
 1

Distributed Portfolio and Investment Risk Analysis on
Global Grids

Rafael Moreno-Vozmediano
2
, Krishna Nadiminti

1
, Srikumar Venugopal

1
, Ana B. Alonso-Conde

3
,

Hussein Gibbins
1
, and Rajkumar Buyya

1

1 Grid Computing and Distributed Systems Lab, Dept. of Computer Science and Software Engineering, The University of Melbourne.

VIC 3053, AUSTRALIA
2 Dept. of Computer Architecture, Universidad Complutense de Madrid. 28040 - Madrid, SPAIN

3 Dept. of Business Administration (Finance), Universidad Rey Juan Carlos. 28032 - Madrid, SPAIN

ABSTRACT

The financial services industry today produces and consumes huge

amounts of data and the processes involved in analysing these

data are equally huge especially in terms of their complexity. The

need to run these processes and analyse the data in time and get

meaningful results can be met only up to a certain extent, by

today’s computer systems. Most service providers are looking to

increase efficiency and quality of their service offerings by

stacking up more hardware and employing better algorithms for

data processing. However, there is a limit to the gains achieved

using such an approach. One viable alternative would be to use

emerging disruptive technologies such as the Grid. Grid

computing and its application to various domains have been

actively studied by many groups for more than a decade now. In

this paper we explore the use of the Grid in the financial services

domain; an area which we believe has not been adequately looked

into.

1. INTRODUCTION

Investments in stocks almost always involve a risk-reward trade

off. To get higher returns on investment, an investor must be

prepared to take on a higher level of risk. Investors aim to

optimise their investment portfolio in order to minimise the risk

and maximise the returns. However, there are many variables

involved in portfolio optimization and therefore, it is a very

compute-intensive process. In this paper we explore the use of

Grid technology to implement a distributed version of a portfolio

optimization method, based on Value-at-Risk (VaR) estimation by

means of Monte Carlo simulation.

The computational issues of common finance industry problems,

such as option pricing, portfolio optimization, risk analysis, etc.

requires the use of high-performance computing systems and

algorithms. Traditional solutions to these problems involve the

utilization of parallel supercomputers, which exhibits several

drawbacks: high cost of the systems, highly qualified personnel

for administration and maintenance, difficult programming

environments (distributed memory or message passing), etc.

In this context, Grid computing [8] is emerging as a promising

technology for the next generation of high-performance

computing solutions. This technology is based on the efficient

sharing and cooperation of heterogeneous, geographically

distributed resources, like CPUs, clusters, multiprocessors, storage

devices, databases and scientific instruments. Computational

Grids have been successfully used for solving grand challenge

problems in science and engineering. However, the use of this

technology for computationally demanding applications in

economics and finance has not been deeply explored.

A simple scenario for using the Grid in financial markets is shown

in Figure 1. As more and more data is produced by stock markets,

this data is fed into the Grid, and analysed using the various Grid

resources. A Grid resource broker acts as an access point to the

Grid for various investors who wish to carry out portfolio analysis

to help them optimize their financial portfolio, make better

investment decisions and eventually reap the benefits.

The rest of the paper is organized as follows. In Section 2

describes the portfolio optimization method and the VaR

application. Section 3 presents a brief outline of some efforts to

apply distributed computing to finance problems and also related

work in the area of applied Grid computing in other fields such as

science. Section 4 talks about some background Grid technologies

that were used in our experiments. Section 5 deals with how the

“VaR” application was Grid-enabled. In section 6, we describe the

experimental setup we used for evaluating the benefits of Grid-

enabling the optimization process. In section 7, we present the

results of the experiments conducted. Finally, section 8 concludes

with a reflection of the whole experiment and the lessons learnt

therein.

Figure 1. Simple scenario illustrating the use of the Grid in financial

markets for portfolio analysis.

 2

2. APPLICATION DESCRIPTION

2.1 Value-at-Risk based Portfolio

Optimization

The aim of this section is to describe the VaR application, identify

its computational complexity, and illustrate how it can benefit

from being Grid-enabled.

Value-at-Risk (VaR) [5] is an important measure of the exposure

of a given portfolio to different kind of risks inherent in financial

environments, which can be used for portfolio optimization

purposes.

