

 1

Abstract—Over the last few years, Grid technologies have

been enhanced towards a service-oriented paradigm that enables
a new way of service provision based on utility computing
models, which users consume based on their QoS (Quality of
Service) requirements. In such “pay-per-use” service Grids,
issues such as resource management and scheduling based on
users’ QoS constraints are yet to be addressed especially in the
context of workflow management systems. In this paper, we
propose a QoS-based workflow management system and
scheduling algorithm that minimizes execution cost workflow
application while meeting timeframe for delivering results. We
also attempt to optimally solve the task scheduling problem in
branches with several sequential tasks by modeling the branch as
a Markov Decision Process and using the value iteration method.

I. INTRODUCTION

Utility computing [13] has emerged as a new service
provision model and its services [7] are capable of supporting
diverse applications including e-Business and e-Science over
a global network. The users utilize the services when they
need to, and pay only for what they use. In the recent past,
providing utility computing services has been reinforced by
service-oriented Grid computing [9] by providing an
infrastructure that enables users to consume utility services
transparently over a secure, shared, scalable and standard
world-wide network environment.

Many Grid applications such as bioinformatics and
astronomy require workflow processing in which tasks are
executed based on their control or data dependencies. As a
result, a number of Grid workflow management systems with
scheduling algorithms have been developed by several
projects (e.g. Condor DAGMan [16], Askalon [8], GrADS [5],
ICENI [10], APST [18], and Pegasus [6][17]). They facilitate
workflow application execution on Grids and minimize
execution time. However, scheduling workflows based on
users’ QoS (Quality of Service) requirements (e.g. deadline
and budget) has not been addressed in these existing Grid
workflow management systems. For a utility service, pricing
is dependent on the level of QoS offered. Typically service
providers charge higher prices for higher QoS. Therefore,
users may not always need to complete workflows earlier than
they require. Instead, they prefer to use cheaper services with
lower QoS that are sufficient to meet their requirements.
Given this motivation, we focus on QoS-based workflow

management which attempts to minimize execution cost while
satisfying users’ QoS requirements.

In this paper, we discuss basic QoS-based workflow
management requirements for service Grids and present a
novel workflow scheduling method. The objective function of
the proposed scheduling algorithm is to develop workflow
schedule such that it minimizes the execution cost and yet
meet the time constraints imposed by the user. In order to
solve scheduling problems efficiently for large-scale
workflows, we partition workflow tasks and generate the
workflow execution schedule based on the optimal schedules
of task partitions. A deadline assignment strategy is also
developed to distribute the overall deadline over each
partition. We also attempt to solve optimally the scheduling
problem for sequential tasks by modeling the branch partition
as a Markov Decision Process (MDP) [12], which has proven
to be effective for modeling decision problems.

Proposed workflow scheduling approach can be used by
both end-users and utility providers. End users can use the
approach to orchestrate Grid services, while utility providers
can outsource computing resources to meet customers’
service-level requirements.

The remainder of the paper is organized as follows. Section
II provides an overview of QoS-based workflow management
on service grids. We describe our novel workflow scheduling
approach in Section III. Experimental details and simulation
results are presented in Section IV. Finally, we conclude the
paper with directions for further work in Section V.

II. QOS-BASED WORKFLOW MANAGEMENT SYSTEM

QoS-based workflow management on service Grids
impacts all levels including workflow specification, service
discovery and workflow scheduling. In this paper we use the
term service to mean utility computing service as described
before. The architecture of a typical QoS-based workflow
management system is shown in Figure 1. The components of
the workflow management system are discussed below.

A. Workflow Specification

The QoS-based workflow management system allows the
user to specify their requirements along with the descriptions
of tasks and their dependencies using the workflow
specification. In general, QoS constraints express the
preferences of users and are essential for efficient resource

QoS-based Scheduling of Workflow Applications on Service Grids

Jia Yu†, Rajkumar Buyya† and Chen Khong Tham‡

† Grid Computing and Distributed System Laboratory
Dept. of Computer Science and Software Engineering

The University of Melbourne, VIC 3010 Australia
{jiayu, raj}@csse.unimelb.edu.au

‡ Dept. of Electrical and Computer Engineering
National University of Singapore

10 Kent Ridge Crescent, Singapore 119260
eletck@nus.edu.sg

 2

allocation. We categorize workflow QoS constraints into task-
level and workflow-level constraints. At the task level, as
illustrated in Figure 2, QoS constraints are specified with their
corresponding tasks. In this scenario, the two QoS constraints,
namely time and cost are specified with task A. In contrast,
QoS constraints at the workflow level are given for entire
workflow execution. In the example shown in Figure 3, the
workflow execution is required to be completed before 2005-
12-10T04:20:00.000+10:00 at the minimum cost.

