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Abstract— Efficient Resource discovery mechanism is one of
the fundamental requirement for Grid computing systems, as
it aids in resource management and scheduling of applications.
Resource discovery involves searching for resources that match
the user’s application requirements. Various kinds of solutions
to Grid resource discovery have been developed, including
the centralised and hierarchical information server approach.
However, these approaches have serious limitations in regards to
scalability, fault-tolerance and network congestion.

To overcome such limitations, we propose a decentralised Grid
resource discovery system based on a spatial publish/subscribe
index. It utilises a Distributed Hash Table (DHT) routing sub-
strate for delegation of d-dimensional service messages. Our
approach has been validated using a simulated publish/subscribe
index that assigns regions of ad-dimensional resource attribute
space to the grid peers in the system. We generated the resource
attribute distribution using the configurations obtained from the
Top 500 Supercomputer list. The simulation study takes into
account various parameters such as resource query rate, index
load distribution, number of index messages generated, overlay
routing hops and system size. Our results show that grid resource
query rate directly affects the performance of the decentralised
resource discovery system, and that at higher rates the queries
can experience considerable latencies. Further, contraryto what
one can expect, system size does not have a significant impacton
the performance of the system, in particular the query latency.

I. I NTRODUCTION

Recently, Internet-scale services including distributedre-
source brokering [10], distributed gaming, content distribution
networks, peer-to-peer (P2P) storage, and distributed auc-
tions have received significant research interest both from
researchers and industry. Concurrently, resource sharingplat-
form such as grids [9] and PlanetLab [6] have emerged as
the defacto means for hosting these distributed services. One
of the main challenge involving a planetary scale deployment
of these services is locating the appropriate set of nodes that
match the service’s requirement.

An efficient resource discovery mechanism is a mandatory
requirement of Grid systems (such as desktop grids, resource
brokers, work-flow engines), as it aids in resource management
and scheduling of applications. Traditionally, Grid resource
brokering services such as Nimrod-G [3], Condor-G [10],
Tycoon [15], Grid workflow engine [7] used services of
centralised and hierarchical information services (such as R-
GMA [25], Hawkeye [24], MDS-2,3,4 [8]). However, these
approaches have several design limitations including: (i)single
point of failure; (ii) lack scalability; (iii) high networkcom-
munication cost at links leading to the information server (i.e.
network bottleneck, congestion); and (iv) computational power
required to serve a large number of resource lookup and update
queries on the machine running the information services.

Recent studies conducted by Zhang et al. [25] verified that
existing systems including R-GMA, MDS, and Hawkeye fail
to scale beyond 300 concurrent users i.e. the throughput begins
to decline below acceptable levels. As regards to response time
performance metric, MDS-2 performs the worst, superseded
by R-GMA and Hawkeye.

Several grids (e.g., APACGrid [1], TeraGrid, ChinaGrid, and
CoreGrid) have been setup in different countries to serve e-
science applications. The APAC (Australian Partnership for
Advanced Computing) Grid interconnects various grid sites
distributed across Australian institutions and universities. The
APACGrid uses a hierarchical information service MDS-2.
The VPAC (Victorian Partnership for Advance Computing)
which a part of the APACGrid hosts the centralised GIIS (Grid
Index Information Service) (a component MDS-2), while the
remaining grid sites run the GRIS (Grid Resource Information
Service) that connects to the VPAC GIIS. A grid resource
broker that wishes to access the APACGrid has to contact
the VPAC GIIS, as contacting one of the other Grid sites
running a GRIS would only allow access to information about
that particular resource. The ChinaGrid is also organised using
the hierarchical model. This isolation in resource information
organisation among grids results in grid users getting access to
only a small pool of resources. Further, the resource brokering
services undertake scheduling decisions based on the resource
information gathered from isolated indexing services. Hence,
they often tend to formulate conflicting application schedules.

We expect that in near future the number of grid users and
grid resources to continue to grow. In order to tackle this
growth, we need to design scalable infrastructure solutions.
We envisage decentralisation of grids as a viable way to realise
an efficient grid computing infrastructure. Decentralisation can
be accomplished through an Internet-wide grid resource look-
up system along the same lines as the Domain Name Ser-
vice (DNS). In other words, there is a need to build a scalable
grid resource information service that will allow and promote
all existing grid resources to combine together into a single
cooperative system. Such a system would solve the prob-
lems associated with centralised or hierarchical organisation,
resource fragmentation and conflicting application schedules.
Fig. 1 shows such a Grid computing environment organisation
based on a decentralised resource discovery system.