Given a portfolio P composed by k assets S = {S1, S2, …., Sk},

and w = {w1, w2, …, wk} the relative weights or positions of the

assets in the portfolio, the price of the portfolio at time t is given

by:

)()(
1

tSwtP
k

i

ii�
=

⋅=

The VaR of the portfolio can be defined as the maximum expected

loss over a holding period, ∆t, and at a given level of confidence

c, i.e.,

cVaRtPob −=<∆∆ 1})({Pr

where)()()(tPttPtP −∆+=∆∆ is the change in the value of

the portfolio over the time period ∆t.

In this context, the portfolio optimization problem can be stated

either in terms of wealth maximization or in terms of risk

minimization. If we consider the wealth maximization criteria, the

optimization problem is finding the portfolio composition vector

w which maximizes the expected portfolio yield)(tP ∆∆ ,

subject to a given constraint on VaR:

VVaR ≤

and

1
1

=�
=

k

i

iw

On the other hand, if we consider the risk minimization criteria,

the optimization problem is finding the portfolio composition

vector w which minimizes the expected portfolio VaR, subject

to a given constraint on yield:

YtP ≥∆∆)(

and

1
1

=�
=

k

i

iw

Several methods for computing VaR have been proposed:

- Parametric models, like asset-normal VaR, delta-normal VaR, or

delta-gamma-normal VaR.

- Non-parametric models, like historical simulation or Monte

Carlo (MC) simulation.

The MC approach is based on simulating the changes in the

values of the portfolio assets, and revaluating the entire portfolio

for each simulation experiment. The main advantage of this

method is its theoretical flexibility, because it is not restricted to a

given risk term distribution and the grade of exactness can be

improved by increasing the number of simulations.

For MC simulation purposes, the evolution of a single asset, Si(t),

can be modelled as a random walk following a Geometric

Brownian Motion:

)()()()(tdWtSdttStSd σµ +=

where dWt is a Wiener process, µ is the instantaneous drift and

σ is the volatility of the asset.

Assuming a lognormal distribution and using the Itô’s Lemma, the

expression (2) can be transformed into an Arithmetic Brownian

Motion:

)()2/())((ln 2 tdWdttSd σσµ +−=

Integrating the previous expression over a finite time interval, tδ ,

we can reach an approximated solution for estimating the price

evolution of S(t):

))2/(2

)()(t
etSttS

δσηδσµδ +∆−=+

where � is a standard normal random variable.

For a portfolio composed by k assets, S1(t), S2(t), …, Sk(t), the

portfolio value evolution can be modelled as k coupled price

paths:

))2/(
2

)()(
tZt

ii
iiiietSttS

δσδσµδ +−=+

where Zi are k correlated random variables with covariance

ijjiji SSZZ ρ==),cov(),cov(

To transform a vector of k uncorrelated normally distributed

random variables η =(�1, �2, …, �k) into a vector of k correlated

random variables Z =(Z1, Z2, …, Zk), we can use the Cholesky

decomposition of the covariance matrix (R):

R = AA
T

where

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

kkkk

k

k

R

ρρρ

ρρρ

ρρρ

�

���

�

�

21

22221

11211

 is assumed to be symmetric

and positive definite, A is a lower triangular matrix

and AT is the transpose of A.

 3

Then, applying the matrix A to η generates the new correlated

random variables Z

Z = A η

To simulate an individual portfolio price path for a given holding

period ∆t, using a m-step simulation path, it is necessary to

evaluate the price path of all the n assets in the portfolio at each

time interval:

Si(t+δt), Si(t+2δt),…, Si(t+∆t)=Si(t+mδt), ∀ i=1, 2, …, k, where

δt is the basic simulation time-step, δt =∆t/m.

For each simulation experiment, j, the portfolio value at target

horizon is

NjttSwttP
k

i

jiij �
=

=∀∆+=∆+
1

, ,...,1),()(

where wi is the relative weight of the asset Si in the portfolio, and

N is the overall number of simulations.

The changes in the value of the portfolio are

NjtPttPtP jj ,...,1)()()(=∀−∆+=∆∆

The portfolio VaR can be measured from the distribution of the N

changes in the portfolio value at the target horizon, taking the (1-

c)-percentile of this distribution, where c is the level of

confidence.