 Fig. 1. QoS-based workflow management system architecture.

Fig 3. Workflow-level QoS specification.

Users may want to specify QoS constraints, such as

deadline and budget, for the overall workflow processing
rather than for each task. For instance, users may want the
entire workflow execution finished in 2 hours instead of
specifying an execution time of 30 minutes for each task. In
this paper, we focus on the overall time constraint, i.e.
deadline.

B. Service Discovery and QoS Request
After submission of the workflow specification, the

workflow system needs to discover the appropriate services
for processing the tasks. In a complex workflow, different
tasks require different types of services. For example, for a
biological imaging process, some tasks need to access a
genome search service and some other tasks need to access a
protein folding service. However, in a service Grid, even for
the same type of services, they are deployed by different
service providers and are distributed across multiple
administrative domains. In addition, every service has its own
local policy for different users, such as authorization and
pricing. The workflow system should be able to query a Grid
information service such as a grid market directory and
generate a list of available services for every task for the user
of the workflow.

In a service Grid, the QoS attributes of services for
processing the same task is diverse. Different service
providers can offer different QoS. One service provider also
can offer various QoS levels for satisfying different users’
requirements. The pricing for the services is usually closely
related to the QoS provided. However, some users may have
priority in terms of service order, execution time and price
from certain service providers. In addition, service providers
may adjust the service price based on peak and off-peak
periods in order to enhance the utilization of their resources.

Fig. 4. QoS request scenario.

The knowledge of QoS details for all available services is

the key to scheduling workflow tasks efficiently. A possible
QoS request scenario is presented in Figure 4. It initially
starts from the Workflow Management System (WMS)
sending a QoS request to the Grid services for every task. In
the request it indicates the task parameters, user of the
workflow and the estimated execution period. On receiving
the request, the Grid services reply with the QoS parameters
(e.g. processing speed, available storage space and free
memory) of the service they can offer and the corresponding
price for delivering the service at the specified QoS level.

C. Workflow Scheduling

Workflow scheduling focuses on mapping and managing
the execution of workflow tasks onto grid services. For the
“pay-per-use” service Grid, the scheduling decision during
workflow scheduling must be guided by users’ QoS
constraints. There are three major steps in workflow
scheduling: workflow planning, advance reservation,
workflow execution with run-time rescheduling.

 WMS

QoSRequest (task parameters, user, period)

QoSACK (processing time, price)

Grid Service

GSP

Workflow Planning

Workflow execution

QoS-based Workflow Management System

Grid Service

Grid Service

Grid Market
Directory

marketplace

Service Discovery

Advance Reservation

ServiceRequest(SLA)

 ReservationRequest(SLA)

 Optional

Workflow scheduling

GSP: Grid Service Provider

Feedback

SLA: Service Level Agreement

Workflow Specification

Grid Service

C
ontract violation

QoS Request

QoS
Monitor

Executor

<Workflow>
 <qos-constraints>

 <qos-constraint name=”time” value=”2005-12-10
T04:20:00.000+10:00”/>

 <qos-constraint name=”cost” optimal=”on”/>
 </qos-constraints>
 <tasks>
 ……
 </tasks>
 ……
</Workflow>

<Workflow>
<tasks>
 <task name=”A”>

 <qos-constraints>
 <qos-constraint name=”time” value=” ”/>
 <qos-constraint name=”cost” value=” “/>
 </qos-constraints>
 …..

 </task>
 ……

 </tasks>
 ……
</Workflow>

Fig. 2. Task-level QoS specification.

 3

1) Workflow Planning
Workflow planning is to select a service for every task in

the workflow and generate a schedule before workflow
execution. The result of the schedule must satisfy users’ QoS
constraints. The decision making of the planner for workflow
execution needs to reference the entire workflow according to
the QoS parameters of services obtained from QoS requests.
In general, mapping tasks on distributed services is an NP-
hard problem; the workflow planner may only produce a sub-
optimal schedule in order to balance the scheduling time.

