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ABSTRACT 

The financial services industry today produces and consumes huge 

amounts of data and the processes involved in analysing these 

data are equally huge especially in terms of their complexity. The 

need to run these processes and analyse the data in time and get 

meaningful results can be met only up to a certain extent, by 

today’s computer systems. Most service providers are looking to 

increase efficiency and quality of their service offerings by 

stacking up more hardware and employing better algorithms for 

data processing. However, there is a limit to the gains achieved 

using such an approach. One viable alternative would be to use 

emerging disruptive technologies such as the Grid. Grid 

computing and its application to various domains have been 

actively studied by many groups for more than a decade now. In 

this paper we explore the use of the Grid in the financial services 

domain; an area which we believe has not been adequately looked 

into. 

1. INTRODUCTION 

Investments in stocks almost always involve a risk-reward trade 

off. To get higher returns on investment, an investor must be 

prepared to take on a higher level of risk. Investors aim to 

optimise their investment portfolio in order to minimise the risk 

and maximise the returns. However, there are many variables 

involved in portfolio optimization and therefore, it is a very 

compute-intensive process. In this paper we explore the use of 

Grid technology to implement a distributed version of a portfolio 

optimization method, based on Value-at-Risk (VaR) estimation by 

means of Monte Carlo simulation. 

The computational issues of common finance industry problems, 

such as option pricing, portfolio optimization, risk analysis, etc. 

requires the use of high-performance computing systems and 

algorithms. Traditional solutions to these problems involve the 

utilization of parallel supercomputers, which exhibits several 

drawbacks: high cost of the systems, highly qualified personnel 

for administration and maintenance, difficult programming 

environments (distributed memory or message passing), etc.  

In this context, Grid computing [8] is emerging as a promising 

technology for the next generation of high-performance 

computing solutions. This technology is based on the efficient 

sharing and cooperation of heterogeneous, geographically 

distributed resources, like CPUs, clusters, multiprocessors, storage 

devices, databases and scientific instruments. Computational 

Grids have been successfully used for solving grand challenge 

problems in science and engineering. However, the use of this 

technology for computationally demanding applications in 

economics and finance has not been deeply explored.  

A simple scenario for using the Grid in financial markets is shown 

in Figure 1. As more and more data is produced by stock markets, 

this data is fed into the Grid, and analysed using the various Grid 

resources. A Grid resource broker acts as an access point to the 

Grid for various investors who wish to carry out portfolio analysis 

to help them optimize their financial portfolio, make better 

investment decisions and eventually reap the benefits. 

The rest of the paper is organized as follows. In Section 2 

describes the portfolio optimization method and the VaR 

application. Section 3 presents a brief outline of some efforts to 

apply distributed computing to finance problems and also related 

work in the area of applied Grid computing in other fields such as 

science. Section 4 talks about some background Grid technologies 

that were used in our experiments. Section 5 deals with how the 

“VaR” application was Grid-enabled. In section 6, we describe the 

experimental setup we used for evaluating the benefits of Grid-

enabling the optimization process. In section 7, we present the 

results of the experiments conducted. Finally, section 8 concludes 

with a reflection of the whole experiment and the lessons learnt 

therein. 

 

 

Figure 1. Simple scenario illustrating the use of the Grid in financial 

markets for portfolio analysis. 
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2. APPLICATION DESCRIPTION 

2.1 Value-at-Risk based Portfolio 

Optimization 
 

The aim of this section is to describe the VaR application, identify 

its computational complexity, and illustrate how it can benefit 

from being Grid-enabled.  

Value-at-Risk (VaR) [5] is an important measure of the exposure 

of a given portfolio to different kind of risks inherent in financial 

environments, which can be used for portfolio optimization 

purposes.  

Given a portfolio P composed by k assets S = {S1, S2, …., Sk}, 

and w = {w1, w2, …, wk} the relative weights or positions of the 

assets in the portfolio, the price of the portfolio at time t is given 

by: 
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The VaR of the portfolio can be defined as the maximum expected 

loss over a holding period, ∆t, and at a given level of confidence 

c, i.e.,  

cVaRtPob −=<∆∆ 1})({Pr  

where )()()( tPttPtP −∆+=∆∆  is the change in the value of 

the portfolio over the time period ∆t. 

