
Managing Risk of Inaccurate Runtime Estimates for Deadline Constrained Job
Admission Control in Clusters

Chee Shin Yeo and Rajkumar Buyya
Grid Computing and Distributed Systems Laboratory

Department of Computer Science and Software Engineering
The University of Melbourne

VIC 3010, Australia
{csyeo, raj}@csse.unimelb.edu.au

Abstract

The advent of service-oriented Grid computing has re-
sulted in the need for Grid resources such as clusters to en-
force user-specific service needs and expectations. Service
Level Agreements (SLAs) define conditions which a cluster
needs to fulfill for various jobs. An example of SLA require-
ment is the deadline by which a job has to be completed. In
addition, these clusters implement job admission control so
that overall service performance does not deteriorate due to
accepting exceeding amount of jobs. However, their effec-
tiveness is highly dependent on accurate runtime estimates
of jobs. This paper thus examines the adverse impact of in-
accurate runtime estimates for deadline constrained job ad-
mission control in clusters using the Earliest Deadline First
(EDF) strategy and a deadline-based proportional proces-
sor share strategy called Libra. Simulation results show
that an enhancement called LibraRisk can manage the risk
of inaccurate runtime estimates better than EDF and Libra
by considering the risk of deadline delay.

1 Introduction

Commercial vendors are now rapidly deploying and pro-
viding service-oriented computing using Grid technologies
[3]. Since the majority of Grid resources are clusters [10],
there is a need for cluster Resource Management Systems
(RMSs) to distinguish and enforce user-specific service re-
quests and demands. The cluster RMS has to fulfill Service
Level Agreements (SLAs) with precise Quality of Service
(QoS) requirements that have been negotiated and agreed
upon between the cluster and various users.

Recent studies [14][5][6][12] have shown that imple-
menting job admission control is essential to support
service-oriented computing since a cluster has limited re-

sources and cannot meet unlimited demand of resources
from all users. A job admission control accepts a limited
number of jobs so that the overall service performance of
the cluster does not deteriorate. It prevents workload over-
load and ensures that jobs submitted earlier do not delay
jobs submitted later.

Our work focuses on job admission control in clusters
based on a common SLA requirement – to complete a job
within its user-specified deadline. In this case, the deadline
constrained job admission control needs accurate runtime
estimates of jobs to prioritize jobs effectively. Given that
user runtime estimates are rather inaccurate [9][17], this pa-
per examines how this inaccuracy can affect deadline con-
strained job admission control in clusters.

The first contribution is developing an enhanced dead-
line constrained job admission control called LibraRisk that
determines whether accepting a new job will expose the
risk of deadline delay in the cluster. The second contri-
bution is conducting comprehensive performance analysis
of LibraRisk and other deadline constrained job admis-
sion controls (EDF and Libra) using trace-based simulation.
Comparisons cover various scenarios that includes varying
workload, deadline high:low ratio, high urgency jobs, and
inaccurate runtime estimates. Experiment results shows that
the actual runtime estimates from traces of supercomputer
centers are indeed highly inaccurate and often over esti-
mated. However, LibraRisk is still able to perform signifi-
cantly better, thus highlighting its effectiveness in managing
the risk of inaccurate runtime estimates.

Section 2 discusses related work. Section 3 describes
how LibraRisk manages the risk for deadline constrained
job admission control thru a deadline delay metric. Sec-
tion 4 describes the experimental methodology for perfor-
mance evaluation. Section 5 compares the performance of
LibraRisk with EDF and Libra under various scenarios in-
accurate runtime estimates. Section 6 concludes.

2 Related Work

Existing cluster RMSs [18][4][11][2][16] neither con-
sider SLAs for resource allocation nor implement job ad-
mission control, and thus are not able to enable service-
oriented computing. So, several works [14][5][6][12] have
proposed implementing job admission control to support
service-oriented computing.

