
 1

Workflow Schdeduling Algorithms for Grid Computing

Jia Yu and Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering
The University of Melbourne, Australia

{jiayu, raj}@csse.unimelb.edu.au

1. Introduction

2. Workflow scheduling algorithms for Grid computing

3. Best-effort based workflow scheduling

3.1 Heuristics

 3.1.1 Individual task scheduling

 3.1.2 List scheduling

 3.1.3 Cluster based and Duplication based scheduling

3.2 Metaheuristics

 3.2.1 Greedy Randomized Adaptive Search Procedure (GRASP)

 3.2.2 Genetic Algorithms (GAs)

 3.2.3 Simulated Annealing (SA)

3.3 Comparison of best-effort scheduling algorithms

3.4 Dynamic Scheduling Techniques

4. QoS-constraint based workflow scheduling

4.1 Deadline constrained scheduling

4.2 Budget constrained scheduling

 4.3 Metaheuristic based constrained workflow scheduling
4.4 Comparison of QoS constrained scheduling algorithms

5. Simulation Results

6. Summary

7. References

 2

1. Introduction

Grids [22] have emerged as a global cyber-infrastructure for the next-generation of e-Science and e-
business applications, by integrating large-scale, distributed and heterogeneous resources. A number of
Grid middleware and management tools such as Globus [21], UNICORE [1], Legion [27] and Gridbus [13]
have been developed, in order to provide infrastructure that enables users to access remote resources trans-
parently over a secure, shared scalable world-wide network. More recently, Grid computing has progressed
towards a service-oriented paradigm [7][24] which defines a new way of service provisioning based on
utility computing models. Within utility Grids, each resource is represented as a service to which consum-
ers can negotiate their usage and quality of service.

Scientific communities in areas such as high-energy physics, gravitational-wave physics, geophysics, as-
tronomy and bioinformatics, are utilizing Grids to share, manage and process large data sets. In order to
support complex scientific experiments, distributed resources such as computational devices, data, applica-
tions, and scientific instruments need to be orchestrated while managing the application workflow opera-
tions within Grid environments [36]. Workflow is concerned with the automation of procedures, whereby
files and other data are passed between participants according to a defined set of rules in order to achieve
an overall goal [30]. A workflow management system defines, manages and executes workflows on com-
puting resources.

Figure 1. Grid Workflow Management System.

Figure 1 shows an architecture of workflow management systems for Grid computing. In general, a work-
flow specification is created by a user using workflow modeling tools, or generated automatically with the
aid of Grid information services such as MDS [20] and VDS [23] prior to the run time. A workflow speci-
fication defines workflow activities (tasks) and their control and data dependencies. At run time, a work-
flow enactment engine manages the execution of the workflow by utilizing Grid middleware. There are
three major components in a workflow enactment engine: the workflow scheduling, data movement and
fault management. Workflow scheduling discovers resources and allocates tasks on suitable resources to
meet users’ requirements, while data movement manages data transfer between selected resources and fault
management provides mechanisms for failure handling during execution. In addition, the enactment engine

Grid Workflow Modeling
& Definition Tools

Grid Workflow
Specification

Grid Workflow Enactment Engine

Grid Resources

Resource Info Service
(e.g. MDS)

Application Info Ser-
vice (e.g. VDS)

Build Time

Run Time

Grid Users

Workflow Design
 & Definition

Workflow Execution
& Control

Interaction with Grid
resources

Grid Information Services

……

Interaction with Infor-
mation services

Workflow Scheduling

Fault Manage-
ment

Data Move-
ment

Grid Middleware

Workflow
Monitor

feedback

 3

provides feedback to a monitor so that users can view the workflow process status through a Grid workflow
monitor.

Workflow scheduling is one of the key issues in the workflow management [59] . A scheduling is a process
that maps and manages the execution of inter-dependent tasks on the distributed resources. It allocates suit-
able resources to workflow tasks so that the execution can be completed to satisfy objective functions im-
posed by users. Proper scheduling can have significant impact on the performance of the system. In general,
the problem of mapping tasks on distributed services belongs to a class of problems known as NP-hard
problems [53]. For such problems, no known algorithms are able to generate the optimal solution within
polynomial time. Even though the workflow scheduling problem can be solved by using exhaustive search,
the complexity of the methods for solving it is very high. In Grid environments, scheduling decisions must
be made in the shortest time possible, because there are many users competing for resources, and time slots
desired by one user could be taken by another user at any moment.

Many heuristics and metaheuristics based algorithms have been proposed to schedule workflow applica-
tions in heterogeneous distributed system environments. In this chapter, we discuss several existing work-
flow scheduling algorithms developed and deployed in various Grid environments.

2. Workflow scheduling algorithms for Grid computing

Many heuristics [33] have been developed to schedule inter-dependent tasks in homogenous and dedicated
cluster environments. However, there are new challenges for scheduling workflow applications in a Grid
environment, such as:

• Resources are shared on Grids and many users compete for resources.
• Resources are not under the control of the scheduler.
• Resources are heterogeneous and may not all perform identically for any given task.
• Many workflow applications are data-intensive and large data sets are required to be transferred

between multiple sites.
Therefore, Grid workflow scheduling is required to consider non-dedicated and heterogeneous execution
environments. It also needs to address the issue of large data transmission across various data communica-
tion links.

The input of workflow scheduling algorithms is normally an abstract workflow model which defines work-
flow tasks without specifying the physical location of resources on which the tasks are executed. There are
two types of abstract workflow model, deterministic and non-deterministic. In a deterministic model, the
dependencies of tasks and I/O data are known in advance, whereas in a non-deterministic model, they are
only known at run time.

The workflow scheduling algorithms presented in the following sections are based on the deterministic type
of the abstract workflow model and are represented as a Directed Acyclic Graph (DAG). Let � be the fi-
nite set of tasks)1(niTi ≤≤ . Let �be the set of directed edges. Each edge is denoted by),(ji TT , corre-

sponding to the data communication between task Ti and Tj , where iT is called an immediate parent task of

jT , and
jT the immediate child task of

iT . We assume that a child task cannot be executed until all of its

parent tasks are completed. Then, the workflow application can be described as a tuple)(�,�� .

In a workflow graph, a task which does not have any parent task is called an entry task, denoted as entryT

and a task which does not have any child task is called an exit task, denoted as exitT . If a workflow schedul-

ing algorithm requires a single entry task or a single exit task, and there is more than one entry task or exit
task in the workflow graph, we can connect them to a zero-cost pseudo entry or exit task, without affecting
the schedule [45].

To date, there are two major types of workflow scheduling (see Figure 2), best-effort based and QoS con-

straint based scheduling. The best-effort based scheduling attempts to minimize the execution time ignor-
ing other factors such as the monetary cost of accessing resources and various users’ QoS satisfaction lev-

 4

els. On the other hand, QoS constraint based scheduling attempts to minimize performance under most im-
portant QoS constraints, for example time minimization under budget constraints or cost minimization un-
der deadline constraints.

3. Best-effort based workflow scheduling

Best-effort based workflow scheduling algorithms are targeted towards Grids in which resources are shared
by different organizations, based on a community model (known as community Grid). In the community
model based resource allocation, monetary cost is not considered during resource access. Best-effort based
workflow scheduling algorithms attempt to complete execution at the earliest time, or to minimize the
makespan of the workflow application. The makespan of an application is the time taken from the start of
the application, up until all outputs are available to the user [14].

In general, best-effort based scheduling algorithms are derived from either heuristics based or metaheuris-

tics based approach. The heuristic based approach is to develop a scheduling algorithm which fit only a
particular type of problem, while the metaheuristic based approach is to develop a algorithm based on a
metaheuristic method which provides a general solution method for developing a specific heuristic to fit a
particular kind of problem [29].

Grid Workflow
 Scheduling

Best-effort based
scheduling

QoS-constraint
based scheduling

Heuristics
based

Metaheuristics
based

Immediate mode

List scheduling

Batch mode

Dependency mode

Dependency-batch
mode

Deadline-
constrained

Others

Figure 2. A taxonomy of Grid workflow scheduling algorithms.

Greedy randomized adaptive
 search procedure

Simulated annealing

Genetic algorithms

Duplication based scheduling

Cluster based scheduling

Budget-
constrained

Heuristics based

Metaheuristics based

Heuristics based

Metaheuristics based

 5

Table I. Overview of Workflow Scheduling Algorithms

3.1 Heuristics

In general, there are four classes of scheduling heuristics for workflow applications, namely individual task

scheduling, list scheduling, and cluster and duplication based scheduling.

3.1.1 Individual task scheduling

The individual task scheduling is the simplest scheduling method for scheduling workflow applications and
it makes schedule decision based only on one individual task. The Myopic algorithm [52] has been imple-
mented in some Grid systems such as Condor DAGMan [49]. The detail of the algorithm is shown in Algo-
rithm 1. The algorithm schedules an unmapped ready task to the resource that is expected to complete the
task earliest, until all tasks have been scheduled.

Scheduling Method Algorithm Project Organization Application

Individual task scheduling Myopic
Condor
DAG Man

University of
Wisconsin-
Madison, USA.

N/A

vGrADS
Rice University,
USA.

EMAN bio-
imaging

Min-min
Pegasus

University of
Southern Califor-
nia, USA.

Montage astron-
omy

Max-min vGrADS
Rice University,
USA.

EMAN bio-
imaging

Batch mode

Sufferage vGrADS
Rice University,
USA.

EMAN bio-
imaging

Dependency mode HEFT ASKALON
University of
Innsbruck, Aus-
tria.

• WIEN2K quan-
tum chemistry

• Invmod hydro-
logical

L
is

t
sc

he
du

li
ng

Dependency-batch
mode

Hybrid
Sakellarious
& Zhao

University of
Manchester, UK.

Randomly gener-
ated task graphs

Cluster based scheduling

H
eu

ri
st

ic
s

Duplication based
scheduling

TANH
Ranaweera
& Agrawal

University of
Cincinnati, USA

Randomly gener-
ated task graphs

Genetic algorithms (GA) ASKALON
University of Inns-
bruck, Austria.

WIEN2K quantum
chemistry

Greedy randomized adaptive
search procedure (GRASP)

Pegasus
University of
Southern Califor-
nia, USA.

Montage astron-
omy

M
et

a
h

e
u

ri
st

ic
s

Simulated annealing (SA) ICENI
London e-Science
Centre, UK.

Randomly gener-
ated task graphs

Algorithm 1. Myopic scheduling algorithm

Input: A workflow graph)(�,��

Output: A schedule

1 while Γ∈∃t is not completed do
2 task � get a ready task whose parent tasks have been scheduled

3 r � get a resource which can complete t at earliest time
4 schedule t on r
5 end while

 6

 3.1.2 List scheduling

A list scheduling heuristic prioritizes workflow tasks and scheldules the tasks based on their priorities.
There are two major phases in a list scheduling heuristic, the task prioritizing phase and the resource

selection phase [33]. The task prioritizing phase sets the priority of each task with a rank value and
generates a scheduling list by sorting the tasks according to their rank values. The resource selection phase
selects tasks in the order of their priorities and map each selected task on its optimal resource.