In this context, the portfolio optimization problem can be stated 

either in terms of wealth maximization or in terms of risk 

minimization. If we consider the wealth maximization criteria, the 

optimization problem is finding the portfolio composition vector 

w  which maximizes the expected portfolio yield )( tP ∆∆ , 

subject to a given constraint on VaR: 
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On the other hand, if we consider the risk minimization criteria, 

the optimization problem is finding the portfolio composition 

vector w  which minimizes the expected portfolio VaR, subject 

to a given constraint on yield: 
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Several methods for computing VaR have been proposed: 

- Parametric models, like asset-normal VaR, delta-normal VaR, or 

delta-gamma-normal VaR. 

- Non-parametric models, like historical simulation or Monte 

Carlo (MC) simulation. 

The MC approach is based on simulating the changes in the 

values of the portfolio assets, and revaluating the entire portfolio 

for each simulation experiment. The main advantage of this 

method is its theoretical flexibility, because it is not restricted to a 

given risk term distribution and the grade of exactness can be 

improved by increasing the number of simulations. 

For MC simulation purposes, the evolution of a single asset, Si(t), 

can be modelled as a random walk following a Geometric 

Brownian Motion: 

)()()()( tdWtSdttStSd σµ +=  

where dWt is a Wiener process, µ  is the instantaneous drift and 

σ  is the volatility of the asset. 

Assuming a lognormal distribution and using the Itô’s Lemma, the 

expression (2) can be transformed into an Arithmetic Brownian 

Motion: 

)()2/())((ln 2 tdWdttSd σσµ +−=  

Integrating the previous expression over a finite time interval, tδ , 

we can reach an approximated solution for estimating the price 

evolution of S(t): 
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where � is a standard normal random variable.  

For a portfolio composed by k assets, S1(t), S2(t), …, Sk(t), the 

portfolio value evolution can be modelled as k coupled price 

paths: 
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where Zi are k correlated random variables with covariance 
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To transform a vector of k uncorrelated normally distributed 

random variables η =(�1, �2, …, �k) into a vector of k correlated 

random variables Z =(Z1, Z2, …, Zk), we can use the Cholesky 

decomposition of the covariance matrix (R): 

R = AA
T 

where  
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 is assumed to be symmetric 

and positive definite,  A is a lower triangular matrix  

and AT is the transpose of A. 
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Then, applying the matrix A to η generates the new correlated 

random variables Z  

Z = A η  

To simulate an individual portfolio price path for a given holding 

period ∆t, using a m-step simulation path, it is necessary to 

evaluate the price path of all the n assets in the portfolio at each 

time interval:  

Si(t+δt), Si(t+2δt),…, Si(t+∆t)=Si(t+mδt), ∀ i=1, 2, …, k, where 

δt is the basic simulation time-step, δt =∆t/m.  

For each simulation experiment, j, the portfolio value at target 

horizon is 
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where wi is the relative weight of the asset Si in the portfolio, and 

N is the overall number of simulations. 

The changes in the value of the portfolio are 

NjtPttPtP jj ,...,1)()()( =∀−∆+=∆∆  

The portfolio VaR can be measured from the distribution of the N 

changes in the portfolio value at the target horizon, taking the (1-

c)-percentile of this distribution, where c is the level of 

confidence. 

The problem of portfolio optimization problem is a complex 

computational consuming problem, since this MC simulation must 

be achieved for different portfolio compositions vector, w , in 

order to find that one which maximizes yield or minimizes risk. 

There are several techniques for limiting the solution space, and 

shortening the overall simulation time, although many times they 

fall on local minima solutions.  

So, in practice, it could be necessary to simulate different weight 

compositions (several thousand scenarios), more complex 

portfolios (several hundred assets), more price paths (several 

millions), or longer holding periods. However, increase in the 

number of parameters also increases the simulation time 

significantly and running several scenarios could potentially take 

several hours or even days on a single computer. 