In [5] and [12], their job admission controls aim to im-
prove the overall utility or profit of service providers and do
not consider the deadline QoS in their service requirements.
Both Libra [14] and QoPS [6] use deadline constrained job
admission control to fulfill the deadline QoS of jobs. Li-
bra enforces hard deadlines of jobs, while QoPS allows soft
deadlines by defining a slack factor for each job so that ear-
lier jobs can be delayed up to the slack factor if necessary
to accommodate later more urgent jobs. In this paper, we
focus on enforcing hard deadlines and thus enhance Libra
to manage the risk of inaccurate runtime estimates.

Various works [7][8][5][12] have addressed some form
of risk in computing jobs. In [5] and [12], job admission
control minimizes the risk of paying penalties to compen-
sate users that will reduce the profit of service providers.
Computation-at-Risk (CaR) [7][8] determines the risk of
completing jobs later than expected based on either the
makespan (response time) or the expansion factor (slow-
down) of all jobs in the cluster. In contrast, our work ex-
amines the risk of inaccurate runtime estimates on job ad-
mission control to enforce the deadline QoS of jobs.

Some other works [9][13][17] have studied how inac-
curate runtime estimates affect job scheduling in general,
but not in deadline constrained job admission controls for
service-oriented computing.

3 Managing Risk for Deadline Constrained
Job Admission Control

We consider deadline constrained job admission control
in a cluster under the following scenario:

• The SLA requirements of a job do not change once the
job has been accepted by the job admission control.
This work focuses on one SLA requirement which is
fulfilling the specified deadlines of jobs. Users specify
hard deadlines so that jobs must be completed within
deadlines to be useful.

• The cluster RMS supports non-preemptive job
scheduling and provides the only single interface for
users to submit jobs in the cluster. So, it is aware of all
workloads in the cluster.

• Each job i has a runtime runtimei which is the time
period required to complete job i if it is allocated the

full proportion of processing power on a node. The
runtime of a job does not include any waiting time and
communication latency, and may be expressed as job
length in million instructions (MI). As the runtime of
a job varies between heterogeneous nodes, the runtime
estimate of a job has to be translated to its equivalent
value across heterogeneous nodes. Each job i also re-
quires a minimum numproci number of processors for
execution.

In this section, we first introduce the deadline-based pro-
portional processor share strategy with job admission con-
trol called Libra. Then, we propose how the risk of dead-
line delay can be modeled and incorporated into the en-
hanced version of Libra called LibraRisk to manage the risk
of deadline delay.

3.1 Libra: Deadline-based Proportional Proces-
sor Share

Libra [14] implements deadline-based proportional pro-
cessor share so that more jobs can be accepted, with allo-
cated processor time shares spread across deadlines of jobs.
Given that a job i still has an expected remaining runtime
remaining runtimeij (initially its runtime runtimei) on
node j and has to be completed within a remaining deadline
remaining deadlinei (initially its deadline deadlinei),
the minimum processor time share shareij required is:

shareij =
remaining runtimeij

remaining deadlinei
(1)

Node j thus needs to have the total processor time share
total sharej to fulfill the deadlines of all its nj jobs:

total sharej =
nj∑
i=1

shareij (2)

So, in Libra, a new job is only accepted into node j if
node j has at least total sharej (including the new job) of
processor time available. Otherwise, all the jobs on node j
will encounter delays. If accepted, the new job starts execu-
tion immediately based on its allocated share shareij .

3.2 Modeling Risk of Deadline Delay

Given that a job i is submitted to the cluster at time
submit timei and completed at time finish timei, job i
incurs a delay delayi if it takes longer to complete than its
specified deadline deadlinei:

delayi = (finish timei − submit timei) − deadlinei

(3)
Otherwise, job i has no delay (i.e. delayi = 0s) and its
deadline is fulfilled if it completes before the deadline.

