a trial and error manner. We used

100 jobs in the training process of the DRL model. The model was trained 10 times with

the hyper-parameters listed in the table and the model that produced best results was

selected for conducting the experiments.

4.5.5 Analysis of Convergence

Figure 4.4 demonstrates the manner in which the agent learns to produce actions which

leads to the achievement of desired objectives as training progresses. As shown in Fig-

ure 4.4a, total rewards accumulated during an episode gradually increase and converges

to a maximum around the 550th episode. The convergence of a DRL model is evaluated

based on reward convergence. Oscillatory trends in other parameters can be expected

as a result of ongoing exploration at early phases and equally favorable learned actions

in latter phases. As the reward is primarily designed for incentivizing the agent to min-

imize the energy consumption of the system, the total energy consumed by the system

steadily decreases as shown in Figure 4.4b, and reaches a minimum around the 550th

episode. As a part of the reward is designed to reward the agent for meeting task dead-

lines, or penalizing for failing to do so, total number of workflow deadlines hits during

an episode also increases as shown in Figure 4.4d. Energy consumption and execution

time are often contradictory goals. Therefore, we use task deadlines to convey the agent

an upper bound on the degree to which execution time of a task can be compromised for

a more energy-efficient allocation. As evidenced by the reduction in both energy con-

sumption as well as execution time (Figure 4.4c), the agent learns to reduce both factors

as training progresses. This is achieved by more frequently allocating tasks to nodes that

are more efficient in terms of processing speed as well as energy consumption, so that

task deadlines can also be met with relatively less energy consumption.

4.5 Performance Evaluation 103

(a) Reward convergence

(b) Total energy consumption

(c) Total time

(d) Deadline hits

Figure 4.4: Learning progress with training (Convergence of DRL model)

104 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

(a) Total energy consumption

(b) Total time

(c) Deadline hits

(d) Completed jobs

Figure 4.5: Comparison of performance of scheduling algorithms on experimental
dataset

4.5 Performance Evaluation 105

4.5.6 Analysis of Performance on Experimental Dataset

Figure 4.5 demonstrate the performance of the algorithm on the experimental dataset at

an arrival rate of 15 workflows/minute. The total energy consumption incurred during

the execution of workflows is demonstrated in Figure 4.5a. Clearly, Random algorithm

has resulted in the highest energy consumption. This is due to the fact that the ran-

dom task allocations among all cluster nodes, results in all the nodes of the cluster being

active throughout the entire period leading to the under utilization of multiple cluster

nodes. Since nodes continue to consume energy while they are in idle state as well, hav-

ing all the nodes operating significantly below their capacities causes a steep degrada-

tion of energy consumption. Compared to random allocation, all other algorithms result

in much better energy consumption. EES algorithm and the proposed DRL framework

performs similarly with respect to energy savings, with the proposed technique consum-

ing marginally more energy (8%). Energy consumed by EDA algorithm, though higher

than EES and Proposed techniques, is much better in comparison with the EFT and Ran-

dom algorithms. EFT algorithm consumes the second highest level of energy since it

does not consider energy consumption of the system when making allocation decisions.

The proposed DRL framework consumes 32%, 56% and 75% less energy compared to

EDA, EFT and Random algorithms, respectively. Single-Actor method consumes signif-

icantly more energy compared to the proposed DRL method. Since this technique and

proposed DRL method are identical in every aspect except that the proposed method

has a hierarchical action space and uses separate actors for determining the task allo-

cation tier and node, the difference in energy consumption between the two methods

clearly highlights the advantage of using separate actor networks.

Figure 4.5b demonstrates the total time taken for the execution of workflows. With

respect to total time, EES has performed the worst. This is expected as its sole focus is

on the reduction of energy consumption without any regard to the subsequent impact

on execution time. Since energy consumption and execution time are conflicting goals,

the strategies employed by EES algorithm for saving energy increases the total execu-

tion time. Next highest level of execution time is incurred by the Random allocation

algorithm. This is due to the fact that random allocation is completely indifferent to the

location of where the predecessors of a task are hence resulting in very high commu-

106 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

(a) Total energy consumption

(b) Total time

(c) Deadline hits

(d) Completed jobs

Figure 4.6: Comparison of performance of scheduling algorithms at different workflow
arrival rates

4.5 Performance Evaluation 107

nication times leading to increased total execution time. An improvement of 11% and

47% over the execution times of Random and EES algorithms is achieved by the pro-

posed DRL framework, respectively. EDA, Single-Actor and Proposed techniques have

performed similar, with proposed technique taking slightly less time (2%). As expected,

EFT has outperformed all the algorithms, since its sole focus is on minimizing execution

time the allocation decisions are made such that each workflow can finish execution at

the earliest time possible.

Percentage of deadlines met and jobs completed with each algorithm are demon-

strated in Figure 4.5c and 4.5d respectively. EES algorithm has resulted in the lowest

number of deadline hits, which is significantly below the level of all other algorithms.

The highest percentage of deadline hits (97%)is achieved by the EFT algorithm. This

is expected since the objective of EFT algorithm is to complete the execution of each

workflow within the shortest possible time, and that directly increases the probability

of workflows completing execution within their deadlines. For similar reasons, EDA

algorithm has achieved the second highest level of deadline hits (92%), as a part of its

objective function is designed to favor nodes that contribute to minimizing the comple-

tion time of workflow tasks. The next highest number of deadline hits (84%) is achieved

by the proposed DRL technique. Note that in this work we have considered deadlines

to be soft deadlines, which means meeting them is desirable but not mandatory. Ac-

cordingly, the DRL model was not trained to meet all deadlines as a hard constraint,

rather the training objective was formulated to primarily minimize energy consump-

tion while using deadlines to control the degree to which makespan of workflows is

allowed to increase in exchange for higher energy savings. Even-though the DRL agents

of both Single-Actor method and proposed method are trained using the same reward

structure, it is clear that the proposed method is more efficient at learning the training

objective since it achieves more deadline hits while consuming less energy compared to

the Single-Actor method.

Proposed DRL method, Single-Actor method, and EFT as well as EDA techniques

take predecessor proximity into account in the formulation of allocation decisions which

is crucial particularly when it comes to workflows with communication intensive prece-

dence relations. Large waiting times that accompanies precedence relations agnostic

108 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

(a) Total energy consumption

(b) Total time

(c) Deadline hits

(d) Completed jobs

Figure 4.7: Comparison of performance of scheduling algorithms at different computa-
tional workloads

4.5 Performance Evaluation 109

scheduling decisions given by Random and EES algorithms result in timed out tasks

which in turn lead to incomplete jobs as shown in Figure 4.5d.

4.5.7 Analysis of Performance at Different Workflow Arrival Rates

Figure 4.6 demonstrates the performance of algorithms in terms of energy consump-

tion, total execution time, deadline hits and jobs completed as the workflow arrival rate

varies. As shown in Figure 4.6a EES and proposed DRL technique have succeeded in

keeping the energy consumption in a lower level than all other algorithms at all arrival

rates. Random allocation leads to a drastic rise in energy consumption compared to

other algorithms as arrival rate increases. With EFT technique as well the rise in energy

consumption is more prominent compared to EDA, EES, Single-Actor and proposed

DRL technique. It is clear that with scheduling techniques which incorporate minimiz-

ing energy consumption as a part of their scheduling objectives, the energy consumption

rises at a lower rate as arrival rate increases.

A moderate rise in total execution time can be observed in Figure 4.6b with all algo-

rithms as the arrival rate increases, except with EES algorithm. Clearly, the scheduling

decisions made by EES algorithm for optimizing energy consumption severely degrades

the total execution time by increasing the waiting times of task executions.

As indicated in Figure 4.6c and 4.6d, at moderate arrival rates EFT, EDA and pro-

posed technique perform equally well with respect to total number of deadline hits

achieved as well as total makespan. But at high arrival rates the performance of both

Single-Actor as well as proposed DRL techniques degrade slightly more compared to

EFT and EDA techniques. This is expected behaviour since the DRL models were trained

at a moderate arrival rate, so as the arrival rate increases the learnt behavior may not be

appropriate with respect to achieving certain goals since the environment in which the

agent operates is changed significantly. This is in-fact a known drawback associated

with DRL models trained in input driven environments [132]. In this work we have

considered the workflow arrival rate to be moderate, however if burst arrival rates are

also common, a feasible workaround to this problem maybe to train the model under

different arrival rates [132].

110 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

4.5.8 Analysis of Performance at Different Computational Workloads

Figure 4.7 demonstrates the performance of the algorithms as the computational work-

load varies. Computational workload in Figure 4.7 represents the aggregate compu-

tational workload of all workflows scheduled by the system. In Figure 4.7a, Random

algorithm’s performance with respect to energy consumption severely degrades with in-

creasing workload. EFT algorithm also consumes significantly more energy compared

to EDA, EES, Single-Actor and proposed DRL technique which consider energy effi-

ciency as a sole or partial objective in the formulation of scheduling decisions. These

algorithms are able to achieve a moderate rise in energy consumption with increasing

workload as opposed to the sharp rise observable with non-energy aware scheduling al-

gorithms. Proposed technique as well as EES clearly achieves the best results with very

similar performance.

As previously discussed, the fact that EES algorithm only attempts to optimize en-

ergy consumption adversely impacts the total execution time, leading to significantly

high execution times at heavy workloads. In contrast, EFT algorithm which operates

with the only objective of minimizing execution time achieves the best results in exe-

cution time. EDA and Proposed DRL technique also achieves similar results with only

a marginal increase in execution time compared to EFT at heavy workloads. Random

algorithms performance cannot be evaluated solely based on the results in Figure 4.7b

since it has completed less jobs compared to other algorithms as indicated in Figure 4.7d.

In Figure 4.7c, EES algorithms ability to meet deadlines sharply drops with increas-

ing workload. This is due to the fact that EES algorithm focuses solely on minimizing

energy consumption, and therefore the allocation decisions it makes lead to increased

execution delays. This in turn delays the completion of task executions leading to dead-

line misses. Random algorithm also performs poorly in comparison to EFT, EDA and

proposed techniques which exhibit very similar performance. At heavy workloads, EFT

algorithm marginally outperforms EDA as well as proposed techniques. As preiously

discussed, this is expected since the sole focus of EFT algorithm is to speed up the exe-

cution of tasks which in turn leads to higher deadline hits.

4.6 Overall Analysis 111

4.6 Overall Analysis

As evident through the results of experiments in Figures 4.5a, 4.6a and 4.7a, EES algo-

rithm is the most efficient at minimizing energy consumption of workflow executions.

This is because its scheduling decisions are solely focused on reducing the energy con-

sumption and therefore, regardless of the rise in execution time it always allocates tasks

to the most energy-efficient node. This however is achieved at the expense of increased

execution time which is highly undesirable given the importance of low response times

in use cases associated with edge computing environments. Results achieved with pro-

posed DRL method is much similar to that with EES with respect to energy consump-

tion. However, the proposed method is much superior to EES since it manages to min-

imize energy consumption without adversely impacting the total execution time as de-

picted in the experimental results in figures 4.5b, 4.6b and 4.7b. This is due to the fact,

that the DRL agent in proposed method is trained to establish a balanced trade-off be-

tween energy consumption and execution time with the use of reward formulation pre-

sented in section 4.4.1.

The execution times of all other algorithms except EES are in a similar range with

EFT technique always achieving the lowest execution times owing to the fact that its

objective is solely designed to minimize response time. As expected, the percentage of

deadline hits (figures 4.5c, 4.6c and 4.7c) follow a similar trend to execution time since

meeting or missing deadlines is largely dependent on the time taken for task execution.

Simply put, EES algorithm produces best results with respect to energy consumption

and EFT algorithm produces best results with respect to execution time. Therefore the

fact that the proposed DRL method has produced similar results to EES and EFT in

terms of energy consumption and execution time, respectively demonstrate the superi-

ority of the proposed technique at simultaneously achieving the conflicting objectives of

minimizing energy consumption and execution time. The superior results thus obtained

can be attributed to the multi-component reward used for training the DRL agent. Such

behavior is particularly useful in edge computing environments where latency sensi-

tive IoT workflows such as video surveillance are executed in edge nodes powered by

batteries with limited capacities.

112 Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments

As previously mentioned, the Single-Actor method is similar to the proposed method

in all aspects except that the proposed method has a hierarchical action space and uses

separate actors for determining the task allocation tier and node. But as evident through

the results of the experiments there is a significant difference between the two methods

in terms of energy consumption, execution time as well as deadline hits achieved in the

experimental use cases. This clearly highlights the advantage of using separate actor

networks for determining the task allocation tier and node.

4.7 Summary

The problem of workflow scheduling itself is complicated due to the presence of com-

plex precedence relations among workflow tasks. Scheduling workflows across edge-

cloud environment adds an additional layer of complexity atop the general workflow

scheduling problem owing to the fresh set of challenges associated with facilitating

seamless executions across the highly heterogeneous and distributed edge-cloud envi-

ronment.

In this work, we propose a novel hierarchical state space formulation coupled with

a hybrid actor-critic technique for energy-efficient resource scheduling in edge-cloud

environment. The resulting deep reinforcement learning framework with multiple ac-

tor networks guided by a single critic network greatly reduces the size of the action

space handled by each actor network while also promoting a clear distinction between

edge and cloud nodes. Furthermore, we used the proximal policy optimization tech-

nique to overcome the known limitations associated with traditional actor-critic meth-

ods. We also leveraged existing works to decompose workflow deadlines to individ-

ual task deadlines which were then used as soft upper-bounds during the training pro-

cess, so that the deep reinforcement learning framework agent learns to establish a bal-

anced trade-off between latency and energy consumption. Results of simulation exper-

iments demonstrate that the deep reinforcement learning framework outperforms all

other comparison algorithms by reducing the energy consumption of the system while

maintaining the total execution time in par with other algorithms.

As evidenced by the results the proposed method can be used for workflow schedul-

4.7 Summary 113

ing in highly dynamic and complex edge computing environments while minimizing

energy consumption as well as execution time.

In the next chapter, we study the problem of workflow scheduling on distributed

cloud datacenters in the presence of renewable energy. A majority of distributed cloud

environments tend to be partially observable since it is unlikely that local information

about all the clouds will be globally available at all times. Therefore, different from the

fully observable agent environment considered in this chapter, the next chapter consid-

ers a partially observable environment in which the agent does not perceive the com-

plete state of the environment, instead only a partial observation is visible. A decentral-

ized multi-agent DRL framework that conforms to the paradigm of centralized training

and distributed execution which is proven to be highly effective in multi-agent systems

is proposed for green energy-optimized scheduling of workflows.

115

116 Multi-agent Deep Reinforcement Learning Framework for Workflow Scheduling

Chapter 5

Multi-agent Deep Reinforcement
Learning Framework for Workflow

Scheduling

The ever-increasing demand for the cloud computing paradigm has resulted in the widespread de-

ployment of multiple datacenters, the operations of which consume very high levels of energy. The

carbon footprint resulting from these operations threatens environmental sustainability while the

increased energy costs have a direct impact on the profitability of cloud providers. Using renew-

able energy sources to satisfy the energy demands of datacenters has emerged as a viable approach

to overcome the aforementioned issues. The problem of scheduling workflows across multi-cloud en-

vironments powered through a combination of brown and green energy sources includes multiple

levels of complexities. Firstly, the general case of workflow scheduling in a distributed system itself

is NP-Complete. The need to schedule workflows across geo-distributed cloud datacenters adds a

further layer of complexity atop the general problem. The problem becomes further challenging when

the datacenters are powered through renewable sources which are inherently intermittent in nature.

Consequently, traditional heuristic and meta-heursitic based algorithms and single-agent reinforce-

ment learning algorithms are incapable of efficiently meeting the decentralized and adaptive control

required for addressing these challenges. To this end, we have leveraged the recent advancements

in the paradigm of MARL (Multi-Agent Reinforcement Learning) for designing and developing a

multi-agent RL framework for optimizing the green energy utilization of workflow executions across

multi-cloud environments. The results of extensive simulations demonstrate that the proposed ap-

proach outperforms the comparison algorithms with respect to minimizing energy consumption of

workflow executions by 47% while also keeping the makespan of workflows in par with comparison

algorithms. Furthermore, with the proposed optimizations, the multi-agent technique learnt 5 times

faster than a generic multi-agent algorithm.