2) Advance Reservation

An advance reservation function has been proposed to be
supported by guaranteed QoS services [1]. It is important to
workflow scheduling especially for long lasting workflow
execution. Workflow management systems need to make
reservation of services selected by the planner in advance to
ensure the availability of services.

Fig. 5. Possible reservation schedule.

The time slots for advance reservation services can be

generated based on every optimal service and possible start
time of the workflow execution. Figure 5 illustrates a possible
advance reservation schedule for workflow execution. The
earliest start time of the task depends on the possible
completion time of its parent tasks. If a task has more than
one predecessor, the start time is the latest completion time of
its predecessors. If we consider communication overhead, the
task start time will be the latest completion time of parent
tasks plus the communication time.

However, the time slots of desired services requested by the
result of planning may not be available when the workflow
system makes the reservations. Therefore, the workflow
scheduling needs to be able to re-plan so that it can acquire an
alterative schedule.

3) Workflow execution with run-time rescheduling

Typical utility computing services are QoS guaranteed and
need to meet service commitments. However, there is still a
possibility that services may violate the contract between the
workflow system and service provider for reasons such as
service failure and service delay due to the competition with
other service consumers with higher priority. Therefore, the
workflow scheduler must be able to adapt and update the
schedule based on resource dynamics. For example, if a task
execution is delayed behind the desired start time of its
children tasks, the scheduling must adjust the reservation
schedule for unexecuted tasks. A QoS monitor is required in

the system to monitor the agreed performance and inform the
planner of any changes.

For non-reservation services, service availability can only
be known at run-time. In this case, run-time rescheduling is
more critical. In addition to dealing with the situations of
contract violation, rescheduling also needs to handle
unavailability of optimal services at the time of a task
execution.

4) Service Level Agreement

In the service Grid, the actual allocation of services is not
under the control of workflow management system. The
commitment for service execution is based on the Service
Level Agreement (SLA) between the workflow management
system and service providers. An SLA is a contract that
specifies the minimum expectations and obligations that exist
between consumers and providers [2]. SLA parameters for
workflow tasks are QoS requirements of task processing and
they include performance objectives such as earliest start time
and latest completion time, and a rate model such as
processing price.

Penalty clauses for service level violation are also required
in an SLA to enforce service level guarantees. The penalty
levels for service execution violation may vary for different
workflow tasks. For example, if the service for executing task
B in Figure 5 is delayed for 20 minutes, it does not affect the
completion of the overall workflow. However, with any delay
of executing task C, the whole workflow execution will delay.
Therefore, the penalty levels for workflow task processing
should be based on the degree of impact on the whole
workflow execution rather than on a single service execution.

III. A QOS-BASED WORKFLOW SCHEDULING

The processing time and execution cost are two typical QoS
constraints for executing workflows on “pay-per-use” services.
The users normally would like to get the execution done at
lowest possible cost within their required timeframe. Given
this motivation, in this section we present a QoS-based
workflow scheduling methodology and algorithm that allows
the workflow management system to minimize the execution
cost while delivering results within the deadline.

1) Problem Description and Methodology

We model workflow applications as a Directed Acyclic
Graph (DAG). Let � be the finite set of tasks)1(niTi ≤≤ .
Let � be the set of directed arcs of the form),(ji TT where

iT is called a parent task of jT , and jT the child task of iT . We

assume that a child task cannot be executed until all of its
parent tasks are completed. Let D be the time constraint
(deadline) specified by the users for workflow execution.
Then, the workflow application can be described as a
tuple),(D�,�� .

In a workflow graph, we call a task which does not have
any parent task an entry task denoted as entryT and a task

which does not have any child task an exit task denoted
as exitT .

startTime:2005-12-10T04:10:00.000+10:00
endTime:2005-12-10T04:20:00.000+10:00

startTime: 2005-12-10T03:00:00.000+10:00
endTime: 2005-12-10T03:20:00.000+10:00

startTime:2005-12-10T03:20:00.000+10:00
endTime:2005-12-10T03:50:00.000+10:00

startTime:2005-12-10T03:20:00.000+10:00
endTime:2005-12-10T04:10:00.000+10:00

B

D

C

A

 4

Let m be the total number of services available. There are a

set of services) (cond mm,mjn, 1i1:S ii
j

i ≤≤≤≤≤≡ is

capable of executing the task iT , but only one service can be
assigned for the execution of a task. Services have varied
processing capability delivered at different prices. In general,
the service price is inversely proportional to the processing
time as shown in Figure 6. We denote j

it (such that cond is
satisfied) as the sum of the processing time and data
transmission time, and satisfied) is cond (such that j

ic as the
sum of the service price and data transmission cost for
processing iT on service j

iS .

