

Rajkumar Buyya Tom Kobialka Peng Deng Marimuthu Palaniswami

raj@csse.unimelb.edu.au tkobialka@gmail.com dengpeng.cn@gmail.com palani@unimelb.edu.au

May 11, 2009

OSWA/SensorWeb 3.1 Cookbook

1. Introduction
The purpose of this document is to provide some guidance to the developer / engineer in
using Open Sensor Web Architecture (OSWA). The OSWA Project, also known as the
SensorWeb project, is pleased to release 3.1 version of its implementation called
SensorWeb 3.1.

Due to time constraints OSWA has not undergone proper deployment testing. Testing has
been limited to a handful of programmers.

For the purpose of this document we assume you are using Eclipse as your primary IDE.
You should be running Windows XP or some similar variant.

 OSWA Source Code Repository:
 http://www.gridbus.org/sensorweb/

2. Documentation Overview

Prior to running OSWA, users should familiarize themselves with the publications
listed at the end of this document.

The following documents have been provided with this release.

a. OSWA_SystemIninstallationGuide.doc: Most recent Installation and

Configuration file for OSWA. Includes installation instructions for all
required software and sensors including Imote2, MicaZ, Mica2, SunSPOT.

b. OSWA-core services.pdf: Original student report on core services of OSWA
written by Xingchen Chu. Good source of developer information including

class diagrams. These class diagrams are slightly out of date, however for the
most part they should still be very useful.

c. X20.doc: Information on the X20.jar program developed by Jehanzeb Khan.
X20.jar is used in the SensorObservationService (SOS) and by some clients. It
is a parsing application for XML

d. The Cache Mechanism.doc: Student report on a cache mechanism developed
for the SOS. Contains very good explanation of how caching works, including
design documents. NOTE: Caching capabilities are in the SOS baseline

however they have been temporarily disabled due to testing time constraints.
e. The folder Documentation/Background_reading contains useful

documentation from third party sources which during the course of
development has been useful. If you come across an installation or
configuration problem with any third party package this should be your first
point of reference.

f. SensorWeb3.1_Release_Notes.doc: release notes.
g. SensorWeb_SunSPOT_QuickStart.doc: Sun SPOT installation guide.

3. Installation and Configuration

To Install OSWA and associated software including

o Cygwin
o TinyOS
o Tomcat
o Globus (Web Services core)
o Postgres

Please follow the instructions provided in OSWA_SystemInstallationGuide.doc

During the course of development c:/workspace/SensorWeb was used as the Eclipse
project directory. If you use a different directory you will need to update PATH values in
the build scripts listed below.

1. Configuration files:

a. SensorWeb/application.properties
Primary configuration file for the Web Services. Located in OSWA
/application.properties it is automatically copied to the tomcat directory
Tomcat5.5/common/classes during build time. In Tomcat various JAR files
call upon this file to retrieve information on what classes to execute.

b. SensorWeb/buildservice.properties
Primary configuration file for build scripts. Includes path values for the
OSWA project root directory, Tomcat and Globus ws-core.

c. OSWA /buildservice.xml
Primary build file. You will need to edit this file in order to build the various
services. Generally it is recommended that you build the value nearest to the

bottom first, i.e X20, and then work your way up, SensorPlanningService
(SPS), WebNotificationService (WNS), SensorObservationService (SOS), and
finally SensorRepositoryService (SRS). In order to build a service,
uncomment the service you are interested in, ensure all remaining service
names with <target name =”all” are commented. Then providing your
eclipse has been properly configured to work with Globus and Tomcat click
on the “Run build and Deploy” button (see
OSWA_SystemIninstallationGuide.doc). Once it has been built click on the
“Tomcat” button to launch Tomcat with the service. Then you can use one of
the available clients to connect to the service.

d. OSWA /Cache.conf
Cache configuration file, please refer to the cache documentation for a full
description.

e. OSWA /x2o.properties
Configurations file for the X20 library. Refer to the X20 documentation for a
full description.