The problem of portfolio optimization problem is a complex

computational consuming problem, since this MC simulation must

be achieved for different portfolio compositions vector, w , in

order to find that one which maximizes yield or minimizes risk.

There are several techniques for limiting the solution space, and

shortening the overall simulation time, although many times they

fall on local minima solutions.

So, in practice, it could be necessary to simulate different weight

compositions (several thousand scenarios), more complex

portfolios (several hundred assets), more price paths (several

millions), or longer holding periods. However, increase in the

number of parameters also increases the simulation time

significantly and running several scenarios could potentially take

several hours or even days on a single computer.

Thus, the long turnaround time of the simulations motivates the

use of High-Performance Computing (HPC) resources within the

domain of portfolio analysis. However, the variable nature of such

workloads makes it difficult to provision the right amount of

resources for running them. Therefore, on demand allocation of

resources is required to handle expansions and contractions in the

workload.

3. RELATED WORK

In recent times, the promise of Grid computing has led researchers

and developers to apply the technology on different scales to a

wide range of domains such as Bio-informatics [11], High energy

Physics [14], Neurosciences [4], Language Processing [12],

Astronomy [18] and Earth Sciences [2]. A lot of groups that have

made efforts towards scaling up their applications from Clusters to

Grids come from the scientific community. In the commercial

world, the area of financial services can benefit hugely from

distributed computing. Some companies in the finance business

have already reaped good benefits from distributing their analysis

and other resource intensive applications across enterprise clusters

[15][16][17].

Grids are the next logical step beyond clusters, and provide a

better solution for large-scale compute-and-data intensive

applications, spanning across multiple organisations with different

policies and varying types of resources. The sharing of such

heterogeneous resources, in a service-oriented market paradigm

will only benefit all involved parties, due to a vastly higher

potential of the Grid.

One of the many different approaches to achieving performance

gains is to actually rewrite an application using Message Passing

Interface (MPI) or similar paradigms to distribute the work across

multiple processors. In the context of computational economics

and finance, one such work is described in [1]. However, this

involves a lot of effort and time and the application cannot adapt

itself well to changing conditions as are found in Grids. The

approach presented in this paper of composing the application as a

bag of independent tasks and letting a resource broker execute

them not only eliminates the need to rewrite applications but also

offloads the parallelization logic on to the broker thus isolating

the application developer from the need to factor in the

heterogeneous Grid environments. Also, the resource broker is

capable of allocating resources depending on varying application

requirements thus enhancing scalability and adaptability of the

process.

4. BACKGROUND GRID TECHNOLOGIES

The computational Grid is enabled by the use of software services

known as Grid-middleware. These services make possible secure

and uniform access to heterogeneous resources to execute

applications. There are many technology options, today for

running applications on remote computers that are part of a Grid.

These include low-level middleware such as Globus [7],

UNICORE (UNiform Interface to COmputing REsources) [19]

and Alchemi [13] and user-level middleware or brokers which

perform aggregation of Grid services and meta-scheduling, such

as the Gridbus broker [14], Nimrod [3], Condor [10] and

GRUBER (Grid Resource Usage SLA Broker) [6] etc.

For the purpose of Grid-enabling portfolio optimization, our

requirements included a system which automates or makes it easy

to conduct the process of distributing the application, deploying

and running it on Grid nodes, monitor the progress, handle

failures and collate the results of execution. Globus is a good

choice of middleware as it is one of the most widely used low-

level Grid middleware systems today in both research and

commercial areas and has wide community support and an active

development group. The Gridbus broker, a user-level middleware

that supports the Globus middleware, was chosen for this

application as it provides simple mechanisms for rapidly

formulating the application requirements and meets the

requirements mentioned previously. A brief description of Globus

and the Gridbus broker follows.