This chapter is derived from:

• Amanda Jayanetti, Saman Halgamuge, Rajkumar Buyya, ”Multi-agent Deep Reinforcement
Learning Framework for Renewable Energy aware Workflow Scheduling on Distributed Cloud
Datacenters”, IEEE Transactions on Parallel and Distributed Systems, 2023 (under 2nd review).

5.1 Introduction 117

5.1 Introduction

In recent times, cloud computing has become a frequently used platform for running

resource-intensive workloads of commercial as well as scientific applications owing to

its inherent ability of provisioning compute and network resources in an on-demand

manner. Cloud computing services are offered by service providers via multiple geo-

graphically distributed datacenters for improving the Quality of Service (QoS) experi-

enced by geographically dispersed consumers as well as for other requirements such as

disaster recovery and high availability.

The excessive demand for cloud computing services has given rise to an exponential

rise in the power consumption of cloud datacenters [74], hence adversely impacting the

sustainability of the computing paradigm. Furthermore, high power consumption levels

also increase the operational costs of datacenters which in turn reduces the profitability

of service providers. As a step towards mitigating the adverse impacts of high power

consumption and associated effects such as CO2 emissions, increasingly more renewable

energy sources (such as solar power and wind power) are leveraged by cloud providers

for satisfying the power requirements of cloud datacenters.

Geographically dispersed datacenters can be powered through locally available re-

newable energy sources thereby minimizing the use of brown energy. However, due to

the intermittent nature of renewable energy sources, their utilization for powering cloud

datacenters gives rise to several challenges. Variations in weather conditions and other

location-dependent factors could drastically impact the levels of power generated by re-

newable energy sources. Distribution of workloads among geographically distributed

datacenters while taking into account the renewable energy generation levels as well as

diverse QoS requirements of heterogeneous workloads makes it possible to handle the

intermittent nature of renewable energy sources in an efficient manner.

Workflow is a popular application model which can be used to represent a wide vari-

ety of workloads ranging from scientific to commercial applications. Cloud computing

environments are widely used for the execution of resource-intensive workflows. As

opposed to scheduling individual workloads, workflow scheduling in cloud comput-

ing environments is more complex due to the presence of precedence relations between

118 Multi-agent Deep Reinforcement Learning Framework for Workflow Scheduling

workflow tasks. The problem becomes even more challenging when workflows are to

be scheduled across multiple geographically distributed datacenters some of which are

operating on renewable energy sources. Only very few studies in existing literature

have simultaneously attempted to tackle the aforementioned challenges. The schedul-

ing frameworks proposed in these studies have either used heuristic or meta-heuristic

techniques for achieving the desired objectives. These approaches generally suffer from

problems such as high computational complexity, low adaptability to dynamically chang-

ing conditions, and so on.

Reinforcement Learning (RL) has emerged as a promising solution for dealing with

highly dynamic and unpredictable problems. In particular, the more recent combina-

tion of Deep Neural Networks (DNN) with Reinforcement Learning which gave rise to

the Deep Reinforcement Learning (DRL) paradigm, is proven to have the potential of

solving complex problems in highly stochastic environments [133]. DRL agents operate

with no prior knowledge of the environment, and they learn by interacting with the en-

vironment and gathering rewards for actions performed. The rewards enable the agents

to learn desirable and undesirable behaviors in different situations, thus enabling them

to identify the actions that result in the maximization of overall rewards.

DRL techniques have been used in a number of studies for handling resource man-

agement problems in cloud computing environments [134], [135]. However, a vast ma-

jority of these works have proposed straightforward adaptations of popular RL algo-

rithms such as Deep Q Learning for designing single-agent scheduling frameworks that

are more suited for satisfying the centralized scheduling requirements of the traditional

cloud computing paradigm. Such approaches are not suitable when workloads are to be

scheduled across more complex distributed infrastructures such as federated clouds and

emerging fog computing environments [8]. Accordingly, Multi-Agent Systems (MAS) in

which interactions between multiple agents are leveraged, are proven to be a better fit

for problem-solving in highly distributed and stochastic environments compared to its

single-agent counterpart [9].

The direct implementation of single agent RL algorithms in multiple agents leads to

a non-stationary environment which prevents such methods from converging to an op-

timal solution [7]. Therefore the design of efficient multi-agent RL (MARL) algorithms

5.1 Introduction 119

requires overcoming multiple challenges including nonstationarity and partial observ-

ability of the environment, scalability issues that arise as the joint action space grows

with the increasing number of agents, and communication between agents which is par-

ticularly challenging in partially observable environments [7]. As the name implies, in

partially observable environments, the agent does not perceive the complete state of the

environment, instead only a partial observation is visible. The existing works that have

proposed DRL-based scheduling techniques in multi-cloud environments have assumed

full observability. However, realistically, a majority of multi-cloud environments tend to

be partially observable since it is unlikely that local information about all the clouds will

be globally available at all times.

To overcome the aforementioned challenges, and design an RL framework that can

efficiently schedule workflows across partially observable and highly distributed multi-

cloud environments, we leveraged the multi-agent coordination technique proposed by

R. Lowe et. al [136]. In this technique, the traditional actor-critic method is extended

to a multi-agent setting by providing the critic with extra information about the actions

and observations of other agents during the training process. During execution, the

agents operate based on local observations. Accordingly, the proposed technique con-

forms to the paradigm of centralized training and distributed execution which is proven

to be highly effective in multi-agent systems [67]. A drawback of the aforementioned

multi-agent coordination technique is that the Q function grows linearly with the num-

ber of agents, and this in turn could adversely impact the learning process of the agents.

To overcome the potential impediment to agent learning, we leveraged domain-specific

characteristics of the problem to design multi-agent coordination in a hierarchical man-

ner. This in turn leads to the achievement of better training efficacy as evidenced by the

empirical results from extensive simulations.

The following are the main contributions of this work:

• A hierarchical design for the workflow scheduling problem in which a global RL

agent assigns tasks to datacenters and local RL agents assign tasks to nodes. Cou-

pled with this, we present a novel formulation of the agent environment com-

prising state space, action space, and reward as a Partially Observable Markov

Decision Process (POMDP)

120 Multi-agent Deep Reinforcement Learning Framework for Workflow Scheduling

• A MARL framework capable of scheduling workflows across the partially observ-

able and highly distributed cloud environments in an efficient manner by sharing

extra information during training, and operating solely based on local informa-

tion during execution. Furthermore, we propose a shared reward structure that

motivates agents to act cooperatively for achieving a common goal

• A novel approach to handling the curse of dimensionality and thereby improving

training efficiency by leveraging the hierarchical nature of the proposed scheduler

for limiting the observations shared by agents to a local neighborhood

The rest of the chapter is organized as follows: In section 2 we review relevant liter-

ature, and in section 3 we present the formulation of the workflow scheduling problem

in multi-cloud environments. The proposed RL framework is presented in section 4 and

its performance evaluation results are discussed in section 5. Finally, conclusion of this

work is presented in section 6 along with future work.

5.2 Related Work

In this section, we review heuristic and meta-heuristic-based scheduling techniques as

well as DRL-based scheduling techniques in multi-cloud environments.

A number of studies have focused on the problem of scheduling workflows across

federated clouds [137–139]. In [137], a heuristic-based technique is proposed for schedul-

ing workflows across multiple datacenters with the objective of minimizing electricity

costs. They propose strategies for sorting workflows and sequencing workflow tasks,

and also for allocating resources to tasks such that the resulting framework can achieve

the desired objectives. [138], [139] also proposed algorithms for scheduling workflows

across federated cloud datacenters with the objectives of minimizing cost and improving

reliability.

Several works in existing literature have focused on the problem of scheduling work-

flows across geo-distributed datacenters powered through renewable energy sources

[140], [141]. In [140], a hierarchical scheduling framework is proposed for scheduling

workflows across multiple geo-distributed datacenters powered via renewable energy

5.2 Related Work 121

partially. High-level scheduler allocates workflows to datacenters while a low-level

scheduler assigns tasks of workflows to compute resources for achieving the overall

objectives of improved energy efficiency, makespan, and deadline hits. [141] used a ge-

netic algorithm to design a workflow scheduling framework that maximizes the use of

renewable energy while minimizing the cost of electricity. The problem is formulated as

a single objective optimization problem by multiplying the objectives and user-defined

requirements such as deadline and budget. This work considers that the datacenters

are interconnected through a privately owned Software Defined Wide Area Network

(SDWAN).

Renewable energy aware scheduling of independent tasks/jobs across multi-cloud

environments is also studied in a number of works [142], [143], [144]. In [142] Integer

Linear Programming (ILP) is used for designing a task scheduling framework for min-

imizing the use of brown energy in datacenters while satisfying user-defined time con-

straints and electricity budgets. An obvious drawback of the proposed approach is the

high time complexity associated with ILP based problem formulation. [143] used sim-

ulated annealing coupled with bees algorithm for scheduling tasks across distributed

cloud computing environments with the objective of minimizing energy consumption.

In [144] a job allocation algorithm is proposed to assign transactional and batch jobs to

datacenters such that the power consumption of datacenters can be altered to suit vari-

able conditions such as green energy availability. A batch job migration algorithm that

migrates jobs among datacenters based on predicted green energy availability is also

proposed. Jobs that are too large to be migrated are delayed until favorable energy lev-

els are available ensuring no violation of deadlines take place. This work uses Q learning

for tuning the progress of batch jobs.

While considerable research efforts have been focused on designing RL-based algo-

rithms for scheduling workloads within a single datacenter [40], [124], [145], not much

work has been done with RL in multi-cloud scheduling scenarios. Only a few works

have leveraged the advanced capabilities of RL for designing workload scheduling algo-

rithms across distributed cloud computing environments [146], [135]. In [146], Proximal

Policy Optimization (PPO) [58] was used for designing a scheduling policy capable of

determining if the job should be executed in a particular server of a private datacenter

122 Multi-agent Deep Reinforcement Learning Framework for Workflow Scheduling

or offloaded to a VM of a certain type in the public cloud depending on multiple fac-

tors including predicted renewable energy availability, deadline constraints, and cost.

C. Xu et. al [135] proposed an RL-based algorithm for migrating jobs across multiple

datacenters with the objective of minimizing energy cost.

The problem of scheduling workflows with complex data dependencies among tasks

across multiple datacenters is inherently more complex due to the distributed nature

of the underlying computing environment. A majority of existing studies have used

single agent RL in workflow scheduling algorithms [80], [89] and these methods are

designed to operate within a single cloud datacenter rather than across multiple data-

centers. However, multi-agent RL is likely to be a better candidate for multi-cloud envi-

ronments due to the need for decentralized decision-making. Regardless of the benefits

of multi-agent RL in multi-cloud settings, the design of multi-agent systems are more

complicated since the presence of multiple agents could make the environment nonsta-

tionary [7].

Despite the aforementioned complexities, multi-agent RL frameworks are likely to be

more effective in such environments since they can be used for developing decentralized

scheduling policies which are more suited for environments benefiting from decentral-

ized control. However, none of the existing works have efficiently leveraged the power

of multi-agent RL for scheduling workflows across multi-cloud environments.

5.3 System Model

Directed Acyclic Graphs (DAG) are used for modeling the workflows that are scheduled

by the proposed hierarchical scheduling framework. The tasks of a workflow are rep-

resented by the set of nodes, V = {v0, v1..vn} and the precedence constraints between

tasks are represented by the set of edges, E = {(vi, vj)|vi, vj ∈ V} of a DAG, G = (V, E).

Workflows are to be scheduled across a federation of geo-distributed datacenters

DC = {dc1, dc2, ..dcn} which are powered through a combination of green energy from

renewable energy sources and brown energy from the grid. Therefore at any instance,

the total power consumption, Ptotal of the datacenter federation is the sum of green

power, Pgreen and brown power, Pbrown consumed by the underlying cloud infrastruc-

5.3 System Model 123

Work Application Model Multi-Cloud Algorithm Renewable Energy Aware Objectives

Workflow BoT/Job

[141] Z. Wen et al. (2020) ✓ ✓ Genetic Algorithm ✓ energy, cost

[140] S. Iturriaga et al. (2016) ✓ ✓ Genetic Algorithm ✓ energy, makespan, deadline

[137] L. Xiaoping et al. (2020) ✓ ✓ Heuristic electricity cost

[138] W. Zhenyu et al. (2016) ✓ ✓ Heuristic cost, reliability

[141] W. Zhenyu et al. (2016) ✓ ✓ Genetic Algorithm cost, reliability

[142] C. Gu et al. (2015) ✓ ✓ Integer Linear Programming ✓ minimizing carbon emissions

[143] Y. Haitao et al. (2020) ✓ ✓ Bees Algorithm ✓ energy

[139] Z. Wen et al. (2016) ✓ ✓ Genetic Algorithm, Heuristic ✓ cost, failure

[144] D. Cheng et al. (2020) ✓ ✓ Nonlinear programming, Q-Learning ✓ system goodput

[146] J. Zhao et. al (2021) ✓ ✓ PPO ✓ minimizing brown energy, deadline

[135] C. Xu et. al (2018) ✓ ✓ Deep Q Learning ✓ energy

[40] N. Liu et. al (2017) ✓ Deep Q Learning energy, latency

[124] D. Ding et. al (2020) ✓ Q Learning energy

[145] D. Cui et. al (2017) ✓ Q Learning makespan

[80] A. Nascimento et. al (2019) ✓ Q Learning makespan

[89] Z. Tong et. al (2020) ✓ Deep Q Learning makespan

Proposed ✓ ✓ Actor-Critic ✓ energy, makespan

Table 5.1: A comparison of relevant literature with proposed work

tures and operations. The datacenter, dci comprises of a set of λi heterogeneous severs,

{m1, m2, ..mλi}. Power consumed by a server, mi is calculated using the CPU utilization-

based power model presented in [111] as follows:

Pmi =

Pidle
mi

+ (Pdynamic
mi − Pidle

mi
).umi , if umi > 0

0, otherwise
(5.1)

where Pidle
mi

is the idle power consumption of the server which is a constant regard-

less of its current utilization and Pdynamic
mi is the dynamic power consumption which is

dependent on the current server utilization, umi . Accordingly the total power consumed

by the datacenter, dci during the kth time interval is computed as follows:

Ptotal
i (k) =

λi

∑
i=1

Pmi(k) (5.2)

The objective of the proposed hierarchical scheduling framework is to minimize total

brown energy utilization of the cloud datacenter federation while also optimizing work-

flow execution time. The total brown energy consumption at the datacenter dci during

the kth time interval can be represented as:

124 Multi-agent Deep Reinforcement Learning Framework for Workflow Scheduling

Pbrown
i (k) = Ptotal

i (k)− Pgreen
i (k) (5.3)

where Pgreen
i (k) is the total green energy available at the datacenter dci during the kth

time interval. Accordingly, the primary objective of the global scheduler which mainly

focuses on minimizing the brown energy usage during the kth time interval can be rep-

resented as follows:

Min: Pbrown
total (k) =

N

∑
i=1

Pbrown
i (k) (5.4)

Once a task is assigned to a datacenter dci, the local scheduler allocates the task to

a server that jointly minimizes the total energy consumption and execution time of the

task. Hence, the objective of the local scheduler during the kth interval can be repre-

sented as follows:

Minimize:
N

∑
j=1

αTtj + (1− α)Etj (5.5)

where N is the total number of tasks executed during the kth time interval. Ttj and

Etj denotes the total execution time and total energy consumption associated with the

execution of task tj, respectively. The execution time Ttj includes the maximum data

transfer time from predecessor nodes, computation time of the task as well as the wait-

ing time of the task at the node (WTtj) before the task is actually executed. It can be

computed as follows:

Ttj =
Ltj

F
+ WTtj + max

ti∈pred(tj)
(

Dti ,tj

B
) (5.6)

where, Ltj is the size of the task, tj and F is the processing rate of the node to which

task is assigned, and the ratio
Ltj
F is the computation time of the task. The ratio

Dti ,tj
B is

the data transfer time from the node in which predecessor ti executed to the execution

node of task tj, where Dti ,tj is the size of data to be transferred from ti to tj and B is the

network bandwidth. Total energy consumed during the execution of task tj is computed

as follows:

5.3 System Model 125

Figure 5.1: A high-level overview of workflow scheduling on distributed cloud data-
centers

EEtj = Ttj × [U × Pactive + Pidle] (5.7)

where U is the current CPU utilization level of the execution node, and the rates of

power consumption at active and idle states of the processors are denoted by Pactive and

Pidle, respectively. Considering the power consumption associated with the transmission

of data to be Pcomm, the energy consumed during the transfer of data from predecessor

nodes is computed as follows:

ET(tj) = ∑
ti∈pred(tj)

Dti ,tj

B
× Pcomm (5.8)

The total energy consumed Etj is the sum of computation and communication energy,

and is computed as:

ET(tj) = EEtj + ET(tj) (5.9)

126 Multi-agent Deep Reinforcement Learning Framework for Workflow Scheduling

5.4 Reinforcement Learning

5.4.1 Background

Reinforcement Learning (RL) is a branch of the broader machine learning paradigm

that operates by training an intelligent agent to learn a desired behavior in a given envi-

ronment by learning through its interactions with the environment. The learning process

is governed by the rewards which are received by the agent in return for the actions that

it chooses to perform in the environment. Rewards serve as an indication of the degree

of desirability of the action taken under the prevalent conditions toward achieving a pre-

defined goal. RL problems are commonly modeled using the mathematical framework,

Markov Decision Process (MDP).