Fig. 6. Processing time vs. price for task execution.

The scheduling problem is to map every iT onto some j
iS to

achieve minimum execution cost and complete the workflow
execution within the deadline D . We solve the scheduling
problem by following the divide-and-conquer technique using
the methodology listed below:

Step 1. Discover available services and request QoS
parameters of services for every task.

Step 2. Group workflow tasks into task partitions.
Step 3. Distribute user’s overall deadline into every task

partition.
Step 4. Generate optimized schedule plan based on the

local optimal solution of every task partition.
Step 5. Start workflow execution and reschedule when the

initial schedule is violated at run-time.

We provide details of steps 2-5 in the following sub-

sections. The service discovery can be done by querying a
directory service such as the Grid market directory [14] .

B. Workflow Task Partitioning

We categorize workflow tasks to be either a
synchronization task or a simple task. A synchronization task
is defined as a task which has more than one parent or child
task. In Figure 7a, 1T , 10T and 14T are synchronization tasks.
Other tasks which have only one parent task and child task are
simple tasks. In the example, 92 TT − and 1311 TT − are simple
tasks.

 (a) Before partitioning. (b) After partitioning.

Fig. 7. Workflow task partition.

Let a branch be a set of simple tasks that are executed
sequentially between two synchronization tasks. For example,
the branches in Figure 7b are },,{ 432 TTT , },{ 65 TT , }{ 7T ,

},{ 98 TT , }{ 11T and },{ 1312 TT . We then partition workflow

tasks � into independent branches)1(kiBi ≤≤ and

synchronization tasks)1(liYi ≤≤ , such that k and l are the
total number of branches and synchronization tasks in the
workflow respectively.

LetV be a set of nodes in a DAG corresponding to a set of
task partitions)1(lkiVi +≤≤ . Let E be the set of directed

edges of the form),(ji VV where iV is a parent task partition

of jV and jV is a child task partition of iV . Then, a task

partition graph is denoted as),,(DEVG . A simple path
(referred to as path) in G is a sequence of task partitions such
that there is a directed edge from every task partition (in the
path) to its child, where none of the vertices (task partitions)
in the path is repeated.

A task partition iV has four attributes: start time (][iVst),

deadline (][iVdl), expected execution time (][iVeet), and

minimum execution time (][iVmet). The earliest start time of

iV is the earliest time the first task in it can be executed and it
can be computed according to its parent partitions,

][iVst =][max j
iPjV

Vdl
∈

, where iP is the set of parent task

partitions of iV . The minimum execution time of

iV is �
∈ ≤≤iVxT

y
x

xmy
t min

1
. The attributes are related as:][iVeet =

][iVdl -][iVst .

C. Deadline Assignment
After workflow task partitioning, we distribute the overall

deadline between each iV in G . The deadline][iVdl assigned

to any iV is a sub-deadline of the overall deadline D . In this
paper, we consider the following deadline assignment policies:

P1. The cumulative sub-deadline of any independent path
between two synchronization tasks must be same.

A synchronization task cannot be executed until all tasks in
its parent task partitions are completed. Thus, instead of
waiting for other independent paths to be completed, a path
capable of being finished earlier can be executed on slower
but cheaper services. For example, the deadline assigned to

},{ 98 TT is the same as }{ 7T in Figure 7. Similarly, deadlines

assigned to },,{ 432 TTT , },{ 65 TT , and },{ { 7T

}},{ },{ 131210 TTT are same.

P2. The cumulative sub-deadline of any path from
)(ientryi VTV ∈ to)(jexitj VTV ∈ is equal to the overall

deadline D .
P2 assures that once every task partition is computed

within its assigned deadline, the whole workflow execution
can satisfy the user’s required deadline.