The deadline-constrained job admission control aims to
maximize the number of jobs completed within their dead-
lines to enforce their SLAs, i.e. ideally, all accepted jobs are
to be completed without any delay. Analogous to the CaR
approach [7][8], we define a deadline delay metric to model
the impact of a job’s delay on its remaining deadline:

deadline delayi =
delayi + remaining deadlinei

remaining deadlinei
(4)

The minimum and best value of deadline delayi is 1
when job i has zero delay. deadline delayi has a higher im-
pact value when delayi is longer or remaining deadlinei

is shorter. For example, job 1 with delay1 = 20s and
remaining deadline1 = 5s has deadline delay1 =
5 which is higher, compared to job 2 with the same
delay2 = 20s and remaining deadline2 = 10s having
deadline delay2 = 3. This metric therefore discourages
incurring longer job delays and violating deadlines of more
urgent jobs. We can then compute the mean deadline delay
µj of a node j that has nj scheduled jobs:

µj =
∑nj

i=1 deadline delayij

nj
(5)

Next, we determine the risk of deadline delay σj on node
j by deriving its standard deviation:

σj =

√∑nj

i=1 (deadline delayij)
2

nj
− (µj)

2 (6)

A high risk σj indicates a high uncertainty of jobs on
node j not to experience deadline delays. Thus, not having
any risk is the most ideal (i.e. σj = 0).

3.3 LibraRisk: Managing Risk of Deadline Delay

We now propose an improved deadline constrained job
admission control called LibraRisk to manage the risk of
deadline delay. LibraRisk uses the same deadline-based
proportional processor share technique as Libra to deter-
mine the processor time allocation for each job on a node.
Like Libra, the job admission control of LibraRisk enforces
the deadlines of previously accepted jobs on each node by
rejecting a new job if there are not enough processors as re-
quired to execute it based on current workload. However,
LibraRisk applies two enhancements that differ from Libra.

First, in Libra, a node j is suitable if it has at least
total sharej of processor time available, i.e. node j can
meet the deadlines of all its jobs (including the new job).
On the other hand, in LibraRisk, a node j is suitable to ac-
cept a new job if its risk of deadline delay σj is zero. Sec-
ond, Libra assigns the most suitable nodes to the new job
based on the best fit strategy, i.e. nodes that have the least

available processor time after accepting the new job will be
selected first so that nodes are saturated to their maximum.
In contrast, LibraRisk only selects nodes that have zero risk
of deadline delay.

Algorithm 1: Pseudo-code for job admission control of Li-
braRisk.

for j ← 0 to m − 1 do1
add job new temporarily into ListJobsj ;2
for i ← 0 to ListJobsj size −1 do3

determine delayi;4

endfor5
compute σj ;6
remove job new from ListJobsj ;7
if σj = 0 then8

add node j into ListZeroRiskNodesnew ;9

endif10

endfor11
if ListZeroRiskNodesnew size ≥ numprocnew then12

for j ← 0 to numprocnew − 1 do13
allocate job new to node j of14
ListZeroRiskNodesnew ;

endfor15

else16
reject job new;17

endif18

Algorithm 1 outlines how LibraRisk works. Given that
there are m computation nodes in the cluster, LibraRisk first
determines the delay that will be incurred on all jobs (in-
cluding accepted jobs and the new job new) on each node j
if job new is scheduled on it (line 2–5). The delay of a job
on node j is determined based on the deadlines and runtime
estimates of all the jobs on node j as explained in Sections
3.1 and 3.2 (line 4). LibraRisk then computes the risk of
deadline delay σj for each node j (line 6). A node is suit-
able if it has zero risk after accepting job new (line 8–10).
Job new is finally accepted and allocated to these suitable
nodes if there is numprocnew number of suitable nodes as
required by job new; else it is rejected (line 12–18).

4 Experimental Methodology

We use GridSim [15], an event-based simulator to run
the experiments. The experiments use a subset of the last
3000 jobs in the SDSC SP2 trace (April 1998 to April 2002)
version 2.2 from Feitelson’s Parallel Workload Archive [1].

