
A Scalable Self-Managing Architecture for WSRF

Services

Christoph Reich
Department of Computer Science

Hochschule Furtwangen University, Germany
reich@hs-furtwangen.de

Kris Bubendorfer
School of Mathematics, Statistics and Computer Science

Victoria University of Wellington, New Zealand
kris@mcs.vuw.ac.nz

Rajkumar Buyya
Grid Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering
University of Melbourne, Australia

raj@csse.unimelb.edu.au

16 April 2007

Abstract

Service-Oriented Architectures provide integration of and interopt-

ablity for independent and loosely coupled services. Web services and

the WSRF standards are frequently used to realise such Service-Oriented

Architectures. In such systems, autonomic principles of self-configuration,

self-optimisation, self-healing and self-adapting are desirable to ease man-

agement and improve robustness. In this paper we focus on the extension

of the self management and autonomic behaviour of a WSRF container to

include its interconnection and interaction with other WSRF containers.

In our architecture we incorporate a structured distributed hash table

peer-to-peer overlay network within our autonomic WSRF service con-

tainer. This approach enables the runtime construction of a scalable self-

managing and self-configuring SOA system. Our architecture is inherently

non-hierarchical and widely distributed. It enables reliable resolution of

web service locations at any application server, allows balanced runtime

deployment of WSRF services, migration to enable service level agree-

ments to be satisfied and provides autonomic management of the overall

system.

1

1 Introduction

Webservices and the associated WSRF [22] standards are the predominant
choice for implementing service oriented architectures (SOA). Management of
large SOAs is difficult, and autonomic principles of self-configuration, self-
optimisation, self-healing and self-adapting [18, 19, 16] can be usefully applied
to ease management and improve resilience and overall system performance.
In addition, quality of service (QoS) needs to be expressed in such SOAs and
can only be met if specific service level agreements (SLAs) are defined and ad-
hered to. To this end we have developed an autonomic WSRF container that
utilises MAPE (Monitor, Analyse, Plan and Execute) [6] to manage its internal
functionality, detect SLA violations and trigger corrective actions.

However, this autonomic WSRF container is only part of the solution, as
these containers need to be organised into a distributed network to enable
deployment of distributed web services. Our approach is to extend the self
management and autonomic behaviour of the WSRF container to include its
interconnection and interaction with other WSRF containers. Hierarchical ap-
proaches such as [9] do not naturally fit with autonomic principles, as to be truly
self managing, each WSRF node must be able to contribute to the management
of the overlay network and yet avoid any specialised or static roles. These re-
quirements fit well with recent advances in peer-to-peer networking [20, 21] and
such systems typically permit a wide distribution of workload, decentralised
management, failure tolerance and replica management. In our architecture we
incorporate such a structured distributed hash table (DHT) peer-to-peer over-
lay network within our autonomic WSRF service container. Our work stands
neatly at the junction of four areas of current research: service-oriented archi-
tectures, web services and the WSRF, service level agreements, and structured
peer-to-peer overlay networks. Our architecture enables reliable resolution of
web service locations at any application server, allows SLA compliant deploy-
ment of WSRF services, and provides autonomic management of the overall
system.

Our contributions: firstly we have provided a scalable decentralised solution
to the deployment of distributed web services, secondly we have simplified the
management of such a system by adhering to autonomic principles, thirdly we
maintain the performance of the system by tightly integrating SLA compliance
and migrating service between containers to preserve QoS. In addition, as the
architecture has been built using standardised modern technologies and with
high levels of transparency, conventional webservices can be deployed with the
addition of a SLA specification.

The paper is organised as follows, in section 2 we outline the basics of the
autonomic WSRF container, in section 3 we describe the architectural design
of the system, section 4 details the prototype and our experimental results that
validate our approach, section 5 explores related work, and finally section 6
concludes this paper.