One of the possible ways to overcome the limitation of a
centralised or hierarchical approach, is to partition the resource
index space across the set of dedicated database servers [16].
For achieving fault-tolerance these database servers can be
replicated across multiple machines. Further, the index space
can be partitioned across servers based on attribute types
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Fig. 1. Grid brokers and Grid sites with their Grid peer service and some of
the hashings to the Chord ring. Dark dots are the Grid peers that are currently
part of Chord based Grid network. Light dots are the publish/subscribe object
posted by Grid sites and Grid brokering service.

and values. However one of the major drawbacks of this
scheme is that satisfying a range query would require sending
simultaneous messages to set of servers. This might prove
costly in terms of the number of messages generated in the
system. Further, if the number of users increases rapidly then
upgrading the hardware infrastructure can prove to be an
expensive process.

An other possible way to tackle this problem is to organise
the index space using a Distributed Hash Table (DHT) method.
In this case, commodity machines such as a desktops can
be used to host the DHT and indexing services. DHTs are
inherently self-organising, fault-tolerant and scalable. Further,
DHT services are light-weight and hence, do not warrant an
expensive hardware infrastructure. A majority of Google’sdata
center services are hosted by the commodity machines, and
this is a case in point.

In this work, we present a grid resource discovery ser-
vice using the DHT-based spatial publish/subscribe index
in [14]. The proposed grid resource discovery service or-
ganises data [18] by maintaining a logicald-dimensional
publish/subscribe index over a network of distributed grid
brokers/grid sites. These brokers create a Chord overlay [21],
which collectively maintain the logical publish/subscribe index
to facilitate a decentralised resource discovery process.We
present more details about the publish/subscribe index in
Section III. Fig. 1 depicts the proposed resource discovery
system involving grid brokers and grid Sites (shown as dark
coloured blocks on the Chord ring). Resource brokering ser-
vices such as a Grid-Federation Agent (GFA) [17], Condor-G
etc. issue a Resource Lookup Query (RLQ) by subscribing
for a publication object that matches a user’s application
requirement. Grid resource providers update their resource
status by publishing information at periodic intervals through
a Resource Update Query (RUQ).

The main contributions of this work include: (i) extension
of the DHTs with grid resource discovery capability; (ii) a

decentralised grid resource discovery system based on a spatial
and peer-to-peer publish/subscribe index; and (iii) extensive
simulations for evaluating the feasibility and performance of
the proposed resource discovery system. We now summarise
some of our findings:

• The Resource query rate i.e. RLQ and RUQ rate directly
affects the performance of the decentralised resource
discovery system. At higher rates, grid resource queries
can experience considerable latencies.

• Contrary to what one can expect, the system size does
not have a significant impact on the performance of the
system, in particular the query latency.

The rest of the paper is organized as follows. In sec-
tion II, we present a brief overview of a Grid resource
brokering service model and its indexing requirement. Sec-
tion III presents details about the underlyingd-dimensional
publish/subscribe index that we leverage for this work. In
section IV, we summarise the average message and routing
hop complexity involved with routing of RLQ/RUQ objects.
Section V presents the simulation model that we utilise for
evaluating the performance of grid resource discovery system.
In section VI, we present various experiments and discuss our
results. Section VII summarises current state of art in resource
discovery system design. We end this paper with summary and
our future vision in Section VIII.

II. GRID RESOURCE BROKERING SERVICE AND QUERIES

A. Grid System Model
A Grid resource brokering service is one that performs:

“scheduling of jobs across grid resources such as computa-
tional clusters, parallel supercomputers, and desktop machines
that belong to different administrative domains”. Brokering in
computational grids is facilitated by specialized grid sched-
ulers/brokers such as the Grid Federation Agent, Nimrod-
G, Condor-G and workflow engine [7]. In general, a broker
service requires two basic types of queries: (i) an RLQ, a
query issued by a broker service to locate resources matching
the user’s application requirements; and (ii) an RUQ, is an
update query sent to a resource discovery service by a grid
site owner about the underlying resource conditions. Since, a
grid resource is identified by more than one attribute, an RLQ
or RUQ is alwaysd-dimensional. Further, both of these queries
can specify different kinds of constraints on the attribute
values. If a query specifies a fixed value for each attribute
then it is referred to as ad-dimensional Point Query(DPQ).
However, in case the query specifies a range of values for
attributes, then it is referred to as ad-dimensional Window
Query (DWQ) or a d-dimensional Range Query(DRQ). In
database literature, a DWQ or an DRQ is also referred to as
a spatial range query.