Thus, the long turnaround time of the simulations motivates the 

use of High-Performance Computing (HPC) resources within the 

domain of portfolio analysis. However, the variable nature of such 

workloads makes it difficult to provision the right amount of 

resources for running them. Therefore, on demand allocation of 

resources is required to handle expansions and contractions in the 

workload.  

3. RELATED WORK 

In recent times, the promise of Grid computing has led researchers 

and developers to apply the technology on different scales to a 

wide range of domains such as Bio-informatics [11], High energy 

Physics [14], Neurosciences [4], Language Processing [12], 

Astronomy [18] and Earth Sciences [2]. A lot of groups that have 

made efforts towards scaling up their applications from Clusters to 

Grids come from the scientific community. In the commercial 

world, the area of financial services can benefit hugely from 

distributed computing. Some companies in the finance business 

have already reaped good benefits from distributing their analysis 

and other resource intensive applications across enterprise clusters 

[15][16][17].  

Grids are the next logical step beyond clusters, and provide a 

better solution for large-scale compute-and-data intensive 

applications, spanning across multiple organisations with different 

policies and varying types of resources. The sharing of such 

heterogeneous resources, in a service-oriented market paradigm 

will only benefit all involved parties, due to a vastly higher 

potential of the Grid.  

One of the many different approaches to achieving performance 

gains is to actually rewrite an application using Message Passing 

Interface (MPI) or similar paradigms to distribute the work across 

multiple processors. In the context of computational economics 

and finance, one such work is described in [1]. However, this 

involves a lot of effort and time and the application cannot adapt 

itself well to changing conditions as are found in Grids. The 

approach presented in this paper of composing the application as a 

bag of independent tasks and letting a resource broker execute 

them not only eliminates the need to rewrite applications but also 

offloads the parallelization logic on to the broker thus isolating 

the application developer from the need to factor in the 

heterogeneous Grid environments. Also, the resource broker is 

capable of allocating resources depending on varying application 

requirements thus enhancing scalability and adaptability of the 

process. 

4. BACKGROUND GRID TECHNOLOGIES 

The computational Grid is enabled by the use of software services 

known as Grid-middleware. These services make possible secure 

and uniform access to heterogeneous resources to execute 

applications. There are many technology options, today for 

running applications on remote computers that are part of a Grid. 

These include low-level middleware such as Globus [7], 

UNICORE (UNiform Interface to COmputing REsources) [19] 

and Alchemi [13] and user-level middleware or brokers which 

perform aggregation of Grid services and meta-scheduling, such 

as the Gridbus broker [14], Nimrod [3], Condor [10] and 

GRUBER (Grid Resource Usage SLA Broker) [6] etc. 

For the purpose of Grid-enabling portfolio optimization, our 

requirements included a system which automates or makes it easy 

to conduct the process of distributing the application, deploying 

and running it on Grid nodes, monitor the progress, handle 

failures and collate the results of execution. Globus is a good 

choice of middleware as it is one of the most widely used low-

level Grid middleware systems today in both  research and 

commercial areas and has wide community support and an active 

development group. The Gridbus broker, a user-level middleware 

that supports the Globus middleware, was chosen for this 

application as it provides simple mechanisms for rapidly 

formulating the application requirements and meets the 

requirements mentioned previously.  A brief description of Globus 

and the Gridbus broker follows. 

4.1 The Globus Toolkit 
The open source Globus Toolkit is a set of software services and 

libraries for resource monitoring, discovery, and management, 
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plus security and file management. It facilitates construction of 

computational Grids and Grid-based applications, across 

corporate, institutional and geographic boundaries. The toolkit is 

developed and maintained by the Globus Alliance, which includes 

the Argonne National Laboratory, USA and others. It allows 

secure access to remote computers via GSI (Grid-security 

infrastructure) and makes the node a part of the Grid,  while 

preserving the autonomy of the node by using locally set policies 

to decide who can access the services offered and when. The 

toolkit includes software for security, information infrastructure, 

resource management, data management, communication, fault 

detection, and portability. It is packaged as a set of components 

that can be used either independently or together to develop 

applications. 