4.1 The Globus Toolkit
The open source Globus Toolkit is a set of software services and

libraries for resource monitoring, discovery, and management,

 4

plus security and file management. It facilitates construction of

computational Grids and Grid-based applications, across

corporate, institutional and geographic boundaries. The toolkit is

developed and maintained by the Globus Alliance, which includes

the Argonne National Laboratory, USA and others. It allows

secure access to remote computers via GSI (Grid-security

infrastructure) and makes the node a part of the Grid, while

preserving the autonomy of the node by using locally set policies

to decide who can access the services offered and when. The

toolkit includes software for security, information infrastructure,

resource management, data management, communication, fault

detection, and portability. It is packaged as a set of components

that can be used either independently or together to develop

applications.

4.2 The Gridbus Broker
The Gridbus service broker is a flexible open-source platform-

independent resource brokering system, implemented in Java,

which provides brokering services for distributed execution of

applications on various low-level middleware systems including

Globus, UNICORE, Alchemi, XGrid [22], and queuing systems

such as PBS (Portable Batch System) [20], and SGE (Sun Grid

Engine) [21]. It hides the complexity of the Grid by translating a

bag-of-independent-tasks or parameter-sweep type applications

into jobs that can be scheduled to be executed on resources,

monitoring those jobs and collating the results of the execution

when finished. The broker acts as a user-agent and makes

scheduling decisions on where to place the jobs on the Grid

depending on the computational resources characteristics (such as

availability, capability, and cost), the users’ quality of service

requirements such as the deadline and budget, and the proximity

of the required data or its replicas to the computational resources.

5. GRID ENABLING THE VaR

OPTIMIZATION APPLICATION

The VaR application is written in the C language, and is a simple

program that is not directly aware of the Grid by itself, that is it

was not designed to run as a distributed application.

A single run of the VaR application computes the value-at-risk for

a portfolio of k assets, by simulating N price-paths, of the stock

movements over a holding period, �t, using a basic time-step of

�t. The k assets are defined in a data file, volat.dat, with their

volatility and drift information. The cholesky.dat input data file

contains the Cholesky portfolio composition matrix w . The input

parameters N, �t, and �t are contained in another data file,

input.dat. The output it produces is a frequency distribution,

which is used to get a measure of the portfolio VaR by taking the

(1-c) percentile of the distribution, where c is the level of

confidence.

<?xml version="1.0" encoding="UTF-8"?>

<xpml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="XMLInputSchema.xsd">

 <parameter name="scenario" type="integer" domain="range">

 <range from="0" to="99" type="step" interval="1"/>

 </parameter>

 <requirement type="node">

 <copy>

 <source location="local" file="cholesky.dat" />

 <destination location="node" file="cholesky.dat" />

 </copy>

 <copy>

 <source location="local" file="volat.dat" />

 <destination location="node" file="volat.dat" />

 </copy>

 <copy>

 <source location="local" file="input.dat"/>

 <destination location="node" file="input.dat"/>

 </copy>

<copy>

 <source location="local" file="var" />

 <destination location="node" file="var" />

 </copy>

 </requirement>

 <task type="main">

 <copy>

 <source location="local" file="positions_$scenario.dat"/>

 <destination location="node" file="positions_$scenario.dat"/>

 </copy>

 <execute location="node">

 <command value="./var"/>

 <arg value="$scenario"/>

 </execute>

 <copy>

 <source location="node" file="output_$scenario"/>

 <destination location="local" file="output_$scenario"/>

 </copy>

 <copy>

 <source location="node" file="var_$scenario"/>

 <destination location="local" file="var_$scenario"/>

 </copy>

 </task>

</xpml>

Figure 2. Application Description in XML

 5

Table 1. Description of experiments

No. of

Experiments
Description

Set 1 3
Computes VaR on a single computer, running a
single scenario with different values for the �t
(holding period) parameter.

Set 2 4
Evaluates application performance in terms of
speed, with fixed job-size (i.e using same
parameters) and varying number of Grid nodes.

Set 3 3

Evaluates application performance with varying
job size and same set of Grid nodes by
computing VaR on a Grid of 5 nodes, running
100 different scenarios with different values for
the �t (holding period), and enables
comparison the outputs with those from
experiment Set 1.

Grid enabling the VaR application involves running the same

application over multiple data sets or input parameters, for

simulating different scenarios of stock movements. As such, this

application fits nicely into the parameter-sweep paradigm and is

embarrassingly parallel as each run of VaR is independent of

another run.