In this paper, we consider a grid system model that ag-
gregates distributed resource brokering and allocation ser-
vices [17] as part of a generalised resource sharing envi-
ronment, which is referred to as theGrid-Federation. The
grid brokering model aggregates topologically and administra-
tively separated computational grid resources such as clusters,
supercomputers, and desktops. Resource brokering, indexing
and allocation in the Grid-Federation is facilitated by a new
Resource Management System (RMS) known as the Grid
Federation Agent (GFA). More details about general Grid-
Federation brokering, and the resource owner’s local resource
allocation services can be found in the articles [17].



TABLE I

NOTATIONS

Symbol Meaning
n number of Grid Federation Agents (GFAs)/peers in the Grid network.
ci resource access cost at GFAi.
pi number of processors at GFAi.
ui,j ith user fromjth GFA/resource.
Ji,j,k i-th job from thej-th user ofk-th GFA.
ri,j,k an RLQ forJi,j,k .
Ui an RUQ for thei-th GFA/peer/resource.
pi,j,k number of processor required byJi,j,k.
bi,j,k assigned budget toJi,j,k.
di,j,k assigned deadline toJi,j,k.
ρi resource utilisation for resource at GFAi.
xi processor architecture for resource at GFAi.
φi operating system type for resource at GFAi.
λin total incoming RLQ/RUQ arrival rate at a network queuei.
λout outgoing RLQ/RUQ rate at a network queuei.
µ average network queue service rate at a Grid peeri.
µr average query reply rate for index service at GFA/peeri.
dim dimensionality or number of attributes in the Cartesian space.
λin

u incoming RUQ (publish) rate at a application servicei.
λin

l incoming RLQ (subscribe) rate at a application servicei.
λin

a incoming query rate at a Chord routing servicei from the local application
service.

K network queue size .
M random variable denoting number of of messages generated inmapping

an RLQ or RUQ.
T random variable denoting number of disjoint query path undertaken in

mapping an RLQ or RUQ.
λin

index incoming index query rate at a application servicei from its local Chord
routing service.

In general, compute grid resources have two types of
attributes: (i) static attributes–such as the type of operating
system installed, network bandwidth (both Local Area Net-
work (LAN) and Wide Area Network (WAN) interconnection),
processor speed and storage capacity (including physical and
secondary memory); and (ii) dynamic attributes–such as pro-
cessor utilization, physical memory utilization, free secondary
memory size, current usage price and network bandwidth
utilization.

Every GFA in the federation publishes its local resource
information with the decentralised resource discovery system.
An RUQ or a publish object consists of a resource description
Ri, for a clusteri. Refer to Table- I for the notations and
model parameters that we use in rest of the paper.Ri includes
information about the CPU architecture, number of processors,
RAM size, secondary storage size, operating system type, re-
source usage cost etc. In this work,Ri = (pi, xi, µi, øi, ρi, ci)
which includes the number of processors,pi, processor ar-
chitecture,xi, their speed,µi, their utilization, ρi, installed
operating system type,øi, and a costci for using that resource,
configured by the site owner. A site owner chargesci per unit
time or per unit of million instructions (MI) executed, e.g.per
1000 MI. A GFA publishes theRi into distributed resource
discovery system by encapsulating it into an RUQ object,Ui.

A job in the Grid-Federation system is written asJi,j,k, to
represent thei-th job from thej-th user of thek-th resource.
A job specification consists of the number of processors
required,pi,j,k, processor architecture,xi,j,k, the job length,
li,j,k (in terms of instructions), the budget,bi,j,k, the deadline
or maximum delay,di,j,k, and operating system required,øi,jk.
A GFA aggregates these job characteristics includingpi,j,k,
xi,j,k, øi,j,k with a constraint on maximum speed, cost and

resource utilization into an RLQ object,ri,j,k and sends it as
a subscription object to the resource discovery system. More
details about the job model can be found in the paper [17].

B. An Example RUQ and RLQ
Every GFA periodically sends an RUQ to the distributed

resource discovery system. The publish, or resource update
object includes a resource description setRi:

Publish: Total-Processors= 100 && Processor-
Arch=“pentium“ && Processor-Speed= 2 GHz &&
Operating-System = Linux && Utilization= 80 && Access-
Cost=1 Dollar/min.