At each decision epoch, the immediate situation the agent encounters, which is re-

ferred to as the current state (st) of the environment is taken into account by the agent

for taking an action (at), which then results in a state transition from the current state

(st) to the next state (st+1). Depending on the impact of the action on the environment,

a reward (rt) is given to the agent. Reward serves as a measure of the success of the

agent’s action in the given situation. As the agent progresses through the learning pro-

cess, it learns to produce actions that result in the maximization of cumulative rewards

over time. The strategy the agent employs to determine actions in this manner is called

a policy (π(at|st)).

Despite the advanced capabilities of RL, the traditional RL paradigm suffers from

the problem of dimensionality curse which makes its application to complex problems

with very large state spaces practically infeasible. The combination of RL with deep

learning which is referred to as Deep Reinforcement Learning (DRL) has successfully

proven to overcome the aforementioned issue through function approximation, thereby

eliminating the need for agents to visit all states during the training process and for

storing state transition data in space-consuming tabular formats. Accordingly, a neural

network is used for representing the policy (π(at|st)) as a parameterized function with

respect to an adjustible parameter θ. The resulting parameterized policy can be denoted

as (πθ(at|st)).

Policy Gradients is a family of RL algorithms that operate by directly updating pol-

5.4 Reinforcement Learning 127

icy parameters for maximizing a performance objective, J(θ) that is defined as the ex-

pected cumulative discounted reward as shown in equation 5.10. This is achieved by

repeatedly updating the policy parameters in the direction of the gradient of perfor-

mance objective,∇θ J(θ). Gradient of performance objective, J(θ) can be expressed as in

Equation 5.11.

J(θ) = Eπθ
[

∞

∑
t=1

γtrt] (5.10)

where γ is a discounting factor that is used for discounting future rewards, and γ ∈
(0, 1).

∇θ J(θ) = Eπθ
[∇θ log πθ(a|s)Qπθ (s, a)] (5.11)

where Qπθ (s, a) is the state-action value function (Q function) which indicates the

desirability of an action, a in a state, s with a policy πθ . Different policy gradient algo-

rithms use different techniques for estimating the Q function. For the scheduling prob-

lem addressed in this work, we use the Actor-Critic technique in a multi-agent scenario

as described in the next section.

5.4.2 Proposed Multi-Agent Actor-Critic Scheduling Framework

In this section, we propose a multi-agent actor-critic framework for addressing the prob-

lem of scheduling heterogeneous workflows across geo-distributed datacenters whilst

minimizing the use of brown energy. In actor-critic methods, the actor takes the cur-

rent state of the environment as input and outputs a probability distribution over the

actions that can be taken from this state. It does so by directly learning the policy func-

tion πθ(at|st). Critic estimates the Q value Qπθ (s, a) based on the reward received for the

action by the actor and the next state of the system. It then computes the Temporal Dif-

ference (TD) error which is used for updating the policy parameters of the actor-network

in the direction of improvements, and for updating the network parameters of the critic

so it can predict the Q function more accurately.

We propose a hierarchical scheduling framework for the workflow scheduling prob-

128 Multi-agent Deep Reinforcement Learning Framework for Workflow Scheduling

Figure 5.2: A multi-agent actor-critic architecture in which every critic is augmented
with actions and observations of other agents

lem in which a global scheduler assigns workflow tasks to datacenters and the local

scheduler in each datacenter assigns the tasks to the physical machines. Figure 5.1 shows

a high-level overview of the proposed framework. A single-agent DRL framework is in-

appropriate for the aforementioned scenario owing to its inherently distributed nature.

Therefore, in this work, we propose a multi-agent DRL framework in which one global

agent acts as the global scheduler and multiple local agents act as local schedulers.

In comparison to single-agent problems, multi-agent problems are much more com-

plex since the actions of other agents cause the environment to be non-stationary. There-

fore the changes in the environment observed by an agent are not solely due to its own

actions, but also due to the actions of other agents on the environment. Furthermore,

due to the distributed nature of the multi-cloud environment, it is impractical to assume

each agent has complete information about the real-time status of the entire environ-

ment. Partially Observable Markov Decision Process (POMDP) provides the flexibility

of modeling the RL environment without requiring the agents to directly observe the

actual state of the environment. Rather, what the agent receives is an observation which

5.4 Reinforcement Learning 129

is in fact a belief over the environment’s actual state. In order to model the multi-agent

DRL framework proposed in this work, we use Partially Observable Markov games [64].

A Markov game can be defined by a 7-tuple (N, S, ϕ, {Ai}, P, {Oi}, {Ri}):

• N: A finite set of agents

• S: A finite set of states

• ϕ: Initial state distribution

• Ai: A finite set of actions available to agent i

• P: State transition function which determines the probability of joint action A1 ×
A2 × ... × Ai in state St leading to a transition to state St+1. The actions of each

agent are governed by a policy πθi

• Oi: A finite set of observations of agent i

• Ri: S × Ai → R is the reward function of agent i

High variance in gradient estimates is an inevitable weakness of naive policy gra-

dients. This effect is intensified in multi-agent scenarios since the reward received by

an agent may not be solely due to its own actions but also the actions of other agents

[136]. Therefore in such a setting, ignoring the impact of the actions of other agents,

and conditioning the rewards only on agents’ own actions inevitably leads to high vari-

ability which in turn results in gradient updates with high variance. Since naive policy

gradients are not capable of handling multi-agent problems efficiently, we adapt the de-

centralized actor and centralized critic technique proposed in [136] for the multi-agent

setting in our problem. This method focuses on providing the critic with extra informa-

tion, at training time, about the policies of other agents. Accordingly, in a Markov game

with N agents, the gradient of the performance objective of agent i, J(θ) in equation 5.11

can be expressed as follows:

∇θi J(θi) = Eπθi
[∇θi log πθi(ai|Oi)Q

πθi (x, a1, a2, ..., aN)] (5.12)

130 Multi-agent Deep Reinforcement Learning Framework for Workflow Scheduling

Algorithm 6 Actor-Critic based training process of global scheduler

1: Initialize actor network πθ(a|s) and critic network Qω(s, a) with random weights
2: for episode = 1 to N do
3: Reset the environment
4: Input the initial state of the environment to actor network πθ(a|s)
5: for step = 1 to T do
6: Select action aglobal from the actor-network based on the current policy

πθ(a|s), and observe the corresponding reward Rglobal
7: Rlocal , alocal = SendTaskToSelectedLocalScheduler(tj)
8: Rt = Rglobal + Rlocal
9: at = aglobal + alocal

10: Update network parameters of critic
11: Update network parameters of actor

return

In the above equation, Qπθi (x, a1, a2, ..., aN) is the Q function estimated by the critic.

Note that different from the Q function of the naive actor-critic technique which takes

as inputs the state of the agent and the action, in this case along with the state of the

environment (x) the critic takes as input the actions (a1, a2, ..., aN) of all agents as well.

The state of the environment, x may include the observations of all the agents and any

additional state information. With this approach, each agent could have different reward

structures since Q functions are learned separately.

Figure 5.2 shows the aforementioned multi-agent coordination technique. One ob-

vious drawback of this method is the input space of the Q function increases with the

increasing number of agents. To overcome this problem we leverage the characteristics

of the hierarchical scheduler design proposed in this work. Accordingly, we provide

the Q function of each local agent only its observation and action since the actions and

observations of other local agents have no impact on the reward it receives or the next

observation. To the Q function of the global agent, at each scheduling step, we only

provide the action of the local agent to which it assigns the current task in addition to its

own action and observation. Figure 5.3 shows the proposed multi-agent coordination

technique that restricts communications to a local neighborhood. Limiting the shared

experiences to a local neighborhood in this manner allows us to prevent the expansion

of the input space of all agents substantially. Where local agents have different dimen-

sions for state space and action space, a state encoding technique [147] can be used to

5.4 Reinforcement Learning 131

Figure 5.3: Proposed multi-agent actor-critic architecture where shared actions and ob-
servations are limited to a local neighborhood

extract a representation with a fixed dimensionality for providing as an input to the state

information of the global agent.

Global Scheduler A workflow consists of multiple tasks the execution of which is

constrained by precedence relations. Therefore when a workflow is submitted, all the

tasks in it cannot be scheduled for execution at once. The global scheduler identifies the

tasks that can be executed directly and the rest of the tasks will be pending execution

until the tasks that they have precedence relations with complete execution. Upon the

receipt of a task completion notification, the global scheduler executes the DRL agent

multiple times with each of the tasks that can now be scheduled for execution due to

their precedence relations being satisfied. The state of the global agent comprises of the

green energy surplus or deficit levels of the datacenters, the average processing speed

and current utilization level of the datacenters and the resource requirements of the task.

Action corresponds to the selection of a datacenter (hence a local scheduler) to which

the task will be submitted for execution. The reward comprises of two components; The

first component corresponds to the current green energy deficit or surplus of the selected

132 Multi-agent Deep Reinforcement Learning Framework for Workflow Scheduling

Algorithm 7 Actor-Critic based training process of local schedulers

1: Initialize actor network πθ(a|s) and critic network Qω(s, a) with random weights
2: Reset the environment
3: Input the initial state of the environment to actor network πθ(a|s)
4: for every tj assigned by global scheduler do
5: Select action at from the actor-network based on the current policy πθ(a|s)
6: Execute action at and observe the corresponding reward Rt and next state of the

system st+1
7: Update network parameters of critic
8: Update network parameters of actor
9: SendRewardAndActionToGlobalScheduler(at, Rt)

return

datacenter and the second component corresponds to the reward received by the local

scheduler that allocated the task to a node for execution. Incorporation of a component

that reflects the desirability of the local agent’s action in the global agent’s reward in this

manner enhances the learning process of the global agent. Algorithm 6 summarizes the

steps included in the training process of the global scheduler.

Local Scheduler At each cloud datacenter, the tasks that are submitted to it by the

global scheduler are immediately scheduled for execution. If the DC has no free capac-

ity for task execution, then the global scheduler is notified. The allocation of a task to

a node is an action performed by the local DRL agent, based on the characteristics of

the task and the status of servers in the datacenter provided to it through state infor-

mation. Upon the allocation of a task to a server, an immediate reward is received by

the local agent which reflects the success of the allocation with respect to the objective,

which in this case is energy efficiency and time minimization. The global scheduler is

notified upon the completion of task execution. Since the reward received by the local

agent also contributes to the global agent’s reward, it is communicated along with the

results of execution to the global scheduler. The state of the local agent comprises of the

processing power and utilization levels of the servers and task size. Action is the selec-

tion of a server in which the task will be executed. The reward is a weighted function

of the execution time of the task and corresponding energy consumption as indicated in

equations 6.3 and 5.9, respectively. Algorithm 7 summarizes the steps included in the

training process of the local schedulers.

5.5 Performance Evaluation 133

Server Name Processor Cores MIPS RAM Bandwidth Power (Watts)
(GB) (GB/s) Idle Active

Dell Inc. PowerEdge
R740

Intel Xeon Plat-
inum 8280 2.70
GHz

56 604.8k 64 1.5 50 432

PowerEdge C6100 Intel Xeon X5675
3.06 GHz

48 587.52k 64 1.5 227 895

Dell PowerEdge R820 Intel Xeon E5-
4650L 2.60 GHz

32 332.8k 64 1 110 446

IBM System x iData-
Plex dx360 M2

Intel Xeon X5570
2.933 GHz

16 187.712k 48 1 116 475

Dell PowerEdge R710 Intel Xenon 5675
3.06 GHz

12 146.88k 64 1 62 227

Table 5.2: Host configurations derived from SPEC benchmark [3] for experimental setup

5.5 Performance Evaluation

5.5.1 Experimental Setup

The proposed multi-agent deep reinforcement learning-oriented workflow scheduling

framework was tested using an extension of the CloudSim simulation toolkit [11]. For

deep learning-related implementation, Keras library was integrated with the simulation

environment [12]. For the simulation environment, we used 10 datacenters each with 25

heterogeneous servers. The resource specifications of the servers including processing

power, memory, power consumption etc. are derived from the popular SPEC bench-

mark [3]. Table 5.2 indicates the specifications of the servers used in the experiments.

Renewable energy data for the simulations were obtained from the actual solar energy

generated by multiple photovoltaic (PV) sites installed at the Gatton campus of the Uni-

versity of Queensland [?].

5.5.2 Dataset

For evaluation of the proposed algorithm, a dataset comprising of 1000 workflows was

derived from the synthetic workflow structures provided by the popular Peagusus work-

flow framework [2]. The size of data dependencies among tasks and the sizes of tasks

were randomly selected from the ranges 0.1k to 10k and 0.5k to 1000k respectively. A

134 Multi-agent Deep Reinforcement Learning Framework for Workflow Scheduling

(a) Reward convergence with proposed DRL framework

(b) Reward convergence with a generic multi-agent DRL technique

Figure 5.4: Comparison of learning efficiency of the proposed framework and a generic
algorithm (as evidenced through the number of episodes required for reward conver-
gence)

Poisson distribution was used for modeling workflow arrival times.

5.5 Performance Evaluation 135

5.5.3 Comparison Algorithms

For evaluating the performance of the proposed multi-agent framework, three compar-

ison algorithms were used. Random algorithm is a baseline that allocates workflow

tasks to datacenters in a random manner. In the datacenters, the selection of hosts for

task execution is also performed randomly without any consideration on the impact

of such allocations on execution time or energy consumption. Green-Opt is an algo-

rithm that operates with the objective of minimizing brown energy usage by allocating

workflow tasks to the datacenters with the highest accumulated green energy. The al-

gorithm is designed to favor task allocations to ’active’ hosts with sufficient capacity for

executing new tasks. The selection of active hosts rather than idle ones leads to higher

energy savings which are reflected in the results of the experiments in the next section.

The third comparison algorithm Common-Actor is a DRL-based multi-agent actor-critic

algorithm. As the algorithm name implies, multiple actor networks are guided by a

common critic.

5.5.4 Experimental Results

The number of episodes required for a reinforcement learning algorithm to converge di-

rectly impacts the training time of the model. In order to ensure that the learned model

remains up-to-date with the highly dynamic conditions in multi-cloud environments, it

may be required to train and re-train the reinforcement learning agents incorporated in

the resource schedulers. Therefore, convergence speed is an important factor that should

be taken into account when designing reinforcement learning-oriented cloud resource

schedulers. As evidenced through Figure 5.4, the local neighborhood-based multi-agent

method proposed in this work is capable of achieving a significantly improved con-

vergence speed in comparison to generic reinforcement algorithms. The generic multi-

agent DRL technique has required 500 episodes of training for convergence, whereas the

proposed model has converged in less than 100 episodes, this proves that the learning

efficiency of the local neighborhood-based approach is more than five times better than

that of the generic approach.

The performance of the algorithms was evaluated in three different experimental

136 Multi-agent Deep Reinforcement Learning Framework for Workflow Scheduling

(a) Total energy consumption

(b) Total energy surplus

(c) Total time

Figure 5.5: Comparison of performance of scheduling algorithms on an experimental
dataset derived from the synthetic workflow structures provided by the popular Pea-
gusus workflow framework [2]

5.5 Performance Evaluation 137

(a) Total energy consumption

(b) Total energy surplus

(c) Total time

Figure 5.6: Comparison of performance of scheduling algorithms as workflow arrival
rate varies

138 Multi-agent Deep Reinforcement Learning Framework for Workflow Scheduling

workload settings with respect to total energy consumption incurred during workflow

executions, the total energy surplus of all the datacenters post to the execution of work-

flows and the total time taken for workflow executions, and the experimental results are

presented in 5.5-5.7.