4.2 The Gridbus Broker 
The Gridbus service broker is a flexible open-source platform-

independent resource brokering system, implemented in Java, 

which provides brokering services for distributed execution of 

applications on various low-level middleware systems including 

Globus, UNICORE, Alchemi, XGrid [22], and queuing systems 

such as PBS (Portable Batch System) [20], and SGE (Sun Grid 

Engine) [21]. It hides the complexity of the Grid by translating a 

bag-of-independent-tasks or parameter-sweep type applications 

into jobs that can be scheduled to be executed on resources,  

monitoring those jobs and collating the results of the execution 

when finished. The broker acts as a user-agent and makes 

scheduling decisions on where to place the jobs on the Grid 

depending on the computational resources characteristics (such as 

availability, capability, and cost), the users’ quality of service 

requirements such as the deadline and budget, and the proximity 

of the required data or its replicas to the computational resources. 

5. GRID ENABLING THE VaR 

OPTIMIZATION APPLICATION 

The VaR application is written in the C language, and is a simple 

program that is not directly aware of the Grid by itself, that is it 

was not designed to run as a distributed application.  

A single run of the VaR application computes the value-at-risk for 

a portfolio of k assets, by simulating N price-paths, of the stock 

movements over a holding period, �t, using a basic time-step of 

�t. The k assets are defined in a data file, volat.dat, with their 

volatility and drift information. The cholesky.dat input data file 

contains the Cholesky portfolio composition matrix w . The input 

parameters N, �t, and �t are contained in another data file, 

input.dat. The output it produces is a frequency distribution, 

which is used to get a measure of the portfolio VaR by taking the 

(1-c) percentile of the distribution, where c is the level of 

confidence. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<xpml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="XMLInputSchema.xsd"> 

 <parameter name="scenario" type="integer" domain="range"> 

  <range from="0" to="99" type="step" interval="1"/> 

 </parameter> 

 <requirement type="node"> 

  <copy> 

   <source location="local" file="cholesky.dat" /> 

   <destination location="node" file="cholesky.dat" /> 

  </copy> 

  <copy> 

   <source location="local" file="volat.dat" /> 

   <destination location="node" file="volat.dat" /> 

  </copy> 

  <copy> 

   <source location="local" file="input.dat"/> 

   <destination location="node" file="input.dat"/> 

  </copy> 

<copy> 

   <source location="local" file="var" /> 

   <destination location="node" file="var" /> 

  </copy> 

 </requirement> 

 <task type="main"> 

  <copy> 

   <source location="local" file="positions_$scenario.dat"/> 

   <destination location="node" file="positions_$scenario.dat"/> 

  </copy> 

  <execute location="node"> 

   <command value="./var"/> 

   <arg value="$scenario"/> 

  </execute> 

  <copy> 

   <source location="node" file="output_$scenario"/> 

   <destination location="local" file="output_$scenario"/> 

  </copy> 

  <copy> 

   <source location="node" file="var_$scenario"/> 

   <destination location="local" file="var_$scenario"/> 

  </copy> 

 </task> 

</xpml> 

Figure 2. Application Description in XML 
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Table 1. Description of experiments 

 
No. of 

Experiments 
Description 

Set 1 3 
Computes VaR on a single computer, running a 
single scenario with different values for the �t 
(holding period) parameter. 

Set 2 4 
Evaluates application performance in terms of 
speed, with fixed job-size (i.e using same 
parameters) and varying number of Grid nodes. 

Set 3 3 

Evaluates application performance with varying 
job size and same set of Grid nodes by 
computing VaR on a Grid of 5 nodes, running 
100 different scenarios with different values for 
the �t (holding period), and enables 
comparison the outputs with those from 
experiment  Set 1. 

 

Grid enabling the VaR application involves running the same 

application over multiple data sets or input parameters, for 

simulating different scenarios of stock movements. As such, this 

application fits nicely into the parameter-sweep paradigm and is 

embarrassingly parallel as each run of VaR is independent of 

another run. 