Note that, the above RUQ is a DPQ. However, an RUQ
can also be compiled as a DRQ depending on a grid site
configuration. As jobs arrive the GFAs (on behalf of the Grid-
Federation users) issue an RLQ to the distributed resource
discovery system to acquire information about active resource
providers in the system. An RLQ has the following semantics:

Subscribe: Total-Processors≥ 70 && Processor-
Arch=“pentium“ && 2 GHz ≤ Processor-Speed≤ 5GHz
&& Operating-System = Solaris && 0.0≤ Utilization ≤ 90
&& 0 Dollar/min ≤ Access-Cost≤ 5 Dollar/min .

III. P2P-BASED SPATIAL PUBLISH/SUBSCRIBE INDEX

In this section, we describe the features of the P2P-based
publish/subscribe index that we utilise for our grid resource
discovery system. Providing background work and details on
this topic is beyond the scope of this paper; here we only give
a high level picture.

In this work, we utilise the spatial publish/subscribe index
proposed in the work [14]. The publish/subscribe index usesa
logical d-dimensional domain space for mapping subscription
and publication objects. The MX-CIF Quad-tree spatial hash-
ing technique [19] is used to hash the logicald-dimensional
index onto a DHT network.

The publish/subscribe index utilises a content-based ap-
proach. It builds ad-dimensional cartesian space based on
the grid resource attributes, where each attribute represents
a single dimension. The logicald-dimensional index assigns
regions of space to the grid peers in the resource discovery
system. If a grid peer is assigned a region (cell) in thed-
dimensional space, then it is responsible for handling all the
activities related to the RLQs and RUQs associated with the
region. More details on this spatial hashing technique can be
found in the article [22].

The cartesian space has a tree structure due to two types of
division process, explained as follows:

A. Minimum division (fmin)
This process divides the cartesian space into multiple index

cells when thed-dimensional publish/subscribe index is first
created. The cells resulted from this process remain con-
stant throughout the life of the publish/subscribe domain and
serve as entry points for subsequent RLQ (subscribe) and
RUQ (publish) processes. The number of cells produced at the
minimum division level is always equal to(fmin)dim, where
dim is dimensionality of the cartesian space. Every grid peer
in the network has basic information about the cartesian space
coordinate values, dimensions and minimum division level.



B. Load division

This process is performed by the cells (atfmin) when their
storage capacities are undermined by heavy RLQ workload.
An overloaded cell subdivides itself to produce multiple child
cells, which collectively undertake the workload. This is a
dynamic process that is repeated by the child cells, if they
also become overloaded. This growing process introduces the
parent-child relationship, where a cell at levelm is always
a child of a particular cell at levelm-1. To minimise the
amount of information that needs to be known by the cells
for correct routing, the parent-child relationship is limited at
one level. It means that every cell only has a direct relationship
with its child cells. Note that, the maximum depth (fmax) of
the distributed index tree is curbed by constraining the load
division process after a certain number of executions. Although
such a constraint provides controllable performance benefits,
it may lead to query load-imbalance in some cases.

C. Query mapping.

This action involves the identification of the cells in the
cartesian space to map an RLQ or RUQ. For mapping RLQs,
the search strategy depends whether it is a DPQ or DRQ. For
a DPQ type RLQ, the mapping is straight forward since every
point is mapped to only one cell in the cartesian space. For
a DRQ type RLQ, mapping is not always singular because
a range look-up can cross more than one cell. To avoid
mapping a range RLQ to all the cells that it crosses (which
can create many unnecessary duplicates) a mapping strategy
based on diagonal hyperplane of the cartesian space is utilised.
This mapping involves feeding an RLQ candidate index cells
as inputs into a mapping function,Fmap. This function re-
turns the IDs of index cells to which given RLQ should be
mapped (refer to Algorithm 1). Spatial hashing is performed
on these IDs (which returns keys for Chord space) to identify
the current grid peers responsible for managing the given keys.
A grid peer service use the index cell(s) currently assignedto
it and a set of known base index cells obtained at initialisation
as the candidate index cells.

Similarly, the RUQ/publish process also involves the iden-
tification of the cell in the cartesian space using the same
algorithm. An RUQ is always associated with an event region
and all cells that fall fully or partially within the event
region will be selected to receive the corresponding RUQ. The
calculation of an event region is also based upon the diagonal
hyperplane of the cartesian space.