Graphs in Figure 5.5 depict the performance of the algorithms on the experimental

dataset. The Random algorithm has consumed the highest amount of energy since it

completely disregards the impact of allocations on energy-efficiency as well as time. Ac-

cordingly, as demonstrated in Figure 5.5b and 5.5c, workflows scheduled with Random

algorithm results in the lowest energy surplus and consume the longest execution du-

ration, respectively. In comparison to the Random algorithm, the Green-Opt algorithm

has produced much better results in energy consumption and surplus. This is the ex-

pected behavior since it operates with the greedy objective of minimizing brown energy

consumption. And also, the selection of active hosts over idle ones further contributes

to improving energy-efficiency. Common Actor and Proposed Algorithms both use the

same reward structures and as previously mentioned the difference between the two is

that in the common actor method, one critic network is used to guide multiple actor

networks. As evident through the results, the performance of the proposed algorithm

is better than all comparison algorithms with respect to all three metrics. This is be-

cause the proposed multi-agent reinforcement algorithm is capable of finding the most

efficient balance between energy consumption and execution time during the training

process.

Graphs in Figure 5.6 demonstrate the performance of the algorithms as the work-

flow arrival rate varies. The Random algorithm has again failed to deliver favorable

results signaling the importance of more fine-tuned algorithms for scheduling work-

flows in cloud computing environments. It is clearly evident that the proposed algo-

rithm significantly outperforms all the other algorithms at all arrival rates with respect

to energy-efficiency while also maintaining comparable performance with respect to to-

tal execution time. This indicates the fact that the learned model is capable of adapting

the scheduling decisions to perform equally well under highly dynamic conditions. The

difference in performance between the common actor and the proposed method clearly

highlights the fact that the multi-agent coordination achieved through the proposed lo-

5.5 Performance Evaluation 139

(a) Total energy consumption

(b) Total energy surplus

(c) Total time

Figure 5.7: Comparison of performance of scheduling algorithms as the size of compu-
tational workload varies

140 Multi-agent Deep Reinforcement Learning Framework for Workflow Scheduling

cal neighborhood-based technique leads to better learning which in turn leads to better

performance.

Figure 5.7 depicts the performance of the algorithms as the computational workload

varies. In the Random algorithm, very significant degradation in energy-efficiency is

observable at high workloads. All the other algorithms are better capable of maintain-

ing energy consumption levels at considerably moderate levels despite the increasing

workload. The proposed algorithm has yet again managed to outperform all the other

algorithms with respect to energy consumption as well as energy surplus, while per-

forming equally well with respect to time total execution time.

5.6 Summary

We proposed a hierarchical multi-agent scheduling framework for scheduling work-

flows across geo-distributed cloud datacenters with the objectives of minimizing brown

energy usage, while also keeping execution times in par with comparison algorithms.

The agent environment is modeled as a POMDP, and the paradigm of centralized train-

ing and distributed execution is adopted by allowing the agents to share extra infor-

mation during training and operating solely based on local information during execu-

tion. Furthermore, a novel approach for limiting observation sharing to a local neigh-

borhood is presented for overcoming the curse of dimensionality and thereby improv-

ing training efficiency. As evidenced through the empirical results, the incorporation

of domain-specific characteristics for designing the multi-agent coordination in a local

neighborhood-oriented manner reduced training time by 5 times compared to a generic

multi-agent technique. The results also clearly demonstrated that the proposed algo-

rithm outperformed the generic DRL algorithm with respect to minimizing total energy

consumption by 47%, while outperforming the baseline algorithms with even larger

margins. In the next chapter, we design a DRL framework for cost optimized workflow

scheduling in cloud environments and integrate it with an open source container-native

workflow engine.

Chapter 6

Cost Optimized Workflow Scheduling
in Cloud Computing Environments

Cost optimization is a common goal of workflow schedulers operating in cloud computing envi-

ronments. The use of spot instances is a potential means of achieving this goal, as they are offered by

cloud providers at discounted prices compared to their on-demand counterparts in exchange for re-

duced reliability. This is due to the fact that spot instances are subjected to interruptions when spare

computing capacity used for provisioning them is needed back owing to demand variations. Also,

the prices of spot instances are not fixed as pricing is dependent on long term supply and demand.

The possibility of interruptions and pricing variations associated with spot instances adds a layer of

uncertainty to the general problem of workflow scheduling across cloud computing environments.

These challenges need to be efficiently addressed for enjoying the cost savings achievable with the

use of spot instances without compromising the underlying business requirements. To this end, in

this chapter we use Deep Reinforcement Learning for developing an autonomous agent capable of

scheduling workflows in a cost efficient manner by using an intelligent mix of spot and on-demand

instances. The proposed solution is implemented in the open source container native Argo workflow

engine that is widely used for executing industrial workflows. The results of the experiments demon-

strate that the proposed scheduling method is capable of outperforming the current benchmarks.

6.1 Introduction

Cloud computing leverages virtualization techniques for providing users with conve-

nient access to a pool of scalable resources. As opposed to maintaining their own com-

puting infrastructures, the pay-as-you-go model of cloud computing paradigm enables

users to acquire a diverse range of virtual machines with varying flavors (CPU, Mem-

ory etc.) for meeting business needs in a more cost effective manner. The flavor of vir-

141

142 Cost Optimized Workflow Scheduling in Cloud Computing Environments

tualized instances used for executing tasks determines the total execution times of the

workflows as well as the associated monetary costs. In order to maximize the achievable

cost savings achievable while also ensuring the performance is maintained to a satisfac-

tory level, it is imperative that cost optimized scheduling strategies are designed and

implemented.

In particular, the intelligent use of a mix of on-demand and spot instances for work-

flow executions is a potential means of achieving high cost efficiencies without adversely

affecting performance expectations. Spot instances are offered by cloud providers at

steep discounts compared to their on-demand counterparts in exchange for reduced re-

liability. This is because the cloud providers utilize spare computing capacities available

for provisioning spot instances, and therefore when the capacity is needed back, the

instances are interrupted. Furthermore,as opposed to on-demand instances with fixed

prices, the prices of spot instances are not guaranteed to be fixed, as the pricing is de-

pendent on long term supply and demand. The possibility of interruptions and pricing

variations adds a layer of complexity that needs to be efficiently handled for enjoying

the cost savings without compromising the underlying business requirements. There-

fore, it is imperative to establish the right balance between the use of on-demand and

spot instances for workflow executions in cloud computing environments.

The ability of Reinforcement Learning (RL) agents to operate in stochastic environ-

ments, and learn through experience to act in an optimal manner amid highly dynamic

conditions and uncertainties makes it an ideal candidate for overcoming the aforemen-

tioned challenges. While many heuristics and meta-heuristics have been proposed for

cost optimized workflow scheduling, only very few works have explored the potential

of RL in this area. In particular, Deep Reinforcement Learning (DRL) has emerged as an

efficient means of solving highly complex problems as evidenced by the recent successes

achieved by DRL agents in complex control tasks in fields such as robotics, autonomous

driving, healthcare and so on. In this work, we leverage the advanced capabilities of

DRL for designing a cost optimized workflow scheduling framework.

The design of action space is a fundamental characteristic of a DRL based formula-

tion of a problem. The action spaces of a vast majority of scheduling problems that are

modeled as DRL problems, include a flat set of actions. The action space may be discrete

6.1 Introduction 143

or continuous, and the agent selects an action from the action space. In this work, we

propose a novel hierarchical way of designing the action space of the DRL model such

that there is a clear distinction between on-demand and spot instances in action selec-

tion. A DRL framework comprising multiple actor networks guided by a common critic

network is then designed to select a combination of actions from the hierarchical action

space, to optimize cost of workflow executions.

Container orchestration engines such as Kubernetes can seamlessly operate atop

highly distributed and heterogeneous infrastructures and abstract away the complex

coordination details from users. This in turn has enabled users to conveniently de-

ploy workloads across a variety of cloud deployments ranging from private and pub-

lic clouds to hybrid combinations of these. Complementary frameworks such as Argo

workflow engine have emerged to extend the functionalities of Kubernetes to facilitate

the management of more complex workloads such as Workflows. The schedulers of

these frameworks are pre-configured to follow basic scheduling policies such as bin-

packing. These simple policies are not capable of satisfying the complex cost optimiza-

tion requirements of users. In order to achieve complex user-defined goals it is impera-

tive to incorporate more advanced scheduling policies in the aforementioned workflow

management engines. These policies should be capable of adapting to highly stochastic

conditions that are inherent in clusters deployed in cloud computing environments. In

this regard, we present an end-to-end means of training and deploying the DRL agent

proposed in this work in the Argo workflow engine.

More specifically, the following summarizes the main contributions of this work:

• A DRL model for cost optimized workflow scheduling in a cloud computing envi-

ronment with the use of a balanced mix of on-demand and spot instances

• A logical organization of the cluster in a hierarchical manner, along with a novel

representation of the action selection process as a tree structure

• A RL framework with multiple actors guided by a single critic network trained

with Proximal Policy Optimization (PPO) algorithm for learning to schedule work-

flows in the cluster

144 Cost Optimized Workflow Scheduling in Cloud Computing Environments

• An end-to-end means of training and deploying the proposed DRL agent in a

workflow engine. To the best of our knowledge, this is the first attempt at em-

bedding an intelligent agent in an open source container-native workflow engine

6.2 Problem Formulation

The objective of the scheduling framework is minimizing the monetary cost of workflow

executions, while also minimizing the execution times. The resource requirements in

terms of CPU and memory and the dependencies of workflow tasks are included in the

submitted workflow specifications. In the workflow specification submitted by users,

a workflow is represented by a DAG, G = (V, E) where the nodes, V = {v0, v1..vn} of

the DAG represent workflow tasks, and the precedence constraints between tasks are

represented by the edges, E = {(vi, vj)|vi, vj ∈ V}. The computation time of a task, tj

can be represented as:

CT(tj) =
L(tj)

F
(6.1)

where L(tj) is the size of task, tj and F is the processing rate of the node to which is

it assigned. All the precedence constraints of task, tj must be satisfied before its execu-

tion commences. Accordingly, the execution of all the predecessors must be completed,

and the output data required for the execution of tj must be transmitted to the node in

which it is scheduled. If ti is an immediate predecessor of tj and the size of data to be

transferred from ti to tj is D(ti, tj), then the total transmission time (TT) can be denoted

as follows:

TT(ti, tj) =
D(ti, tj)

B
(6.2)

where B is the bandwidth between the execution nodes of ti and tj. Task execution

delay, TD(tj) primarily depends on the computation time, CT(tj) of the task, and the

maximum data transfer time from predecessor nodes, maxti∈pred(tj) TT(ti, tj). The wait-

ing time, WT(tj) before a task gets scheduled also contributes to total execution delay.

Accordingly, TD(tj) can be represented as:

6.2 Problem Formulation 145

TD(tj) = CT(tj) + WT(tj) + max
ti∈pred(tj)

TT(ti, tj) (6.3)

The finish time, FT(tj) of task, tj that started execution at time, ST(tj) can then be

expressed as:

FT(tj) = ST(tj) + TD(tj) (6.4)

The completion time, MT of a workflow is equivalent to the time at which that last

task of the workflow completes execution. It can be denoted as:

MT = max
tj∈T

(FT(tj)) (6.5)

where T represents the set of all tasks of the workflow.

The computation cost of tj that executes in a Node with unit cost per second, UC can

be represented as:

CC(tj) = CT(tj) ∗UC (6.6)

The cost of execution, MC of a workflow is equivalent to the sum of execution costs

of all tasks, and it can be denoted as follows:

MC = ∑
tj∈T

CC(tj) (6.7)

The objective of the scheduling problem is to minimize the cost of workflow execu-

tions, and it can be denoted as follows:

Minimize:
N

∑
i=1

MCi (6.8)

where N is the total number of workflows submitted to the system.

146 Cost Optimized Workflow Scheduling in Cloud Computing Environments

Figure 6.1: System Architecture

6.3 Proposed approach

In this section, we present a background of the popular container orchestration engine

Kubernetes and the open-source Argo workflow engine along with details on how the

proposed DRL framework is implemented in the Argo Workflow engine that runs atop

the Kubernetes cluster. Worker nodes of the Kubernetes cluster are Virtual Machines

with different flavors (compute, memory, and storage capacity of VM instances). Argo

workflow engine is deployed in the Kubernetes cluster for the management of work-

flows submitted by users. The scheduler is responsible for selecting the VMs in which

the Pods corresponding to each task of the workflow will be scheduled. A high level

architecture of the system is shown in Figure 6.1.

6.3.1 Kubernetes

Kubernetes is a popular open-source container orchestration engine that facilitates con-

tainerized applications to be deployed, scaled, and managed in an automated manner.

With Kubernetes, containerized workloads can be conveniently deployed and managed

in any infrastructure including public clouds and on-site deployments, as well as hy-

brid combinations of these as required. Workloads can be seamlessly deployed across

multi-cloud environments thus enabling the selection of the most appropriate infras-

tructure for the execution of different parts of the workload. Furthermore, it facilitates

the up-scaling and down-scaling of clusters to suit demand variations of applications,

which in turn helps reduce costs due to reduced resource wastage. The need for manual

intervention is minimized since Kubernetes monitors the health of the deployment and

6.3 Proposed approach 147

redeploys new containers in the event of a failure to restore operations, and this helps re-

duce application downtime. Owing to the multitude of benefits offered by Kubernetes, it

has become the defacto platform for the deployment and management of containerized

workloads. In this work, we extend the capabilities of the default Kubernetes scheduler

by incorporating intelligence into it with the use of RL techniques.

A Kubernetes cluster consists of a set of virtual or physical machines which are re-

ferred to as Nodes. The smallest unit deployable in Kubernetes is referred to as a Pod.

Pods are hosted by Nodes. A Pod may comprise one or more tightly coupled contain-

ers that share storage and network resources, it also contains a specification of how the

containers are to be run. The contents of a Pod run in a shared context, and are always

located and scheduled together. Pods and Nodes of a Kubernetes cluster are managed

by the control plane. It comprises multiple components that work together for managing

the cluster. Kube-api server exposes the Kubernetes API that serves as the front end of

the Kubernetes control plane. Cluster data are stored in a key-value store termed etcd.

The kube-controller-manager runs several controller processes that monitor and reg-

ulate the cluster state. Cloud-controller-manager handles cloud-specific control logic.

Kube-scheduler is responsible for scheduling unassigned Pods to Nodes for execution.

6.3.2 Argo Workflow Engine

Argo workflow engine is an open-source container-native workflow engine that facili-

tates the orchestration of workflows on Kubernetes. Argo workflows are implemented

as a Custom Resource Definition (CRD) in Kubernetes. This enables Argo workflows to

be managed using kubectl and they integrate natively with Kubernetes services includ-

ing secrets, volumes and Role Based Access Control (RBAC).

The workflow engine comprises two main components: the Argo server and the

workflow controller. The Argo API is exposed by Argo server and the controller per-

forms workflow reconciliation. In the reconciliation process, the workflows that are

queued based on additions and updates to workflows and workflow pods, are pro-

cessed by a set of worker goroutines. The controller processes one workflow at a time.

Both Argo server and controller run in the Argo Namespace.

148 Cost Optimized Workflow Scheduling in Cloud Computing Environments

Each task of workflow results in the generation of a Pod. Each pod includes three

containers. The main container runs the image that the user has configured for the task.

The init container is an init container that fetches artifacts and parameters and makes

them available to the main container. Wait container performs tasks related to clean up

including the saving of artifacts and parameters.

Argo provides multiple templates for defining workflow specifications and depen-

dencies. For example, a workflow can be defined as a sequence of steps. Alternatively,

DAGs can be used for defining a workflow and its dependencies. As this facilitates the

representation of complex workflows and parallelism, in this work we have used DAGs

for modeling workflows.

A workflow specification comprises a set of Argo templates, each with an optional

input section, an optional output section, and either a list of steps where another tem-

plate is invoked by each step or a container invocation (leaf template). The options

accepted by the container section of the workflow specification are the same options as

the container section of a Pod specification.