To run the application on the Grid using the Gridbus broker, we 

described the application using the declarative xml-based 

eXtensible Parametric Modelling Language (XPML) provided by 

the broker, as it offered an easy way to vary the parameters and re-

run the application. XPML allows us to specify the inputs, 

executable files and outputs generated by the VaR application. 

The XPML file shown in Figure 2 describes the application to be 

consisting of a parameter i ranging from 0 to 99 (i.e. 100 scenarios 

for computing VaR). The task performed by each job in the 

application is described by a sequence of commands which copy 

files and execute the VaR program.  More details about the 

specific experiment runs conducted are given in the next section. 

6. EXPERIMENTS AND EVALUATION 

To evaluate the benefits the Grid brings to this finance 

application, we conducted three sets of experiments as shown in 

Table 1. For our experiments we varied the input parameters �t 

(holding period) and �t (time-step) and used k = 76 assets and N = 

500000 price-paths in which the stocks could vary. The assets 

were derived from a real investment product and are companies 

trading on the Madrid Stock Exchange in Spain. 

The first set involved running one scenario on one computer, 

varying the holding period parameter (�t), with number of 

simulations N = 500000, number of assets k=76, and a basic time 

step of �t =1 day. These aimed to investigate the effect of varying 

input parameters on the output VaR computed 

Table 2(a) shows the input parameters of the three experiments 

from the first set. These simulations were run on a single 

computer, with Intel P4 processor at 2.5 GHz, 512MB RAM, and 

Linux OS.  

Table 2 (a) Parameters for simulation experiments 1-3 (Set 1) 

Set 1 
No. of 

Assets (k) 
No. of 

Scenarios 
No. of 

Simulations (N) 

Holding Period 

(∆∆∆∆t) 

Basic time step 

(δδδδt) 

No. of time steps 

(m) = (∆∆∆∆t) / (δδδδt) 

Exper. 1 76 1 500,000 1 day 1 day 1 

Exper. 2 76 1 500,000 5 days 1 day 5 

Exper. 3 76 1 500,000 10 days 1 day 10 

[Note: Total Investment (USD) = 160.8 million] 

 

Table 2 (b) Grid application parameters used for the performance experiment with varying number of grid nodes (Set 2) 

Set 2 
No. of 

Assets (k) 
No. of  

Scenarios 
No. of 

Simulations (N) 

Holding Period 

(∆∆∆∆t) 

Basic time step 

(δδδδt) 

No. of time 
steps 

(m) = (∆∆∆∆t)  / (δδδδt) 

No. of 
Grid nodes 

Exper. 1 76 100 100,000 1 day 1 day 1 1 

Exper. 2 76 100 100,000 1 day 1 day 1 2 

Exper. 3 76 100 100,000 1 day 1 day 1 3 

Exper. 4 76 100 100,000 1 day 1 day 1 4 

[Note: Total Investment (USD) = 160.8 million] 

 

Table 2 (c) Parameters for simulation experiments 1-3 (Set 3) 

Set 3 
No. of 

Assets (k) 
No. of  

Scenarios 
No. of 

Simulations (N) 

Holding Period 

(∆∆∆∆t) 

Basic time step 

(δδδδt) 

No. of time 
steps 

(m) = (∆∆∆∆t) / (δδδδt) 

No. of 
Grid nodes 

Exper. 1 76 100 500,000 1 day 1 day 1 5 

Exper. 2 76 100 500,000 5 days 1 day 5 5 

Exper. 3 76 100 500,000 10 days 1 day 10 5 

[Note: Total Investment (USD) = 160.8 million] 
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The second set of experiments conducted aimed to simply confirm 

that Grid-enabling the VaR application was useful in terms of 

application performance. Four experiments with varying number 

of Grid-nodes were done, keeping the application parameters k, N, 

�t, and �t constant. The parameter values used in this set of 

experiments is shown in Table 2(b).  