The SDSC SP2 trace is chosen as most other traces con-
tain no information about actual runtime estimates of jobs.
In addition, it has the highest resource utilization of 83.2%
among other traces and thus ideally model the heavy work-
load scenario where having a job admission control can pre-
vent overloading of the cluster. This 3000 job subset which
represents about 2.5 months of the original trace has an av-
erage inter arrival time of 2131 seconds (35.52 minutes) and
average runtime of 8880 seconds (2.47 hours), and requires

an average of 17 processors. The IBM SP2 located at San
Diego Supercomputer Center (SDSC) has 128 computation
nodes, each with a SPEC rating of 168. Unfortunately, the
workload trace does not contain any information about the
deadlines specified for each job. Therefore, we follow a
similar experimental methodology in [5] to model deadline
values for the workload.

By default, 20% of the jobs belong to a high urgency
job class with a deadline of low deadlinei/runtimei value,
while 80% of the jobs belong to a low urgency job class with
a deadline of high deadlinei/runtimei value.

The deadline high:low ratio is the ratio of the means for
high deadlinei/runtimei and low deadlinei/runtimei

and its default value is 4. For instance, a deadline high:low
ratio of 8 signifies that the deadlinei/runtimei mean of
low urgency jobs is double than that of a deadline high:low
ratio of 4. In other words, a higher deadline high:low
ratio indicates that low urgency jobs have longer dead-
lines as compared to a lower ratio. The mean for low
deadlinei/runtimei is 4 and values are normally dis-
tributed within each high and low deadlinei/runtimei.
The deadline of a job is thus always assigned a higher fac-
tored value based on the real runtime of a job. The arrival
sequence of jobs from the high urgency and low urgency job
classes is randomly distributed.

The arrival delay factor sets the arrival delay of jobs
based on the inter arrival time available from the trace and
its default value is 1. For example, an arrival delay factor
of 0.1 denotes that a job with 600 seconds of inter arrival
time from the trace now has a simulated inter arrival time
of 60 seconds. Thus, a lower delay factor represents higher
workload by shortening the inter arrival time of jobs.

The inaccuracy of runtime estimates is measured with
respect to the actual runtime estimates of jobs obtained from
the trace. An inaccuracy of 100% is equivalent to the actual
runtime estimates from the trace, whereas an inaccuracy of
0% assumes runtime estimates are accurate and equal to the
real runtimes of the jobs.

We also implement a non-preemptive Earliest Deadline
First (EDF) strategy to facilitate comparison with Libra and
LibraRisk. EDF selects the job with the earliest deadline
to execute first. Unlike Libra and LibraRisk, EDF executes
only a single job on a processor at any time (i.e. space-
shared) and maintains a queue to store incoming jobs. So,
EDF needs to wait for the requested number of processors
for a selected job to be available, but can thus reselect a
new job with an earlier deadline that arrives later during the
waiting phase to improve its selection choice.

We find that EDF without job admission control per-
forms much worse as compared to with job admission con-
trol, especially when deadlines of jobs are short. But, un-
like Libra and LibraRisk, we incorporate a more relaxed
job admission control for EDF where a job is not rejected

immediately during job submission. Instead, EDF only re-
jects a selected job prior to execution if its deadline has ex-
pired or its deadline cannot be met based on its runtime es-
timate. Therefore, EDF has two advantages over Libra and
LibraRisk: better selection choice and more generous job
admission control.

5 Performance Evaluation

First, we assess the job admission controls based on three
different scenarios: (i) varying workload (Section 5.2), (ii)
varying deadline high:low ratio (Section 5.3), and (iii) vary-
ing high urgency jobs (Section 5.4). For each scenario,
we compare how various job admission controls perform
for both accurate runtime estimates and actual runtime esti-
mates from the trace. The accurate runtime estimates shows
the ideal performance of each control and how they differ
with actual runtime estimates from the trace. Then, we eval-
uate based on varying inaccurate runtime estimate for both
20% and 80% of high urgency jobs (Section 5.5). This will
demonstrate whether LibraRisk can manage the risk of in-
accurate runtime estimates more effectively.