2 WSRF Container

In this paper we focus on the architecture for interconnecting our autonomic
WSRF containers, and therefore we will only provide a brief outline of the
WSRF service Container itself, see figure 1. The WSRF container is embedded
within a Geronimo [2] application server, the WSRF services are deployed in
Axis2 [1] running in Tomcat [3]. JSR-77 [15]provided by JMX [14] is used to
monitor the WSRF services inside the service container (e.g. request counter,
processing time, etc.). Remote access is provided by a management Web ser-
vice (preferred) or by the RMI remote adapter from JMX. The management
Web service contacts MBeans [14] to get or set management information, or to
define policies, etc. MAPE [6] is an architecture for implementing such auto-
nomic features and utilises SLAs and performance metrics to trigger self man-
aging operations and is implemented using Geronimo’s GBeans [12]. GBeans
automatically generate MBeans, which are used by the management Web ser-
vice. Using GBeans provides access to Geronimo’s advanced features, such as,
Inversion-of-Control [10].

Muse

WSRF
Service

WSRF
Service

Axis

Tomcat

MBean MBean MBean MBean

Service
Container
configure

MBean Server

RMI

Adapter AC Sensor
AC

Sensor

AC Effector

AC
Effector

Monitor

Analyser

Executer

Plan

Knowledge

Web
Service

AC Sensor/
Effector

MBean

Virtual
WSRF
Container
RMI

Client

Geronimo

Virtual WSRFContainer
SOAP

Figure 1: Internal structure of the WSRF container

Each container monitors its performance requirements, based on the SLAs it
holds. If a container is not able to resolve an actual or a predicted SLA violation
internally, it will generate a help message indicating which resource is causing
the problem. The exact means of distributing this message is detailed in the next
section 3, however, the important point here is that each recipient of this help

message will generate a response health status metric (H-metric). A H-metric
is a simple approximation indicating the overall status of the WSRF container,
and is weighted to highlight the resource responsible for the SLA violation.
Essentially, each monitored resource is normalised, then all of the resources are
summed and renormalised. This allows the state of the responding machine to be
summarised in a single comparable number, but permits the particular resource
of interest to carry more weight when selecting a destination for migration.
The H-metric is specific to each help request. Two simultaneous requests with
different violating resources, will result in two different H-metrics from the same
container. The container with the lowest H-Metric, will typically be chosen as
the new location of the service.

3 Architecture

The WSRF container as presented, utilises MAPE to manage its internal func-
tionality, to detect SLA violations and trigger corrective actions. However, we
saw an opportunity to extend the self management and autonomic behaviour of
the WSRF container to include its interconnection and interaction with other
WSRF containers. To build a truly scalable, flexible, self configuring auto-
nomic WSRF overlay network, each WSRF node must be able to contribute
to the management of the overlay network and yet avoid any specialised or
static roles. The lack of specialised or static roles increases robustness in case
of failure, and most importantly permits a wide distribution of workload. In
particular we want services to be locatable within the network without relying
on a centralized index server. This will avoid any single point of failure in the
system. Structured peer to peer file systems that use distributed hash tables,
such as Pastry [20] and Chord [21], are a good fit with these design requirements
and naturally express some desirable autonomic behaviours. To store data each
data object is mapped to the numerically closest live storage node (both node
ID and data object ID are hashed). Thus, each storage node in the network is
responsible for storing objects with numerically close IDs, and the resulting load
is distributed evenly. However, such p2p file systems need adaptation and ex-
tension to provide the functionality required for interconnecting our autonomic
WSRF containers. Figure 2 illustrates the extension of the WSRF container
to integrate a customized p2p node and routing servlet within the Geronimo
application server. The modified p2p Node stores a mapping of Service ID to
Container ID. The actual service is not deployed on the container to which the
service ID is hashed – otherwise services could not be migrated or deployed as
required and transparency would be broken.

The following subsections 3.1 through 3.5 outline our architecture based on
the operating phases of the system, e.g. service access, creation, deployment,
and maintenance (observation and migration).