4. Clients:

Once you have configured and installed the environment and the services have been built
and are running on the Tomcat container, the following are clients which can be used to
connect to the Web Services:

1. org.sensorweb.demo.sps.SCSLocatorForm – Connects to the SPS, retrieves a list of

SOS instances which can then be queried by the user. For initializing more than one
connection to the SOS (getObservation()) at any one time. Can connect to all sensor
network types (techfest, imote, sunspot). Connection input values are highly
configurable. Good visualization.

2. org.sensorweb.demo.DemoFrame – Connects to the SOS (getObservation()). The
most stable, can only initialize one connection to the SOS at any one time. Connects
to all sensor network types (techfest, imote, sunspot). Connection input values are
highly configurable. No visualization.

3. org.sensorweb.demo.techfest.Talker – Input values are hard coded. Starts two
simultaneous connections to the SPS, which connects to the SOS (getObservation()).
Connects to techfest sensor network type. Once a connection has been established the
SPS parses resulting observational data. If values from the “Crossbow” (Techfest)
light sensors drop below some threshold, the SPS ceases reading values from the
Crossbow sensors until they increase. Demonstrates possible scheduling relationship
between SPS and SOS. Visualization of observational data on a chart.

4. org.sensorweb.demo.summer.Monitor – Connects to SOS, starts one or more
simultaneous connects to the SOS. SOS address value is hard coded, and may need to
be changed if it is not localhost. Good for testing other methods besides
getObservation e.g. sensorDescription() and platformDescription(). No Visualisation.
Only connects to “techfest” sensor network types. Slightly out of date.

5. org.sensorweb.demo.DemoSPS – No GUI interface. Used for testing the SPS.
6. org.sensorweb.demo.DemoSPSFrame – GUI SPS client. Visualization tool for

demonstration SPS functionality

Client Setup

 Before running any clients, ensure that in eclipse when you right click on the class name
and select “Run”, go into the run configuration for the class name, ensure that under the
“Arguments” tab on the right hand side the following arguments are included:

Program Arguments:

-cp c:\workspace\ws-core-4.0.2\lib\bootstrap.jar -
DGLOBUS_LOCATION=c:\workspace\ws-core-4.0.2 org.globus.bootstrap.Bootstrap

VM arguments:

-DGLOBUS_LOCATION=c:\workspace\ws-core-4.0.2

Replace C:\workspace\ws-core-4.0.2 with the location of your Globus WS-Core library
folder.

Under the “Classpath” tab add an external folder (“Advanced”) and include the location
of your Globus ws-core library.

Back in your Eclipse package explorer, select “Run As” to execute the client.

The two primary clients are described below. Similar descriptions can be applied to all
other clients.

1. org.sensorweb.demo.sps.SCSLocatorForm

 Prior to running SCSLocatorForm, ensure that a Tomcat instance is running. This
client connects to the SPS service listed in the “SPS url” textbox. It queries the

getServiceInformationImpl() method and retrieves a list of active SOS
instances. SOS instances are read by
org.sensorweb.service.globus.sps.impl.SensorPlanningService.java from OSWA/scs-
service.xml.

Num of connections:
The “Num of Connections” value can be increased from 1 to 32 (tested). “Num of
Connections” controls the number of simultaneous connections made by the client to
the SOS (from the SOS Locations table).

“Property”, “Operator”, “Value” and “NetworkType” are compulsory values for each
connection. Certain “Network Types” require can only take certain values, these are
listed in Table 1.

NetworkType Property Value Frequency

(ms)

Duration

(minutes)

SensorType

Techfest light,temp,sound > 0 100, 1000 >0 Mica2,
Micaz

Imote Light,temp,volt >0 100, 1000,
10000

> 0 null

sunspot Light, temp, volt >0 1000,10000 >0 null

Table 1: Valid input types for “Num of Connections” fields.

“Network Types” correspond to the types (hardware vendor / model) of sensors
connected to the SCS. Configuration values for each network type are located in
OSWA/nosa.xml.

� “Techfest” Crossbow MicaZ(MPR2400CA & MTS300CA)and
Mica2 (MPR400CB & MTS300CA) platforms and sensors which
are running nesC code for TinyOS as provided in the following
directories:

o SensorCode/ NOSADemo (Mica2)
o SensorCode/NOSADemo_MicaZ (MicaZ)

� “Imote” Crossbow Imote (IPR2400 & ITS400CA) platform and
sensors which are running code from

o SensorCode/NOSADemo_Bas
� “sunspot” Sun Microsystem SunSPOT platform and sensors.