We examine the performance of each scenario based on
two metrics: (i) percentage of jobs with deadlines fulfilled,
and (ii) average slowdown. The percentage of jobs with
deadlines fulfilled is the number of jobs that are completed
within their specified deadlines, out of the total number of
jobs submitted. The slowdown of a job is the ratio of its
response time and minimum runtime required, where the
response time is the time taken for a job to be completed
after it is submitted and includes waiting time. Since the
emphasis of this work is to meet the deadlines specified for
jobs, the average slowdown is computed only for jobs with
deadlines fulfilled.

5.1 Overview: Varying Workload, Deadline
High:Low Ratio, and High Urgency Jobs

This overview explains similar results that are observed
for all three scenarios (Figures 1, 2, and 3). Overall, more
jobs are completed with their deadlines fulfilled for the ideal
case of accurate runtime estimates than the case of using
actual runtime estimates from the trace. This is because in
practice, runtime estimates are often overestimated during
job submission to reduce the possibility of jobs being ter-
minated due to inadequate request of runtime. So, all three
job admission controls will actually accept fewer jobs than
expected, leading to fewer jobs with deadlines fulfilled.

With the assumption of accurate runtime estimates, Li-
bra is able to fulfill more jobs within their deadlines than
EDF (Figures 1(a), 2(a), and 3(a)). One reason is that Li-
bra ensures that the deadline of a job can be fulfilled based
on its runtime estimate before accepting it. Another reason

is that Libra adopts the best fit strategy so that nodes are
saturated to their maximum to accommodate more jobs.

But, we can see that Libra only performs barely better
than EDF with the use of actual runtime estimates from
the trace (Figures 1(b), 2(b), and 3(b)). This exposes the
core weakness in Libra as it relies heavily on the idealis-
tic assumption of accurate runtime estimates. In contrast,
LibraRisk can fulfill many more jobs than Libra for actual
runtime estimates from the trace (Figures 1(b), 2(b), and
3(b)), while fulfilling as many jobs as Libra for accurate
runtime estimates (Figures 1(a), 2(a), and 3(a)).

We now compare the results for average slowdown. Both
Libra and LibraRisk incur the same average slowdown for
accurate runtime estimates (Figures 1(c), 2(c), and 3(c)).
However, LibraRisk achieves lower average slowdown than
Libra for actual runtime estimates from the trace (Figures
1(d), 2(d), and 3(d)). EDF has the lowest average slow-
down that remains unchanged for both cases because in all
our experiments, the deadline of a job is always set as a fac-
tor higher than its runtime (deadlinei/runtimei). Thus,
EDF is implicitly executing smaller jobs first based on the
deadlines. This is also why the average slowdown of EDF
only marginally increases for increasing deadline high:low
ratio (Figures 2(c) and 2(d)) and slightly drops for increas-
ing number of high urgency jobs (Figures 3(c) and 3(d)).

Therefore, LibraRisk is not only able to perform compar-
atively well as Libra based on accurate runtime estimates,
but is also capable of fulfilling many more jobs, and achieve
lower average slowdown than Libra based on actual runtime
estimates from the trace. This highlights the importance of
considering the risk of deadline delay and clearly illustrates
the effectiveness of LibraRisk in doing so.

5.2 Varying Workload

In Figure 1, we vary the arrival delay factor (from 0 to 1)
to depict decreasing workload. As the workload decreases,
increasing number of jobs are completed with deadlines ful-
filled (Figures 1(a) and 1(b)), with decreasing (improving)
average slowdown (Figures 1(c) and 1(d)). When the work-
load is heavy (arrival delay factor < 0.3), EDF fulfills more
jobs within their deadlines than Libra and LibraRisk (Fig-
ures 1(a) and 1(b)), but fulfills less jobs as the workload
decreases (arrival delay factor > 0.3).