Different list scheduling heuristics use different attributes and strategies to decide the task priorities and the
optimal resource for each task. We categorize workflow-based list scheduling algorithms as either batch

mode, dependency mode or dependency-batch mode.

The batch mode scheduling group workflow tasks into several independent tasks and consider tasks only in
the current group. The dependency mode ranks workflow tasks based on its weight value and the rank
value of its inter-dependent tasks, while the dependency-batch mode further use a batch mode algorithm to
re-ranks the independent tasks with similar rank values.

• Batch mode

Batch mode scheduling algorithms are initially designed for scheduling parallel independent tasks, such as
bag of tasks and parameter tasks, on a pool of resources. Since the number of resources is much less than
the number of tasks, the tasks need to be scheduled on the resources in a certain order. A batch mode algo-
rithm intends to provide a strategy to order and map these parallel tasks on the resources, in order to com-
plete the execution of these parallel tasks at earliest time. Even though batch mode scheduling algorithms
aim at the scheduling problem of independent tasks; they can also be applied to optimize the execution time
of a workflow application which consists of a lot of independent parallel tasks with a limited number of
resources.

o Batch Mode Algorithms
Min-Min, Max-Min, Sufferage proposed by Maheswaran et al [39] are three major heuristics which have
been employed for scheduling workflow tasks in vGrADS [11] and pegasus [35]. The decision making by
the heuristics is based on the performance estimation for task execution and I/O data transmission. The
definition of each performance metric is given in Table II.

The Min-Min heuristic schedules sets of independent tasks iteratively (Algorithm 2: 1-4). For each iterative
step, it computes ECTs of each task on its every available resource and obtains the MCT for each task (Al-
gorithm 2: 7-12). A task having minimum MCT value over all tasks is chosen to be scheduled first at this
iteration. It assigns the task on the resource which is expected to complete it at earliest time.

Table II. Performance Matrices.

Symbol Definition
EET(t,r) Estimated Execution Time: the amount of time the resource r will

take to execute the task t, from the time the task starts to execute on
the resource.

EAT(t,r) Estimated Availability Time: The time at which the resource r is
available to execute task t.

FAT(t,r) File Available Time: the earliest time by which all the files re-
quired by the task t will be available at the resource r.

ECT(t,r) Estimated Completion Time: the estimated time by which task t
will complete execution at resource r:

 ECT(t, r) = EET(t, r) + max(EAT(t,r), FAT(t, r))

MCT(t) Minimum Estimated Completion Time: Minimum ECT for task t
over all available resources.

 7

Algorithm 2. Min-Min and Max-Min task scheduling algorithms

Input: A workflow graph)(�,��

Output: A schedule

1 While Γ∈∃t is not completed do
2 availTasks � get a set of unscheduled ready tasks whose parent tasks

have been scheduled

3 schedule(availTasks)
4 end while

5 procedure schedule(availTasks)
6 while availTaskst ∈∃ not scheduled do
7 for all availTaskst ∈ do
8 availResources � get available resources for t

9 for all ∈r availResources do
10 compute ECT(t,r)
11 end for

12

 //get MCT(t,r) for each resource
 Rt � arg

sourcesReavailr
min

∈
ECT(t,r)

13 end for

14 // Min-Min: get a task with minimum ECT(t,r) over tasks

 T � arg
availTaskst
min

∈
ECT(t,Rt)

 // Max-Min: get a task with maximum ECT(t,r) over tasks
 T � arg

availTaskst
min

∈
ECT(t,Rt)

15 schedule T on RT

16 remove T from availTasks
17 update EAT(RT)
18 end while

The Max-Min heuristic is similar to the Min-Min heuristic. The only difference is the Max-Min heuristic
sets the priority to the task that requires longest execution time rather than shortest execution time. After
obtaining MCT values for each task (Algorithm 2: 7-14), a task having maximum MCT is chosen to be
scheduled on the resource which is expected to complete the task at earliest time.

Instead of using minimum MCT and maximum MCT, the Sufferage heuristic sets priority to tasks based on
their sufferage value. The sufferage value of a task is the difference between its earliest completion time
and its second earliest completion time (Algorithm 3: 13-15).

Algorithm 3. Sufferage task scheduling algorithm

Input: A workflow graph)(�,��

Output: A schedule

1 while Γ∈∃t is not completed do
2 availTasks � get unscheduled ready tasks whose parent tasks

have been scheduled

3 schedule(availTasks)
4 end while

5 procedure schedule(availJobs)
6 while availTaskst ∈∃ not scheduled do
7 for all availTaskst ∈ do
8 availResources � get available resources for t

9 for all ∈r availResources do
10 compute ECT(t,r)

 8

11 end for

13 // compute earliest ECT

 1

t
R � arg

sourcesavailr Re
min

∈
ECT(t,r)

14 // compute second earliest ECT
 2

t
R � arg

1&&Re
min

tRr sourcesavailr ≠∈
ECT(t,r)

15 // compute sufferage value for task t
 suft� ECT(t, 2

t
R)- ECT(t, 1

t
R)

16 end for

17 T � arg
availTaskst∈
max suft

18 schedule T on 1
TR

19 remove T from availTasks
20 update EAT(RT)
21 end while

o Comparison of batch mode algorithms

Table III. Overview of batch mode algorithms
Algorithm Features

Min-Min It sets high scheduling priority to tasks which have the shortest execution time.
Max-Min It sets high scheduling priority to tasks which have long execution time.
Sufferage It sets high scheduling priority to tasks whose completion time by the second

best resource is far from that of the best resource which can complete the task at
earliest time.

The overview of three batch mode algorithms are shown in Table III. The Min-Min heuristic schedules
tasks having shortest execution time first so that it results in the higher percentage of tasks assigned to their
best choice (which can complete the tasks at earlist time) than Max-Min heuristics [12]. Experimental
results conducted by Maheswaran et al [39] and Casanova et al [14] have proved that Min-Min heuristic
outperform Max-Min heuristic. However, since Max-min schedule tasks with longest execution time first,
a long execution execution task may have more chance of being executed in parallel with shorter tasks.
Therefore, it might be expected that the Max-Min heuristic perform better than the Min-Min heuristic in
the cases where there are many more short tasks than long tasks [12][39].

On the other hand, since the Sufferage heuristic consider the adverse effect in the completion time of a task
if it is not scheduled on the resource having with minimum completion time [39], it is expected to perform
better in the cases where large performance difference between resources. The experimental results con-
ducted by Maheswaran et al shows that the Sufferage heuristic produced the shortest makespan in the high
heterogeneity environment among three heuristics discussion in this section. However, Casanova et al [14]
argue that the Sufferage heuristic could perform worst in the case of data-intensive applications in multiple
cluster environments.

o Extended batch mode algorithms
XSufferage is an extension of the Suffereage heuristic. It computes the sufferage value on a cluster level
with the hope that the files presented in a cluster can be maximally reused. A modified Min-Min heuristic,
QoS guided Min-Min, is also proposed in [28]. In addition to comparing the minimum completion time
over tasks, it takes into account different levels of quality of service (QoS) required by the tasks and
provided by Grid resources such as desirable bandwidth, memory and CPU speed. In general, a task
requiring low levels of QoS can be executed either on resources with low QoS or resources with high QoS,
whereas the task requiring high levels of QoS can be processed only on resources with high QoS.
Scheduling tasks without considering QoS requirements of tasks may lead to poor performance, since low
QoS tasks may have higher priority on high QoS resources than high QoS tasks, while resources with low
QoS remain idle[28]. The QoS guided Min-Min heuristic starts to map low QoS tasks until all high QoS

 9

Figure 4. a weighted task graph example.

tasks have been mapped. The priorities of tasks with the same QoS level are set in the same way of the
Min-Min heuristic.

• Dependency Mode

Dependency mode scheduling algorithms are derived from the algorithms for scheduling a task graph with
interdependent tasks on distributed computing environments. It intends to provide a strategy to order and
map workflow tasks on heterogeneous resources based on analyzing the dependencies of the entire task
graph, in order to complete these interdependent tasks at earliest time. Unlike batch mode algorithms, it
ranks the priorities of all tasks in a workflow application at one time.

o Weight computing approximation approaches
Many dependency mode heuristics rank tasks are based on the weights of task nodes and edges in a task
graph. As illustrated in Figure 4, a weight wi is assigned to a task Ti and a weight wi,j is assigned to an edge
(Ti, Tj). Many list scheduling [33] developed for sched-
uling task graphs on homogenous systems set the
weight of each task and edge to be equal to its estima-
tion execution time and communication time, since in a
homogenous environment, the execution times of a task
and data transmission time on all available resources
are identical. However, in a Grid environment, re-
sources are heterogeneous. The computation time varies
from resource to resource and the communication time
varies from data link to data link between resources.
Therefore, it needs to consider processing speeds of
different resources and different transmission speeds of
different data links and an approximation approach to
weight tasks and edges for computing the rank value.

Zhao and Sakellariou [61] proposed six possible ap-
proximation options, mean value, median value, worst

value, best value, simple worst value, and simple best value. These approximation approaches assign a
weight to each task node and edge as either the average, median, maximum, or minimum computation time
and communication time of processing the task over all possible resources. Instead of using approximation
values of execution time and transmission time, Shi and Dongarra [46] assign a higher weight value to a
task with less capable resources. Their motivation is quite similar to the QoS guided min-min scheduling,
i.e., it may cause longer delay if tasks with scarce capable resources are not scheduled first, because there
are less choices of resources to process these tasks.

o Dependency Mode Algorithm
The Heterogeneous-Earliest-Finish-Time (HEFT) algorithm proposed by Topcuoglu et al [51] has been
applied by the ASKALON project [18][55] to provide scheduling for a quantum chemistry application,
WIEN2K [10], and a hydrological application, Invmod [43], on the Austrian Grid [2].

As shown in Algorithm 4, the algorithm first calculates average execution time for each task and average
communication time between resources of two successive tasks. Let time(Ti, r) be the execution time of
task Ti on resource r and let Ri be the set of all available resources for processing Ti. The average execution
time of a task Ti is defined as

i

Rr
i

i
R

rTtime
i

�
∈

=

),(
ϖ (1)

Let time(eij, ri, rj) be the data transfer time between resources ri and rj which process the task Ti and task Tj
respectively. Let Ri and Rj be the set of all available resources for processing Ti and Tj respectively. The
average transmission time from Ti to Tj is defined by:

 10

ji

Rr Rr
jiij

ij
RR

rretime

c
j2i

�
∈∈

= 1

),,(
 (2)

Then tasks in the workflow are ordered in HEFT based on a rank fuction. For a exit task Ti, the rank value
is:

ii wTrank =)((3)

The rank values of other tasks are computed recursively based on (1)(2)(3)as shown in (4).

))((max)(
)(

jij
TsuccT

ii TrankcwTrank
ij

++=
∈

. (4)

where succ(Ti) is the set of immediate successors of task Ti.

The algorithm then sorts the tasks by decreasing order of their rank values. The task with higher rank value
is given higher priority. In the resource selectinon phase, tasks are scheduled in the order of their priorities
and each task is assigned to the resource that can complete the task at the earliest time.