Source code are provided in the following directories:
o SensorCode/ SensorWeb_SunSPOT/

SensorWeb_SunSPOT_SensorSide The NetBeans project
for the application running on sunspot node.

o SensorCode/ SensorWeb_SunSPOT/
SensorWeb_SunSPOT_SerialForwarder The NetBeans
project for the SunSPOT gateway PC.

o SensorCode/ SensorWeb_SunSPOT/

SensorWeb_SunSPOT_SerialForwarder_Tester It tests
the whole SunSPOT system.

“Sensor Type” is only applicable to techfest. Select the appropriate sensor type
(MicaZ, Mica2) to correspond with your sensors.

“Frequency” is an optional value, valid frequency values are listed in Table 1.
Frequency denotes the time (in ms) between which observational values are
sampled by sensors and forwarded to the base station.

“Duration” is an optional value. This will start a connection to the SOS which
will persist for the duration period (in minutes). Updates are automatically
returned to the SOS after a successful observation query completes on the
selected sensor network. Several updates may be returned within the duration
period, this depends on the “Frequency” value.

2. org.sensorweb.demo.DemoFrame

 “PropertyName”, “Operator” and “Value” are compulsory. ObservDuration
corresponds to the duration of a query, it is optional, likewise is “Frequency”. Check
the org.sensorweb.demo.SCSLocatorForm descriptions for a full outline of these.

“SensorDescrpt” and “Pltfrm Descrpt” are retrieving the sensor and platform
descriptions for (hardcoded) values from the SOS.

Ignore the “Progress” bar, “HistoricObservation” button, “Streaming Data Based
Mode” tab and “TinyDB Application” drop down box.

2 Setting up the Sensors

SerialForwarder is an application which runs in the background and acts as a
communication bridge between the SCS and the sensors. It is a requirement to have
an instance of SerialForwarder up and running if you want to communicate with any
crossbow sensor running TinyOS

Please only use the SerialForwarder version provided in the OSWA/net directory. It
contains a bug fix that allows more than one SerialForwarder instance to execute at
anyone time.

For MicaZ or Mica2 sensors, be sure to 'unset TOS_PLATFORMS', then
In a cygwin terminal window go to /OSWA/net and execute:

For MICA2: java net.tinyos.sf.SerialForwarder -comm serial@COMX:mica2 -

port 9001

For MICAZ: java net.tinyos.sf.SerialForwarder -comm serial@COMX:57600 -

port 9002

Where COMX is the serial port which the Base Station is connected to. Active serial
ports can be discovered in your Device Manager.

If Imote2 or Mica2 sensors are connected be sure to set TOS_PLATFORMS
I use:

export TOS_PLATFORMS=c:/workspace/.platform.properties

'cat .platform.properties' should look like this:

mica=avrmote,2,19200
micaz=micaz,3,57600
mica2=avrmote,2,57600
imote2=micaz,3,115200

Then execute:

IMOTE2: java net.tinyos.sf.SerialForwarder -comm serial@COMX:imote2 -port

9003

If you experience MSG_Length errors in SerialForwarder, typically you
TOS_PLATFORMS variable has not been set correctly.

2.2 Techfest (MicaZ & Mica2)

� TOSBase is nesC code which is provided with the TinyOS installation of
Cygwin. TOSBase should be installed on the basestation node in order to
communicate with the remainder of the sensors. TOSBase is located in
$TOSROOT/apps/

Open $TOSROOT/tos/system/tos.h
find: uint16_t TOS_LOCAL_ADDRESS = 1;
Change the value to be 0 for the basestation, it must be unique for each mote.

Connect the docking station to the serial port and power source. Physically
place the Mote into the base docking station (remove the sensorboard)
Ensure all SerialForwarder instances or other applications which may be
holding COM port resources have been exited.