Unlike Libra and LibraRisk that determine whether to
accept or reject a job immediately during job submission,
EDF maintains a queue to store incoming jobs and thus do
not reject jobs instantaneously. So, as EDF waits for the re-
quested number of processors to be available for a currently
selected job, it can reselect a new job with an earlier dead-
line that arrives during the waiting period. Thus, EDF has a
more favorable selection choice during heavy workload as
more jobs arrive and improve the selection choice leading to

EDF fulfilling more jobs than Libra and LibraRisk. How-
ever, this unfair advantage diminishes when the arrival de-
lay factor is more than 0.3 as the selection choice decreases
with increasing arrival delay factor.

With actual runtime estimates from the trace, LibraRisk
progressively completes an increasing higher number of
jobs with deadlines fulfilled (Figure 1(b)), with decreas-
ing lower average slowdown (Figure 1(d)) than Libra as the
workload decreases (arrival delay factor > 0.5).

5.3 Varying Deadline High:Low Ratio

Figure 2 shows the impact of increasing deadlines for
low urgency jobs (deadline high:low ratio from 1 to 10).
With increasing deadlines, more jobs have their deadlines
fulfilled (Figures 2(a) and 2(b)), but the average slowdown
(Figures 2(c) and 2(d)) rises as longer jobs are accepted.

For the case of using actual runtime estimates from the
trace, LibraRisk finishes more jobs with deadlines fulfilled
(Figure 2(b)) than Libra even though the improvement is
higher when the deadline high:low ratio is low (< 4). Li-
braRisk also attains a gradually improving lower average
slowdown than Libra as deadlines increase (Figure 2(d)).

5.4 Varying High Urgency Jobs

Figure 3 shows the performance for various proportions
of high urgency jobs (from 0% to 100%). As the number of
high urgency jobs increases, fewer jobs are being accepted
and completed, leading to decreasing number of jobs with
deadlines fulfilled (Figures 3(a) and 3(b)) and decreasing
average slowdown (Figures 3(c) and 3(d)).

With actual runtime estimates from the trace, LibraRisk
completes close to 40% more jobs than Libra where there
is 100% high urgency jobs (Figure 3(b)), which is twice
better than the 20% improvement over Libra for 0% high
urgency jobs. LibraRisk also satisfies increasing number of
jobs within their deadlines as the number of high urgency
jobs increases, whereas both EDF and Libra satisfy decreas-
ing number of jobs. So, LibraRisk can meet more jobs with
shorter deadlines. It also maintains an improvement over
Libra for average slowdown (Figure 3(d)).

5.5 Varying Inaccurate Runtime Estimates

Figure 4 compares the difference between executing jobs
with 20% and 80% of high urgency jobs in terms of varying
inaccurate runtime estimates (from 0% to 100%). Gener-
ally, more jobs are completed with their deadlines fulfilled
for 20% of high urgency jobs as compared to 80% of high
urgency jobs since having more high urgency jobs results in
fewer jobs being fulfilled. As such, the average slowdown is
also lower (better) when there is 80% of high urgency jobs.

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Jo
bs

 w
ith

 D
ea

dl
in

es
 F

ul
fil

le
d

(%
)

Arrival Delay Factor

EDF
Libra

LibraRisk

(a) Accurate runtime estimate

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Jo
bs

 w
ith

 D
ea

dl
in

es
 F

ul
fil

le
d

(%
)

Arrival Delay Factor

EDF
Libra

LibraRisk

(b) Actual runtime estimate from trace

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 S
lo

w
do

w
n

Arrival Delay Factor

EDF
Libra

LibraRisk

(c) Accurate runtime estimate

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
A

ve
ra

ge
 S

lo
w

do
w

n

Arrival Delay Factor

EDF
Libra

LibraRisk

(d) Actual runtime estimate from trace

Figure 1. Impact of varying workload.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Jo
bs

 w
ith

 D
ea

dl
in

es
 F

ul
fil

le
d

(%
)

Deadline High:Low Ratio

EDF
Libra

LibraRisk

(a) Accurate runtime estimate

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Jo
bs

 w
ith

 D
ea

dl
in

es
 F

ul
fil

le
d

(%
)