Muse

WSRF
Service

WSRF
Service

Axis

Tomcat

Web
Service

Geronimo

Routing
Servlet

Gernonimo Kernel

Autonomic
System
Manager

P2P
Node

Client

SOAP
Request

WSRF-P2P Service Container

P2

P3

P12

P11

P1

Figure 2: Architecture overview of the WSRF-p2p service container

3.1 WSRF Service Access

To obtain a service, the client only needs to know a single container in the WSRF
container overlay network and the service’s ID (name). Communication can take
place either directly or via a local proxy. One advantage of the proxy is that
it generates a random container ID and uses it to bind to that container. This
step ensures that the workload is evenly distributed over the network due to the
even randomisation properties of the DHT hash. Also, in the case of a failure of
the container, the proxy will automatically rebind to a new randomly selected
container. A typical request is shown in Figure 3. The client instantiates a
proxy, passing in a container address and the service name. The proxy then
picks a random ID and passes this to the known container. The known container
resolves this address to the nearest live container and routes the service request
to it. The address of the container is returned to the proxy and the proxy binds
to it. From this point all queries go via the bound container. The service name is
hashed, and the lookup is routed via the bound proxy to the container that holds
the index for this service. The value returned is the actual container in which
the service is hosted, the routing servlet then uses this to obtain the service via
the routing servlet on the hosting container. Any changes to the distribution of
services, or rebinding of the container to proxy take place transparently for the
client.

WSRF
Service

Geronimo

Routing
Servlet

Client

SOAP
Request

Bound P2P ContainerP4

P2

P3
P5

P12

P11
P10P9

P8

P7

P6

P1

DHT

P2P
App

get WS
location

SOAP
Request

WSRF
Service

WSRF
Service

local Services

WSRF
Service

Geronimo

Routing
Servlet

Service P2P Container

P6

DHT

P2P
App

WSRF
Service

WSRF
Service

local Services

P7

Proxy

resolve random ID

Figure 3: Client request routing

3.2 Creation and Initialisation Phase

The first WSRF container in the network is simply created. All subsequent
containers that join the network are passed the ID of any existing container,
which they then use to bootstrap themselves into the network. When more than
one WSRF container is present, the degree to which the resources are normalised
during the calculation of the H-metric needs to be common throughout the
network. Otherwise the H-metrics of the various containers cannot be compared.
As we do not assume a homogeneous set of machines, this information must be
exchanged as each container joins. If the new container advises that it has more
memory or a higher MIPS performance than the current maximums, then its
values are selected as the new maximums for normalisation and are propagated
to all containers in the network.

A container can join a new network, or an existing network. The difference
between the two situations is that a new network will not have any pre-existing
services deployed, whereas the existing network will have deployed services and
runtime information stored in the containers. On a new network these is nothing
else for the container to do other than wait for service deployment requests.
However, when joining an existing network a new container must do additional
work. First, it asks its new neighbours (left and right) what their observed (see
section 3.5.1 for details) state of the load in the system is, it averages these
and stores the result as it’s view of the load on the overlay network. If this
observed load is greater than some minimal threshold, the container queries
(see section 3.3) the overlay network for an overloaded container that might
wish to migrate a service to it. The container ceases its queries once it has a
service migrated to it, and then starts operation as a normal member of the
network. Additional applications are only migrated to the container in response
to help requests or by new service deployments (see Section 3.4).

To summarise, to join an WSRF-p2p network all that a container needs to
know is the ID of any member. After joining, a container knows the maximum

resource values present in the network, and how its direct neighbours view the
average load of the system.