Algorithm 4. Heterogeneous-Earliest-Finish-Time (HEFT) algorithm

Input: A workflow graph)(�,��

Output: A schedule

1 compute the average execution time for each task Γ∈t according to (1)
2 compute the average data transfer time between tasks and their successors ac-

cording to (2)
3 compute rank value for each task according to (3) (4)
4 sort the tasks in a scheduling list Q by decreasing order of task rank value.
5 while Q is not empty do

6 t � remove the first task from Q.
7 r � find a resource which can complete t at earliest time.
8 schedule t to r.
9 end while

Even though original HEFT proposed by Topcuoglu et al [51] computes the rank value for each task using
the mean value of the task execution time and communication time over all resources, Zhao and Sakellariou
[61] investigated and compared the performances of the HEFT algorithm produced by other different
approximation methods on different cases. The results of the expeirments showed that the mean value
method is not the most effiecient choice, and the performance could differ significantly from one
application to another [61].

• Dependency-Batch Mode

Sakellariou and Zhao [45] proposed a hybrid heuristic for scheduling DAG on heterogeneous systems. The
heuristic combines dependency mode and batch mode. As described in Algorithm 5, the heuristic first
compute rank values of each task and ranks all tasks in the decreasing order of their rank values (Algo-
rithm:line 1-3). And then it creates groups of independent tasks (Algorithm 5:line 4-10). In the grouping
phase, it processes tasks in the order of their rank values and add tasks into the current group. Once it finds
a task which has a dependency with any task within the group, it creates another new group. As a result, a
number of groups of independent tasks are generated. And the group number is assigned based on the order
of rank values of their tasks, i.e., if m>n, the ranking value of tasks in group m is higher than that of the
tasks in group n. Then it schedules tasks group by group and uses a batch mode algorithm to reprioritize the
tasks in the group.

 11

Algorithm 5. Hybrid heuristic

Input: A workflow graph)(�,��

Output: A schedule

1 compute the weight of each task node and edge according to (1)(2)
2 compute the rank value of each task according to (3) (4)
3 sort the tasks in a scheduling list Q by decreasing order of the rank values of

tasks
4 create a new group Gi and i=0
5 while Q is not empty do
6 t � remove the first task from Q.
7 if t has a dependence with a task in Gi then
8 i++; create a new group Gi
9 add t to Gi

10 end while

11 j=0
12 while j<=i

13 scheduling tasks in Gi by using a batch mode algorithm
14 j++

15 end while

3.1.3 Cluster based and Duplication based scheduling

Both cluster based scheduling and duplication based scheduling are designed to avoid the transmission time
of results between data interdependent tasks, such that it is able to reduce the overall execution time. The
cluster based scheduling clusters tasks and assign tasks in the same cluster into the same resource, while the
duplication based scheduling use the idling time of a resource to duplicate some parent tasks, which are
also being scheduled on other resources.

Bajai and Agrawal [3] proposed a task duplication based scheduling algorithm for network of heterogene-

ous systems (TANH). The algorithm combine cluster based scheduling and duplication based scheduling
and the overview of the algorithm is shown in Algorithm 6. It first traverses the task graph to compute pa-
rameters of each node including earliest start and completion time, latest start and completion time, critical
immediate parent task, best resource and the level of the task. After that it clusters tasks based on these
parameters. The tasks in a same cluster are supposed to be scheduled on a same resource. If the number of
the cluster is greater than the number of resources, it scales down the number of clusters to the number of
resources by merging some clusters. Otherwise, it utilizes the idle times of resources to duplicate tasks and
rearrange tasks in order to decrease the overall execution time.

Algorithm 6. TANH Algorithm

Input: A workflow graph)(�,��

Output: A schedule

1 compute parameters for each task node
2 cluster workflow tasks

3 if the number of clusters greater than the number of available resources then
4 reducing the number of clusters to the number of available resources
5 else
6 perform duplication of tasks

7 end if

3.2 Metaheuristics

Metaheuristics provide both a general structure and strategy guidelines for devoping a heuristic for solving
computational problems. They are generally applied to a large and complicated problem. They provide an

 12

efficient way of moving quickly toward a very good solution. Many metahuristics have been applied for
solving workflow scheduling problmes, including GRASP, Genetic Algorithms and Simulated Annealing.
The details of these algorithms are presented in the sub-sections that follow.

3.2.1 Greedy Randomized Adaptive Search Procedure (GRASP)

A Greedy Randomized Adaptive Search Procedure (GRASP) is an iterative randomized search technique.
Feo and Resende [19] proposed guidelines for developing heuristics to solve combinatorial optimization
problems based on the GRASP concept. Binato et al [8] have shown that the GRASP can solve job-shop
scheduling problems effectively. Recently, the GRASP has been investigated by Blythe et al [11] for
workflow scheduling on Grids by comparing with the Min-Min heuristic on both computational- and data-
intensive applicaitons.

Algorithm 7 describes a GRASP. In a GRASP, a number of iterations are conducted to search a possible
optimal solution for scheduling tasks on resources. A solution is generated at each iterative step and the
best solution is kept as the final schedule (Algorithm:line 1-5). A GRASP is terminated when the specified
termination criterion is satisfied, for example, after completing a certain number of interations. In general,
there are two phases in each interation: construction phase and local search phase.

Algorithm 7. GRASP algorithm

Input: A workflow

Output: bestSchedule

1 while stopping criterion not satisfied do
2 schedule � createSchedule(workflow)
3 if schedule is better than bestSchedule then
4 bestSchedule�schedule
5 end while

6 procedure createSchedule(workflow)
7 solution � constructSolution(workflow)
8 nSolution � localSearch(solution)
9 if nSolution is better than solution then
10 return nSolution

11 return solution
12 end createSchedule

13 procedure constructSolution(workflow)
14 while schedule is not completed do

15 T� get all unmapped ready tasks
16 make a RCL for each ∈t T
17 subSolution�select a resource randomly for each ∈t T from its RCL.
18 solution� solution

�
 subSolution

19 update information for further RCL making.
20 end while

21 return solution
22 end constructSolution

23 procedure localSearch(solution)
24 nSolution�find a optimal local solution.
25 Return nSolution
26 end localSearch

The construction phase (Algorithm:line 7 and line 13-22) generates a feasible solution. A feasible solution
for the workflow scheduling problem is required to meet the following conditions: a task must be started

 13

after all its predecessors have been completed; every task appears once and only once in the schedule. In
the construction phase, a restricted candidate list (RCL) is used to record the best candidates, but not nec-
essarily the top candidate of the resources for processing each task. There are two major mechanisms that
can be used to generate the RCL, cardinality-based RCL and value-based RCL. The cardinality-based RCL
records the k best rated solution components, while the value-based RCL records all solution components
whose performance evaluated values are better than a given threshold [31]. In the GRASP, the resource
allocated to each task is randomly selected from its RCL (Algorithm 7: line 17). After allocating a resource
to a task, the resource information is updated and the scheduler continues to process other unmapped tasks.

Algorithm 8 shows the detailed implementation of the construction phase for workflow scheduling pre-
sented by Blythe et al [11] which uses a value-based RCL method. The scheduler estimates the makespan

increase for each unmapped ready task (Algorithm 8: line 3-4 and line 13-19) on each resource that is able
to process the task. A makespan increase of a task t on a resource r is the increase of the execution length to
the current completion length (makespan) if r is allocated to t. Let minI and maxI be the lowest and highest
makespan increase found respectively. The scheduler selects a task assignment randomly from the task and
resource pair whose makespan increase is less than minI + � (maxI - minI), where α is a parameter to de-
termine how much variation is allowed for creating RCL for each task and 10 ≤≤ α .

Algorithm 8. Construction phase procedure for workflow scheduling

Input: A workflow graph),(D�,��

Output: a feasible solution

1 procedure constructSolution(�)
2 while Γ∈∃t is not completed do
3 availTasks � get unmapped ready tasks
4 subSolution�schedule(availTasks)
5 solution�solution

�
 subSolution

6 end while

7 Return solution

8 end constructSolution

9 procedure schedule(tasks)
10 availTasks�tasks
11 pairs � [3]
12 while taskst ∈∃ not scheduled

13 for all availTaskst ∈ do
14 availResources � get available resources for t

15 for all ∈r availResources do
16 compute increaseMakespan(t,r)
17 pairs�pairs

��
t�r�

18 end for

19 end for

20 minI � minimum makespan increase over availPairs.
21 maxI � maximum makespan increase over availPairs.
22 availPairs � select pairs whose makespan increase is less than

 minI+� (maxI-minI)
23 (t’,r’) � select a pair at random from availPairs.
24 remove t’ from availTasks
25 solution � solution

�
(t’,r’)

26 end while

27 return solution

28 end procedure

 14

Figure 4. Genetic Algorithms

Once a feasible solution is constructed, a local search is applied into the solution to improve it. The local
search process searches local optima in the neighborhood of the current solution and generates a new solu-
tion. The new solution will replace the current constructed solution if its overall performance is better (i.e.
its makespan is shorter than that of the solution generated) in the construction phase. Binato et al [8] pro-
vide an implementation of the local search phase for job-shop scheduling. It identifies the critical path in
the disjunctive graph of the solution generated in the construction phase and swaps two consecutive opera-
tions in the critical path on the same machine. If the exchange improves the performance, it is accepted.

3.2.2 Genetic Algorithms (GAs)

Genetic algorithms (GAs) [25] provide robust search techniques that allow a high-quality solution to be
derived from a large search space in polynomial time by applying the principle of evolution. Using genetic
algorithms to schedule task graphs in homogeneous and dedicated multiprocessor systems have been
proposed in [31][56][64]. Wang et al [54] have developed a genetic-algorithm-based scheduling to map and
schedule task graphs on heterogeneous envoriments. Prodan and Fahringer [42] have employed GAs to
schedule WIEN2k workflow[10] on Grids. Spooner et al [47] have employed GAs to schedule sub-
workflows in a local Grid site.

A genetic algorithm combines exploitation of best solutions from past searches with the exploration of new
regions of the solution space. Any solution in the search space of the problem is represented by an individ-
ual (chromosome). A genetic algorithm maintains a population of individuals that evolves over generations.
The quality of an individual in the population is determined by a fitness function. The fitness value indi-
cates how good the individual is compared to others in the population.

A typical genetic algorithm is illustrated in Figure 4. It first
creates an initial population consisting of randomly generated
solutions. After applying genetic operators, namely selection,
crossover and mutation, one after the other, new offspring are
generated. Then the evaluation of the fitness of each individ-
ual in the population is conducted. The fittest individuals are
selected to be carried over next generation. The above steps
are repeated until the termination condition is satisfied. Typi-
cally, a GA is terminated after a certain number of iterations,
or if a certain level of fitness value has been reached [64].

The construction of a genetic algorithm for the scheduling
problem can be divided into four parts [32]: the choice of
representation of individual in the population; the
determination of the fitness function; the design of genetic
operators; the determination of probabilities controlling the
genetic operators.