Algorithm 1 Subscribing or publishing
1: index cell(s)= Fmap(candidate index cells, subscription

or publication)
2: if index cell is not null then
3: ID = spatialhash(index cell)
4: end if
5: Lookupgrid peerthrough Chord routing network based on

ID, to either store the subscription or match the publication
to stored subscriptions.

D. Query routing.

Using the query mapping policies, the resource discovery
service searches for a cell (from minimum division) in the

cartesian space that overlaps with area sought by an RLQ.
When this cell is found, the service starts the RLQ mapping
process by contacting the peer (in the network) that owns the
cell. When the cell receives an RLQ, two cases are considered:

• In the first case, the cell has undergone a load division
process and it routes the RLQ to the child cell that is
responsible for the region in which the RLQ is mapped.

• In the second case, the cell has not undergone any load
division process. Hence, there will be no further routing
and the cell keeps the RLQ for future event notification.

IV. M ESSAGE COMPLEXITY AND ROUTING HOP ANALYSIS

In this section, the complexity analysis for message and
routing hop is presented. We denote the number of messages
generated in mapping a DRQ by a random variableM .
The distribution ofM is function of the problem parameters
including query size, dimensionality of search space, query
rate, division threshold and data distribution. As the dimen-
sionality increases, the order of the tree increases and each
tree node has more children. If the height of the tree is kept
constant, then increasing the cartesian space dimensions does
not increase the maximum hop length. However, constraining
the maximum height of the tree, may lead to load imbalance
at some Grid peers. Note that, the derivation presented in this
paper assumes that the Chord method is used for delegation
of service messages in the network.

Essentially, a control point at thefmin level of the logical
d-dimensional cartesian space can be reached inΩ(1/2 log2 n)
routing hops with high probability (using the Chord method).
Since each Grid peer atfmin level of the index tree controls
its division with the child cells, therefore every control point
owner can maintain a cache of IP address for its child cells.
The child cells are created as a result of dynamic load
division process. Hence, the number of routing hops required
to delegate an index message beyond thefmin reduces to
O(1). However, under high churn conditions when the grid
peer membership changes, the Chord stabilisation process and
transfer of index keys delays the caching of IPs. During
such periods the cache miss can occur and in this case the
routing may have to be done using the standard Chord method.
Though, we consider grid sites to be well provisioned and
well connected to the Internet. Hence, we do not expect a
highly dynamic behaviour (high join, leave, and failure rate)
in contrast to the traditional P2P file sharing systems.

Based on above discussion, in order to compute the worst
case message lookup and routing complexity one additional
random variableT is considered.T denotes the number of
disjoint query path undertaken in mapping an RLQ or RUQ.
In the worst case, every disjoint query ends up at the maximum
allowed depth of the tree i.e.fmax. Hence every disjoint path
would undertakeΩ(1/2 log2n + fmax − fmin) routing hops
with high probability. Hence, the expected value ofM is given
by:

E[M ] = Ω(E[T ] × (1/2 log2 n + fmax − fmin))

V. SIMULATION MODEL

In this section, we present simulation model for evaluat-
ing the performance of our resource discovery system. The
proposed model is applicable to large networks of the scale
of the Internet. The simulation model considers the message



queuing and processing delays at the intermediate peers in the
network. In a centralised system, the index look-up latency
is essentially zero, assuming the computation delay due to
processing of local indices is negligible. For the peer-to-
peer system, assuming negligible computation delay for index
processing logic at intermediate peers, the time to complete
an RLQ or RUQ is time for the query to reach all the
cells (including both parent and child cells) that intersect with
the query region.
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In our message queueing model, a grid peer node (through
its Chord routing service) is connected to an outgoing message
queue and an incoming link from the Internet (as shown in
Fig. 2). The network messages delivered through the incoming
link (effectively coming from other grid peers in the overlay)
are processed as soon as they arrive. Further, the Chord routing
service receives messages from the local publish/subscribe
index service. Similarly, these messages are processed as soon
as they arrive at the Chord routing service. After processing,
Chord routing service queues the message in the local outgoing
queue. Basically, this queue models the network latencies that
a message encounters as it is transferred from one Chord
routing service to another on the overlay. Once a message
leaves an outgoing queue it is directly delivered to a Chord
routing service through the incoming link. The distributions for
the delays (including queueing and processing) encountered in
an outgoing queue are given by the M/M/1/K [4] queue steady
state probabilities.