3.3 H-metric Queries

One aspect that initialisation, deployment and migration share is the need to
query the WSRF-p2p container network to locate overloaded or underloaded
containers. This is completely different to the problem of service location. The
problem is that in a DHT ring overlay network there is no hierarchy to determine
how the nodes should be queried for their H-Metrics. As we desire a scalable
overlay network, solutions such as broadcast and a sequential ring traversal are
not acceptable. Our solution is to treat the ID space of the nodes as evenly
populated (which it is, given a reasonable hash function) and to compute a
binary query tree with the initiating node as the root (for deployment we pick
a random node as root to best balance the load over multiple deployments).
Equation 1 gives the formula for the binary query as computed at each level.

newIDl =

{

{ownID}, if l = 0.0

{ownID + maxID−of−ring
2∗l

∗ i|i = 1, 2, 3, ..., (2 ∗ l − 1)}, otherwise

(1)
The search is then parameterised by depth and the H-metrics from the

queried containers are returned. Due to the computation and the randomi-
sation of container IDs within the DHT, duplicate queries can target the same
node. This is resolved by utilising version numbers and discarding duplicate
requests. A concrete examples of a H-metric query is given in the following
section.

3.4 WSRF Service Deployment Phase

Services can be deployed at any time during the life of a WSRF-p2p container
network, however bulk service deployment into a new network is somewhat of
a special case as we desire to have a good initial distribution of services to
containers to minimise the amount of maintenance and migration required later
on. In either case however, we distinguish 2 types of services:

• Constrained services: These services have specific location dependencies.
For example, if the service needs to be close to an existing database or
other unique resource. These requirements are spelt out in the SLA gov-
erning the execution of this service along with other more flexible require-
ments such as the type of machine, hard disk speed, etc.

• Unconstrained services: These services have no special requirements for
the location. They can be deployed anywhere, providing the container’s
performance is sufficient to meet the other SLA specifications.

When performing the initial bulk deployment of services to a newly created
WSRF-p2p container network the order of the service placement is important.
In this case, we select the constrained services first, place these such that their
SLA requirements are met, and then deploy the unconstrained services slotting
in around the deployed constrained services. However, were the same container
to be used as the starting point for these deployments, then the H-metric queries
would all follow the same search tree and give very poor efficiency. Our solution
is to simply pick a random container for each unconstrained deployment and
begin the deployment search from that point.

Deploying into an existing network is slightly different. In this case uncon-
strained services are placed on the first container for which the H-metric query
returns a sufficiently low H-metric. For constrained services, there is no choice
about the destination container, and as such the service must be placed there
providing the requirements of all the constrained services on that container do
not exceed its capacity (otherwise the deployment must fail and a new SLA
or resources must be provided). Although this may result in potential SLA
violations for the existing services on that container, normal maintenance (see
section 3.5) will result in unconstrained services being migrated to alternative
containers.

client

Proxy

1

2

2

H=0.7

H=0.6

H=0.2

P3

P10

P12

0

Figure 4: Deployment of a Single Service

Figure 4 shows an example of a service deployment. In this case the service
deployer asks its local WSRF container (the one it usually interacts with via its
proxy) to deploy a service. The WSRF container picks a random ID, resolves
this to the nearest container, and initiates a two level H-metric query from this

root. The H-metric query in this case results in H = 0.7 from container P10 and
H = 0.6 and H = 0.2 from its computed children P3 and P12 respectively. Note,
the SLA is appended to the H-metric query and if a container cannot satisfy
the SLA it will always return H = 1.0. If this search fails to return a suitable
destination for the deployment, we increase the depth by one and reissue the
query. The depth of the search will increase until a destination is found or the
number of containers in the search tree exceeds the size of the overlay network.
It is worth emphasising that when the depth is increased, there is no need to
revisit containers that have already been queried, as the tree at each level is
computed at the deployer’s local container, and only the new leaf nodes are
sent the H-metric requests.

3.5 WSRF Service Maintenance Phase

If the resource usage of a service can be characterised exactly, along with the
number and location of its users, the available bandwidth, etc., and we have
complete control over the resources on which it is executed - then the initial
deployment of services to containers is sufficient. However, as this is not re-
alistically the case, our architecture must be capable of maintaining the SLA
compliance of the WSRF-p2p container network. There are four occasions when
our system may migrate services: in response to a constrained deployment, in
response to a new container joining the network, in response to a container hav-
ing few services, or in response to a predicted or real SLA violation. The first
two have already been discussed in earlier sections. It is also worth pointing
out that service migration is expensive and should be only performed when it
is really needed, so our approach should be considered degradation avoidance
rather than load balancing.