Processing time

Price

T9 T12

Branch

T1 T6

T7

T14 T5

T10
T8

T2 T3

T4

T11

T13

Simple task
Synchronization task

T1 T6

T7

T14 T5

T10
T8

T2

T9

T3

T4

T11

T12

T13

 5

P3. Any assigned sub-deadline must be greater than or equal
to the minimum processing time of the corresponding task
partition.

If the assigned sub-deadline is less than the minimum
processing time of a task partition, its expected execution
time will exceed the capability that its execution services can
handle.
P4. The overall deadline is divided over task partitions in
proportion to their minimum processing time.

The execution times of tasks in workflows vary; some tasks
may only need 20 minutes to be completed, and some others
may need at least one hour. Thus, the deadline distribution for
a task partition should be based on its execution time. Since
there are multiple possible processing times for every task, we
use the minimum processing time to distribute the deadline.

We implemented deadline assignment policies on the task

partition graph by combining Breadth-First Search (BFS) and
Depth-First Search (DFS) algorithms with critical path
analysis to compute start times, proportion and sub-deadlines
of every task partition.

D. Planning

The planning stage is to generate an optimized schedule for
advance reservation and run-time execution. The schedule
allocates every workflow task to a selected service such that
they can meet users’ deadline at low execution cost.

We solve the workflow scheduling problem by dividing the
entire problem into several task partition scheduling
problems. Once each task partition has its own sub-deadline,
we can find a local optimal schedule for each task partition. If
each local schedule guarantees that their task execution can
be completed within their sub-deadline, the whole workflow
execution will be completed within the overall deadline.
Similarly, the result of the cost minimization solution for each
task partition leads to an optimized cost solution for the entire
workflow. Therefore, an optimized workflow schedule can
be easily constructed by all local optimal schedules.

There are two types of task partitions: synchronization task
and branch partition. The scheduling solutions for each type
of partition and the overall algorithm are described in
following sub-sections.

1) Synchronization Task Scheduling (STS)

For STS, the scheduler only considers one task to decide
the service for executing that task. The objective function for
scheduling of a synchronization task iY is:

j
icmin , where imj ≤≤1 and)(i

j
i Yeett ≤

The solution to a single task scheduling problem is simple.
The optimal decision is to select the cheapest service that can
process the task within the assigned sub-deadline.
2) Branch Task Scheduling (BTS)

If there is only one simple task in a branch, the solution for
BTS is the same as STS. However, if there are multiple tasks,
the scheduler needs to make a decision on which service to
execute its child task after the completion of the parent task.
The optimal decision is to minimize the total execution cost

of the branch and complete branch tasks within the assigned
sub-deadline. The objective function for scheduling branch

jB is:

�
∈ jBiT

k
icmin , where imk ≤≤1 and)(j

jBiT

k
i Beett ≤�

∈

BTS can be achieved by modeling the problem as a
Markov Decision Process (MDP) [12], which has been shown
to be effective for solving sequential decision problems.

3) MDP Model for Sequential Branch Tasks

The definition of our MDP model for scheduling branch iB
is described below:

States:

A Markov decision process is a state space S such that:
Definition 1: A state Ss ∈ consists of current execution task

iT and remaining deadline RD .
Definition 2: A start state is a state when the current
execution task is the first task of the branch and RD is][iBdl .
Definition 3: A terminal state is a state after the last task of
the branch is completed.
Actions and transitions:

For every state s , there are a set of actions sA . Actions
incur immediate utility and affect the MDP to transit from one
state to another.
Definition 4: An action in the MDP is to allocate a service to
a task. There are two variables associated with each action a :
the processing time of the service denoted as t and the
service price denoted as c .
Definition 5:)(s,a,s'u is the immediate utility obtained from
taking action a at state s and transitioning to state s' .

Definition 6: A transition incurred by an action from one
state to another is deterministic, as services are QoS
guaranteed.
 The MDP problem is to find an optimal policy *π for all
possible states. A policy is a mapping from s to a . Decision
making for finding an optimal action for each state is not
based on the immediate utility of the action but its expected
utility, which is the sum of all the immediate utilities obtained
as a result of decisions made for transiting from this state to a
terminal state.