Deadline High:Low Ratio

EDF
Libra

LibraRisk

(b) Actual runtime estimate from trace

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 S
lo

w
do

w
n

Deadline High:Low Ratio

EDF
Libra

LibraRisk

(c) Accurate runtime estimate

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 S
lo

w
do

w
n

Deadline High:Low Ratio

EDF
Libra

LibraRisk

(d) Actual runtime estimate from trace

Figure 2. Impact of varying deadline high:low ratio

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Jo
bs

 w
ith

 D
ea

dl
in

es
 F

ul
fil

le
d

(%
)

% of High Urgency Jobs

EDF
Libra

LibraRisk

(a) Accurate runtime estimate

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Jo
bs

 w
ith

 D
ea

dl
in

es
 F

ul
fil

le
d

(%
)

% of High Urgency Jobs

EDF
Libra

LibraRisk

(b) Actual runtime estimate from trace

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

A
ve

ra
ge

 S
lo

w
do

w
n

% of High Urgency Jobs

EDF
Libra

LibraRisk

(c) Accurate runtime estimate

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100
A

ve
ra

ge
 S

lo
w

do
w

n

% of High Urgency Jobs

EDF
Libra

LibraRisk

(d) Actual runtime estimate from trace

Figure 3. Impact of varying high urgency jobs.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Jo
bs

 w
ith

 D
ea

dl
in

es
 F

ul
fil

le
d

(%
)

% of Inaccuracy

EDF
Libra

LibraRisk

(a) 20% of high urgency jobs

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Jo
bs

 w
ith

 D
ea

dl
in

es
 F

ul
fil

le
d

(%
)

% of Inaccuracy

EDF
Libra

LibraRisk

(b) 80% of high urgency jobs

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

A
ve

ra
ge

 S
lo

w
do

w
n

% of Inaccuracy

EDF
Libra

LibraRisk

(c) 20% of high urgency jobs

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

A
ve

ra
ge

 S
lo

w
do

w
n

% of Inaccuracy

EDF
Libra

LibraRisk

(d) 80% of high urgency jobs

Figure 4. Impact of varying inaccurate runtime estimates.

In Figures 4(a) and 4(b), decreasing number of jobs
are completed with deadlines fulfilled as the inaccuracy of
runtime estimates increases. But, LibraRisk fulfills higher
number of jobs than both EDF and Libra. We can see that
LibraRisk completes much more (about twice as many) jobs
when there is 80% of high urgency jobs as compared to 20%
high urgency jobs. In fact, LibraRisk still maintains simi-
lar number of jobs with deadlines fulfilled for the case of
80% high urgency jobs (Figure 4(b)) as that of 20% high
urgency jobs (Figure 4(a)), while both EDF and Libra expe-
rience drops in numbers.

Figures 4(c) and 4(d) shows that the average slowdown
decreases for both Libra and LibraRisk as the inaccuracy of
runtime estimates increases. EDF has the lowest average
slowdown that remains the same for both cases as it also
executes smaller jobs first based on their deadlines. Oth-
erwise, as the inaccuracy of runtime estimates increases,
LibraRisk maintains similar improvement in average slow-
down over Libra when there is 20% or 80% of high urgency
jobs.

In short, LibraRisk is able to fulfill more jobs for higher
inaccuracies of runtime estimates as compared to Libra, es-
pecially when there are more high urgency jobs with shorter
deadlines. This thus demonstrates its effectiveness in han-
dling the risk of inaccurate runtime estimates.

6 Conclusion

This paper reveals that deadline constrained job admis-
sion controls perform worse than expected when using ac-
tual runtime estimates from traces of supercomputer centers
because they rely on accurate runtime estimates, whereas
actual runtime estimates are inaccurate and often over esti-
mated. Therefore, we propose an enhanced deadline con-
strained job admission control called LibraRisk that can
manage the risk of inaccurate runtime estimates more effec-
tively via a deadline delay metric. Simulation results show
that LibraRisk completes the most number of jobs with
deadline fulfilled as compared to EDF and Libra in three
cases when: (i) the cluster workload is lower, (ii) the dead-
lines of jobs are shorter (more urgent), or (iii) the runtime
estimates are less accurate. LibraRisk also achieves consid-
erably lower average slowdown than Libra. This work has
thus addressed the importance of managing the risk of in-
accurate runtime estimates for deadline constrained job ad-
mission control in clusters to support service-oriented com-
puting.