3.5.1 H-metric Observation

To avoid excessive attempts to offload or obtain services, some information
about the general load on the system needs to be obtained. Conventionally this
is collected at a single point for easy access or by broadcast. Neither of these
approaches are suitable for a scalable autonomic network, and in any case, the
information need not be completely accurate as placement decisions are made
in response to H-metric queries. Rather this information is only needed for
determining wether a container ought to be attempting to offload or obtain
services. Our novel solution to this problem is to note that in a structured
p2p system, individual nodes act as routers, as well as storage devices. Hence
H-metric messages that are generated by containers in response to queries from
other containers, may be routed though otherwise uninterested containers. We
observe these H-metric messages that pass through containers when operating
as routers, and using a weighted decaying average gather an estimate on the
current state of the overall system, without needing any additional messages for
communicating the system’s load.

3.5.2 Over-utilization

When a WSRF container predicts or detects a SLA violation, it will attempt
to offload a service that consumes that resource. The first step is to check the
observed H-metric, as there is no point trying to offload a service when the entire
network is overloaded. Next, the container examines all of its unconstrained
service’s SLAs to identify a migration candidate with the highest usage of the
resource. Once a candidate has been identified, the container issues a help
message, appends the candidates SLA and performs a H-metric query of depth
2 as detailed in section 3.3. If this search fails to return a suitable destination for
the deployment, we increase the depth by one and reissue the query. The depth
of the search will increase until a destination is found or the number of containers
in the search tree exceeds the size of the overlay network. This operates in
exactly the same way as the deployment of a new service, see section 3.4. If this
search fails, then an error is generated and logged, as the system is unable to
resolve the problem.

3.5.3 Under-utilized WSRF containers

If a container has few services and determines that it is under-utilised, it will
attempt to obtain services to execute. The first step is to examine the observed
H-metric. If the H-metric indicates that the average load in the system is high
(above a threshold), it will attempt to find a service to host by issuing an H-
metric query (as in section 3.3 specifying it’s least used resource. The responses
to this query will be generated with reference to this resource and the container
returning the highest H-metric will be offered the opportunity to offload a service
onto this container. It is also worth noting that in a loaded system the query
should easily find workload, hence in practice we do not allow the query to
exceed a depth of 3.

4 Prototype and Evaluation

We have implemented the autonomic WSRF-p2p container in a Geronimo [2]
application server. The p2p Node and the autonomic system manager are imple-
mented as Geronimo Beans (GBeans; [11]). The p2p functionality is provided
by an extension of freePastry [5]. Although earlier implementations used Chord,
the simulation mode within freePastry resulted in its final selection. However,
it is not critical which structured DHT package is used. The prototype is func-
tional, but was run in simulation mode for the experiments to test scalability.

The rest of this section details the four main experiments that we conducted
to test various aspects of our architecture. In the first set of experiments we were
interested in the impact of query depth on the quality of the initial distribution
of services, however this experiment also serves as a proof of concept. In the
second set of experiments we investigate the impact of a simple migration policy
during the maintenance phase. In the third set of experiments it was our aim
to find out how much global information a container could observe passively,

and the forth set of experiments are to determine the cost of duplicates during
our computed binary tree H-metric queries. All experiments use the freePastry
simulation mode.