Finally, a third set of experiments, similar to those in the first was 

conducted on a Grid of 5 nodes. These involved running 100 

different scenarios on Grid nodes by varying the input parameter – 

�t (holding period). In addition to serve as an indication of 

application performance with varying simulation parameters, these 

tests were also useful to get outputs, from distributing the VaR 

application on the Grid, which could be compared with the 

outputs obtained running one scenario on a single computer (set 

1). The application parameters used for set 3 of experiments is 

shown in Table 2(c). 

For the Grid experiments (set 2 and set 3), the Belle analysis test 

bed data Grid - which has resources distributed around Australia 

including Melbourne, Adelaide and Canberra - was used. These 

systems are interconnected via GrangeNet (Grid and Next 

generation Network) which is a multi-gigabit network supporting 

Grid and advanced communication services across Australia.  

The broker was deployed on a PC at the GRIDS lab 

(bart.cs.mu.oz.au), at the University of Melbourne, and the agents 

were dispatched to other resources at runtime by the Gridbus 

broker. The performance tests aimed to determine the effect of 

increasing number of Grid nodes for a fixed job size and number 

of jobs. The test bed resources are shown in Table 3. 

7. RESULTS 

Figures 3 (a), (b), and (c) plot the frequency distribution graphs 

resulting from the simulations of the Set 1 experiments 1, 2, and 3 

respectively, and Table 4 summarizes some VaR estimation values 

for different levels of confidence c, obtained from the frequency 

graphs. For example, if we hold the portfolio investment for 1 day 

the probability of losing more than 5 million dollars is lower than 

1% (c=99%). For 5 days, the probability of losing more than 10 

million dollars is around 1% (c�99%), however if we hold the 

portfolio investment for 10 days, the probability of losing more 

than 10 million dollars is 10% (c�90%). 

The results for the second set of experiments are shown in Figure 

5. This shows the performance of distributing the simulation over 

different Grid nodes. The main parameters of this simulation are 

summarized in Table 5. In this case we have simulated 100 

different scenarios over a holding period (�t) of 1 day, with a 

basic time step (�t) of 1 day, and 500,000 price paths per scenario 

(N). As we can see, the simulation of 100 scenarios on a single 

computer takes around 67 minutes. If we distribute these 

simulations over different Grid nodes, we can obtain a significant 

time reduction, for example using 4 computing nodes, the 

resulting simulation time is halved (33 min.). 

The results for experiment set 3, shown in Figure 4 (a)-(c), plot 

the frequency distribution graphs resulting from the simulations of 

the set 3 experiments 1-3 respectively. These results are similar to 

those in set 1, as the application input parameters were varied in 

the same way, except that the experiment was conducted over 100 

scenarios in each case, over a Grid. Table 6 summarizes the VaR 

estimation values for different levels of confidence (c), obtained 

from the frequency graphs obtained from results of experiments 1-

3 of set 3 (running the VaR on the Grid). The values that are 

produced from running the VaR application on the Grid testbed 

for 100 scenarios are given in Table 6. This was done by 

computing 100 different frequency distributions (one for each 

scenario), and obtaining 100 different VaR values (for a given 

level of confidence). Then, the lowest (absolute) value of VaR is 

selected as the scenario with this value is likely to be the best one, 

because the loss of money of the investment is likely to be lower. 

Comparing the values in Table 4 (for 1 scenario) and Table 6, we 

see that those in the latter are lower than the former. While the 

values are still probabilistic, they are better estimates of the VaR 

as more scenarios were considered in the evaluation.  

Table 4. VaR values for the three simulation experiments from Set 1 

Set 1 
VaR (USD) 
c=90.0% 

VaR (USD) 
c=95.0% 

VaR (USD) 
c=97.0% 

VaR (USD) 
c=99% 

Experiment 1 2.8 million 3.4 million 3.8 million 4.4 million 

Experiment 2 6.7 million 8.2 million 9.1 million 10.8 million 

Experiment 3 10.1 million 12.1 million 13.4 million 15.8 million 

 

Table 5. Application performance results (Set 2) 

Set 2 
No. of 

Simulations 
(N) 

Holding 
Period 

(∆∆∆∆t) 

Basic 
time 
step 

(δδδδt) 

No. of 
Grid 

nodes 

Time 
taken 

(minutes) 

Exper. 1 500,000 1 day 1 day 1 67 

Exper. 2 500,000 1 day 1 day 2 59 

Exper. 3 500,000 1 day 1 day 3 46 

Exper. 4 500,000 1 day 1 day 4 33 
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Figure 5. VaR application performance on a Grid with varying Grid 

number of nodes (Set 2). 