As genetic algorithms manipulate the code of the parameter set rather than the parameters themselves, an
encoding mechanism is required to represent individuals in the population. Wang et al [54] encoded each
chromosome with two separated parts: the matching string and the scheduling string. Matching string
represents the assignment of tasks on machines while scheduling string represents the execution order of
the tasks (Figure 5a.). However, a more intuitive scheme, two-dimensional coding scheme is employed by
many work [32][56][64] for scheduling tasks in distributed systems. As illustrated in Figure 5c, each
schedule is simplified by representing it as a 2D string. One dimension represents the numbers of resources
while the other dimension shows the order of tasks on each resource.

 15

A fitness function is used to measure the quality of the individuals in the population. The fitness function
should encourage the formation of the solution to achieve the objective function. For example, the fitness
function developed in [32] is)(IFTCmax − , where Cmax is the maximum completion time observed so far

and FT(I) is the completion time of the individual I. As the objective function is to minimize the execution
time, an individual with a large value of fitness is fitter than the one with a small value of fitness.

Figure 5. (a) workflow application and schedule. (b) seperated machine
string and scheduling string. (c) two-dimensional string.

After the fitness evaluation process, the new individuals are compared with the previous generation. The
selection process is then conducted to retain the fittest individuals in the population, as successive genera-
tions evolve. Many methods for selecting the fittest individuals have been used for solving task scheduling
problems such as roulette wheel selection, rank selection and elitism.

Table II. Fitness Values and Slots for Roulette Wheel Selection.

The roulette wheel selection assigns each individual to a slot of a roulette wheel and the slot size occupied
by each individual is determined by its fitness value. For example, there are four individuals (see Table II)

Individual Fitness
value

Slot
Size

Slot

1 0.45 0.25 0.25
2 0.30 0.17 0.42
3 0.25 0.14 0.56
4 0.78 0.44 1

Total 1.78 1

Roulette Wheel Selection

Individual 1,

0.25

Individual 2,

0.42

Individual 3,

0.56

Individual 4,

1

Individual 1

Individual 2

Individual 3

Individual 4

Figure 6. Roulette Wheel Selection Example.

T0

T1

T2

T3

T4

T5

T6

T7

Scheduling stringMachine string

T0:R0

T1:R2

T2:R1

T3:R3

T4:R4

T5:R3

T6:R4

T7:R1

(b)

R1:T0-T2-T7

R2:T1

R3:T3-T5

R4:T4-T6

Two-dimensional strings

(c)

T0 T2 T7

T1

T3 T5

T4 T6

T0 T1 T2

T3 T4

T5 T6

T7

T0 T1 T2

T3 T4

T5 T6

T7

R1

R2

R3

R4

Workflow Schedule

time

(a)

 16

and their fitness values are 0.45, 0.30, 0.25 and 0.78, respectively. The slot size of an individual is calcu-
lated by dividing its fitness value by the sum of all individual fitness in the population. As illustrated in
Figure 6, individual 1 is placed in the slot ranging from 0-0.25 while individual 2 is in the slot ranging from
0.26-0.42. After that, a random number is generated between 0 and 1, which is used to determine which
individuals will be preserved to the next generation. The individuals with a higher fitness value are more
likely to be selected since they occupy a larger slot range.

 Table III. Fitness Values and Slots for Rank Selection.

Individual Fitness
value

Rank Slot
Size

Slot

1 0.45 3 0.3 0.3
2 0.30 2 0.2 0.5
3 0.25 1 0.1 0.6
4 0.78 4 0.4 1

The roulette wheel selection will have problems when there are large differences between the fitness values
of individuals in the population [41]. For example, if the best fitness value is 95% of all slots of the roulette
wheel, other individuals will have very few chances to be selected. Unlike the roulette wheel selection in
which the slot size of an individual is proportional to its fitness value, a rank selection process firstly sorts
all individuals from best to worst according to their fitness values and then assigns slots based on their rank.
For example, the size of slots for each individual implemented by DO�AN and Özgüner [16] is propor-
tional to their rank value. As shown in Table III, the size of the slot for individual I is defined as

�

=

=

n

i

I

iR

IR
p

1
)(

)(
, where R(I) is the rank value of I and n is the number of all individuals.

Both the roulette wheel selection and the rank selection select individuals according to their fitness value.
The higher the fitness value, the higher the chance it will be selected into the next generation. However,
this does not guarantee that the individual with the highest value goes to the next generation for reproduc-
tion. Elitism can be incorporated into these two selection methods, by first copying the fittest individual
into the next generation and then using the rank selection or roulette wheel selection to construct the rest of
the population. Hou et al [32] showed that the elitism method can improve the performance of the genetic
algorithm.

In addition to selection, crossover and mutation are two other major genetic operators. Crossovers are used
to create new individuals in the current population by combining and rearranging parts of the existing indi-
viduals. The idea behind the crossover is that it may result in an even better individual by combining two
fittest individuals [32]. Mutations occasionally occur in order to allow a certain child to obtain features that
are not possessed by either parent. It helps a genetic algorithm to explore new and potentially better genetic
material than was previously considered. The frequency of mutation operation occurrence is controlled by
the mutation rate whose value is determined experimentally [32].

3.2.3 Simulated Annealing (SA)

Simulated Annealing (SA) [38] derives from the Monte Carlo method for statistically searching the global.
The concept is originally from the way in which crystalline structures can be formed into a more ordered
state by use of the annealing process, which repeats the heating and slowly cooling a structure. SA has been
used by YarKhan and Dongarra [57] to select a suitable size of a set of machines for scheduling a
ScaLAPACK applicaton [9] in a Grid environment. Young et al [58] have investigated performances of SA
algorithms for scheduling workflow applications in a Grid envrionment.

A typical SA algorithm is illustrated in Figure 8. The input of the algorithm is an initial solution which is
constructed by assigning a resource to each task at random. There are several steps that the simulated an-

 17

nealing algorithm needs to go through while the temperature is decreased by a specified rate. The annealing
process runs through a number of iterations at each temperature to sample the search space. At each cycle,
it generates a new solution by applying random change on the current solution. Young et al [58] imple-
mented this randomization by moving one task onto a different resource. Whether or not the new solution is
accepted as a current solution is determined by the Metropolis algorithm [38][58] shown in Algorithm 9. In
the Metropolis algorithm, the new solution and the current solution are compared and the new solution is
unconditionally accepted if it is better than the current one. In the case of the minimization problem of
workflow scheduling, the better solution is one which has a lower execution time and the improved value is

denoted as d����������	
���	, the new solution is accepted with the Boltzmann probability T

d

e
β−

[38] where
T is the current temperature. Once a specified number of cycles have been completed, the temperature is
decreased. The process is repeated until the lowest allowed temperature has been reached. During this
process, the algorithm keeps the best solution so far, and returns this solution at termination as the final
optimal solution.

3.3 Comparison of best-effort scheduling algorithms

The overview of the best effort scheduling is listed in Table IV. In general, the heuristic based algorithms
can produce a reasonable good solution in a polynomial time. Among the heuristic algorithms, individual
task scheduling is simplest and only suitable for simple workflow structures such as a pipeline in which
several tasks are required to be executed in sequential. Unlike individual task scheduling, list scheduling
algorithms set the priorities of tasks in order to make an efficient schedule in the situation of many tasks
compete for limited number of resources. The priority of the tasks determines their execution order. The
batch mode approach orders the tasks required to be executed in parallel based on their execution time
whereas the dependency mode approach orders the tasks based on the length of their critical path. The ad-
vantage of the dependency mode approach is that it intent to complete tasks earlier whose interdependent
tasks required longer time in order to reduce the overall execution time. However, its complexity is higher

Algorithm 9. Metropolis algorithm

Input: current solution and new solution

Output: true or false

1 if d� < 0 then
2 return true
3

else if a random number less than T

d

e
β−

 then
4 return true
5 else

 return false

6 end if

������������������	�

�	�����

��������������

�	������

����

���������������

�	��������
�������������

�	�����

���	��������

��������
�	������

�������������

�	������

��������������
�

��
������������������

������������

��

��

��

������
������

�����������������

�������������

�������������

�������
����

��

��

����

��

Figure 8. Simulated Annealing.

 18

since it is required to compute the critical path of all tasks. Another drawback of the dependency mode ap-
proach is that it cannot efficiently solve resource competition problem for a workflow consisting of many
parallel tasks having the same length of their critical path. The dependency-batch mode approach can take
advantage of both approaches, and Sakellariou and Zhao [4] shows that it outperforms the dependency
mode approach in most cases. However, computing task priorities based on both batch mode and depend-
ency mode approach results in higher scheduling time.

Table IV. Comparison of Best-effort Workflow Scheduling Algorithms

Scheduling Method Algorithm Complexity

*
 Features

Individual task scheduling Myopic O(vm) Decision is based on one task.

Batch mode
Min-min
Max-min
Sufferage

O(vgm)
Decision based on a set of parallel inde-
pendent tasks

Dependency mode HEFT O(v2m)
Decision based on the critical path of the
task

L
is

t
sc

he
du

li
ng

Dependency-batch
mode

Hybrid O(v2m+vgm)
Ranking tasks based on their critical path
and re-ranking adjacent independent
tasks by using a batch mode algorithm

Cluster based scheduling

H
eu

ri
st

ic
s

Duplication based
scheduling

TANH O(v2)
Replicating tasks to more than one re-
sources in order to reduce transmission
time

Greedy randomized adaptive
search procedure (GRASP)

guided ran-
dom search

Global solution obtained by comparing
differences between randomized sched-
ules over a number of iteration.

Genetic algorithms (GA)
guided ran-
dom search

Global solution obtained by combining
current best solutions and exploiting new
search region over generations.

M
et

a
h

e
u

ri
st

ic
s

Simulated annealing (SA)
guided ran-
dom search

Global solution obtained by comparing
differences between schedules which are
generated based on current accepted solu-
tions over a number of iterations, while
the acceptance rate is decreased.

* where v is the number of tasks in the workflow, m is the number of resources and g is the number of tasks

in a group of tasks for the batch mode scheduling.

Even though data transmission time has been considered in the list scheduling approach, it still may not
provide an efficient schedule for data intensive workflow applications, in which the majority of computing
time is used for transferring data of results between the inter-dependent tasks. The main focus of the list
scheduling is to find an efficient execution order of a set of parallel tasks and the determination of the best
execution resource for each task is based only on the information of current task. Therefore, it may not as-
sign data inter-dependent tasks on resources among which an optimized data transmission path is provided.
Both cluster based and duplication based scheduling approach focus on reducing communication delay
among interdependent tasks. The clustering based approach minimizes the data transmission time by group-
ing heavily communicating tasks to a same task cluster and assigns all tasks in the cluster to one resource,
in order to minimize the data transmission time, while duplication based approach duplicates data-
interdependent tasks to avoid data transmission. However, the restriction of the algorithms based on these
two approaches up to date may not be suitable for all Grid workflow applications, since it assumes that
heavily communicating tasks can be executed on a same resource. Tasks in Grid workflow applications can
be highly heterogeneous and require different type of resources.