Acknowledgments

We thank Anthony Sulistio for his support with the use of
GridSim and the anonymous reviewers for their comments.

References

[1] Parallel Workloads Archive,
http://www.cs.huji.ac.il/labs/parallel/workload, May 2005.

[2] Altair Grid Technologies. OpenPBS Release 2.3 Adminis-
trator Guide, Aug. 2000.

[3] I. Foster and C. Kesselman, editors. The Grid 2: Blueprint
for a New Computing Infrastructure. Morgan Kaufmann,
San Francisco, CA, 2003.

[4] IBM. LoadLeveler for AIX 5L Version 3.2 Using and Ad-
ministering, Oct. 2003.

[5] D. E. Irwin, L. E. Grit, and J. S. Chase. Balancing Risk and
Reward in a Market-based Task Service. In 13th Interna-
tional Symposium on High Performance Distributed Com-
puting (HPDC13), Honolulu, HI, June 2004.

[6] M. Islam, P. Balaji, P. Sadayappan, and D. K. Panda. To-
wards Provision of Quality of Service Guarantees in Job
Scheduling. In 6th International Conference on Cluster
Computing (Cluster 2004), San Diego, CA, Sept. 2004.

[7] S. D. Kleban and S. H. Clearwater. Computation-at-Risk:
Assessing Job Portfolio Management Risk on Clusters. In
18th International Parallel and Distributed Processing Sym-
posium (IPDPS 2004), Santa Fe, NM, Apr. 2004.

[8] S. D. Kleban and S. H. Clearwater. Computation-at-
Risk: Employing the Grid for Computational Risk Manage-
ment. In 6th International Conference on Cluster Comput-
ing (Cluster 2004), San Diego, CA, Sept. 2004.

[9] A. W. Mu’alem and D. G. Feitelson. Utilization, Predictabil-
ity, Workloads, and User Runtime Estimates in Scheduling
the IBM SP2 with Backfilling. IEEE Transactions on Paral-
lel and Distributed Systems, 12(6):529–543, June 2001.

[10] G. F. Pfister. In Search of Clusters. Prentice Hall PTR, Upper
Saddle River, NJ, second edition, 1998.

[11] Platform Computing. LSF Version 4.1 Administrator’s
Guide, 2001.

[12] F. I. Popovici and J. Wilkes. Profitable services in an un-
certain world. In 18th Conference on Supercomputing (SC
2005), Seattle, WA, Nov. 2005.

[13] G. Sabin, G. Kochhar, and P. Sadayappan. Job Fairness
in Non-Preemptive Job Scheduling. In 33rd International
Conference on Parallel Processing (ICPP 2004), Montreal,
Canada, Aug. 2004.

[14] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, and R. Buyya. Li-
bra: a computational economy-based job scheduling system
for clusters. Software: Practice and Experience, 34(6):573–
590, May 2004.

[15] A. Sulistio, G. Poduvaly, R. Buyya, and C.-K. Tham. Con-
structing A Grid Simulation with Differentiated Network
Service Using GridSim. In 6th International Conference on
Internet Computing (ICOMP 2005), Las Vegas, NV, June
2005.

[16] Sun Microsystems. Sun ONE Grid Engine, Administration
and User’s Guide, Oct. 2002.

[17] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Modeling User
Runtime Estimates. In 11th Workshop on Job Schedul-
ing Strategies for Parallel Processing (JSSPP 2005), Cam-
bridge, MA, June 2005.

[18] University of Wisconsin-Madison. Condor Version 6.7.1
Manual, 2004.