 7 

 

(a) Holding period = 1 day 

 

(b) Holding period = 5 days 

 

(c) Holding period = 10 days 

 

Figure 3. Frequency graph for Set 1 : Experiments 1-3 
( # of  scenarios = 1 )

 

(a) Holding period = 1 day 

 

(b) Holding period = 5 days 

 

(c) Holding period = 10 days 

 

Figure 4. Frequency graph for Set 3 : Experiments 1-3 

( # of scenarios = 100 ) 
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Table 3. Resources used in the Experiments. 

Server Name Owner Organisation Configuration Grid Middleware 

belle.cs.mu.oz.au GRIDS Lab, The University of Melbourne IBM e-Server with 4 CPUs. Globus v.2.4 

belle.anu.edu.au Australian National University, Canberra IBM e-Server with 4 CPUs. Globus v.2.4 

belle.physics.usyd.edu.au School of Physics, The University of Sydney IBM e-Server with 4 CPUs. Globus v.2.4 

lc1.apac.edu.au APAC, Canberra 154 node, 156 CPU 2.8GHz Dell P4 Linux cluster Globus v.2.4 

manjra.cs.mu.oz.au GRIDS Lab, The University of Melbourne x86 Linux Cluster with 13 nodes. Globus v.4.0 

 

Figure 6 shows the application performance when run on a Grid of 

5 nodes simulating 100 scenarios (constituting 100 Grid jobs), 

with varying input parameters. The performance results are 

summarized in Table 7.  

Table 6. VaR values for the three simulation experiments from Set 3. 

Set 3 
VaR (USD) 
c=90.0% 

VaR (USD) 
c=95.0% 

VaR (USD) 
c=97.0% 

VaR (USD) 
c=99% 

Experiment 1 2.5 million 3.1 million 3.5 million 4.1 million 

Experiment 2 5.7 million 6.9 million 7.7 million 9.0 million 

Experiment 3 8.1 million 9.8 million 10.9 million 12.7 million 

Table 7. Application performance results (Set 3) 

Set 3 
No. of 

Simulations 
(N) 

Holding 
Period 

(∆∆∆∆t) 

Basic 
time 
step 

(δδδδt) 

No. of 
Grid 

nodes 

Time 
taken 

(minutes) 

Exper. 1 500,000 1 day 1 day 5 46 

Exper. 2 500,000 5 days 1 day 5 58 

Exper. 3 500,000 10 days 1 day 5 134 
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Figure 6. Application performance with varying input parameters 

running on the Grid. (Set 3) 

8. SUMMARY AND CONCLUSION 

In this paper, we have explored the application of Grid 

technologies within financial services domain by executing a 

portfolio optimization application that estimates the Value-at-Risk  

 

for a given asset portfolio through Monte-Carlo simulation. We 

have utilised readily available Grid technologies and have shown 

how with the use of a simple, declarative interface and without 

rewriting the application, it is possible to execute a sequential, 

single machine application on aggregated Grid resources.  

From the results of our execution, it is evident that running on a 

Grid reduces the time of execution significantly. Also, a user is 

able to run the application for more scenarios and receive a better 

estimation of VaR in a shorter period of time. 

However, this is only one of the ways in which Grid technologies 

can be applied in this domain. While, in our evaluation, the asset 

values have been provided in a static file, it is possible to visualise 

a service that will aggregate information from various stock quote 

providers and perform VaR analysis for a given portfolio over a 

Grid. This will be able to make use of emerging Service-Oriented 

Architecture (SOA) paradigm that has been realized in Grid 

computing through Grid services [9].  
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