 19

The metaheuristics based workflow scheduling use guided random search techniques and exploit the feasi-
ble solution space iteratively. The GRASP generates a randomized schedule at each iteration and keeps the
best solution as the final solution. The SA and GAs share the same fundamental assumption that an even
better solution is more probably derived from good solutions. Instead of creating a new solution by ran-
domized search, SA and GAs generate new solutions by randomly modifying current already know good
solutions. The SA uses a point-to-point method, where only one solution is modified in each iteration,
whereas GAs manipulate a population of solutions in parallel which reduce the probability of trapping into
a local optimum [65]. Another benefit of producing a collection of solutions at each iteration is the search
time can be significantly decreased by using some parallelism techniques.

Compared with the heuristics based scheduling approaches, the advantage of the metaheuristics based ap-
proaches is that it produces an optimized scheduling solution based on the performance of entire workflow,
rather than the partial of the workflow as considered by heuristics based approach. Thus, unlike heuristics
based approach designed for a specified type of workflow application, it can produce good quality solutions
for different types of workflow applications (e.g. different workflow structure, data- and computational-
intensive workflows, etc). However, the scheduling time used for producing a good quality solution re-
quired by metaheuristics based algorithms is significantly higher. Therefore, the heuristics based schedul-
ing algorithms are well suited for a workflow with a simple structure, while the metaheuristics based ap-
proaches have a lot of potential for solving large and complex structure workflows. It is also common to
incorporate these two types of scheduling approaches by using a solution generated by a heuristic based
algorithm as a start search point for the metaheuristics based algorithms to generate a satisfactory solution
in shorter time.

3.4 Dynamic Scheduling Techniques

The heuristics presented in last section assume that the estimation of the performance of task execution and
data communication is accurate. However, it is difficult to accurately predict execution performance in
community Grid environments due to its dynamic nature. In a community Grid, the utilization and avail-
ability of resources varies over time and a better resource can join at any time. Constructing a schedule for
entire workflow before the execution may result in a poor schedule. If a resource is allocated to each task at
the beginning of workflow execution, the execution environment may be very different at the time of task
execution. A ‘best’ resource may become a ‘worst’ resource. Therefore, the workflow scheduler must be
able to adapt the resource dynamics and update the schedule using up-to-date system information. Several
approaches have been proposed to address these problems. In this section, we focus on the approaches
which can apply the algorithms in dynamic environments.

For individual task and batch mode based scheduling, it is easy for the scheduler to use the most up-to-date
information, since it only takes into account the current task or a group of independent tasks. The scheduler
could map tasks only after their parent tasks become to be executed.

For dependency mode and metahueristics based scheduling, the scheduling decision is based on the entire
workflow. In other words, scheduling current tasks require information about its successive tasks. However,
it is very difficult to estimate execution performance accurately, since the execution environment may
change a lot for the tasks which are executed late. The problems appear more significant for a long lasting
workflow. In general, two approaches, task partitioning and iterative re-computing, have been proposed to
allow these scheduling approaches to allocate resources more efficiently in a dynamic environment.

Task partitioning is proposed by Deelman et al [17]. It partitions a workflow into multiple sub-workflows
which are executed sequentially. Rather than mapping the entire workflow on Grids, allocates resources to
tasks in one sub-workflow at a time. A new sub-workflow mapping is started only after the last mapped
sub-workflow has begun to be executed. For each sub-workflow, the scheduler applies a workflow schedul-
ing algorithm to generate an optimized schedule based on more up-to-date information.

Iterative re-computing keeps applying the scheduling algorithm on the remaining unexecuted partial work-
flow during the workflow execution. It does not use the initial assignment to schedule all workflow tasks
but reschedule unexecuted tasks when the environment changes. A low-cost rescheduling policy has been

 20

developed by Sakellariou and Zhao [44]. It reduces the overhead produced by conducting rescheduling only
when the delay of a task execution impacts on the entire workflow execution.

In addition to mapping tasks before execution using up-to-date information, task migration [4][42] has been
widely employed to reschedule a task to another resource after it has been executed. The task will be mi-
grated when the task execution is timed out or a better resource is found to improve the performance.

4. QoS-constraint based workflow scheduling

Many workflow applications require some assurances of quality of services (QoS). For example, a work-
flow application for maxillo-facial surgery planning [6] needs results to be delivered before a certain time.
For these applications, workflow scheduling is required to be able to analyze users’ QoS requirements and
map workflows on suitable resources such that the workflow execution can be completed to satisfy users’
QoS constraints.

However, completing the execution within a required QoS not only depends on the global scheduling deci-
sion of the workflow scheduler, but also depends on the local resource allocation model of each execution
site. If the execution of every single task in the workflow cannot be completed as expected by the scheduler,
it is impossible to guarantee the entire workflow execution. Instead of scheduling tasks on community
Grids, QoS-constraint based schedulers should be able to interact with service-oriented Grid services to
ensure resource availability and QoS levels. It is required that the scheduler can negotiate with service pro-
viders to establish a service level agreement (SLA) which is a contract specifying the minimum expecta-
tions and obligations between service providers and consumers. Users normally would like to specify a
QoS constraint for entire workflow. The scheduler needs to determine a QoS constraint for each task in the
workflow, such that the QoS of entire workflow is satisfied.

Table V. Overview of QoS constrained workflow scheduling algorithms

In general, service-oriented Grid services are based on utility computing models. Users need to pay for re-
source access and service pricing is based on the QoS level and current market supply and demand. There-
fore, unlike the scheduling strategy deployed in community Grids, QoS constraint based scheduling may

Scheduling Method Algorithm Project Organization Application

Back-tracking
Menasc� &
Casalicchio

George Mason
University, USA
Univ. Roma “Tor
Vergata”, Italy

N/A

Heuristics based

Deadline dis-
tribution

Gridbus
University of
Melbourne, Aus-
tralia

Randomly gener-
ated task graphs

D
ea

d
li

n
e-

C
o

n
st

r
a
in

ed

Metaheuristics based
Genetic algo-
rithms

Gridbus
University of
Melbourne, Aus-
tralia

Randomly gener-
ated task graphs

Heuristics based
LOSS and
GAIN

CoreGrid

University of Cy-
prus, Cyprus
University of Man-
chester, UK

Randomly gener-
ated task graphs

B
u

d
g
et

-C
o

n
st

r
a
in

ed

Metaheuristics based
Genetic algo-
rithms

Gridbus
University of
Melbourne, Aus-
tralia

Randomly gener-
ated task graphs

 21

not always need to complete the execution at earliest time. They sometimes may prefer to use cheaper ser-
vices with a lower QoS that is sufficient to meet their requirements.

To date, supporting QoS in scheduling of workflow applications is at a very preliminary stage. Most QoS
constraint based workflow scheduling heuristics are based on either time or cost constraints. Time is the
total execution time of the workflow (known as deadline). Cost is the total expense for executing workflow
execution including the usage charges by accessing remote resources and data transfer cost (known as
budget). In this section, we present scheduling algorithms based on these two constraints, called Deadline

constrained scheduling and Budget constrained scheduling. Table V presents the overview of QoS con-
strained workflow scheduling algorithms.

4.1 Deadline constrained scheduling

Some workflow applications are time critical and require the execution can be completed within a certain
timeframe. Deadline constrained scheduling is designed for these applications to deliver results before the
deadline. The distinction between the deadline constrained scheduling and the best-effort scheduling is that
the deadline constrained scheduling also need to consider monetary cost when it schedules tasks. In general,
users need to pay for service assess. The price is based on their usages and QoS levels. For example, ser-
vices which can process faster may charges higher price. Scheduling the tasks based on the best-effort
based scheduling algorithms presented in the previous sections, attempting to minimize the execution time
will results in high and unnecessary cost. Therefore, a deadline constrained scheduling algorithm intends to
minimize the execution cost while meeting the specified deadline constraint.

Two heuristics have been developed to minimize the cost while meeting a specified time constraint. One is
proposed by Menasc� and Casalicchio [37] denoted as Back-tracking, and the other is proposed by Yu et al
[60] denoted as Deadline Distribution.

Back-tracking

The heuristic developed by Menasc� and Casalicchio assigns available tasks to least expensive computing
resources. An available task is an unmapped task whose parent tasks have been scheduled. If there is more
than one available task, the algorithm assigns the task with the largest computational demand to the fastest
resources in its available resource list. The heuristic repeats the procedure until all tasks have been mapped.
After each iterative step, the execution time of current assignment is computed. If the execution time ex-
ceeds the time constraint, the heuristic back-tracks the previous step and remove the least expensive re-
source from its resource list and reassigns tasks with the reduced resource set. If the resource list is empty
the heuristic keep back-tracking to the previous step, reduces corresponding resource list and reassign the
tasks.

Deadline distribution (TD)

Instead of back-tracking and repairing the initial schedule, the TD heuristic partitions a workflow and dis-
tributes overall deadline into each task based on their workload and dependencies. After deadline distribu-
tion, the entire workflow scheduling problem has been divided into several sub-task scheduling problems.

As shown in Figure 8, in workflow task partitioning, workflow tasks are categorized as either synchroniza-

tion tasks or simple tasks. A synchronization task is defined as a task which has more than one parent or
child task. For example, 1T , 10T and 14T are synchronization tasks. Other tasks which have only one parent

task and child task are simple tasks. For example, 92 TT − and 1311 TT − are simple tasks. Simple tasks are

then clustered into a branch. A branch is a set of interdependent simple tasks that are executed sequentially
between two synchronization tasks. For example, the branches in the example are },,{ 432 TTT , },{ 65 TT , }{ 7T ,

},{ 98 TT , }{ 11T and },{ 1312 TT .

 22

Figure 8. Workflow Task Partition.

After task partitioning, workflow tasks � are then clustered into partitions and the overall deadline is dis-
tributed over each partition. The deadline assignment strategy considers the following facts:

• The cumulative expected execution time of a simple path between two synchronization tasks is

same.
• The cumulative expected execution time of any path from an entry task to an exit task is equal to

the overall deadline.
• The overall deadline is divided over task partitions in proportion to their minimum processing

time.

After distributing overall deadline into task partitions, each task partition is assigned a deadline. There

are three attributes associated with a task partition iV : deadline (][iVdl), ready time (][iVrt), and expected

execution time (][iVeet). The ready time of iV is the earliest time when its first task can be executed. It can

be computed according to its parent partitions and defined by�

otherwise

VT
VdlVrt

ientry

j
PVV

i

ij

∈

��

�
�

�
=

∈

,

,
][max

0
][

where iPV is the set of parent task partitions of iV . The relation between three attributes of a task partition

iV follows that:

][][][iii VrtVdlVeet −=

A sub-deadline can be also assigned to each task based on the deadline of its task partition. If the task is a
synchronization task, its sub-deadline is equal to the deadline of its task partition. However, if a task is a
simple task of a branch, its sub-deadline is assigned by dividing the deadline of its partition based on its
processing time. Let iP be the set of parent tasks of iT and iS is the set of resources that are capable to

execute iT . j
it is the sum of input data transmission time and execution time of executing iT on iS . The

sub-deadline of task iT in partition V is defined by:

][][][VrtTeetTdl ii +=

 23

 where][
min

min

][

1

1
Veet

t

t

Teet
l
k

SlVT

j
i

Sj

i

kk

i

≤≤∈

≤≤

�
=

otherwise

TT
TdlTrt

entryi

j
PT

i

ij

=

��

�
�

�
=

∈

,

,
][max

0
][

Once each task has its own sub-deadline, a local optimal schedule can be generated for each task. If each
local schedule guarantees that their task execution can be completed within their sub-deadline, the whole
workflow execution will be completed within the overall deadline. Similarly, the result of the cost minimi-
zation solution for each task leads to an optimized cost solution for the entire workflow. Therefore, an op-
timized workflow schedule can be constructed from all local optimal schedules. The schedule allocates
every workflow task to a selected service such that they can meet its assigned sub-deadline at low execu-
tion cost.