In $TOSROOT/apps/TOSBase execute:

> make mica2 install mib510./dev/ttyS0

Replace mica2 with micaz if you are making for MicaZ sensors. /dev/ttyS0
refers to your serial port in this case it is COM1, /dev/ttyS1 refers to COM2,
and so on.

Your basestation should now be programmed.

� To program the remainder of the motes you will need to copy

OSWA/SensorCode/NOSADemo (Mica2) or
OSWA/SensorCode/NOSADemo_MicaZ to $TOSROOT/apps.

Open $TOSROOT/tos/system/tos.h
find: uint16_t TOS_LOCAL_ADDRESS = 0;
Change the value to be 1 for the first node, it must be unique for each mote.

Remove the programmed basestation Mote from the base docking station
(remove the sensorboard). And place the mote you want to program in it’s
place.

In the relevant $TOSROOT/apps directory execute

> make mica2 install mib510./dev/ttyS0

Once you have programmed all your motes, be sure to replace the mote
programmed with TOSBase into the docking station so that you can
communicate with the other motes.

Known Bugs

o Error with temperature sensor (see imote2 known bugs below).

2.3 Imote2

You will need to select one of the imote2 motes to act as the basestation. Connect
this mote via USB to the machine. Edit tos.h and set TOS_LOCAL to be 0.Go to,
$TOSROOT/apps/TOSBase and execute:
 >make imote2 debug

For the remainder of the motes, code for the Imote2 Sensors is located in:
 OSWA/SensorCode/NOSADemo_Bas

The SCS can only read from sensors which are running this code. If you want to
run different code on your sensors you must do as follows

Once you have created your *.nc you will need to use mig java to
generate your java interfaces. Have a look at
OSWA/SensorCode/NOSADemo_Bas/jMakefile to see how this can be
done. These interfaces will then need to be called by a connector class,

such as org.sensorweb.core.scs.tinyos.imote.ImoteConnector along with
the expected input values.

Note: http://ics.yeditepe.edu.tr/tnl/html/LOCAL/files/docs/tos-source-tree/
is an excellent source for TinyOS API information

In order to install the code copy OSWA/SensorCode/NOSADemo_Bas
 to $TOSROOT/apps directory,

 - Edit $TOSROOT/tos/system/tos.h

 Replace x
 uint16_t TOS_LOCAL_ADDRESS = x;
 With an integer, each sensor should be identified by a unique integer.

 > cd $TOSROOT/apps/NOSADemo_Bas
 > make imote2 debug

 - plug your sensor into the USB port

 > USBLoaderHost.exe –p build/imote2/main.bin.out

 This will upload the code to your sensors.
To run the code launch the SCS using Tomcat, launch the serialForwarder
instance located in OSWA/net/ select the DemoFrame or SCSLocatorForm
clients, construct an input string and select “imote” as the networkType, and
launch the query.

Known Bugs:

1. Currently there is a bug in the NOSADemo_Bas code. If “temp” is
selected as the input sensor type the imote2 sensors will continue
sensing even after the SCS has sent a
packet.set_action(SENSING_OFF) request. For this reason readings
from the Temperature sensor should be avoided. Observational values
from light and voltage sensors should be used instead.

2. In org.sensorweb.core.scs.tinyos.imote.ImoteConnector, process(…)
when set_action(interval) is called the value passed across to
NOSADemo_Bas.nc (running on the sensors) should be in
milliseconds.

NOTE: http://tech.groups.yahoo.com/group/intel-mote2-community/ is an
excellent source for Imote2 help.

2.4 SunSPOT

Instructions are provided in SensorWeb_SunSPOT_QuickStart.doc

3 Running Postgres

Postgres is used by the cache component of the OSWA system. If you are running a
SOS instance, the cache is turned on by default, and you will be required to run
Postgres.

Enter the following in a new cygwin terminal window.

> export CYGWIN=server
> /usr/sbin/cygserver &
> /usr/sbin/postmaster -i -D /var/postgresql/data &

-i allows clients to connect over TCP/IP as opposed to just those from the local
machine.

4 Sensor Observation Service

The SOS is by far the most complete service out of all the services.