6.3.3 Reinforcement Learning

In the RL paradigm, an agent learns in a trial-and-error manner by interacting with

the environment. The agent receives a reward, rt when it performs an action, at in a

particular state st, and then the environment transitions to the next state, st+1. The process

repeats until the agent encounters the terminal state at which point the episode terminates.

Markov Decision Process (MDP) can be used for mathematically modeling RL problems.

According to the Markov property, it is considered the next state of the environment

and the reward received depends solely on the current state and the agent’s action in

the current state. The cumulative discounted rewards, Gt at any given timestep, t is

expressed as:

Gt =
∞

∑
k=0

γkrt+k+1 (6.9)

where γ is a discount factor and γ ∈ (0, 1). The RL agent operates with the goal of

maximizing the expected return, E[Gt] from each state, st. A policy, π(at|st) is a map-

6.3 Proposed approach 149

ping from the current observation of the environment to a probability distribution of

the actions that can be taken from the current state. During the training process, a tra-

ditional RL agent is required to visit all the states of the problem and store experiences

in space-consuming tabular formats. This is a limitation that makes it infeasible to ap-

ply the traditional RL paradigm to problems with high dimensional states and action

spaces. The integration of Deep Learning with the RL paradigm gave rise to an efficient

means of overcoming the aforementioned limitation through the use of neural networks

as function approximators for enabling the agent to estimate the value of a state or an

action when it encounters a similar circumstance. In the resulting Deep Reinforcement

Learning (DRL) paradigm, the policy, π(at|st) is modeled as a parameterized function,

πθ(at|st) where θ is an adjustable parameter derived with an RL algorithm.

In value based RL methods, the RL agent attempts to learn a state-value function,

vπθ
(s), or a state-action value function, Qπθ

(s, a). As the name implies, the state-value

function estimates the value of a state, and it can be expressed in terms of expected re-

turn when following a policy πθ starting from the state, s as shown in Equation 6.10.

Equation 6.11 indicates the state-action value function which is the expected return

when action, at is taken at state, st, and policy, πθ is followed afterward.

vπθ
(s) = Eπθ

[Gt|st = s] (6.10)

Qπθ
(s, a) = Eπθ

[Gt|st = s, at = a] (6.11)

In policy gradient RL methods, the agent directly learns the policy, πθ(at|st). Typically

gradient-based techniques on the expectation of returns are used for learning the policy.

Equation 6.12 indicates the form of the most commonly used gradient estimator.

ĝ = Êt[∇θ ln πθ(at|st)Ât] (6.12)

where, Ât is an estimator of the advantage function at timestep, t and πθ is a stochas-

tic policy. In an RL algorithm that alternately performs sampling and optimization, the

expectation Êt[..] indicates the empirical average computed over a batch of samples. For

evaluating the performance of the policy, a performance objective the gradient of which

150 Cost Optimized Workflow Scheduling in Cloud Computing Environments

is the policy gradient estimator, ĝ is defined. Accordingly, ĝ is obtained by differentiat-

ing the objective:

LPG(θ) = Êt[ln πθ(at|st)Ât] (6.13)

Although multiple rounds of optimizations can be performed on the loss, LPG(θ)

defined in Equation 6.13 using a single trajectory of experience samples, it is not de-

sirable since that could lead to adverse consequences such as policy updates that are

destructively large. In order to overcome the aforementioned issue, in Proximal Policy

Optimization [58] method, a clipped surrogate objective is used. More specifically, the

degree to which new policy, πθ(at|st) is allowed to change from old policy, πθold(at|st) is

restricted by the use of a clip function as indicated in Equation 6.14. The clip function,

clip(rt(θ), 1− ϵ, 1 + ϵ)Ât removes the desirability of large policy updates that changes

the rt(θ) ratio beyond the interval [1− ϵ, 1 + ϵ].

LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât]

where rt(θ) =
πθ(at|st)

πθold(at|st)

(6.14)

Actor-critic is a branch of RL algorithms that combines the advantages of value-

based methods and policy gradient RL methods. The actor is the policy that outputs a

probability distribution over the actions that can be taken in the current state, and the

critic is the value function approximator that evaluates the actions taken by the actor as

per the policy.

6.3.4 Proposed RL Framework

As previously discussed, the default kube-scheduler takes multiple factors into account

in formulating scheduling decisions including resource requirements and constraints,

specifications of affinity and anti-affinity, deadlines, and interference caused by co-located

workloads. These policies need to be pre-defined and may suffer from the general lim-

itations of heuristic scheduling techniques. In this work, we override the default be-

havior and incorporate intelligence into the scheduler by training a DRL agent to select

6.3 Proposed approach 151

Algorithm 8 Actor-Critic based Scheduling Framework with PPO

1: Initialize actor networks and critic network with random weights
2: Initialize the training parameters: α, β, γ
3: for episode = 1 to N do
4: Reset the environment
5: for step = 1 to T do
6: Input the state of the environment to actor networks
7: Select action a1 from πθ

8: Select action a2 from πωi

9: Execute the combined action (a1, a2) and observe the corresponding reward
rt and next state of the system st+1

10: Store the most recent transition (st, at, rt, st+1) in memory D

11: Compute advantage estimates Â1 to ÂT
12: for j = 1 to K do
13: Randomly sample a mini-batch of samples of size S from D
14: for p = 1 to S do
15: Update critic network:

σ← σ + βδt∇vπ(st|σ)
16: Update first actor network:

θ ← θ + αÂp∇ ln π(a1|s, θ)

17: Update second actor network:
ω ← ω + γÂp∇ ln π(a2|s, ω)

18: Clear memory D
return

appropriate scheduling decisions with the objective of achieving a desired goal.

Agent Environment

The problem of scheduling workflows in a cloud cluster can be simplified by formu-

lating it as a dependent task-scheduling problem. In the Argo workflow engine, pods

corresponding to independent tasks are scheduled directly in the cluster for execution,

while the tasks with dependencies are not scheduled until the parent tasks have com-

pleted execution. Whenever the workflow scheduler (RL agent), discovers a pod that

is not assigned to a node, it takes the current state of the environment as input and

outputs the most desirable node for task execution based on the trained policy. The en-

vironment then transitions to the next state. Accordingly, the timesteps of the proposed

RL model are discrete and event-driven. The state, action, and reward of the RL model

152 Cost Optimized Workflow Scheduling in Cloud Computing Environments

Figure 6.2: Proposed hierarchical action space and multi-actor DRL model

are designed as follows:

State Space: State of the environment comprises of total CPU and Memory require-

ments of the task, and nodes together with the estimated waiting time at each node

based on the number of pods executing in each node.

Action Space: Compared to the problem of scheduling tasks in a cluster comprising

nodes from the same cloud data center, scheduling tasks in a multi-cloud cluster is more

challenging since resource capacities and cost are not the only factors that differentiate

nodes. In such scenarios, the intercloud communication delay is an important factor

that needs to be factored into the formulation of scheduling decisions. This requirement

is further heightened in workflow scheduling due to the presence of data dependen-

cies among tasks that may result in costly data transfers if communication costs among

nodes from different clouds are ignored.

In the most straightforward design of the action space, the action of selecting any

6.3 Proposed approach 153

Figure 6.3: Sequence diagram of DRL based scheduling framework

one of the nodes in the cluster can be represented together in a flat action space. In

this approach, the burden of distinguishing nodes from different pricing categories lies

with the DRL agent. Although the agent may eventually manage to learn the presence

of nodes from different categories based on rewards and thereby develop an internal

representation of the composition of the cluster, it will inevitably reduce the training

efficiency of the agent. Furthermore, as the size of the cluster grows, flat action spaces

are more prone to the problem of the ’curse of dimensionality’.

In order to efficiently overcome the aforementioned challenges, we have designed

the action space considering a logical organization of cluster. In the logical organization,

nodes from different pricing categories are grouped together as shown in Figure 6.2.

Accordingly, we define a hierarchical action space for the problem as follows:

154 Cost Optimized Workflow Scheduling in Cloud Computing Environments

A = {(a1, a2)|a1 ∈ {πω1 , πω2} & a2 ∈ {1, 2, ..., Na1}} (6.15)

where Na1 is the total number of nodes in the cluster that belong to the pricing cate-

gory given by action a1. The action, a1 corresponds to the selection of a pricing category,

and the action, a2 corresponds to the selection of a node from the selected category. An

action at each timestep then corresponds to the joint action (a1, a2).

Reward: Reward is the estimated cost of execution at the allocated node computed

with Equation 6.6.

Multi-Actor RL Algorithm

The hierarchical action space described above can be represented as the tree structure

in Figure 6.2. Each level of the tree corresponds to an action selection sub-problem.

The first level of the tree represents the sub-problem of selecting a node group and the

second level represents the sub-problem of selecting a node. We then adopt the hybrid

actor-critic technique presented in [129] for selecting joint actions from the hierarchical

action space. Different from a traditional actor-critic algorithm which contains a single

actor-network and a single critic network, in the proposed architecture multiple parallel

actor networks are guided by a common critic network.

As shown in Figure 6.2 each action-selection sub-problem is handled by a separate

actor network. Accordingly, one actor network learns a stochastic policy for selecting a

node group. For each of the node groups, a separate actor network learns a stochastic

policy for selecting a node from the respective node group. The critic network estimates

the state value function, V(s). The advantage function provided by the critic network is

used for updating the stochastic policies. Actor networks are separately updated at each

timestep by their respective update rules. We used the Proximal Policy Optimization

method for updating the networks. Algorithm 8 summarizes the steps included in the

training process of the DRL agent.

6.3 Proposed approach 155

(a) Execution cost

(b) Execution time

(c) Execution interruptions

Figure 6.4: Comparison of performance of scheduling algorithms on an experimental
dataset

156 Cost Optimized Workflow Scheduling in Cloud Computing Environments

Instance Type CPU Cores Memory(GB) Quantity Price
Spot On-demand Spot On-demand

t4g.large 2 8 2 2 $0.033/h $0.0672/h
t4g.xlarge 4 16 3 2 $0.0857/h $0.1344/h
t4g.2xlarge 8 32 1 1 $0.1589/h $0.2688/h

Table 6.1: Resource configurations of Kubernetes cluster

6.4 Performance Evaluation

In this section we present the details of the experimental testbed used for evaluating the

proposed DRL framework along with the results of the performance evaluation.

6.4.1 Experimental testbed

The experimental testbed was set up in Nectar Cloud. The resource configurations and

composition of the Kubernetes cluster are shown in Table 6.1. Argo workflow engine

is installed in the cluster in a separate namespace. A Python client that communicates

with Argo api server was developed for submitting workflows and querying about the

execution statistics of workflows.

6.4.2 Experimental dataset

The experimental dataset comprises of a set of Map-Reduce workflows. Each map task

performs a CPU intensive parallelizable computation that involves finding the sum of

the square-roots of numbers in a given input range. Workflow arrival rates for the exper-

iment were drawn from a uniform distribution. The experiment was repeated multiple

times to calculate results at a confidence interval of 95%.

6.4.3 DRL Scheduler Implementation

The Argo workflow engine uses the default Kubernetes scheduler for allocating tasks

(i.e. pods) to nodes. We have overridden it with a DRL agent trained according to the

proposed DRL framework. The configurations of all test workflows were updated such

6.4 Performance Evaluation 157

that they are scheduled with the custom DRL scheduler instead of the default scheduler.

Keras library [12] was used for developing the DRL framework.

Kubernetes metrics server collects resource metrics of the underlying nodes from

Kubelets and shares it with the Kubernetes api server via the Metrics api. Therefore,

by querying the Kubernetes api server we were able to retrieve near real-time CPU and

Memory usages of the nodes, which were required to formulate the state space com-

position that needs to be provided as the state of the environment to the agent at each

timestep of the episode. At the end of each episode, the python client queries the Argo

api server for retrieving the execution statistics of workflows including resource times,

start and end times of workflows and success rates which are then used for computing

the resource usages and associated costs. The client also queries Kubernetes api server

for retrieving node metrics that is required for computing the up times of nodes.

6.4.4 Comparison Algorithms

The performance of the proposed DRL algorithm was compared against three schedul-

ing policies. Random policy allocates tasks to nodes in a Random manner, and is com-

pletely agnostic to pricing as well as other resource utilization levels of the cluster. K8-

Default refers to the default scheduling policy of Kubernetes cluster. On-Demand is

a policy that uses Kubernetes default scheduler but the selection is limited to the on-

demand instances.

6.4.5 Experimental Results

Figure 6.4a shows the performance of the algorithms on the experimental dataset with

respect to monetary cost of workflow executions. Random algorithm has incurred the

highest cost owing to the fact that it distributes tasks across multiple instances without

trying to optimize resource utilization or cost. In comparison the Kubernetes scheduler

exhibits much better cost savings. By default, it is designed to select the most appropri-

ate node through a node filtering and scoring process. In the filtering phase, nodes that

are feasible for executing the pod are selected, and then they are ranked according to a

scoring process. Based on the outcome of the filtering and scoring process the most ap-

158 Cost Optimized Workflow Scheduling in Cloud Computing Environments

propriate node for pod execution is selected. Clearly, this process has resulted in much

better resource efficiency and thereby cost savings in comparison to random allocation.

As expected, K8-On-Demand method has incurred a higher cost than the default pol-

icy since it is only allowed to make a selection from amongst the on-demand instances

which have a higher unit cost. The proposed method has resulted in the highest cost

savings. The significant reduction is cost is due to the intelligent cost aware allocation

of pods among the instances in the cluster.

Figure 6.4b shows a comparison of the execution times of workflows scheduled with

different algorithms. Again, the highest amount of time is taken by Random algorithm.

K8-On-Demand has resulted in higher execution times compared to k8-Default due to

the limited selection of instances available for scheduling. K8-Default has resulted in

the least execution time since it distributes pods amongst multiple high scoring nodes,

without considering the respective unit cost differences. Proposed algorithm has in-

curred a higher time in comparison to default since it’s favoring nodes that are of low

cost which leads to more pods being assigned to the same nodes, hence resulting in in-

creased execution times. This is expected since instances with more vCPUS are more

expensive, which results in a trade-off between execution time and cost. Furthermore,

the re-execution of workflows that got interrupted due to spot instance interruptions

contributes to increasing the total time.

Figure 6.4c shows the no of execution interruptions. Execution interruptions in the

experimental context are solely due to the interruption of spot instanced which leads

to workflows timing out and thereby failing to complete. As expected the proposed

algorithm results is the highest interruptions since it is favoring spot instances for task

executions, and the spot instances are subjected to interruptions. This is a known trade-

off associated with the use of spot instances, therefore it is important to restrict the use

of spot instances for failure tolerant workflows.

6.5 Summary

In this work, we designed a DRL technique for cost-optimized workflow scheduling

in Cloud environments by the intelligent use of spot and on-demand instances. We

6.5 Summary 159

then designed and implemented an end-to-end system for integrating and training the

DRL agent in the container-native Argo workflow engine that runs atop Kubernetes.

As evidenced by the results of the experiments, higher cost savings can be achieved by

overriding the default schedulers with intelligent cost-optimized scheduling policies.

Chapter 7

Conclusions and Future Directions

This chapter concludes the thesis and provides a summary of works and key contributions. Next,

it identifies and discusses several future research directions for further improving the scheduling of

workflows across distributed cloud computing environments with the use of DRL techniques

7.1 Summary of Contributions

Traditionally, centralized cloud data centers were used for the execution of workflow ap-

plications regardless of the diverse requirements of different types of applications. With

the emergence of multi-clouds and edge computing, a hybrid combination of these com-

puting infrastructures can be used for the execution of workflows, depending on specific

needs of the applications [5]. For instance, a vast majority of IoT workflows have strin-

gent real-time processing requirements which makes edge-cloud environments ideal for

their execution, but certain other workflows such as scientific workflows are typically

not delay-sensitive to the same extent and they could be executed in cloud and multi-

cloud environments where there are less resource restrictions. Along with the added

benefits offered by these novel computing paradigms, a set of new challenges are also

introduced to the general problem of workflow scheduling in centralized cloud com-

puting environments. For example, as opposed to cloud computing environments, edge

nodes are resource constrained and maybe powered through batteries with limited ca-

pacities. Multi-cloud environments offered through geo-distributed datacenters may be

powered with regional renewable energy sources which are inherently intermittent in

nature. In order to leverage the true potential of these computing infrastructures, it is

necessary to design workflow scheduling strategies that are capable of self-adapting to

161

162 Conclusions and Future Directions

the dynamic conditions and uncertainties associated with these environments. As ev-

idenced by the success of Deep Reinforcement Learning in complex decision-making

problems in multiple domains including robotics, gaming and healthcare, it is a viable

candidate for efficiently handling the aforementioned challenges. However, the appli-

cation of DRL techniques to complex cloud and edge computing environments is not a

trivial task, and multiple challenges including curse of dimensionality, multi-objectivity,

multi-agent coordination and decentralized execution need to be addressed for design-

ing efficient DRL algorithms and architectures. In this thesis, we focused on devising

novel DRL algorithms and architectures for efficiently solving these problems.