4.2 Budget constrained scheduling

As the QoS guaranteed resources charges access cost, users would like to execute workflows based on the
budget they available. Budget constrained scheduling intends to minimize workflow execution time while
meeting users’ specified budgets. Tsiakkouri et al [52] present budget constrained scheduling called LOSS

and GAIN.

LOSS and GAIN

LOSS and GAIN scheduling approach adjusts a schedule which is generated by a time optimized heuristic
and a cost optimized heuristic to meet users’ budget constraints, respectively. A time optimized heuristic
attempts to minimize execution time while a cost optimization attempts to minimize execution cost.

If the total execution cost generated by time optimized schedule is not greater than the budget, the schedule
can be used as the final assignment; otherwise, the LOSS approach is applied. The idea behinds LOSS is to
gain a minimum loss in execution time for the maximum money savings, while amending the schedule to
satisfy the budget. The algorithm repeats to re-assign the tasks with smallest values of the LossWeight until
the budget constraint is satisfied. The LossWeight value for each task to each available resource is com-
puted and it is defined by:

newold

oldnew

CC

TT
)r,i(LossWeight

−

−
=

where Told and Cold are the execution time and corresponding cost of task Ti on the original resource as-
signed by the time optimized scheduling, Tnew and Cnew are the execution time of task Ti on resource r re-
spectively. If Cold is not greater than Cnew, the value of LossWeight is set to zero.

If the total execution cost generated by a cost optimized scheduler is less than the budget, the GAIN ap-
proach is applied to uses surplus to decrease the execution time. The idea behinds GAIN is to gain the
maximum benefit in execution time for the minimum monetary cost, while amending the schedule. The
algorithm repeats to re-assign the tasks with biggest value of the GainWeight until the cost exceeds the
budget. The GainWeight value for each task to each available resource is computed and it is defined by:

oldnew

newold

CC

TT
)r,i(GainWeight

−

−
=

where Tnew, Told, Cnew and Cold have the same meaning as in the LOSS approach. If Tnew is greater than Told
or Cnew is equal to Cold, the value of GainWeight is set to zero.

 24

4.3 Metaheuristic based constrained workflow scheduling

A genetic algorithm [61] is also developed to solve the deadline and budget constrained scheduling prob-
lem. It defines a fitness function which consists of two components, cost-fitness and time-fitness. For the
budget constrained scheduling, the cost-fitness component encourages the formation of the solutions that
satisfy the budget constraint. For the deadline constrained scheduling, it encourages the genetic algorithm
to choose individuals with less cost. The cost fitness function of an individual I is defined by:

 }1,0{ ,

)(

)(
)(

)1(cos ==
−

α
αα maxCostB

Ic
IF t

where c(I) is the sum of the task execution cost and data transmission cost of I , maxCost is the most expen-
sive solution of the current population and B is the budget constraint. α is a binary variable and α =1 if
users specify the budget constraint, otherwise α =0.

For the budget constrained scheduling, the time-fitness component is designed to encourage the genetic
algorithm to choose individuals with earliest completion time from the current population. For the deadline
constrained scheduling, it encourages the formation of individuals that satisfy the deadline constraint. The
time fitness function of an individual I is defined by:

}1,0{ ,
)(

)(
)(

)1(
==

−
β

ββ
maxTimeD

It
IFtime

where t(I) is the completion time of I , maxTime is the largest completion time of the current population and
D is the deadline constraint. β is a binary variable and β =1 if users specify the deadline constraint, other-

wise β =0.

For the deadline constrained scheduling problem, the final fitness function combines two parts and it is
expressed as:

otherwise

 1)(if

),(

),(
)(

>

�
�
�

=
IF

IF

IF
IF

time

cost

time

For the budget constrained scheduling problem, the final fitness function combines two parts and it is ex-

pressed as:

otherwise

 1)(if

),(

),(
)(

>

�
�
�

=
IF

IF

IF
IF

cost

time

cost

In order to applying mutation operators in Grid environment, it developed two types of mutation operations,
swapping mutation and replacing mutation. Swapping mutation aims to change the execution order of tasks
in an individual that compete for a same time slot. It randomly selects a resource and swaps the positions of
two randomly selected tasks on the resource. Replacing mutation re-allocates an alternative resource to a
task in an individual. It randomly selects a task and replaces its current resource assignment with a resource
randomly selected in the resources which are able to execute the task.

4.4 Comparison of QoS constrained scheduling algorithms

The overview of QoS constrained scheduling is listed in Table VI. Comparing two heuristics for the dead-
line constrained problem, the back-tracking approach is more naive. It is like a constrained based myopic
algorithm since it makes a greedy decision for each ready task without planning in the view of entire work-
flow. It is required to track back to the assigned tasks once it finds the deadline constraint cannot be satis-
fied by the current assignments. It is restricted to many situations such as data flow and the distribution of

 25

execution time and cost of workflow tasks. It may be required to go through many iterations to modify the
assigned schedule in order to satisfy the deadline constraint. In contrast, the deadline distribution makes a
scheduling decision for each task based on a planned sub-deadline according to the workflow dependencies
and overall deadline. Therefore, it has a better plan while scheduling current tasks and does not require
tracing back the assigned schedule. However, different deadline distribution strategies may affect the per-
formance of the schedule produced from one workflow structure to another.

Table VI. Comparison of QoS Workflow Scheduling Algorithms

To date, the LOSS and GAIN approach is the only heuristic that addresses the budget constrained schedul-
ing problem for Grid workflow applications. It takes advantage of heuristics designed for a single criteria
optimization problem such as time optimization and cost optimization scheduling problems to solve a
multi-criteria optimization problem. It amends the schedule optimized for one factor to satisfy the other
factor in the way that it can gain maximum benefit or minimum loss. Even though the original heuristics
are targeted at the budget-constrained scheduling problem, such concept is easy to apply to other con-
strained scheduling. However, there are some limitations. It relies on the results generated by an optimiza-
tion heuristics for a single objective. Even though time optimization based heuristics have been developed
over two decades, there is a lack of workflow optimization heuristics for other factors such as monetary
cost based on different workflow application scenarios. In addition, large scheduling computation time
could occur for data-intensive applications due to the weight re-computation for each pair of task and re-
source after amending a task assignment.

Unlike best-effort scheduling in which only one single objective (either optimizing time or system utiliza-
tion) is considered, QoS constrained scheduling needs to consider more factors such as monetary cost and
reliability. It needs to optimize multiple objectives among which some objectives are conflicting. However,
with the increase of the number of factors and objectives required to be considered, it becomes infeasible to
develop a heuristic to solve QoS constrained scheduling optimization problems. For this reason, we believe
that metahueristics based scheduling approach such as genetic algorithms will play more important role for
the multi-objective and multi-constraint based workflow scheduling.

Scheduling Method Algorithm Features

Back-
tracking

It assigns ready tasks whose parent tasks have
been mapped to the least expensive computing
resources and back-tracks to previous assign-
ment if the current cumulative execution time
exceeds the deadline. Heuristics based

Deadline
distribution

It distributes the deadline over task partitions in
workflows and optimizes execution cost for each
task partition while meeting their sub-deadlines.

D
ea

d
li

n
e-

co
n

st
r
a
in

e
d

Metaheuristics based
Genetic
algorithms

It uses a genetic algorithm to search for a solu-
tion which has minimum execution cost within
the deadline.

Heuristics based
LOSS and
GAIN

It iteratively adjusts a schedule which is gener-
ated by a time optimized heuristic or a cost op-
timized heuristic to meet the budget.

B
u

d
g
et

-

C
o
n

st
ra

in
ed

Metaheuristics based
Genetic
algorithms

It uses a genetic algorithm to search a solution
which has minimum execution time within the
budget.

 26

5. Simulation Results

In this section, we present an experimental comparison for workflow scheduling algorithms. The deadline
constrained scheduling heuristics described in previous section are implemented and compared based on
different workflow applications and QoS constraint levels.

5.1 Workflow Applications

Given that different workflow applications may have a different impact on the performance of the schedul-
ing algorithms, a task graph generator is developed to automatically generate a workflow based on the
specified workflow structure, and the range of task workload and the I/O data. Since the execution re-
quirements for tasks in scientific workflows are heterogeneous, the service type attribute is used to repre-
sent different types of services. The range of service types in the workflow can be specified. The width and
depth of the workflow can also be adjusted in order to generate workflow graphs of different sizes.

According to many Grid workflow projects [11][35][55], workflow application structures can be catego-
rized as either balanced structure or unbalanced structure. Examples of balanced structure include Neuro-
Science application workflows [63] and EMAN refinement workflows [35], while the examples of unbal-
anced structure include protein annotation workflows [40] and Montage workflows [11]. Figure 9 shows
two workflow structures, a balanced-structure application and an unbalanced-structure application, used
in our experiments. As shown in Figure 9a, the balanced-structure application consists of several parallel
pipelines, which require the same types of services but process different data sets. In Figure 9b, the struc-
ture of the unbalanced-structure application is more complex. Unlike the balanced-structure application,
many parallel tasks in the unbalanced structure require different types of services, and their workload and
I/O data varies significantly.

5.2 Experiment Setting

GridSim [48] is used to simulate a Grid environment for experiments. Figure 10 shows the simulation envi-
ronment, in which simulated services are discovered by querying the GridSim Index Service (GIS). Every
service is able to provide free slot query, and handle reservation request and reservation commitment.

There are 15 types of services with various price rates in the simulated Grid testbed, each of which was
supported by 10 service providers with various processing capability. The topology of the system is such
that all services are connected to one another, and the available network bandwidths between services are
100Mbps, 200Mbps, 512Mbps and 1024Mbps.

Figure 9. Small Portion of Workflow Applications.

 27

For the experiments, the cost that a user needs to pay for a workflow execution comprises of two parts:
processing cost and data transmission cost. Table VII shows an example of processing cost, while Table
VIII shows an example of data transmission cost. It can be seen that the processing cost and transmission
cost are inversely proportional to the processing time and transmission time respectively.

In order to evaluate algorithms on a reasonable deadline constraint we also implemented a time optimiza-
tion algorithm, HEFT, and a cost optimization algorithm, Greedy Cost (GC). The HEFT algorithm is a list
scheduling algorithm which attempts to schedule DAG tasks at minimum execution time on a heterogene-
ous environment. The GC approach is to minimize workflow execution cost by assigning tasks to services
of lowest cost. The deadline used for the experiments are based on the results of these two algorithms. Let

 maxT and minT be the total execution time produced by GC and HEFT respectively. Deadline D is defined

by:

)(minmaxmin TTkTD −+=

The value of k varies between 0 and 10 to evaluate the algorithm performance from tight constraint to re-
laxed constraint. As k increases, the constraint is more relaxed.