A Postgres database is a dependency for the methods sensorDescription() and
platformDescrption(). The SQL for the database is located in the OSWA/sql folder.
 The relevant SQL is contained in the following files:

o Sensorml_create_tables.sql
o Sensorml_data.sql
o Sensorml_drop_tables.sql

 The following methods are implemented in the SOS:

1. getObservation()

The most amount of work has gone into this method. It is used to communicate
with the sensor network and retrieve observational results. It can handle
simultaneous connections to more than one sensor network at any one time.

In addition the SOS has the capacity to temporarily cache results observational
results produced by the sensor network in order to improve performance. This
code has been included in the baseline, but has been temporarily disabled. In
order to enable the cache, the following files need to be edited:

o org.sensorweb.core.demo.Techfest.TechSensorProxy.java: Cache of data
produced by MicaZ/ Mica2 sensors.

The cache is only applicable to data produced by Crossbow MicaZ/Mica2 sensors.

A timeout value has been implemented in TechConnector.java and
ImoteConnector.java such that if no response is received from the sensor network
after a minute a null value will be returned. This prevents the SOS from hanging
if the sensor network is down.

2. getObservationDuration()

This is a duplicate of getObservation(). Observational queries with a duration
value which require the SCS to persist connect to this method.

3. sensorDescripition()

Retrieves a description, form a Postgres Database, of a sensor type. The input
string should be in the format of “Sensor_1”.

4. platformDescription()

As for sensorDescription(), however it retrieves a platform description instead.
Input string should be in format “Platform_1”.

Have a look at the client org.sensorweb.demo.summer.Monitor, for examples on
how to invoke sensorDescription() and PlatfromDescription().

Known Bugs

a. When a client constructs a request to the SOS it will typically contain at
least three items, i.e light (sensor type) > (operator) 23 (value). Currently
the value is largely ignored. That is to say, for a observational query all
light values will be returned, regardless of if they are over 23 or not.
Although this is not really a bug, it is something that has been fixed in the
cache code but not yet propagated through to the baseline due to time
constraints.

b. Currently when observational data is read from a sensor network only a
limited amount of values (10) are read from the network as a whole
(regardless of how many nodes there are). This means that nodes with
greater signal strength will send more packets back to the base station than
those with a lower strength. This leads in an uneven distribution of
observational values read from the sensor network. To solve this issue the
amount of observational values per node need to be limited. An example
would be to set the limit to 10 observational values per node.

c. The timeout value only returns null. However this should be changed so
that a more detailed message of exactly what went wrong is returned. This
has been partially implemented in ImoteConnector.java, with the holder
being set to “timeout”. However this change has not fully been replicated

therough to the XMLBuilder which converts the ObservationCollection
object into XML.

d. The Encoding of the XML is inefficient. XML is converted from w3c to
jdom and then into an object (i.e. ObservationCollection). This needs to be
redone, so that either jdom or w3c is used, and objects are eliminated. In
particular org.sensorwebi.model.* needs to be removed and redone. This
is applicable to all services.

e. With Imote2 the SerialForwarder often reads packets which cause the
error “packet too long”. In the SOS is displays the error “Dropping packet
with bad group”. Time constraints have prevented further investigations
into this problem.

f. When there are 2 or more sensors connected at any one time and more
than one concurrent connection is being executed (with durations), there is
no guarantee that the SOS will pay equal attention (read the same amount
of data) from both of the sensor networks. This is largely left up to chance,
on network might be queried 4 times, while the other might wait for the
resource to become available and will consequently only read 2 values
before its duration has expired. An accounting scheme must be
implemented, such that each connection is guaranteed the same amount of
observation data and time from each sensor network.

g. Sometimes, even though a close() call has been made, the sensors keep on
sensing. Happens when there are several simultaneous connections to
more than one sensor network.

5 Sensor Repository Service

The SRS is a repository service for storing historic observational data produced by
the SOS. It is essentially an interface through to a Postgres Database.

Code for the SRS is located in

o org.sensorweb.service.srs
o org.sensorweb.service.srs.impl

The SRS implements the method:
o saveObservation(Element request)

Element request must be an ObservationCollection XML type.