To run the application on the Grid using the Gridbus broker, we

described the application using the declarative xml-based

eXtensible Parametric Modelling Language (XPML) provided by

the broker, as it offered an easy way to vary the parameters and re-

run the application. XPML allows us to specify the inputs,

executable files and outputs generated by the VaR application.

The XPML file shown in Figure 2 describes the application to be

consisting of a parameter i ranging from 0 to 99 (i.e. 100 scenarios

for computing VaR). The task performed by each job in the

application is described by a sequence of commands which copy

files and execute the VaR program. More details about the

specific experiment runs conducted are given in the next section.

6. EXPERIMENTS AND EVALUATION

To evaluate the benefits the Grid brings to this finance

application, we conducted three sets of experiments as shown in

Table 1. For our experiments we varied the input parameters �t

(holding period) and �t (time-step) and used k = 76 assets and N =

500000 price-paths in which the stocks could vary. The assets

were derived from a real investment product and are companies

trading on the Madrid Stock Exchange in Spain.

The first set involved running one scenario on one computer,

varying the holding period parameter (�t), with number of

simulations N = 500000, number of assets k=76, and a basic time

step of �t =1 day. These aimed to investigate the effect of varying

input parameters on the output VaR computed

Table 2(a) shows the input parameters of the three experiments

from the first set. These simulations were run on a single

computer, with Intel P4 processor at 2.5 GHz, 512MB RAM, and

Linux OS.

Table 2 (a) Parameters for simulation experiments 1-3 (Set 1)

Set 1
No. of

Assets (k)
No. of

Scenarios
No. of

Simulations (N)

Holding Period

(∆∆∆∆t)

Basic time step

(δδδδt)

No. of time steps

(m) = (∆∆∆∆t) / (δδδδt)

Exper. 1 76 1 500,000 1 day 1 day 1

Exper. 2 76 1 500,000 5 days 1 day 5

Exper. 3 76 1 500,000 10 days 1 day 10

[Note: Total Investment (USD) = 160.8 million]

Table 2 (b) Grid application parameters used for the performance experiment with varying number of grid nodes (Set 2)

Set 2
No. of

Assets (k)
No. of

Scenarios
No. of

Simulations (N)

Holding Period

(∆∆∆∆t)

Basic time step

(δδδδt)

No. of time
steps

(m) = (∆∆∆∆t) / (δδδδt)

No. of
Grid nodes

Exper. 1 76 100 100,000 1 day 1 day 1 1

Exper. 2 76 100 100,000 1 day 1 day 1 2

Exper. 3 76 100 100,000 1 day 1 day 1 3

Exper. 4 76 100 100,000 1 day 1 day 1 4

[Note: Total Investment (USD) = 160.8 million]

Table 2 (c) Parameters for simulation experiments 1-3 (Set 3)

Set 3
No. of

Assets (k)
No. of

Scenarios
No. of

Simulations (N)

Holding Period

(∆∆∆∆t)

Basic time step

(δδδδt)

No. of time
steps

(m) = (∆∆∆∆t) / (δδδδt)

No. of
Grid nodes

Exper. 1 76 100 500,000 1 day 1 day 1 5

Exper. 2 76 100 500,000 5 days 1 day 5 5

Exper. 3 76 100 500,000 10 days 1 day 10 5

[Note: Total Investment (USD) = 160.8 million]

 6

The second set of experiments conducted aimed to simply confirm

that Grid-enabling the VaR application was useful in terms of

application performance. Four experiments with varying number

of Grid-nodes were done, keeping the application parameters k, N,

�t, and �t constant. The parameter values used in this set of

experiments is shown in Table 2(b).

Finally, a third set of experiments, similar to those in the first was

conducted on a Grid of 5 nodes. These involved running 100

different scenarios on Grid nodes by varying the input parameter –

�t (holding period). In addition to serve as an indication of

application performance with varying simulation parameters, these

tests were also useful to get outputs, from distributing the VaR

application on the Grid, which could be compared with the

outputs obtained running one scenario on a single computer (set

1). The application parameters used for set 3 of experiments is

shown in Table 2(c).