4.1 Deployment

The deployment experiments tests the sensitivity of the deployment to the depth
of the H-metric search. The basic premise of the experiment is the insertion of
600 services into a clean 100 container network. The setup for the deployment
distribution simulation is as follows:

• 100 nodes; ID generated randomly

• The initial H-metric value of all nodes is 0.0

• 600 unconstrained services that contribute load as follows: 200 services
with H-metric=0.1; 200 services with H-metric=0.05; 200 services with
H-metric=0.01

Figure 5 shows the result for H-metric query searches from depth 1 through
4. The x-axis shows the load on each node, numbered 1 through 100, while the y
axis gives the H-metric computed for each node after all 600 services have been
placed. The ideal distribution would be that each node gets two each of 0.1,
0.05, 0.01 services, which results in a H-metric of 0.32 for each node. A level
1 search simply selects a random node, and as can be seen from the graph the
deviation from the ideal is large (std deviation of 0.22). A level 2 search obtains
the H-metric from 3 containers and performs significantly better (std deviation
of 0.17). As the depth of the search increases to 3 (std deviation of 0.11) and 4
(std deviation of 0.09) the graphs demonstrate a increasing convergence to the
ideal. This data suggests that in practical terms, a search depth of 3 or 4 would
be sufficient.

4.2 Maintenance

Once the initial workload has been deployed, the system needs migration to
avoid SLA violations. In this set of experiments, the same configuration as
above has been used, but after the initial level 1 deployment, the experiment
was permitted to enter a maintenance phase with the following simple policy:

IF H-metric > 0.6 THEN deploy one service to the lowest utilized
node.

The depth of the H-metric query in this case was limited to a depth of 2,
and the container with the lowest H-metric was selected as the destination.
Even with such a simple policy and limited search depth, figure 6 shows a
clear improvement to the overall performance of the system with the standard
deviation decreasing from 0.22 to 0.16. Clearly there is scope for an improved
migration policy, and further improvements could be expected from increasing

 0.2
 0.4
 0.6
 0.8

 0 10 20 30 40 50 60 70 80 90 100

l=
1

(r
an

d.
)

container

level=1
ideal

 0.2

 0.4

 0.6

 0.8

l=
2

level=2
ideal

 0.2

 0.4

 0.6

 0.8

l=
3

level=3
ideal

 0.2
 0.4
 0.6
 0.8

l=
4

level=4
ideal

Figure 5: As the depth of the H-metric search increases the quality of the initial
deployment also increases.

 0.2

 0.4

 0.6

 0.8

 0 10 20 30 40 50 60 70 80 90 100

l=1
 (r

an
do

m
)

Container

no migration
ideal

 0.2

 0.4

 0.6

 0.8

l=1
, H

-m
et

ric
 d

ep
th

 =
 2

with migration > 0.6
ideal

Figure 6: A simple migration policy with a restricted H-metric query depth of
2, still improves overall distribution quality.

the depth of the H-metric query. However, as migration is expensive and time
consuming, we feel that the majority of the effort should be performed during
service deployment.

4.3 Observation

One very interesting question that we had during the design of the WSRF-p2p
architecture was the extent to which the observation of H-metric messages being
routed through a node could provide a reasonable snapshot of the state whole of
the system. It is worth emphasising that nodes that send help messages do not
include their H-metric, so only lightly loaded containers that respond to help
messages will be sampled. Figure 7 shows the H-metrics and the nodes that
generated them as observed by an arbitrary container, in this case container
number 90. The average of this data is 0.24 whereas the imposed load on the
system is the ideal of 0.32. This confirms that only sampling the H-metric
responses underestimates the total system load, however this information is
obtained at no additional messaging cost. More complex models to estimate
the system load more accurately are certainly possible and are worthy of future
investigation.

4.4 Duplicates

When the H-metric queries are performed, a binary search tree is computed and
overlayed on the DHT ring. This is dependent on the uniformity of the hash
and therefore where the nodes happen to fall within the number space of the
ring. It is clear that a simple computation to fold a binary search structure

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

container

Figure 7: The view of the system that container number 90 has observed while
routing H-metric messages.

over this ring will likely result in duplicate H-metric requests, and very early
in the design version numbers were added to the H-metric responses so that
any duplicates could be discarded. However, we had no feel for how often such
duplicates would occur and while one can compute an estimate, this requires a
number of assumptions about SHA-1 and its distribution. Clearly any duplicates
represent pure overhead and this overhead is worthy of quantification. Figure 8
shows the percentage of duplicate messages. At a H-metric depth of 2 there are
7200 messages sent when deploying 600 services and at depth 3 there are 10800
messages.