5.3 Backtracing vs. TD

In this section, TD is compared with BackTracking denoted as BT on the two workflow applications, bal-
anced and unbalanced. In order to show the results more clearly, we normalize the execution time and cost.
Let valueC and valueT be the execution time and the monetary cost generated by the algorithms in the ex-

periments respectively. The execution time is normalized by using DTvalue / , and the execution cost by

using
minvalue CC / , where

minC is the minimum cost achieved Greedy Cost. The normalized values of the

execution time should be no greater than one, if the algorithms meet their deadline constraints.

Figure 10. Simulation Environnent.

Service
ID

Processing Time
(sec)

Cost
($/sec)

1 1200 300
2 600 600
3 400 900
4 300 1200

Table VII. Service speed and
corresponding price for executing a task.

Table VIII. Transmission
bandwidth and corresponding price.

Bandwidth
(Mbps)

Cost
($/sec)

100 1
200 2
512 5.12

1024 10.24

 28

.

A comparison of the execution time and cost results of the two deadline constrained scheduling methods
for the balanced-structure application and unbalanced-structure application is shown in Figure 11 and Fig-
ure 12 respectively. From Figure 11, we can see that TD slightly exceeds deadline at 0=k , while BT can

Figure 12. Execution Cost for Scheduling Balanced- and Unbalanced-structure Applications.

(a) balanced structure (b) unbalanced structure

(a) balanced structure (b) unbalanced structure

Figure 13. Scheduling Overhead for Deadline Constrained Scheduling.

(a) balanced-structure application (b) unbalanced-structure application

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10

N
o
rm

a
liz

e
d
 S

c
h
e
d
u
lin

g
 T

im
e

User Deadline (k)

Balanced-structure application (Scheduling Overhead)

BT
TD

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

N
o
rm

a
liz

e
d
 S

c
h
e
d
u
lin

g
 T

im
e

User Deadline (k)

Unbalanced-structure application (Scheduling Overhead)

BT
TD

Figure 11. Execution Time for Scheduling Balanced- and Unbalanced-structure Applications.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

1086420

E
x
e
c
u
ti
o
n
 T

im
e
/D

e
a
d
lin

e

User Deadline (k)

Balanced Structure (Execution Time)

TD
BT

 0.6

 0.7

 0.8

 0.9

 1

 1.1

1086420

E
x
e
c
u
ti
o
n
 T

im
e
/D

e
a
d
lin

e

User Deadline (k)

Unbalanced Structure (Execution Time)

TD
BT

 1

 2

 3

 4

 5

 6

 7

 8

1086420

E
x
e
c
u
ti
o
n
 T

im
e
/D

e
a
d
lin

e

User Deadline (k)

Balanced Structure (Execution Cost)

TD
BT

 1

 2

 3

 4

 5

 6

 7

1086420

E
x
e
c
u
ti
o
n
 C

o
s
t/
C

h
e
a
p
e
s
t
C

o
s
t

User Deadline (k)

Unbalanced Structure (Execution Cost)

TD
BT

 29

satisfy deadlines each time. For execution cost required by the two approaches shown in Figure 12, TD
significantly outperforms BT. TD saves almost 50% execution cost when deadlines are relatively low.
However, the two approaches produce similar results when deadline is greatly relaxed.

Figure 13 shows the comparison of scheduling running time for two approaches. The scheduling time re-
quired by TD is much lower than BT. As the deadline varies, BT requires more running time when dead-
lines are relatively tight. For example, scheduling times at 4 ,2 ,0=k are much longer than at 10 ,8 ,6=k .
This is because it needs to back-track for more iterations to adjust previous task assignments in order to
meet tight deadlines.

5.4 TD vs. Genetic Algorithms

In this section, the deadline constrained genetic algorithm is compared with the non-GA heuristics (i.e. TD)
on the two workflow structures, balanced and unbalanced workflows.

The genetic algorithm is investigated by starting with two different initial populations. One initial popula-
tion consists of randomly generated solutions, while the other initial population consists of a solution pro-
duced by TD together with other randomly generated solutions. In the result presentation, the results gener-
ated by GA with a completely random initial population is denoted by GA, while the results generated by
GA which include an initial individual produced by the TD heuristic are denoted as GA+TD. The parame-
ter settings used as the default configuration for the proposed genetic algorithm are listed in Table XI.

Table XI. Default parameters

Parameter Value/type

Population size 10
Maximum generation 100
Crossover probability 0.9
Reordering mutation probability 0.5
Replacing mutation probability 0.5
Selection scheme elitism-rank selection
Initial individuals randomly generated

Figure 14 and Figure 15 compare the execution time and cost of using three scheduling approaches for
scheduling the balanced-structure application and unbalanced-structure application with various deadlines
respectively.

We can see that it is hard for both GA and TD to successfully meet the low deadline individually. As
shown in Figure 14a and 15a, the normalized execution times produced by TD and GA exceed 1 at tight

 1

 2

 4

 7

 0 2 4 6 8 10

E
x
e
c
u
ti
o
n
 C

o
s
t/
C

h
e
a
p
e
s
t
C

o
s
t

Deadline (k)

Balanced-structure application (Execution Cost)

TD
GA

GA+TD

Figure 14. Normalized Execution Time and Cost for Scheduling Balanced-
structure Application.

(a) execution time (b) execution cost

 0 2 4 6 8 10

E
x
e
c
u
ti
o
n
 T

im
e
/D

e
a
d
lin

e

Deadline (k)

Balanced-structure application (Execution Time)

Deadline
TD
GA

GA+TD

 30

deadline (0=k), and GA performs worse than TD since its values is higher than TD, especially for bal-
anced-structure application. However, the results are improved when incorporating GA and TD together by
putting the solution produced by TD into the initial population of GA. As shown in Figure 15a, the value of
GA+TD is much lower than that of GA and TD at the tight deadline.

As the deadline increases, both GA and TD can meet the deadline (see Figure 14a and 15a) and GA can
outperform TD. For example, execution time (see Figure 14a) and cost (see Figure 14b) generated by GA at

2=k are lower than that of TD. However, as shown in Figure 14b the performance of GA is reduced and
TD can perform better, when the deadline becomes very large (8=k and 10). In general, GA+TD performs
best. This shows that the genetic algorithm can improve the results returned by other simple heuristics by
employing these heuristic results as individuals in its initial population.

6. Summary

In this chapter, we have presented a survey of workflow scheduling algorithms for Grid computing. We
have categorized current existing Grid workflow scheduling algorithms as either best-effort based schedul-
ing or QoS constraint based scheduling.

Best-effort scheduling algorithms target on community Grids in which resource providers provide free ac-
cess. Several heuristics and metahueristics based algorithms which intend to optimize workflow execution
times on community Grids have been presented. The comparison of these algorithms in terms of computing
time, applications and resources scenarios has also been examined in detail. Since the service provisioning
model of the community Grids is based on best effort, quality of service and service availability cannot be
guaranteed. Therefore, we have also discussed several techniques on how to employ the scheduling algo-
rithms in dynamic Grid environments.

QoS constraint based scheduling algorithms target utility Grids in which service level agreements are estab-
lished between service providers and consumers. In general, users are charged for service access based on
their usage and QoS levels. The objective functions of QoS constraint based scheduling algorithms are de-
termined by QoS requirements of workflow applications. In this chapter, we have focused on examining
scheduling algorithms which intend to solve performance optimization problems based on two typical QoS
constraints, deadline and budget.

7. References

[1]. J. Almond, D. Snelling, “UNICORE: Uniform Access to Supercomputing as an Element of Electronic

Commerce”, Future Generation Computer Systems, 15:539-548, NH-Elsevier, 1999.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 2 4 6 8 10

E
x
e
c
u
ti
o
n
 T

im
e
/D

e
a
d
lin

e

Deadline (k)

Unbalanced-structure application (Execution Time)

Deadline

TD
GA

GA+TD

 1

 2

 4

 8

 0 2 4 6 8 10

E
x
e
c
u
ti
o
n
 C

o
s
t/
C

h
e
a
p
e
s
t
C

o
s
t

Deadline (k)

Unbalanced-structure application (Execution Cost)

TD
GA

GA+TD

(a) execution time

Figure 15. Normalized Execution Time and Cost for Scheduling Unbalanced-
structure Application.

(b) execution cost

 31

[2]. The Austrian Grid Consortium. http://www.austrangrid.at.
[3]. R. Bajaj and D. P. Agrawal, "Improving Scheduling of Tasks in a Heterogeneous Environment," IEEE

Transactions on Parallel and Distributed Systems, vol. 15, pp. 107-118, 2004.
[4]. F. Berman, H. Casanova, A. Chien, K. Cooper, H. Dail, A. Dasgupta, W. Deng, J. Dongarra, L. Johns-

son, K. Kennedy, C. Koelbel, B. Liu, X. Liu, A. Mandal, G. Marin, M. Mazina, J. Mellor-Crummey, C.
Mendes, A. Olugbile, M. Patel, D. Reed, Z. Shi, O. Sievert, H. Xia, and A. YarKhan, New Grid
Scheduling and Rescheduling Methods in the GrADS Project, International Journal of Parallel Pro-

gramming (IJPP), 33(2-3):209-229, 2005.
[5]. G. B. Berriman et al, Montage : a Grid Enabled Image Mosaic Service for the National Virtual Obser-

vatory. ADASS 13, 2003.
[6]. G. Berti, S. Benkner, J. W. Fenner, J. Fingberg, G. Lonsdale, S. E. Middleton, and M. Surridge,

“Medical Simulation Services via the Grid”, In HealthGRID 2003 conference, 2003.
[7]. S. Benkner, I. Brandic, G. Engelbrecht, R. Schmidt, “VGE - A Service-Oriented Grid Environment

for On-Demand Supercomputing”, In the Fifth IEEE/ACM International Workshop on Grid Computing

(Grid 2004), Pittsburgh, PA, USA, November 2004.
[8]. S. Binato et al., A GRASP for job shop scheduling. In Ribeiro and Hansen, eds, Essays and surveys on

metaheuristics, pp59-79, Kluwer Academic Publishers, 2001.
[9]. L. S. Blackford et al., “ScaLAPACK: a linear algebra library for message-passing computers”. In Pro-

ceedings of the Eighth SLAM Conference on Parallel Processing for Scientific Comput-
ing(Minneapolis, MN, 1997), page 15, Philadelphia, PA, USA, 1997. society for Industrial and Ap-
plied Mathematics.

[10]. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz. WIEN2k: An Augmented Plane
Wave plus Local Orbitals Program for Calculating Crystal Properties. Institute of Physical and Theo-
retical Chemistry, Vienna University of Technology, 2001.