For the Grid experiments (set 2 and set 3), the Belle analysis test

bed data Grid - which has resources distributed around Australia

including Melbourne, Adelaide and Canberra - was used. These

systems are interconnected via GrangeNet (Grid and Next

generation Network) which is a multi-gigabit network supporting

Grid and advanced communication services across Australia.

The broker was deployed on a PC at the GRIDS lab

(bart.cs.mu.oz.au), at the University of Melbourne, and the agents

were dispatched to other resources at runtime by the Gridbus

broker. The performance tests aimed to determine the effect of

increasing number of Grid nodes for a fixed job size and number

of jobs. The test bed resources are shown in Table 3.

7. RESULTS

Figures 3 (a), (b), and (c) plot the frequency distribution graphs

resulting from the simulations of the Set 1 experiments 1, 2, and 3

respectively, and Table 4 summarizes some VaR estimation values

for different levels of confidence c, obtained from the frequency

graphs. For example, if we hold the portfolio investment for 1 day

the probability of losing more than 5 million dollars is lower than

1% (c=99%). For 5 days, the probability of losing more than 10

million dollars is around 1% (c�99%), however if we hold the

portfolio investment for 10 days, the probability of losing more

than 10 million dollars is 10% (c�90%).

The results for the second set of experiments are shown in Figure

5. This shows the performance of distributing the simulation over

different Grid nodes. The main parameters of this simulation are

summarized in Table 5. In this case we have simulated 100

different scenarios over a holding period (�t) of 1 day, with a

basic time step (�t) of 1 day, and 500,000 price paths per scenario

(N). As we can see, the simulation of 100 scenarios on a single

computer takes around 67 minutes. If we distribute these

simulations over different Grid nodes, we can obtain a significant

time reduction, for example using 4 computing nodes, the

resulting simulation time is halved (33 min.).

The results for experiment set 3, shown in Figure 4 (a)-(c), plot

the frequency distribution graphs resulting from the simulations of

the set 3 experiments 1-3 respectively. These results are similar to

those in set 1, as the application input parameters were varied in

the same way, except that the experiment was conducted over 100

scenarios in each case, over a Grid. Table 6 summarizes the VaR

estimation values for different levels of confidence (c), obtained

from the frequency graphs obtained from results of experiments 1-

3 of set 3 (running the VaR on the Grid). The values that are

produced from running the VaR application on the Grid testbed

for 100 scenarios are given in Table 6. This was done by

computing 100 different frequency distributions (one for each

scenario), and obtaining 100 different VaR values (for a given

level of confidence). Then, the lowest (absolute) value of VaR is

selected as the scenario with this value is likely to be the best one,

because the loss of money of the investment is likely to be lower.

Comparing the values in Table 4 (for 1 scenario) and Table 6, we

see that those in the latter are lower than the former. While the

values are still probabilistic, they are better estimates of the VaR

as more scenarios were considered in the evaluation.

Table 4. VaR values for the three simulation experiments from Set 1

Set 1
VaR (USD)
c=90.0%

VaR (USD)
c=95.0%

VaR (USD)
c=97.0%

VaR (USD)
c=99%

Experiment 1 2.8 million 3.4 million 3.8 million 4.4 million

Experiment 2 6.7 million 8.2 million 9.1 million 10.8 million

Experiment 3 10.1 million 12.1 million 13.4 million 15.8 million

Table 5. Application performance results (Set 2)

Set 2
No. of

Simulations
(N)

Holding
Period

(∆∆∆∆t)

Basic
time
step

(δδδδt)

No. of
Grid

nodes

Time
taken

(minutes)

Exper. 1 500,000 1 day 1 day 1 67

Exper. 2 500,000 1 day 1 day 2 59

Exper. 3 500,000 1 day 1 day 3 46

Exper. 4 500,000 1 day 1 day 4 33

VaR application performance

67

59

46.12

33.07

0

10

20

30

40

50

60

70

80

1 2 3 4

of Compute Nodes

T
im

e
 t

a
k

e
n

 (
m

in
u

te
s

)

Figure 5. VaR application performance on a Grid with varying Grid

number of nodes (Set 2).