As can be seen from these graphs, while the number of duplicates does
increase with the depth of the H-metric search, the number of duplicates in
both cases do not contributed significant overhead to the network.

5 Related Work

There have been a number of projects focusing on autonomic behaviour for
managing web services, in particular Ecosystem [16] analyses and reconfigures
a service-based system (with MAPE) to satisfy Service Level Agreements with
minimal resource consumption. They conclude that migration is a heavy-weight
exercise and should be avoided whenever possible and that migrating services
to satisfy the minimal resource consumption can lead to unnecessary overhead.
Like our approach, the principle is to migrate only when resource bottlenecks
occur. Hao [13] carries out migration of weblets, specialized Web services, that
can be migrated, according to the round trip time, message size, data location
and load of the weblet containers.

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0 10 20 30 40 50 60 70 80 90 100

l=
2

container

Level 2

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

l=
3

Level 3

Figure 8: Duplicate Messages in per cent at each container, for H-metric depths
of 2 and 3

Other projects have attempted to address scalability issues for, such as [9],
which partitions resources into individual, cluster and grid resources. Dowlat-
shahi et. al [8] have developed an architecture that uses a hierarchical tree
structure for participating nodes distant from the Internet backbone, and uses
a single peer-to-peer structure for service discovery at the root layer of the un-
derlying tree structures. The key characteristics of their architecture are optimal
search for both distant and close services, minimal overhead traffic, scalability,
robustness, and easier QoS support. A self-organizing p2p network of resource
pools managed by CONDOR [4] has been implemented in [7]. Each resource
manager periodically transmits a list of resources that it is willing to share to
resource managers that are in close proximity. If a manager has insufficient
resources to handle their jobs, they can forward some of their jobs to the ad-
vertising resource manager.

The closest work to ours is that of p2pWeb [17], which uses a p2p structured
DHT, to deliver a SOA middleware platform. However, although many of the
high level goals such as scalability, transparency and fault tolerance are the
same, there are many differences in the architecture itself. Load balancing in
p2pWeb is an exercise in selecting a replica, that is, p2pWeb does not place
or migrate services to satisfy SLA requirements. Essentially p2pWeb and our
WSRF-p2p target different domains, while relying on the same technological
foundations.

6 Conclusions

In this paper we have presented a novel architecture that combines the princi-
ples of autonomic management, service oriented architecture, web services and
service level agreements. We use the decentralised, fault tolerant and dynamic
properties of a structured p2p DHT to create a scalable decentralised autonomic
web service middleware that complies with service level agreements and strives
to deliver QoS in response to client specifications. Management of the system
is autonomic and therefore reduces and simplifies maintenance. Client work-
load is evenly distributed throughout the network, by ensuring that the client
proxy always selects a random container through which it obtains its services.
Otherwise one or two favoured entry points into the WSRF-p2p network could
become overloaded. High levels of transparency, the use of current standards
and technologies ensure that conventional webservices can be deployed within
the system.

SLA aware deployment and migration maintain the performance of the sys-
tem, and we utilise a novel H-metric query to locate suitable WSRF containers
for specific web services. The H-metric query solves the problem of finding a
suitable container for hosting a web service, and this search is shown to be
effective experimentally. The results also show that the H-metric query does
not suffer any significant overhead from duplicate requests. Another advantage
of this approach is that WSRF containers can observe H-metric values as they
are routed via the container, at no additional messaging cost. This allows the
container to observe the state of the network and decide best how it should be
operating, that is, looking for other containers on which to offload work or re-
lieving other containers of their excess workload. Migration of services is shown
to improve the workload balance within the system, and even a simple policy
achieves a large improvement.

References

[1] Apache axis2/java. Home-Page: http://ws.apache.org/axis2/.