[11]. J. Blythe et al., Task Scheduling Strategies for Workflow-based Applications in Grids, IEEE In-

ternational Symposium on Cluster Computing and the Grid (CCGrid 2005). IEEE Press.
[12]. T. D. Braun, H. J. Siegel, and N. Beck, "A Comparison of Eleven static Heuristics for Mapping a

Class of Independent Tasks onto Heterogeneous Distributed Computing Systems," Journal of Parallel

and Distributed Computing, vol. 61, pp. 801-837, 2001.
[13]. R. Buyya and S. Venugopal, The Gridbus Toolkit for Service Oriented Grid and Utility Comput-

ing: An overview and Status Report, the first IEEE International Workshop on Grid Economics and

Business Models, GECON 2004, Seoul, Korea, April 23, 2004.
[14]. H. Casanova et al., Heuristics for Scheduling Parameter Sweep Applications in Grid Environments,

In 9th Heterogeneous Computing Workshop (HCW’00), Apr. 2000
[15]. K. Cooper et al., New Grid Scheduling and Rescheduling Methods in the GrADS Project, IPDPS

2004.
[16]. A. DO�AN and F. Özgüner. “Genetic Algorithm Based Scheduling of Meta-Tasks with Stochas-

tic Execution Times in Heterogeneous Computing Systems”, Cluster Computing, 7:177-190, Kluwer
Academic Publishers, Netherlands, 2004.

[17]. E. Deelman et al., Pegasus: Mapping scientific workflows onto the grid, In European Across

Grids Conference, pp. 11-20, 2004.
[18]. T. Fahringer et al., ASKALON: a tool set for cluster and Grid computing. Concurrency and Com-

putation: Practice and Experience, 17:143-169, Wiley InterScience, 2005.

[19]. T. A. Feo and M. G. C. Resende, Greedy Randomized Adaptive Search Procedures, Journal of

Global Optimization, 6:109-133, 1995.

[20]. S. Fitzgerald et al, “A Directory Service for Configuring High-Performance Distributed Computa-
tions”, Proc. 6th IEEE Symposium on High-Performance Distributed Computing, pp. 365-375, 1997.

[21]. I. Foster and C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit, International Jour-

nal of Supercomputer Applications, 11(2): 115-128, 1997.

[22]. I. Foster and C. Kesselman (editors). The Grid: Blueprint for a Future Computing Infrastructure,
Morgan Kaufmann Publishers, USA, 1999.

[23]. I. Foster et al, “Chimera: A Virtual Data System for Representing, Querying and Automating
Data Derivation”, Proceedings of the 14th Conference on Scientific and Statistical Database Manage-

ment, Edinburgh, Scotland, July 2002.

 32

[24]. I. Foster et al., “The Physiology of the Grid”, Open Grid Service Infrastructure WG, Global Grid
Forum, 2002.

[25]. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-
Wesley, 1989.

[26]. D. E. Goldberg and K. Deb, A comparative analysis of selection schemes used in genetic algo-
rithms, in Foundations of Genetic Algorithms, pp.69-93, Morgan Kaufmann, 1991.

[27]. A. Grimshaw and W. Wulf, The Legion vision of a worldwide virtual computer, Communications

of the ACM, 40(1):39-45, 1997.
[28]. X. He, X. Sun, and G. von Laszewski, QoS Guided Min-Min Heuristic for Grid Task Scheduling.

Journal of Computer Science and Technology, 18(4):442-451, 2003.
[29]. F. S. Hillier and G. J. Lieberman, Introduction to Operations Research, McGraw-Hill Science,

2005.
[30]. D. Hollinsworth. The Workflow Reference Model, Workflow Management Coalition, TC00-1003,

1994.

[31]. H. H. Hoos and T. Stützle, Stochastic Local Search: Foundation and Applications, Elsevier Sci-
ence and Technology, 2004.

[32]. E. S. H. Hou, N. Ansari, and H. Ren, “A Genetic Algorithm for Multiprocessor Scheduling”, IEEE

Transactions on Parallel and Distributed Systems, 5(2):113-120, February 1994.

[33]. Y. K. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allocating Directed Task Graphs to
Multiprocessors”, ACM Computing Surveys, 31(4):406-471, Dec. 1999.

[34]. S. Ludtke, P. Baldwin, and W. Chiu. EMAN: Semiautomated software for high-resolution single-
particle reconstructions. Journal of Structural Biology, 128:82-97, 1999.

[35]. A. Mandal et al., “Scheduling Strategies for Mapping Application Workflows onto the Grid”,
IEEE International Symposium on High Performance Distributed Computing (HPDC 2005), 2005.

[36]. A. Mayer, S. McGough, N. Furmento, W. Lee, M. Gulamali, S. Newhouse, and J. Darlington.
Workflow Expression: Comparison of Spatial and Temporal Approaches. In Workflow in Grid Systems

Workshop, GGF-10, Berlin, March 9, 2004.

[37]. D. A. Menasc� and E. Casalicchio, “A Framework for Resource Allocation in Grid Computing”,
12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Tele-

communications Systems (MASCOTS’04), 2004.
[38]. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equations of

state calculations by fast computing machines. J. Chem. Phys., 21:1087-1091, 1953.
[39]. M. Maheswaran, S. Ali, H.J.Siegel, D. Hensgen, and R. Freund. Dynamic Matching and

Scheduling of a Class of Independent Tasks onto Heterogeneous Computng Systems. In 8
th

Heterogeneous Computing Workshop (HCW’99), Apr. 1999.
[40]. A. O’Brien, S. Newhouse, and J. Darlington, "Mapping of Scientific Workflow within the e-

Protein project to Distributed Resources," in UK e-Science All Hands Meeting, Nottingham, UK, 2004.
[41]. M. Obitko. “Introduction to Genetic Algorithms”. http://cs.felk.cvut.cz/~xobitko/ga/. [March 2006]
[42]. R. Prodan and T. Fahringer, “Dynamic Scheduling of Scientific Workflow Applications on the

Grid using a Modular Optimisation Tool: A Case Study”, In 20th Symposium of Applied Computing

(SAC 2005), Santa Fe, New Mexico, USA, March 2005. ACM Press.
[43]. Peter Rutschmann Dieter Theiner. An inverse modelling approach for the estimation of

hydrological model parameters. In Journal of Hydroinformatics, 2005.
[44]. R. Sakellariou and H. Zhao. "A Low-Cost Rescheduling Policy for Efficient Mapping of Work-

flows on Grid Systems''. Scientific Programming, 12(4), pages 253-262, December 2004.
[45]. R. Sakellariou and H. Zhao, "A Hybrid Heuristic for DAG Scheduling on Heterogeneous Sys-

tems," presented at 13th Heterogeneous Computing Workshop (HCW 2004), Santa Fe, New Mexico,
USA, 2004.

[46]. Z. Shi and J. J. Dongarra, "Scheduling workflow applications on processors with different capa-
bilities," Future Generation Computer Systems, vol. 22, pp. 665-675, 2006.

[47]. D. P. Spooner, J. Cao, S. A. Jarvis, L. He, and G. R. Nudd. “Performance-aware Workflow Man-
agement for Grid Computing”. The Computer Journal, Oxford University Press, London, UK, 2004.

[48]. A. Sulistio and R. Buyya, "A Grid Simulation Infrastructure Supporting Advance Reservation," in
16th International Conference on Parallel and Distributed Computing and Systems (PDCS 2004),

 33

MIT Cambridge, Boston, USA, 2004.

[49]. T. Tannenbaum, D. Wright, K. Miller, and M. Livny, Condor – A Distributed Job Scheduler,
Computing with Linux, The MIT Press, MA, USA, 2002.

[50]. G. Thickins, “Utility Computing: The Next New IT Model”, Darwin Magazine, April 2003.
[51]. H. Topcuoglu, S. Hariri, and M. Y. Wu. “Performance-Effective and Low-Complexity Task

Scheduling for Heterogeneous Computing”, IEEE Transactions on Parallel and Distributed Systems,

13(3): 260-274, March 2002.
[52]. E. Tsiakkouri et al., “Scheduling Workflows with Budget Constraints”, In the CoreGRID Work-

shop on Integrated research in Grid Computing, S. Gorlatch and M. Danelutto (Eds.), Technical Re-
port TR-05-22, University of Pisa, Dipartimento Di Informatica, Pisa, Italy, Nov. 28-30, 2005, pages
347-357.

[53]. J. D. Ullman, "NP-complete Scheduling Problems," Journal of Computer and System Sciences,

vol. 10, pp. 384-393, 1975.
[54]. L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski, "Task Mapping and Schedul-

ing in Heterogeneous Computing Environments Using a Genetic-Algorithm-Based Approach," Journal

of Parallel and Distributed Computing, vol. 47, pp. 8-22, 1997.
[55]. M. Wieczorek, R. Prodan, and T. Fahringer. “Scheduling of Scientific Workflows in the

ASKALON Grid Enviornment”, ACM SIGMOD Record, 34(3):56-62, Sept. 2005.
[56]. A. S. Wu, et al., “An Incremental Genetic Algorithm Approach to Multiprocessor Scheduling”,

IEEE Transactions on Parallel and Distributed Systems, 15(9):824-834, September 2004.
[57]. A. YarKhan and J. J. Dongarra. Experiments with Scheduling Using Simulated Annealing in a

Grid Environment. In Grid 2002, November 2002.
[58]. L. Young, S. McGough, S. Newhouse, and J. Darlington. Scheduling Architecture and Algorithms

within the ICENI Grid Middleware. In UK e-Science All Hands Meeting, IOP Publishing Ltd, Bristol,
UK, Nottingham, UK, Sep. 2003; 5-12.

[59]. J. Yu and R. Buyya, “A Taxonomy of Workflow Management Systems for Grid Computing”,
Journal of Grid Computing, Springer, 3(3-4): 171-200, Spring Science+Business Media B.V., New
York, USA, Sept. 2005.

[60]. J. Yu, R. Buyya, and C.K. Tham, “A Cost-based Scheduling of Scientific Workflow Applications
on Utility Grids”, In the first IEEE International Conference on e-Science and Grid Computing,
Melbourne, Australia, Dec. 5-8, 2005.

[61]. J. Yu and R. Buyya, Scheduling Scientific Workflow Applications with Deadline and Budget
Constraints using Genetic Algorithms, Scientific Programming Journal, 14(3-4): 217 - 230, IOS Press,
Amsterdam, The Netherlands, 2006.

[62]. H. Zhao and R. Sakellariou. “An experimental investigation into the rank function of the
heterogeneous earliest finish time shceulding algorithm”, In Euro-Par, pp. 189-194, 2003.

[63]. Y. Zhao, M. Wilde, I. Foster, J. Voeckler, T. Jordan, E. Quigg, and J. Dobson, "Grid Middleware
Services for Virtual Data Discovery, Composition, and Integration," in the Second Workshop on Mid-

dleware for Grid Computing, Toronto, Ontario, Canada, 2004.
[64]. A. Y. Zomaya, C. Ward, and B. Macey, “Genetic Scheduling for Parallel Processor Systems:

Comparative Studies and Performance Issues”, IEEE Transactions on Parallel and Distributed

Systems, 10(8):795-812, August 1999.
[65]. A. Y. Zomaya, Y. H. Teh, “Observations on Using Genetic Algorithms for Dynamic Load-

Balancing”, IEEE Transactions on Parallel and Distributed Systems, 12(9):899-911, September 2001.