Chapter 1 presented the basic concepts of workflow scheduling in distributed cloud

computing environments along with an introduction of RL basics. Next, the important

challenges of the problem that motivates the work undertaken in this thesis are dis-

cussed. Finally, the specific research questions addressed are presented.

Chapter 2 analyzed existing RL based workflow scheduling techniques in cloud

computing environments from a number of different perspectives and proposed a tax-

onomy based on these. The perspectives used for reviewing the techniques include the

agent action for which RL is used, RL algorithm, number of objectives, agent architec-

ture, training and execution architecture of the RL method and specific optimization

objective of the problem.

Chapter 3 presents a baseline study performed for optimizing the energy-efficiency

of workflow executions in a centralized cloud environment. In this work, a heuristic

technique was proposed for jointly optimizing host and network energy consumption.

The proposed heuristic considers workflow characteristics including precedence con-

straints and communication requirements among task instances together with the cur-

rent operating status of execution nodes in the formulation of topology-aware schedul-

ing decisions.

Chapter 4 In this chapter we studied the problem of workflow scheduling across

edge-cloud environments with the objectives of optimizing energy-consumption and

execution-time. The two objectives are inherently contradictory in nature as reduction

in energy consumption is typically achieved at the expense of increased execution times.

We utilized workflow deadlines to impose a soft upper bound on the degree to which

7.1 Summary of Contributions 163

execution time is allowed to increase in exchange for higher energy savings. In order to

incorporate multiple objectives to the DRL model, we formulated a single scalar additive

reward function. One component of the scalar reward function reflects the desirability of

agents’ action with respect to the goal of energy minimization and the other component

either rewards or penalizes the agent for meeting or exceeding deadlines respectively. In

order to promote a clear distinction between edge and cloud nodes, we have proposed a

novel hierarchical action space. A DRL algorithm in which multiple actor networks are

guided by a single critic network is then proposed for efficiently scheduling workflows

across the highly dynamic edge-cloud environments.

Chapter 5 presents a novel multi-agent DRL architecture for handling the problem

of scheduling workflows across geo-distributed cloud datacenters powered through a

combination of green and brown energy sources. The proposed architecture comprises a

hierarchical design in which a global DRL agent allocates tasks to local DRL agents each

of which are responsible for selecting execution nodes from a local datacenter. For in-

corporating the realistic problem of partial observability that is inherent in multi-cloud

environments to the agent environment, a novel formulation of the problem as a Par-

tially Observable Markov Decision Process (POMDP) is presented. An efficient central-

ized training and decentralized execution technique is utilized for enabling the agents

to share extra information during training and then only use locally available informa-

tion during execution. Along with this a novel shared reward model which unilaterally

motivates agents to operate towards a common goal is proposed. In order to tackle the

problem of curse of dimensionality which is particularly prominent in multi-agent en-

vironments, a novel approach to limiting the observations shared by agents to a local

neighborhood is proposed.

Chapter 6 presents a cost optimized workflow scheduling technique in cloud com-

puting environments with the use of DRL. Proposed approach uses a combination of

on-demand and spot instances for reducing the execution cost of workflows. The DRL

agent is then integrated to the open source Argo workflow engine.

The chapters described above presented multiple algorithms and architectures for

optimizing workflow executions in distributed cloud computing environments. The

proposed DRL algorithms are indeed a timely contribution with a great potential for

164 Conclusions and Future Directions

advancing the state-of-the-art.

7.2 Future Research Directions

7.2.1 Supporting multiple objectives with multi-policy RL algorithms

Due to the diverse requirements of stakeholders real world scenarios typically require

the workflow schedulers to optimize more than one objective. The existing RL based

scheduling algorithms convert multiple objectives into a single objective with a single

scalar reward function. The function may include multiple weighted components each

relating to a particular objective. There are multiple problems with this approach [61].

Firstly, the decision of which weights are to be assigned for which objectives is a manual

process that requires significant domain expertise. Even an educated guess made by a

domain expert could deviate from the optimal solution that could’ve been achieved if

all potentially optimal policies were evaluated to find the policy that results in the best

trade-off between multiple objectives. Furthermore, a change in objective preferences

of the underlying system would make the current policy obsolete hence requiring the

single objective agent to be retrained. Finally, evaluating multiple reward functions to

identify the right match tends to be a costly process in terms of computation time and

sample complexity. Therefore, it would be beneficial to explore how multiple objectives

can be explicitly incorporated into RL frameworks designed for scheduling workflows

across distributed cloud computing environments. Multi-agent architectures in which

each agent is solely responsible for optimizing a particular agent is one potential means

of achieving this [59].

7.2.2 Designing Multi-agent RL solutions for complex scheduling problems

A majority of existing workflow scheduling methods have proposed single-agent RL

algorithms regardless of the dynamicity and decentralized nature of underlying infras-

tructures. Although single agent systems are less complex to design, they may not be

efficient to capture the dynamics of more complex real world scheduling scenarios such

7.2 Future Research Directions 165

as when workloads are to be scheduled across federated clouds and emerging fog com-

puting environments. Accordingly, Multi-Agent Systems (MAS) in which interactions

between multiple agents are leveraged, is proven to be a better fit for problem solving in

highly distributed and stochastic environments compared to its single agent counterpart

[9]. Therefore, it is worthwhile to investigate how multiple agents can be leveraged for

designing more efficient RL solutions complex workflow execution environments. For

instance, competitive multiple agents settings can be designed so multiple agents work

concurrently on sub-problems of a larger problem which in turn enhances the scalability

of the system as well as fault tolerance.

Furthermore, as opposed to centralized cloud environments, in highly distributed

multi-cloud and edge computing scenarios, it is likely that information about the status

of all nodes are not centrally available in real time. It will be beneficial to use the central-

ized training and distributed execution paradigm in such scenarios so that the agents

can be trained to learn decentralized policies with additional information that is only

available at training time. During execution the agents can operate solely based on local

observations and partial information about the intentions of other agents. This enables

more realistic modeling of the actual environment and also helps simplify communica-

tions between agents [67].

7.2.3 Estimating task execution times accurately

Accurate estimations of task runtimes are important since some scheduling algorithms

rely on such estimates for formulating scheduling plans. For RL based algorithms, such

estimates are particularly useful since they can be used during the training process of

agents to reward efficient allocations. The more accurate the estimations are, the bet-

ter the learning of the agent will be. However, accurately estimating task runtimes is a

non-trivial task particularly due to the performance variability that is inherent in cloud

and edge computing environments. Factors such as interference due to co-located work-

loads from multiple tenants, geographical distribution of resources makes it difficult to

produce accurate estimations. Few studies have used machine learning techniques for

estimating run times [148]. Techniques such as online incremental machine learning

166 Conclusions and Future Directions

could be explored for achieving accurate task estimates.

7.2.4 Using asynchronous RL methods for improving training efficiency

The existing RL based workflow scheduling algorithms are mainly based on synchronous

learning/training. However, in highly dynamic cloud environments, it is likely that the

changing environments as well as stakeholder preferences give rise to the need for train-

ing and re-training RL models frequently. Therefore, it is beneficial to use asynchronous

reinforcement learning techniques [70] for speeding up the training process without re-

quiring the use of specialized hardware such as GPUs. In particular, the asynchronous

advantage actor critic (A3C) in which multiple actor critic agents are asynchronously ex-

ecuted in parallel on separate instances of the environment, is highly effective in reduc-

ing training time. Importance Weighted Actor-Learner Architecture (IMPALA) is a dis-

tributed agent architecture that is proven to achieve even better performance than A3C

methods [71]. These methods can be leveraged by researchers for designing scheduling

agents that are more data efficient and stable.

7.2.5 Handling large action spaces more efficiently

Existing works have modeled the action spaces of workflow scheduling problems with

simple flat designs. This in turn results in large discrete action spaces, particularly if

workflows are to be scheduled across large infrastructures such as multiple cloud data-

centers. Such designs are more prone to Curse of dimensionality problem that inhibits

the learning progress of RL agents. This issue is exacerbated in multi-agent settings

due to exponential growth in joint state and action spaces with the number of agents [7].

Therefore it is worthwhile to explore techniques that result in more efficient action space

designs. For example, in hierarchical reinforcement learning methods, the problem is

sub-divided into a number of sub-problems [57], and these methods can be used for de-

signing action hierarchies. For instance, in multi cloud scenarios, action spaces could be

subdivided at different levels including availability zone, subnet, rack and node levels.

Action branching architecture is another potential direction that could be investigated

in this regard [56]. Some studies have also used clustering techniques such as nearest

Conclusions and Future Directions 7.3 Final Remarks

neighbors [149], [47], and it is worth exploring how such approaches can be incorporated

in workflow schedulers designed to operate across large-scale infrastructures.

7.3 Final Remarks

The problem of scheduling workflows on cloud and edge computing environments in-

cludes multiple levels of complexities. Firstly, the general case of workflow scheduling

in distributed systems in NP-hard. Scheduling workflows across highly dynamic cloud

and edge computing environments is even more complex due to inherent challenges as-

sociated with these environments including the need to satisfy diverse contradictory ob-

jectives, coordinating executions across highly distributed infrastructures and dynamic-

ity of the operating conditions. Deep Reinforcement Learning (DRL) has emerged as a

promising paradigm for dealing with highly dynamic and complex problems due to the

ability of DRL agents to learn to operate in stochastic environments. Despite the benefits

of DRL, there are multiple challenges associated with the application of DRL techniques

in distributed computing environments including partial observability, multi-agent co-

ordination, decentralized execution, multi-objectivity and curse of dimensionality. In

this thesis, we investigated novel DRL algorithms and architectures to overcome the

aforementioned challenges. We then incoporated these DRL techniques in the formula-

tion of proposed workflow scheduling algorithms. As evidenced by the outcomes of this

research, DRL based solutions have the potential to efficiently solve complex challenges

associated with the problem of workflow scheduling on cloud and edge computing en-

vironments.

167

Conclusions and Future Directions BIBLIOGRAPHY

Bibliography

[1] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi, “Char-

acterization of scientific workflows,” in 2008 third workshop on workflows in

support of large-scale science. IEEE, 2008, pp. 1–10.

[2] L. Ramakrishnan and D. Gannon, “A survey of distributed workflow characteris-

tics and resource requirements,” Indiana University, pp. 1–23, 2008.

[3] SPEC, “Spec, “standard performance evaluation corporation”,” 2018. [Online].

Available: https://www.spec.org/benchmarks.html

[4] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,

2018.

[5] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist

reinforcement learning,” Machine learning, vol. 8, no. 3-4, pp. 229–256, 1992.

[6] J. D. Ullman, “Np-complete scheduling problems,” Journal of Computer and

System sciences, vol. 10, no. 3, pp. 384–393, 1975.

[7] L. Canese, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino, M. Re, and

S. Spanò, “Multi-agent reinforcement learning: A review of challenges and appli-

cations,” Applied Sciences, vol. 11, no. 11, p. 4948, 2021.

[8] M. Goudarzi, M. S. Palaniswami, and R. Buyya, “A distributed deep reinforce-

ment learning technique for application placement in edge and fog computing

environments,” IEEE Transactions on Mobile Computing, 2021.

[9] L. Buşoniu, R. Babuška, and B. De Schutter, “Multi-agent reinforcement learning:

An overview,” Innovations in multi-agent systems and applications-1, pp. 183–

221, 2010.

[10] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic scheduling for

stochastic edge-cloud computing environments using a3c learning and residual

recurrent neural networks,” IEEE Transactions on Mobile Computing, 2020.

169

https://www.spec.org/benchmarks.html

BIBLIOGRAPHY Conclusions and Future Directions

[11] J. Son, A. V. Dastjerdi, R. N. Calheiros, X. Ji, Y. Yoon, and R. Buyya, “Cloudsimsdn:

Modeling and simulation of software-defined cloud data centers,” in 2015 15th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.

IEEE, 2015, pp. 475–484.

[12] F. Chollet et al., “Keras: The python deep learning library,” ascl, pp. ascl–1806,

2018.

[13] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, “Energy proportional

datacenter networks,” in ACM SIGARCH Computer Architecture News, vol. 38,

no. 3. ACM, 2010, pp. 338–347.

[14] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource management with

deep reinforcement learning,” in Proceedings of the 15th ACM workshop on hot

topics in networks, 2016, pp. 50–56.

[15] W. Deng, F. Liu, H. Jin, B. Li, and D. Li, “Harnessing renewable energy in cloud

datacenters: opportunities and challenges,” iEEE Network, vol. 28, no. 1, pp. 48–

55, 2014.

[16] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and low-

complexity task scheduling for heterogeneous computing,” IEEE Transactions on

Parallel and Distributed Systems, vol. 13, no. 3, pp. 260–274, 2002.

[17] W. Zheng and S. Huang, “An adaptive deadline constrained energy-efficient

scheduling heuristic for workflows in clouds,” Concurrency and Computation:

Practice and Experience, vol. 27, no. 18, pp. 5590–5605, 2015.

[18] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption modeling:

A survey,” IEEE Communications surveys & tutorials, vol. 18, no. 1, pp. 732–794,

2015.

[19] G. L. Stavrinides and H. D. Karatza, “An energy-efficient, qos-aware and cost-

effective scheduling approach for real-time workflow applications in cloud com-

puting systems utilizing dvfs and approximate computations,” Future Generation

Computer Systems, vol. 96, pp. 216–226, 2019.

170

Conclusions and Future Directions BIBLIOGRAPHY

[20] A. Taghinezhad-Niar, S. Pashazadeh, and J. Taheri, “Energy-efficient workflow

scheduling with budget-deadline constraints for cloud,” Computing, vol. 104,

no. 3, pp. 601–625, 2022.

[21] X. Xu, W. Dou, X. Zhang, and J. Chen, “Enreal: An energy-aware resource al-

location method for scientific workflow executions in cloud environment,” IEEE

transactions on cloud computing, vol. 4, no. 2, pp. 166–179, 2015.

[22] Y. Wen, Z. Wang, Y. Zhang, J. Liu, B. Cao, and J. Chen, “Energy and cost aware

scheduling with batch processing for instance-intensive iot workflows in clouds,”

Future Generation Computer Systems, vol. 101, pp. 39–50, 2019.

[23] Z. Li, J. Ge, H. Hu, W. Song, H. Hu, and B. Luo, “Cost and energy aware schedul-

ing algorithm for scientific workflows with deadline constraint in clouds,” IEEE

Transactions on Services Computing, vol. 11, no. 4, pp. 713–726, 2015.

[24] S. Ijaz, E. U. Munir, S. G. Ahmad, M. M. Rafique, and O. F. Rana, “Energy-

makespan optimization of workflow scheduling in fog–cloud computing,”

Computing, vol. 103, no. 9, pp. 2033–2059, 2021.

[25] M. Kaur, S. Kadam, and N. Hannoon, “Multi-level parallel scheduling of

dependent-tasks using graph-partitioning and hybrid approaches over edge-

cloud,” Soft Computing, vol. 26, no. 11, pp. 5347–5362, 2022.

[26] M. A. Rodriguez and R. Buyya, “Deadline based resource provisioningand

scheduling algorithm for scientific workflows on clouds,” IEEE transactions on

cloud computing, vol. 2, no. 2, pp. 222–235, 2014.

[27] Z. Li, J. Ge, H. Yang, L. Huang, H. Hu, H. Hu, and B. Luo, “A security and

cost aware scheduling algorithm for heterogeneous tasks of scientific workflow

in clouds,” Future Generation Computer Systems, vol. 65, pp. 140–152, 2016.

[28] G. Ismayilov and H. R. Topcuoglu, “Neural network based multi-objective evolu-

tionary algorithm for dynamic workflow scheduling in cloud computing,” Future

Generation computer systems, vol. 102, pp. 307–322, 2020.