 7

(a) Holding period = 1 day

(b) Holding period = 5 days

(c) Holding period = 10 days

Figure 3. Frequency graph for Set 1 : Experiments 1-3
(# of scenarios = 1)

(a) Holding period = 1 day

(b) Holding period = 5 days

(c) Holding period = 10 days

Figure 4. Frequency graph for Set 3 : Experiments 1-3

(# of scenarios = 100)

 8

Table 3. Resources used in the Experiments.

Server Name Owner Organisation Configuration Grid Middleware

belle.cs.mu.oz.au GRIDS Lab, The University of Melbourne IBM e-Server with 4 CPUs. Globus v.2.4

belle.anu.edu.au Australian National University, Canberra IBM e-Server with 4 CPUs. Globus v.2.4

belle.physics.usyd.edu.au School of Physics, The University of Sydney IBM e-Server with 4 CPUs. Globus v.2.4

lc1.apac.edu.au APAC, Canberra 154 node, 156 CPU 2.8GHz Dell P4 Linux cluster Globus v.2.4

manjra.cs.mu.oz.au GRIDS Lab, The University of Melbourne x86 Linux Cluster with 13 nodes. Globus v.4.0

Figure 6 shows the application performance when run on a Grid of

5 nodes simulating 100 scenarios (constituting 100 Grid jobs),

with varying input parameters. The performance results are

summarized in Table 7.

Table 6. VaR values for the three simulation experiments from Set 3.

Set 3
VaR (USD)
c=90.0%

VaR (USD)
c=95.0%

VaR (USD)
c=97.0%

VaR (USD)
c=99%

Experiment 1 2.5 million 3.1 million 3.5 million 4.1 million

Experiment 2 5.7 million 6.9 million 7.7 million 9.0 million

Experiment 3 8.1 million 9.8 million 10.9 million 12.7 million

Table 7. Application performance results (Set 3)

Set 3
No. of

Simulations
(N)

Holding
Period

(∆∆∆∆t)

Basic
time
step

(δδδδt)

No. of
Grid

nodes

Time
taken

(minutes)

Exper. 1 500,000 1 day 1 day 5 46

Exper. 2 500,000 5 days 1 day 5 58

Exper. 3 500,000 10 days 1 day 5 134

VaR application performance

46
58

134

0

20

40

60

80

100

120

140

160

1 5 10

Simulation time steps

T
im

e
 t

a
k

e
n

 (
m

in
u

te
s

)

Figure 6. Application performance with varying input parameters

running on the Grid. (Set 3)

8. SUMMARY AND CONCLUSION

In this paper, we have explored the application of Grid

technologies within financial services domain by executing a

portfolio optimization application that estimates the Value-at-Risk

for a given asset portfolio through Monte-Carlo simulation. We

have utilised readily available Grid technologies and have shown

how with the use of a simple, declarative interface and without

rewriting the application, it is possible to execute a sequential,

single machine application on aggregated Grid resources.

From the results of our execution, it is evident that running on a

Grid reduces the time of execution significantly. Also, a user is

able to run the application for more scenarios and receive a better

estimation of VaR in a shorter period of time.

However, this is only one of the ways in which Grid technologies

can be applied in this domain. While, in our evaluation, the asset

values have been provided in a static file, it is possible to visualise

a service that will aggregate information from various stock quote

providers and perform VaR analysis for a given portfolio over a

Grid. This will be able to make use of emerging Service-Oriented

Architecture (SOA) paradigm that has been realized in Grid

computing through Grid services [9].

REFERENCES

[1] A. Abdelkhalek and A. Bilas , Parallelization, Optimization, and

Performance Analysis of Portfolio Choice Models, In Proceedings

of the 30th International Conference on Parallel Processing.

Valencia, Spain. September 3-7, 2001.

[2] B. Allcock, I. Foster, V. Nefedova, A. Chervenak, E. Deelman, C.

Kesselman, J. Lee, A. Sim, A. Shoshani, B. Drach, and D.Williams,

High-performance remote access to climate simulation data: a

challenge problem for data grid technologies, in Proceedings of the

2001 ACM/IEEE conference on Supercomputing (SC '01). Denver,

CO, USA: ACM Press, November 2001.