Postgres must be installed and configured in order for the SRS to function. SQL data
for the SRS is located in

o OSWA/sql/SRS_create_tables.sql
o OSWA/sql/SRS_drop_tables.sql

6 Web Notification Service

The WNS is a skeleton service with a few interfaces implemented. Have a look at the
OGC WNS document to understand potential development paths.
Postgres must be running in order for this service to function, SWL is located in:

o OSWA/sql/WNS_create_tables.sql
o OSWA/sql/WNS_drop_tables.sql

7 Sensor Planning Service
Prior to running the SPS ensure that the Hibernate DB has been started. Hibernate
is required for the gridbus core which is called by the SPS. Database Scripts are
located in SensorWeb/Hibernate_DB to start the DB execute
SensorWeb/Hibernate_DB/startdb.sh in a terminal window.

Ensure that a valid SOS instance is running. When the client
org.sensorweb.demo.DemoSPS constructs a SubmitRequest request it will include
all query details for a SOS getObservation() request. Refer to the earlier sections
on how to setup a valid SOS instance.

1. SubmitRequest(): This routine has largely been hardcoded to work with

org.sensorweb.demo.techfest.Talker.java, it demonstrates a potential use of
the SPS in scheduling connections to the SCS and acting as a intermediary for
processing observational results.

2. getSCSLocations(): This method returns a list of SOS addresses which have
been registered with it. org.sensorweb.demo.sps.SCSLocatorForm
demonstrates the potential use for this method.

3. GetCapabilities(): This operation allows a client to request and receive service
metadata (or Capabilities) documents that describe the abilities of the specific
server implementation.

4. DescribeTasking(): This operation allows a client to request the information
that is needed in order to prepare an assignment request targeted at the assets
that are supported by the SPS. The server will return information about all
parameters that have to be set by the client in order to perform a Submit
operation.

5. DescribeResultAccess(): This operation allows a client to retrieve information
how and where data that was produced by the asset can be accessed. The
server response may contain links to any kind of data accessing OGC Web
services such as SOS, WNS, SRS

8 Debugging

Network traffic can be sniffed using TcpTunnelGui

cd /cygdrive/c/workspace/soap-bin/soap-2_3_1/lib
java -cp soap.jar org.apache.soap.util.net.TcpTunnelGui 8081 localhost 8080

 In order to use this you will need to change the Service addresses to connect to port
8081, instead of 8080. This information is located in OSWA/nosa.xml and the
application.properties file located in your tomcat directory. For me this is:
C:\Program Files\Apache Software Foundation\Tomcat
5.5\common\classes\application.properties

Tomcat

change in your JDK lib (/cygdrive/c/ProgramFiles/Java/jdk1.5.0_02)
/jre/lib/logging.properties cosole.logging.level from FINE to FINEST. This increases
the granularity of Java classes printed when running Tomcat.

Publications

• Xingchen Chu, Tom Kobialka, Bohdan Durnota, and Rajkumar Buyya, Open
Sensor Web Architecture: Core Services,, Proceedings of the 4th International
Conference on Intel ligent Sensing and Information Processing (ICISIP
2006,IEEE Press, Piscataway, New Jersey, USA, ISBN 1-4244- 0611-0, 98-
103pp), Dec. 15-18, 2006, Bangalore, India.

• Tom Kobialka, Rajkumar Buyya, Christopher Leckie, and Rao Kotagiri, A
SensorWeb Middleware with Stateful Services for Heterogeneous Sensor
Networks, Proceedings of the 3rd International Conference on Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP 2007, IEEE Press,
Piscataway, New Jersey, USA), Dec. 3-6, 2007, Melbourne, Australia.

• Xingchen Chu and Rajkumar Buyya, Service Oriented Sensor Web, Sensor
Network and Configuration: Fundamentals, Techniques, Platforms, and
Experiments, N. P. Mahalik (ed), Springer-Verlag, Germany, 2007.

• Tomasz Kobialka, Rajkumar Buyya, Peng Deng, Lars Kulik, Marimuthu
Palaniswami, Sensor Web: Integration of Sensor Networks with Web and Cyber
Infrastructure, Handbook of Research on Developments and Trends in Wireless
Sensor Networks: From Principle to Practice, IGI Global, USA, 2009. (in press,
accepted on March 3, 2009).