171

BIBLIOGRAPHY Conclusions and Future Directions

[29] P. Hosseinioun, M. Kheirabadi, S. R. K. Tabbakh, and R. Ghaemi, “A new energy-

aware tasks scheduling approach in fog computing using hybrid meta-heuristic

algorithm,” Journal of Parallel and Distributed Computing, vol. 143, pp. 88–96,

2020.

[30] M. Mokni, S. Yassa, J. E. Hajlaoui, M. N. Omri, and R. Chelouah, “Multi-objective

fuzzy approach to scheduling and offloading workflow tasks in fog–cloud com-

puting,” Simulation Modelling Practice and Theory, vol. 123, p. 102687, 2023.

[31] D. Ajwani, A. Cosgaya-Lozano, and N. Zeh, “A topological sorting algorithm for

large graphs,” Journal of Experimental Algorithmics (JEA), vol. 17, pp. 3–1, 2012.

[32] C.-g. Wu, W. Li, L. Wang, and A. Y. Zomaya, “Hybrid evolutionary scheduling

for energy-efficient fog-enhanced internet of things,” IEEE Transactions on Cloud

Computing, vol. 9, no. 2, pp. 641–653, 2018.

[33] Y. Xie, Y. Zhu, Y. Wang, Y. Cheng, R. Xu, A. S. Sani, D. Yuan, and Y. Yang, “A

novel directional and non-local-convergent particle swarm optimization based

workflow scheduling in cloud–edge environment,” Future Generation Computer

Systems, vol. 97, pp. 361–378, 2019.

[34] N. Bacanin, M. Zivkovic, T. Bezdan, K. Venkatachalam, and M. Abouhawwash,

“Modified firefly algorithm for workflow scheduling in cloud-edge environment,”

Neural Computing and Applications, vol. 34, no. 11, pp. 9043–9068, 2022.

[35] A. Choudhary, I. Gupta, V. Singh, and P. K. Jana, “A gsa based hybrid algorithm

for bi-objective workflow scheduling in cloud computing,” Future Generation

Computer Systems, vol. 83, pp. 14–26, 2018.

[36] O. H. Ahmed, J. Lu, Q. Xu, A. M. Ahmed, A. M. Rahmani, and M. Hosseinzadeh,

“Using differential evolution and moth–flame optimization for scientific workflow

scheduling in fog computing,” Applied Soft Computing, vol. 112, p. 107744, 2021.

[37] E. Barrett, E. Howley, and J. Duggan, “Applying reinforcement learning to-

wards automating resource allocation and application scalability in the cloud,”

172

Conclusions and Future Directions BIBLIOGRAPHY

Concurrency and computation: practice and experience, vol. 25, no. 12, pp. 1656–

1674, 2013.

[38] L. Lin, L. Pan, and S. Liu, “Learning to make auto-scaling decisions with hetero-

geneous spot and on-demand instances via reinforcement learning,” Information

Sciences, vol. 614, pp. 480–496, 2022.

[39] L. Schuler, S. Jamil, and N. Kühl, “Ai-based resource allocation: Reinforce-

ment learning for adaptive auto-scaling in serverless environments,” in 2021

IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet

Computing (CCGrid). IEEE, 2021, pp. 804–811.

[40] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang, and Y. Wang, “A hierarchical

framework of cloud resource allocation and power management using deep re-

inforcement learning,” in 2017 IEEE 37th international conference on distributed

computing systems (ICDCS). IEEE, 2017, pp. 372–382.

[41] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design techniques for

system-level dynamic power management,” IEEE transactions on very large scale

integration (VLSI) systems, vol. 8, no. 3, pp. 299–316, 2000.

[42] B. Wang, F. Liu, and W. Lin, “Energy-efficient vm scheduling based on deep rein-

forcement learning,” Future Generation Computer Systems, vol. 125, pp. 616–628,

2021.

[43] F. M. Talaat, M. S. Saraya, A. I. Saleh, H. A. Ali, and S. H. Ali, “A load balanc-

ing and optimization strategy (lbos) using reinforcement learning in fog comput-

ing environment,” Journal of Ambient Intelligence and Humanized Computing,

vol. 11, no. 11, pp. 4951–4966, 2020.

[44] J.-y. Baek, G. Kaddoum, S. Garg, K. Kaur, and V. Gravel, “Managing fog net-

works using reinforcement learning based load balancing algorithm,” in 2019

IEEE Wireless Communications and Networking Conference (WCNC). IEEE,

2019, pp. 1–7.

173

BIBLIOGRAPHY Conclusions and Future Directions

[45] Z. Gao, Q. Jiao, K. Xiao, Q. Wang, Z. Mo, and Y. Yang, “Deep reinforcement

learning based service migration strategy for edge computing,” in 2019 IEEE

international conference on service-oriented system engineering (SOSE). IEEE,

2019, pp. 116–1165.

[46] Q. Liu, L. Cheng, T. Ozcelebi, J. Murphy, and J. Lukkien, “Deep reinforcement

learning for iot network dynamic clustering in edge computing,” in 2019 19th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGRID). IEEE, 2019, pp. 600–603.

[47] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap, J. Hunt,

T. Mann, T. Weber, T. Degris, and B. Coppin, “Deep reinforcement learning in

large discrete action spaces,” arXiv preprint arXiv:1512.07679, 2015.

[48] A. Jayanetti, S. Halgamuge, and R. Buyya, “Deep reinforcement learning for en-

ergy and time optimized scheduling of precedence-constrained tasks in edge–

cloud computing environments,” Future Generation Computer Systems, vol. 137,

pp. 14–30, 2022.

[49] Y. Hu, C. de Laat, and Z. Zhao, “Learning workflow scheduling on multi-resource

clusters,” in 2019 IEEE International Conference on Networking, Architecture and

Storage (NAS). IEEE, 2019, pp. 1–8.

[50] A. Asghari, M. K. Sohrabi, and F. Yaghmaee, “Task scheduling, resource provision-

ing, and load balancing on scientific workflows using parallel sarsa reinforcement

learning agents and genetic algorithm,” The Journal of Supercomputing, vol. 77,

no. 3, pp. 2800–2828, 2021.

[51] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Task scheduling algorithms for heteroge-

neous processors,” in Proceedings. Eighth Heterogeneous Computing Workshop

(HCW’99). IEEE, 1999, pp. 3–14.

[52] Z. Tong, X. Deng, H. Chen, J. Mei, and H. Liu, “Ql-heft: a novel machine learning

scheduling scheme base on cloud computing environment,” Neural Computing

and Applications, vol. 32, no. 10, pp. 5553–5570, 2020.

174

Conclusions and Future Directions BIBLIOGRAPHY

[53] A. Kaur, P. Singh, R. Singh Batth, and C. Peng Lim, “Deep-q learning-based het-

erogeneous earliest finish time scheduling algorithm for scientific workflows in

cloud,” Software: Practice and Experience, vol. 52, no. 3, pp. 689–709, 2022.

[54] A. Asghari, M. K. Sohrabi, and F. Yaghmaee, “Online scheduling of depen-

dent tasks of cloud’s workflows to enhance resource utilization and reduce the

makespan using multiple reinforcement learning-based agents,” Soft Computing,

vol. 24, no. 21, pp. 16 177–16 199, 2020.

[55] ——, “A cloud resource management framework for multiple online scien-

tific workflows using cooperative reinforcement learning agents,” Computer

Networks, vol. 179, p. 107340, 2020.

[56] A. Tavakoli, F. Pardo, and P. Kormushev, “Action branching architectures for deep

reinforcement learning,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 32, no. 1, 2018.

[57] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical reinforcement

learning,” Discrete event dynamic systems, vol. 13, no. 1, pp. 41–77, 2003.

[58] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy

optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[59] R. Rădulescu, P. Mannion, D. M. Roijers, and A. Nowé, “Multi-objective multi-

agent decision making: a utility-based analysis and survey,” Autonomous Agents

and Multi-Agent Systems, vol. 34, no. 1, p. 10, 2020.

[60] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, “A survey of multi-

objective sequential decision-making,” Journal of Artificial Intelligence Research,

vol. 48, pp. 67–113, 2013.

[61] C. F. Hayes, R. Rădulescu, E. Bargiacchi, J. Källström, M. Macfarlane, M. Rey-

mond, T. Verstraeten, L. M. Zintgraf, R. Dazeley, F. Heintz et al., “A practical guide

to multi-objective reinforcement learning and planning,” Autonomous Agents

and Multi-Agent Systems, vol. 36, no. 1, p. 26, 2022.

175

BIBLIOGRAPHY Conclusions and Future Directions

[62] D. L. Mammen and V. R. Lesser, “Problem structure and subproblem sharing in

multi-agent systems,” in Proceedings International Conference on Multi Agent

Systems (Cat. No. 98EX160). IEEE, 1998, pp. 174–181.

[63] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning: A selective

overview of theories and algorithms,” Handbook of reinforcement learning and

control, pp. 321–384, 2021.

[64] M. L. Littman, “Markov games as a framework for multi-agent reinforcement

learning,” in Machine learning proceedings 1994. Elsevier, 1994, pp. 157–163.

[65] P. P. Santos, D. S. Carvalho, M. Vasco, A. Sardinha, P. A. Santos, A. Paiva, and F. S.

Melo, “Centralized training with hybrid execution in multi-agent reinforcement

learning,” arXiv preprint arXiv:2210.06274, 2022.

[66] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent control

using deep reinforcement learning,” in International conference on autonomous

agents and multiagent systems. Springer, 2017, pp. 66–83.

[67] J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson, “Learning to communicate

with deep multi-agent reinforcement learning,” Advances in neural information

processing systems, vol. 29, 2016.

[68] Y. Zhang, R. Li, Y. Zhao, R. Li, Y. Wang, and Z. Zhou, “Multi-agent deep rein-

forcement learning for online request scheduling in edge cooperation networks,”

Future Generation Computer Systems, vol. 141, pp. 258–268, 2023.

[69] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg,

M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls et al., “Value-decomposition net-

works for cooperative multi-agent learning,” arXiv preprint arXiv:1706.05296,

2017.

[70] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and

K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in

International conference on machine learning. PMLR, 2016, pp. 1928–1937.

176

Conclusions and Future Directions BIBLIOGRAPHY

[71] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron,

V. Firoiu, T. Harley, I. Dunning et al., “Impala: Scalable distributed deep-rl with

importance weighted actor-learner architectures,” in International conference on

machine learning. PMLR, 2018, pp. 1407–1416.

[72] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V. Panneer-

shelvam, M. Suleyman, C. Beattie, S. Petersen et al., “Massively parallel methods

for deep reinforcement learning,” arXiv preprint arXiv:1507.04296, 2015.

[73] M. H. Hilman, M. A. Rodriguez, and R. Buyya, “Multiple workflows scheduling

in multi-tenant distributed systems: A taxonomy and future directions,” ACM

Computing Surveys (CSUR), vol. 53, no. 1, pp. 1–39, 2020.

[74] M. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data centre energy con-

sumption under the european code of conduct for data centre energy efficiency,”

Energies, vol. 10, no. 10, p. 1470, 2017.

[75] C. Jiang, T. Fan, H. Gao, W. Shi, L. Liu, C. Cérin, and J. Wan, “Energy aware edge

computing: A survey,” Computer Communications, vol. 151, pp. 556–580, 2020.

[76] S. Ilager, K. Ramamohanarao, and R. Buyya, “Thermal prediction for efficient

energy management of clouds using machine learning,” IEEE Transactions on

Parallel and Distributed Systems, vol. 32, no. 5, pp. 1044–1056, 2020.

[77] R. Medara and R. S. Singh, “A review on energy-aware scheduling techniques for

workflows in iaas clouds,” Wireless Personal Communications, pp. 1–40, 2022.

[78] Y. Qin, H. Wang, S. Yi, X. Li, and L. Zhai, “An energy-aware scheduling algorithm

for budget-constrained scientific workflows based on multi-objective reinforce-

ment learning,” The Journal of Supercomputing, vol. 76, no. 1, pp. 455–480, 2020.

[79] Y. Wang, H. Liu, W. Zheng, Y. Xia, Y. Li, P. Chen, K. Guo, and H. Xie, “Multi-

objective workflow scheduling with deep-q-network-based multi-agent reinforce-

ment learning,” IEEE access, vol. 7, pp. 39 974–39 982, 2019.

[80] A. Nascimento, V. Olimpio, V. Silva, A. Paes, and D. de Oliveira, “A reinforce-

ment learning scheduling strategy for parallel cloud-based workflows,” in 2019

177

BIBLIOGRAPHY Conclusions and Future Directions

IEEE international parallel and distributed processing symposium workshops

(IPDPSW). IEEE, 2019, pp. 817–824.

[81] A. M. Kintsakis, F. E. Psomopoulos, and P. A. Mitkas, “Reinforcement learning

based scheduling in a workflow management system,” Engineering Applications

of Artificial Intelligence, vol. 81, pp. 94–106, 2019.

[82] T. Dong, F. Xue, C. Xiao, and J. Li, “Task scheduling based on deep reinforcement

learning in a cloud manufacturing environment,” Concurrency and Computation:

Practice and Experience, vol. 32, no. 11, p. e5654, 2020.

[83] Z. Peng, J. Lin, D. Cui, Q. Li, and J. He, “A multi-objective trade-off framework

for cloud resource scheduling based on the deep q-network algorithm,” Cluster

Computing, vol. 23, no. 4, pp. 2753–2767, 2020.

[84] A. I. Orhean, F. Pop, and I. Raicu, “New scheduling approach using reinforce-

ment learning for heterogeneous distributed systems,” Journal of Parallel and

Distributed Computing, vol. 117, pp. 292–302, 2018.

[85] Q. Wu, Z. Wu, Y. Zhuang, and Y. Cheng, “Adaptive dag tasks scheduling with

deep reinforcement learning,” in International Conference on Algorithms and

Architectures for Parallel Processing. Springer, 2018, pp. 477–490.

[86] H. Li, J. Huang, B. Wang, and Y. Fan, “Weighted double deep q-network based

reinforcement learning for bi-objective multi-workflow scheduling in the cloud,”

Cluster Computing, vol. 25, no. 2, pp. 751–768, 2022.

[87] F. Xue, Q. Hai, T. Dong, Z. Cui, and Y. Gong, “A deep reinforcement learning

based hybrid algorithm for efficient resource scheduling in edge computing envi-

ronment,” Information Sciences, vol. 608, pp. 362–374, 2022.

[88] Y. Zhang, Z. Zhou, Z. Shi, L. Meng, and Z. Zhang, “Online scheduling optimiza-

tion for dag-based requests through reinforcement learning in collaboration edge

networks,” IEEE Access, vol. 8, pp. 72 985–72 996, 2020.

178

Conclusions and Future Directions BIBLIOGRAPHY

[89] Z. Tong, H. Chen, X. Deng, K. Li, and K. Li, “A scheduling scheme in the cloud

computing environment using deep q-learning,” Information Sciences, vol. 512,

pp. 1170–1191, 2020.

[90] D. Kliazovich, J. E. Pecero, A. Tchernykh, P. Bouvry, S. U. Khan, and A. Y. Zomaya,

“Ca-dag: Modeling communication-aware applications for scheduling in cloud

computing,” Journal of Grid Computing, vol. 14, no. 1, pp. 23–39, 2016.

[91] H. Chen, X. Zhu, D. Qiu, H. Guo, L. T. Yang, and P. Lu, “Eons: minimizing energy

consumption for executing real-time workflows in virtualized cloud data cen-

ters,” in Proceedings of the 45th International Conference on Parallel Processing

Workshops (ICPPW). IEEE, 2016, pp. 385–392.

[92] M. A. Rodriguez and R. Buyya, “Scheduling dynamic workloads in multi-tenant

scientific workflow as a service platforms,” Future Generation Computer Systems,

vol. 79, pp. 739–750, 2018.

[93] W. Gerlach, W. Tang, K. Keegan, T. Harrison, A. Wilke, J. Bischof, M. D’Souza,

S. Devoid, D. Murphy-Olson, N. Desai et al., “Skyport: container-based execution

environment management for multi-cloud scientific workflows,” in Proceedings

of the 5th International Workshop on Data-Intensive Computing in the Clouds.

IEEE Press, 2014, pp. 25–32.