Our simulation model considers an interconnection network
of n grid peers whose overlay topology can be considered as
a graph in which each peer maintains connection to alog2 n
other grid peers (i.e. the Chord overlay graph). As shown in
Fig. 2, every grid peer is connected to a broker service that
initiates lookup and update queries on behalf of the users and
site owner. We denote the rates for RLQ and RUQ byλin

l

andλin
u respectively. The queries are directly sent to the local

index service which first processes them and then forwards
them to the local Chord routing service. Although, we consider
a message queue for the index service but we do not take
into account the queuing and processing delays as it is in
microseconds. Index service also receives messages from the
Chord routing service at a rateλin

index. The index messages
include the RLQs and RUQs that map to the control area

currently owned by the grid peer, and the notification messages
arriving from the the network.

VI. EXPERIMENTAL EVALUATION

In this section, we perform simulations to capture the
interplay among various grid resource query and P2P network
parameters and their contribution to the overall performance
of grid resource discovery system.

A. Experimental setup

We start by describing the test environment setup.
1) Broker network and index simulation::Our simulation

infrastructure was modeled by combining two discrete event
simulators namelyGridSim [5], andPlanetSim[11]. GridSim
offers a concrete base framework for simulation of different
kinds of heterogeneous resources, services and application
types. The core of GridSim is based on theSimJava[12],
a discrete event simulation package.

PlanetSim is an event-based overlay network simulator.
It can simulate both unstructured and structured overlays.
However, in this work we utilise the services of the Chord
implementation of the PlanetSim. To enable event time syn-
chronisation between PlanetSim and GridSim, we modified
the basic PlanetSim classes includingNode, Network and
EndPoint to extend the coreGridSim class. We model the
resource brokering service (i.e. a GFA inside the GridSim)
that initiates RLQs and RUQs on behalf of users and resource
providers. Every GFA connects to a local publish/subscribe
index service which runs on a Chord node in the PlanetSim.
Every instance of the index service in the network is responsi-
ble for managing and indexing the logicald-dimensional data.
Our simulation considers message queueing delay, processing
delay, and packet loss at the intermediate overlay Chord nodes.

2) Simulation configuration:This section explains the
distributions for simulation parameters.

Network configuration: The experiments were conducted
using a32 bit Chord overlay i.e. 32 bit node and key ids. The
network size,n, was fixed at128 broker nodes/grid sites for
Exp-1. In Exp-2, the system size is scaled from100 to 500
in steps of100. The network queue message processing rate,
µ, at a grid peer was fixed at 500 messages per second. We
vary the value for network message queue size,K, as 102,
103, and104 in Exp-1. While in Exp-2, we fixedK to 104.
In Exp-2 we basically simulate a large message queue size
such that no message is dropped by the resource discovery
system.

Query rate configuration: We vary the RLQ rate,λin
l ,

and RUQ rate,λin
u , from 1 to 100 queries per simulation

second. At every step the RLQ rate is always equal to the
RUQ rate. In Exp-2, the RLQ and RUQ rate are fixed at1
query per second for different system sizes.

Publish/subscribe index configuration: The minimum
division, fmin of the logicald-dimensional publish/subscribe
index was set to3, while the maximum height of the index
tree, fmax, was also limited to3. This means we basically
do not allow the partitioning of index space beyond thefmin

level. In this case, a cell at a minimum division level does
not undergo any further division. Hence, no RLQ/RUQ object
is stored beyond thefmin level. The index space resembles



a grid-like structure where each index cell is randomly
hashed to a grid peer based on its control point value. The
publish/subscribe cartesian space had6 dimensions including
resource access cost,ci, processor speed,mi, processor
utilisation, ρi, processor architecture,xi, and operating
system type,φi. Hence, this configuration resulted to729 (36)
grid index cells at thefmin level. On an average,7 index
cells are hashed to a grid peer in a network comprising of
128 grid sites.

Indexed data distribution: We generated an uniform
resource type distribution using the resource configuration
obtained from the Top500 Supercomputer list [2]. The list
included 22 distinct processor types, so in our simulated
grid resource index space, the probability of occurrence of
a particular processor type is1/22. We utilised the resource
attributes including processor architecture, its number,its
speed, and installed operating system from the Supercomputer
list. The values forci andρi were fabricated. The values for
ci and ρi were uniformly distributed over the interval[0, 10]
and[5, 80] respectively. Every RLQ was constrained such that
it always subscribed for the operating system type, processor
architecture, maximum number of processors required which
was also available on the local site. An RLQ is thrashed from
the system, once it matches with an RUQ. Following this,
a match event notification is sent to the concerned broker
service. A load of 200 RLQ and 200 RUQ objects is injected
into the resource discovery system by a broker service over
the simulation period during Exp-1. While in case of Exp-2
we configured a broker service to inject only 50 RLQ and 50
RUQ objects.