[3] R. Buyya, D. Abramson, and J. Giddy, Nimrod-G Resource Broker

for Service-Oriented Grid Computing, IEEE Distributed Systems

Online, in Volume 2 Number 7, November 2001.

[4] R. Buyya, S. Date, Y. Mizuno-Matsumoto, S. Venugopal, and D.

Abramson, Neuroscience Instrumentation and Distributed Analysis

of Brain Activity Data: A Case for eScience on Global Grid, Journal

of Concurrency and Computation: Practice and Experience,

Volume 17, No. 15, Wiley Press, New York, USA, Dec. 2005.

[5] D. Duffie, J. Pan, An Overview of Value at Risk, Journal of

Derivatives, Spring 1997, vol. 4, 7-49, Institutional Investor Inc.

[6] C. Dumitrescu, I. Foster, GRUBER: A Grid Resource Usage SLA-

based Broker. Proceedings of EuroPar 2005, Aug 30 - Sep 2, 2005,

Lisbon, Portugal

[7] I. Foster, C. Kesselman, Globus: A Metacomputing Infrastructure

Toolkit. Intl J. Supercomputer Applications, 11(2):115-128, 1997.

 9

[8] I. Foster and C. Kesselman (editors), The Grid: Blueprint for a

Future Computing Infrastructure, Morgan Kaufmann Publishers,

USA, 1999.

[9] I. Foster, C. Kesselman, and S. Tuecke, The anatomy of the grid:

Enabling scalable virtual organizations, International Journal of

High Performance Computing Applications, vol. 15, pp. 200-222,

Sage Publishers, London, UK, 2001.

[10] J. Frey, T. Tannenbaum, I. Foster, M. Livny, And S. Tuecke,

CondorG: A Computation Management Agent for Multiinstitutional

Grids. In International Symposium on High Performance Distributed

Computing (San Francisco, CA, 2001), pp. 55--67.

[11] H. Gibbins, K. Nadiminti, B. Beeson, R. Chhabra, B. Smith, and R.

Buyya, The Australian BioGrid Portal: Empowering the Molecular

Docking Research Community, Proceedings of the 3rd APAC

Conference and Exhibition on Advanced Computing, Grid

Applications and eResearch (APAC 2005), Sept. 26-30, 2005, Gold

Coast, Australia.

[12] B. Hughes and S. Bird, 2003. Grid-Enabling Natural Language

Engineering By Stealth. Proceedings of HLT-NAACL 2003

Workshop on Software Engineering and Architecture of Language

Technology Systems (SEALTS), pp.31-38, Association for

Computational Linguistics.

[13] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal, Alchemi: A

.NET-Based Enterprise Grid Computing System, Proceedings of the

6th International Conference on Internet Computing (ICOMP'05),

June 27-30, 2005, Las Vegas, USA

[14] S. Venugopal, R. Buyya and L. Winton, A Grid Service Broker for

Scheduling e-Science Applications on Global Data Grids, Journal of

Concurrency and Computation: Practice and Experience, Wiley

Press, USA (accepted in Jan. 2005).

[15] An Overview of Grid Computing in Financial Services [Sep 2005],

http://www.jayeckles.com/research/grid.pc

[16] What's So Great About Grid?

http://www.banktech.com/features/showArticle.jhtml?articleID=214

00554&pgno=5

[17] Texas Tech University Performs Stock Price Analysis in Hours

Instead of Days [2005 SAS Institute Inc.],

http://support.sas.com/rnd/scalability/grid/ttu.html

[18] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L. Pearlman, K.

Blackburn, P. Ehrens, A. Lazzarini, R. Williams, and S. Koranda,

GriPhyN and LIGO: Building a Virtual Data Grid for Gravitational

Wave Scientists. In Proceedings of the 11 Th IEEE international

Symposium on High Performance Distributed Computing Hpdc-11

20002 (Hpdc'02) (July 24 - 26, 2002). HPDC. IEEE Computer

Society, Washington, DC, 225.

[19] UNICORE Grid middleware, http://www.unicore.org

[20] Portable Batch System, http://www.openpbs.org/

[21] Sun Grid Engine, http://www.sun.com/software/gridware/index.xml

[22] Apple XGrid,

http://www.apple.com/server/macosx/features/xgrid.html