[94] “Firecracker,” 2018. [Online]. Available: https://firecracker-microvm.github.io/

[95] M. A. Rodriguez and R. Buyya, “A taxonomy and survey on scheduling

algorithms for scientific workflows in iaas cloud computing environments,”

Concurrency and Computation: Practice and Experience, vol. 29, no. 8, p. e4041,

2017.

[96] K. Bousselmi, Z. Brahmi, and M. M. Gammoudi, “Energy efficient partitioning

and scheduling approach for scientific workflows in the cloud,” in 2016 IEEE

International Conference on Services Computing (SCC). IEEE, 2016, pp. 146–154.

[97] M. Mezmaz, N. Melab, Y. Kessaci, Y. C. Lee, E.-G. Talbi, A. Y. Zomaya, and D. Tuyt-

tens, “A parallel bi-objective hybrid metaheuristic for energy-aware scheduling

179

https://firecracker-microvm.github.io/

BIBLIOGRAPHY Conclusions and Future Directions

for cloud computing systems,” Journal of Parallel and Distributed Computing,

vol. 71, no. 11, pp. 1497–1508, 2011.

[98] A. Verma and S. Kaushal, “A hybrid multi-objective particle swarm optimization

for scientific workflow scheduling,” Parallel Computing, vol. 62, pp. 1–19, 2017.

[99] G. Yao, Y. Ding, Y. Jin, and K. Hao, “Endocrine-based coevolutionary multi-swarm

for multi-objective workflow scheduling in a cloud system,” Soft Computing,

vol. 21, no. 15, pp. 4309–4322, 2017.

[100] S. Yassa, R. Chelouah, H. Kadima, and B. Granado, “Multi-objective approach

for energy-aware workflow scheduling in cloud computing environments,” The

Scientific World Journal, vol. 2013, 2013.

[101] M. Khaleel and M. M. Zhu, “Energy-efficient task scheduling and consolidation

algorithm for workflow jobs in cloud,” International Journal of Computational

Science and Engineering, vol. 13, no. 3, pp. 268–284, 2016.

[102] X. Qu, P. Xiao, and L. Huang, “Improving the energy efficiency and per-

formance of data-intensive workflows in virtualized clouds,” The Journal of

Supercomputing, vol. 74, no. 7, pp. 2935–2955, 2018.

[103] M. Sharifi, S. Shahrivari, and H. Salimi, “Pasta: a power-aware solution to schedul-

ing of precedence-constrained tasks on heterogeneous computing resources,”

Computing, vol. 95, no. 1, pp. 67–88, 2013.

[104] Z. Tang, L. Qi, Z. Cheng, K. Li, S. U. Khan, and K. Li, “An energy-efficient

task scheduling algorithm in dvfs-enabled cloud environment,” Journal of Grid

Computing, vol. 14, no. 1, pp. 55–74, 2016.

[105] M. Żotkiewicz, M. Guzek, D. Kliazovich, and P. Bouvry, “Minimum dependencies

energy-efficient scheduling in data centers,” IEEE Transactions on Parallel and

Distributed Systems, vol. 27, no. 12, pp. 3561–3574, 2016.

[106] D. Kliazovich, P. Bouvry, and S. U. Khan, “Dens: data center energy-efficient

network-aware scheduling,” Cluster Computing, vol. 16, no. 1, pp. 65–75, 2013.

180

Conclusions and Future Directions BIBLIOGRAPHY

[107] S. Vakilinia, “Energy efficient temporal load aware resource allocation in cloud

computing datacenters,” Journal of Cloud Computing, vol. 7, no. 1, p. 2, 2018.

[108] B. Cao, X. Gao, G. Chen, and Y. Jin, “Nice: network-aware vm consolidation

scheme for energy conservation in data centers,” in Proceedings of the 20th IEEE

International Conference on Parallel and Distributed Systems (ICPADS). IEEE,

2014, pp. 166–173.

[109] W. Fang, X. Liang, S. Li, L. Chiaraviglio, and N. Xiong, “Vmplanner: Optimizing

virtual machine placement and traffic flow routing to reduce network power costs

in cloud data centers,” Computer Networks, vol. 57, no. 1, pp. 179–196, 2013.

[110] H. Jin, T. Cheocherngngarn, D. Levy, A. Smith, D. Pan, J. Liu, and N. Pissi-

nou, “Joint host-network optimization for energy-efficient data center network-

ing,” in Proceedings of the 27th IEEE International Symposium on Parallel and

Distributed Processing. IEEE, 2013, pp. 623–634.

[111] S. Pelley, D. Meisner, T. F. Wenisch, and J. W. VanGilder, “Understanding and

abstracting total data center power,” in Workshop on Energy-Efficient Design,

vol. 11, 2009.

[112] X. Wang, Y. Yao, X. Wang, K. Lu, and Q. Cao, “Carpo: Correlation-aware power

optimization in data center networks,” in Proceedings of IEEE INFOCOM. IEEE,

2012, pp. 1125–1133.

[113] O. Sinnen, Task scheduling for parallel systems. John Wiley & Sons, 2007, vol. 60.

[114] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center

network architecture,” in ACM SIGCOMM Computer Communication Review,

vol. 38, no. 4. ACM, 2008, pp. 63–74.

[115] M. Guzek, D. Kliazovich, and P. Bouvry, “Heros: Energy-efficient load balanc-

ing for heterogeneous data centers,” in Proceedings of the 8th IEEE International

Conference on Cloud Computing. IEEE, 2015, pp. 742–749.

181

BIBLIOGRAPHY Conclusions and Future Directions

[116] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya, “Cloudsim:

a toolkit for modeling and simulation of cloud computing environments and eval-

uation of resource provisioning algorithms,” Software: Practice and experience,

vol. 41, no. 1, pp. 23–50, 2011.

[117] “Alibaba cluster data,” 2018. [Online]. Available: https://github.com/alibaba/

clusterdata

[118] S. Sarkar and S. Misra, “Theoretical modelling of fog computing: a green comput-

ing paradigm to support iot applications,” Iet Networks, vol. 5, no. 2, pp. 23–29,

2016.

[119] F. Jalali, K. Hinton, R. Ayre, T. Alpcan, and R. S. Tucker, “Fog computing may

help to save energy in cloud computing,” IEEE Journal on Selected Areas in

Communications, vol. 34, no. 5, pp. 1728–1739, 2016.

[120] T. Sen and H. Shen, “Machine learning based timeliness-guaranteed and energy-

efficient task assignment in edge computing systems,” in 2019 IEEE 3rd

International Conference on Fog and Edge Computing (ICFEC). IEEE, 2019, pp.

1–10.

[121] P. Gazori, D. Rahbari, and M. Nickray, “Saving time and cost on the scheduling of

fog-based iot applications using deep reinforcement learning approach,” Future

Generation Computer Systems, 2019.

[122] G. Rjoub, J. Bentahar, O. Abdel Wahab, and A. Saleh Bataineh, “Deep and rein-

forcement learning for automated task scheduling in large-scale cloud computing

systems,” Concurrency and Computation: Practice and Experience, p. e5919, 2020.

[123] H. Lu, C. Gu, F. Luo, W. Ding, and X. Liu, “Optimization of lightweight task of-

floading strategy for mobile edge computing based on deep reinforcement learn-

ing,” Future Generation Computer Systems, vol. 102, pp. 847–861, 2020.

[124] D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin, and J. Zeng, “Q-learning based dy-

namic task scheduling for energy-efficient cloud computing,” Future Generation

Computer Systems, vol. 108, pp. 361–371, 2020.

182

https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata

Conclusions and Future Directions BIBLIOGRAPHY

[125] Z. Peng, D. Cui, J. Zuo, Q. Li, B. Xu, and W. Lin, “Random task scheduling scheme

based on reinforcement learning in cloud computing,” Cluster computing, vol. 18,

no. 4, pp. 1595–1607, 2015.

[126] A. Kaur, P. Singh, R. Singh Batth, and C. Peng Lim, “Deep-q learning-based het-

erogeneous earliest finish time scheduling algorithm for scientific workflows in

cloud,” Software: Practice and Experience, 2020.

[127] M. Cheng, J. Li, and S. Nazarian, “Drl-cloud: Deep reinforcement learning-based

resource provisioning and task scheduling for cloud service providers,” in 2018

23rd Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE,

2018, pp. 129–134.

[128] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with dou-

ble q-learning,” in Proceedings of the AAAI conference on artificial intelligence,

vol. 30, no. 1, 2016.

[129] Z. Fan, R. Su, W. Zhang, and Y. Yu, “Hybrid actor-critic reinforcement learning in

parameterized action space,” in Proceedings of the Twenty-Eighth International

Joint Conference on Artificial Intelligence (IJCAI-19), 2019, pp. 2279–2285.

[130] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional

continuous control using generalized advantage estimation,” arXiv preprint

arXiv:1506.02438, 2015.

[131] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy

optimization,” in International conference on machine learning, 2015, pp. 1889–

1897.

[132] H. Mao, S. B. Venkatakrishnan, M. Schwarzkopf, and M. Alizadeh, “Variance re-

duction for reinforcement learning in input-driven environments,” arXiv preprint

arXiv:1807.02264, 2018.

[133] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint

arXiv:1312.5602, 2013.

183

BIBLIOGRAPHY Conclusions and Future Directions

[134] W. Guo, W. Tian, Y. Ye, L. Xu, and K. Wu, “Cloud resource scheduling with deep

reinforcement learning and imitation learning,” IEEE Internet of Things Journal,

vol. 8, no. 5, pp. 3576–3586, 2020.

[135] C. Xu, K. Wang, P. Li, R. Xia, S. Guo, and M. Guo, “Renewable energy-aware big

data analytics in geo-distributed data centers with reinforcement learning,” IEEE

Transactions on Network Science and Engineering, vol. 7, no. 1, pp. 205–215, 2018.

[136] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-agent actor-

critic for mixed cooperative-competitive environments,” in NIPS’17: Proceedings

of the 31st International Conference on Neural Information Processing Systems,

2017, pp. 6382—-6393.

[137] X. Li, W. Yu, R. Ruiz, and J. Zhu, “Energy-aware cloud workflow applications

scheduling with geo-distributed data,” IEEE Transactions on Services Computing,

2020.

[138] Z. Wen, J. Cała, P. Watson, and A. Romanovsky, “Cost effective, reliable and se-

cure workflow deployment over federated clouds,” IEEE Transactions on Services

Computing, vol. 10, no. 6, pp. 929–941, 2016.

[139] Z. Wen, R. Qasha, Z. Li, R. Ranjan, P. Watson, and A. Romanovsky, “Dynamically

partitioning workflow over federated clouds for optimising the monetary cost and

handling run-time failures,” IEEE Transactions on Cloud Computing, 2016.

[140] S. Iturriaga, S. Nesmachnow, A. Tchernykh, and B. Dorronsoro, “Multiobjective

workflow scheduling in a federation of heterogeneous green-powered data cen-

ters,” in 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGrid). IEEE, 2016, pp. 596–599.

[141] Z. Wen, S. Garg, G. S. S. Aujla, K. Alwasel, D. Puthal, S. Dustdar, A. Y. Zomaya,

and R. Rajan, “Running industrial workflow applications in a software-defined

multi-cloud environment using green energy aware scheduling algorithm,” IEEE

Transactions on Industrial Informatics, 2020.

184

Conclusions and Future Directions BIBLIOGRAPHY

[142] C. Gu, C. Liu, J. Zhang, H. Huang, and X. Jia, “Green scheduling for cloud

data centers using renewable resources,” in 2015 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS). IEEE, 2015, pp. 354–359.

[143] H. Yuan, M. Zhou, Q. Liu, and A. Abusorrah, “Fine-grained resource provisioning

and task scheduling for heterogeneous applications in distributed green clouds,”

IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 5, pp. 1380–1393, 2020.

[144] D. Cheng, X. Zhou, Z. Ding, Y. Wang, and M. Ji, “Heterogeneity aware work-

load management in distributed sustainable datacenters,” IEEE Transactions on

Parallel and Distributed Systems, vol. 30, no. 2, pp. 375–387, 2018.

[145] D. Cui, Z. Peng, J. Xiong, B. Xu, and W. Lin, “A reinforcement learning-based

mixed job scheduler scheme for grid or iaas cloud,” IEEE Transactions on Cloud

Computing, vol. 8, no. 4, pp. 1030–1039, 2017.

[146] J. Zhao, M. A. Rodrı́guez, and R. Buyya, “A deep reinforcement learning approach

to resource management in hybrid clouds harnessing renewable energy and task

scheduling,” in 2021 IEEE 14th International Conference on Cloud Computing

(CLOUD). IEEE, 2021, pp. 240–249.

[147] Y. Wang, H. Yao, and S. Zhao, “Auto-encoder based dimensionality reduction,”

Neurocomputing, vol. 184, pp. 232–242, 2016.

[148] T.-P. Pham, J. J. Durillo, and T. Fahringer, “Predicting workflow task execu-

tion time in the cloud using a two-stage machine learning approach,” IEEE

Transactions on Cloud Computing, vol. 8, no. 1, pp. 256–268, 2017.

[149] J. de Lope, D. Maravall et al., “Robust high performance reinforcement learning

through weighted k-nearest neighbors,” Neurocomputing, vol. 74, no. 8, pp. 1251–

1259, 2011.

185

	List of Figures
	List of Tables
	Introduction
	Background
	Workflow Scheduling
	Cloud and Edge Computing
	Reinforcement Learning

	Motivation
	Evaluation Methodologies
	Research Questions and Objectives
	Thesis Contributions
	Thesis Organization

	A Taxonomy and Review on Workflow Scheduling with Reinforcement Learning
	Introduction
	Taxonomy
	Taxonomy based on the specific problem for which RL is used
	Taxonomy based on RL algorithm
	Taxonomy based on RL objective
	Taxonomy based on agent architecture
	Taxonomy based on the RL agent training and execution architecture
	Taxonomy based on scheduling objective

	Review of Reinforcement Learning based workflow scheduling techniques
	Summary

	Joint Host and Network Optimization Algorithm for Workflow Scheduling
	Introduction
	Related Work
	Energy-Efficient Workflow Scheduling
	Network Aware Energy-Efficient Scheduling

	Problem Modeling
	Application Model
	System Model
	Power Model
	Problem Formulation

	Proposed Algorithm
	Task Prioritization
	Topology Aware Resource Allocation
	Desirability Score

	Performance Evaluation
	Simulation Environment
	Datasets
	Results and Analysis

	Summary

	Energy and Time Optimized Scheduling of Workflows in Edge-Cloud Environments
	Introduction
	Related Work
	Cloud Computing Environments
	Edge-Cloud Environments
	A Qualitative Analysis

	System Model
	Application Model
	Network Model
	Delay Model
	Energy Consumption Model
	Deadline Model
	Objective

	Deep Reinforcement Learning based Application Scheduling Framework
	Reinforcement Learning Oriented Problem Formulation
	Actor-Critic based Scheduling Framework with Proximal Policy Optimization

	Performance Evaluation
	Experimental Setup
	Dataset
	Comparison Algorithms
	Hyper-parameters and Network Configurations
	Analysis of Convergence
	Analysis of Performance on Experimental Dataset
	Analysis of Performance at Different Workflow Arrival Rates
	Analysis of Performance at Different Computational Workloads

	Overall Analysis
	Summary

	Multi-agent Deep Reinforcement Learning Framework for Workflow Scheduling
	Introduction
	Related Work
	System Model
	Reinforcement Learning
	Background
	Proposed Multi-Agent Actor-Critic Scheduling Framework

	Performance Evaluation
	Experimental Setup
	Dataset
	Comparison Algorithms
	Experimental Results

	Summary

	Cost Optimized Workflow Scheduling in Cloud Computing Environments
	Introduction
	Problem Formulation
	Proposed approach
	Kubernetes
	Argo Workflow Engine
	Reinforcement Learning
	Proposed RL Framework

	Performance Evaluation
	Experimental testbed
	Experimental dataset
	DRL Scheduler Implementation
	Comparison Algorithms
	Experimental Results

	Summary

	Conclusions and Future Directions
	Summary of Contributions
	Future Research Directions
	Supporting multiple objectives with multi-policy RL algorithms
	Designing Multi-agent RL solutions for complex scheduling problems
	Estimating task execution times accurately
	Using asynchronous RL methods for improving training efficiency
	Handling large action spaces more efficiently

	Final Remarks