B. Effect of query rate

The first set of experiments measured the RLQ/RUQ query
performance with an increasing incoming query rate across
the grid peers in the broker network. We started from a
RLQ/RUQ rate of1 query per second and increased it till100
queries per second. We configured the other input parameters
as followingn=128, fmin=3, fmax = 3, µ=500, and dim=6.
All the broker nodes join the system at the same time, stabilise
their finger tables and initialize their logical index space.
Over the simulation period, we do not consider a grid peer
join or leave activity. We identified six metrics to measure
the RLQ/RUQ query performance including latency,% of
successful RLQs, response time, routing hops, total number
of messages generated for mapping RLQs/RUQs, and the total
number of messages in the system over the simulation period.
Measurements for parameters including latency, response time,
routing hops is averaged over all the broker service in the
system. While the measurements for the remaining parameters
are computed by summing up their values across the broker
services.

Fig. 3 and Fig. 4 show the plots for these parameters with
an increasing query rate across the system. Fig. 3(a) shows
results for the average RLQs/RUQs latency, Fig. 3(b) shows
results for the% of successful RLQs and Fig. 3(c) shows the
average response time for the RLQs across the system. These
measurements were conducted for different values of network
message buffer capacity i.e.K. Results show that for lower
values ofK (i.e. 102, 104) network drops significant number
of messages (refer to Fig. 4(a)). Fig. 4(a) shows total number
of messages generated in the system over the simulation

period for different query rates and message queue sizes.
Hence, for these message queue sizes successful RLQs/RUQs
encounter compratively lower traffic hence leading to almost
same latency (refer to Fig. 3(a)) and response time (refer
to Fig. 3(c)). But the downside of this is that at higher
rates significantly larger number RLQs are dropped by the
system (refer to Fig. 3(b)). However, this is not true for the
case when the network has higher buffering capability (i.e.
K = 104), in this case the messages encounter significantly
more traffic thus worsening the queuing and processing delays.
Second, with a larger message queue size system experiences
much higher query success rates (refer to Fig. 3(b)).

Our results state that the average number of routing hops
for RLQs and RUQs remain constant irrespective of the query
rate in the system (refer to Fig. 4(b)). The main reason for
this is the same value for both the index tree depth parameters
i.e. fmin=fmax. Thus, we do not allow the partition of index
cell or load distribution between grid peers beyondfmin.
With different query rates the height of the distributed index
tree remained constant, hence leading to a similar number of
routing hops. Fig. 4(c) shows the results for the total number of
messages generated in the system for all RLQs/RUQs. As ex-
pected the number of messages generated for the RLQs/RUQs
remained constant since the data distribution was same for all
query rates.

Thus it is evident that at higher query rates, the messages
experience greater queuing and processing delays. This can
be directly observed in the RLQ/RUQ latencies which have
significantly larger values at moderately higher query rates.
Further, resource discovery system performance is directly
governed by the underlying network’s message processing
capability.

C. Effect of system size

In our second experiment, we examine the resource discov-
ery system’s scalability in terms of the number of participating
Grid sites. We used the same resource distribution as before,
but scaled it such that the probability of occurrences of
particular resource types remained constant. We started from
a system size of100 and increased it till500. We fixed the
RLQ/RUQ rate to1 query per second across the grid peers in
the broker network. We configured the other input parameters
as followingfmin=3, fmax = 3, µ=500,K=104 and dim=6.
All the grid peers join the system at the same time, stabilise
their finger tables and initialize their logical index space. Over
the simulation period, we do not consider a grid peer join or
leave activity.

Fig. 5(a) shows the growth of the RLQ/RUQ latency as
a function of increasing Grid network size. As expected,
the query latencies do not increase significantly, because the
growth rate of latency is a logarithmic function of the Grid
network sizen. That is on average an RLQ or RUQ encounters
Ω(1/2 log2 n) grid peers before being finally mapped. Simi-
larly, in Fig. 5(b) we observed that the number of routing hops
undertaken RLQ/RUQ increased slightly with the system size.
At the system size of100, the RLQs/RUQs undertook4.12
routing hops on an average. For a system size of500, the
average query path increased to5.39 hops i.e. increased by
about30%.