[2] Apache geronimo. Home-Page: http://geronimo.apache.org/.

[3] Apache tomcat. Home-Page: http://tomcat.apache.org/.

[4] Condor. Home-Page: http://www.cs.wisc.edu/condor/.

[5] freepastry software.

[6] An architectural blueprint for autonomic computing. IBM, 2003. Available
at http://www-3.ibm.com/autonomic/pdfs/ACwpFinal.pdf.

[7] A.R. Butt, Rongmei Zhang, and Y.C. Hu. A self-organizing flock of condors.
In Supercomputing, 2003 ACM/IEEE Conference, pages 42–42, Purdue
University, West Lafayette, IN, Nov. 2003. ACM Press.

[8] M. Dowlatshahi, G. MacLarty, and M. Fry. A scalable and efficient archi-
tecture for service discovery. In The 11th IEEE International Conference
on Networks, 2003. ICON2003., pages 51 – 56, September 2003.

[9] M. El-Darieby and D. Krishnamurthy. A scalable wide-area grid resource
management framework. In ICNS ’06. International conference on Net-
working and Services, 2006., pages 76 – 86, Silicon Valley, USA, July 2006.
IEEE Computer Society Press.

[10] Martin Fowler. Inversion of control containers and the dependency injection
pattern. http:// www.martinfowler.com/ articles/injection.html ,
January 2004.

[11] Geronimo user guide. http://cwiki.apache.org/GMOxDOC11/apache-
geronimo-v11-users-guide.html.

[12] J. Jeffrey Hanson. Manage apache geronimo with jmx. August 2006.

[13] Wei Hao, Tong Gao, I-Ling Yen, Yinong Chen, and Raymond Paul. An in-
frastructure for web services migration for real-time applications. In SOSE
’06: Proceedings of the Second IEEE International Symposium on Service-
Oriented System Engineering (SOSE’06), pages 41–48, Washington, DC,
USA, 2006. IEEE Computer Society.

[14] Sun’s java management extensions (jmx) page. Home-Page: http://java.
sun.com/javase/technologies/core/mntr-mgmt/javamanagement/.

[15] Jsr-77: J2ee management specification.
http://jcp.org/en/jsr/detail?id=77.

[16] Ying Li, Kewei Sun, Jie Qiu, and Ying Chen. Self-reconfiguration of service-
based systems: A case study for service level agreements and resource opti-
mization. In ICWS ’05: Proceedings of the IEEE International Conference
on Web Services (ICWS’05), pages 266–273, Washington, DC, USA, 2005.
IEEE Computer Society.

[17] R. Mondejar, P. Garcia, C. Pairot, and A.F. Gomez Skarmeta. Enabling
wide-area service oriented architecture through the p2pweb model. In 15th
IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, 2006. WETICE ’06., pages 89 – 94, Manch-
ester, UK, June 2006.

[18] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, Frank Ley-
mann, and Bernd J. Krämer. Service-oriented computing: A research
roadmap. In Francisco Cubera, Bernd J. Krämer, and Michael P. Pa-
pazoglou, editors, Service Oriented Computing (SOC), number 05462
in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany,
2006.

[19] M. Parashar and S. Hariri. Autonomic computing: An overview. In J.-
P. Bantre et al., editor, Unconventional Programming Paradigms, volume
3566, pages 247–259, Mont Saint-Michel, France, 2005. Springer Verlag.

[20] A. Rowstron and P. Druschel. IFIP/ACM international conference on dis-
tributed systems platforms (middleware). In Pastry: Scalable, decentralized
object location and routing for large-scale peer-to-peer systems., pages 329–
350, Heidelberg, Germany, Nov. 2001.

[21] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Bal-
akrishnan. Chord: A scalable Peer-To-Peer lookup service for internet ap-
plications. In Proceedings of the 2001 ACM SIGCOMM Conference, pages
149–160, 2001.

[22] Oasis web services resource framework (wsrf) tc. Web Page.