Fig. 5(c) shows the results for the number of messages
generated for RLQs/RUQs and Fig. 6 shows the results for
the total number of messages generated as the system scaled
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(a) query rate (RLQ + RUQ) (per sec) vs.
lookup latency (secs)
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(b) query rate (RLQ + RUQ) (per sec) vs% of
successful RLQs
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(c) query rate (RLQ + RUQ) (per sec) vs
response time (secs)

Fig. 3. Simulation: Effect of query rate
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(a) query rate (RLQ + RUQ) (per sec) vs
message count

 K [rlq] = 100  

 K [r u q ] = 100  

 K [r l q] = 1000  

 K [r u q]= 1000  

 K [r l q] = 10000  

 K [r u q] = 10000  

 2

 4

 20  40  60  80  100  120  140  160  180  200

  q u e r y   r a t e ( R L Q + R U Q )   ( p e r   s e c ) 

 r
 o

 u
 t
 i
 n

 g
  
 h

 o
 p

 s
 

(b) query rate (RLQ + RUQ) (per sec) vs.
routing hops
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(c) query rate (RLQ + RUQ) (per sec) vs.
message count

Fig. 4. Simulation: Effect of query rate
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(a) system size vs. lookup latency (secs)
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(b) system size vs. routing hops
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(c) system size vs. message count

Fig. 5. Simulation: Effect of system size

from 100 to 500 sites. As expected the number of messages
generated for RLQs/RUQs increased with system size. A
system compromising of100 Grid sites produced109007 RUQ
messages, which increased to336579.4 messages when the
system scaled to500 grid sites (refer to Fig.5(c) ). We observed
a similar growth for RLQ messages as well with an increase
in the system size. The total messages generated (including
RLQ and RUQ) increased significantly as the system scaled
from 100 to 500 sites (refer to Fig. 6). Further, in this case

we observed575% increase in the total number of messages
generated in the system.

We conclude that contrary to what one may expect, the
grid system size does not have a significant impact on the
performance of the resource discovery system, in particular
the query latency and the number of message routing hops.

VII. R ELATED WORK

The approach [13] involved a drawback of generating a large
volume of network messages due to flooding. This system
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Fig. 6. system size vs message count

can not guarantee to find the desired resource even though it
exists in the network due Time to Live (TTL) field associated
with query messages. SWORD [16] system creates a separate
search segment for each attribute and hence the query routing
needs to be augmented with external techniques for resolving
d-dimensional queries. In contrast, our resource discovery
system utilises a spatial publish/subscribe index that hashes
a d-dimensional index space to a1-dimensional key space of
Chord overlay. The publish/subscribe index does not require
any additional query resolution and load-balancing heuristic.
JXTA Search [23] does not apply any index for organising the
distributed data. A cross-domain search operation in JXTA
involves a query broadcast to all the advertisement groups
using the query group membership information. The OurGrid
system utilises JXTA for organising its brokering service.In
contrast, our resource discovery is based on a deterministic
routing substrate Chord. Our system does not require a broad-
cast primitive for data discovery in a grid network, hence is
more efficient in terms of number of messages generated in the
system. Squid [20] system applies Hilbert space filling curves
for mapping ad-dimensional index space to a1-dimensional
key space. Squid maps these contiguousd-dimensional indices
to the overlay key space. The approach has issues with
index load balance which is fixed using external technique.
In contrast, our proposed resource discovery system utilises a
spatial publish/subscribe index that does not need any external
load-balancing.

VIII. S UMMARY AND FUTURE WORK

In this paper, we presented a decentralised grid resource
discovery system. It utilises a peer-to-peer spatial pub-
lish/subscribe index for organisingd-dimensional grid resource
data. We analysed experimentally how the query arrival rate
and grid system size affects the system performance.

Currently, we are building the proposed resource discovery
system using the FreePastry API. We intend to use the resource
discovery system for organising our Alchemi-based desktop
grid system. Alchemi is a .Net based implementation that
enables coupling of desktop machines running flavors of
the Windows operating systems. In future work, we plan to
evaluate other spatial indices including Space Filling Curves,
MX-CIF Quad-Tree, and R-Tree in organising the resource
discovery system. Further, we also intend to develop a grid
application scheduling coordination model based on a spatial
publish/subscribe index.
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