The value associated to each state represents the expected
utility of this state in the MDP. This value is calculated
recursively by using the value of successor states. The value
of one state s is:

)}'()',,({min)(sUsasusU
sAa

+=
∈

 The best action for state s is:
)}'()',,({minarg)(* sUsasus

sAa
+=

∈
π

The computation of the optimal policy can be solved by
using a standard dynamic programming algorithm such as
policy iteration and value iteration [12] (we have used value

a.c , otherwise

 ∞ , 0. <RDs'
)(s,a,s'u =

 6

iteration here). The optimal policy indicates the best services
that should be assigned to execute branch tasks under a
specific sub-deadline.
4) Planning Algorithm

Figure 8 shows the pseudo-code of the algorithm for
planning an execution schedule. After acquiring the
information about available services for each task, a task
partition graph G is generated from the application graph �
and overall deadline D is distributed over every partition in it.
Then optimal schedules are computed for every partition in G
level-by-level using either STS or BTS. We also found that
after the optimization of one partition, there is an idle time
between expected completion of planned services and
assigned sub-deadline. Instead of waiting, we adjust the
assigned sub-deadline of planned partitions and the start time
of their child partitions.

Fig. 8. Planning algorithm for optimizing execution cost within users’
deadline. STS is to compute an optimal schedule for a synchronization task
to optimize the execution within sub-deadline while BTS is for branch tasks.

E. Rescheduling
 In order to complete workflows and satisfy users’
requirements, run-time rescheduling is required to be able to
adapt to dynamic situations such as the variation in
availability of services due to failures. The key idea of our

rescheduling policy for handling an unexpected situation is to
adjust sub-deadlines and re-compute optimal schedules for
unexecuted task partitions level-by-level. The motivation of
the level-by-level task partition approach is to reschedule the
minimum number of task partitions. For example, if the
execution of one task partition is delayed, we look at its child
task partitions. If the delay time can be accommodated by the
child task partitions, rescheduling will not impact on its lower
levels. Otherwise, the rest of the delay time is accumulated to
its successors until the total delay time has been distributed.

Fig. 9. Rescheduling algorithm for a synchronization delay.

The rescheduling algorithm for a synchronization task

delay is illustrated in Figure 9. First, we adjust the start time
of child task partitions to be the actual completion time of the
delayed synchronization task (line 4). Then, we check
whether the new deadlines of the child task partitions can be
achieved by comparing their minimum processing times (line
13). If achievable, the planner generates new optimal
schedules for the tasks in the child task partitions based on the
new expected execution times (line 14) and rescheduling is
stopped. Otherwise, new sub-deadlines are assigned by using
the minimum processing time as the expected execution time
and then new schedules are generated (line 16-18). When the
delay cannot be accommodated by the first level child
partitions, the lower level child partitions are put into the
queue for further rescheduling (line 19-22). A queue, Q, is
used for implementing the breadth-first search algorithm for
identifying new start time in the graph.

For branch task rescheduling, if a branch task execution is
delayed, the optimal schedule for the next branch task of the
delayed task can still be obtained from the initial MDP result,
according to its current remaining sub-deadline. The other

Input: A task partition graph),(DV,EG , delayed synchronization task X
and delay time delay
Output: a new schedule for the unexecuted tasks in the workflow
1 ← 1S all child task partitions of X

2 for all Gi ∈ do scheduled[i] ← true
4 for all 1 Si∈ do delayistist +←][][
6 PartitionRescheduling(i)
7 while Q is not empty do
8 ← i remove the first task partition in Q
9 ←3S all parent task partitions of i

10 if 2S ∈∀ j ,][jscheduled is true then][max][
3Sj

jdlist
∈

←

12 PartitionRescheduling(i)

PartitionRescheduling(i):
13 if][)][-][(imeistidl ≥ then
14 compute a new optimal schedule for i
15 true][←ischeduled

16 else][][][imeistidl +←
17 compute a new optimal schedule for i
18 true][←ischeduled

19 ← 4S all child task partitions of i

20 for all 4S ∈j do
21 put j into Q
22 false][←jscheduled

Input: A workflow graph),(D�,��
Output: a schedule for all workflow tasks
1 request processing time and price from available services for �Ti ∈∀

2 convert � into),(DV,EG

3 distribute deadline D over GVi ∈∀

4 for all GVi ∈ do ←][ischeduled false

5 ← 1S all entry partitions

6 for all 1 Si∈ do
7 if i is a branch then
8 compute an optimal schedule for i using BTS
9 else
10 compute an optimal schedule for i using STS
11 ←][ischeduled true
12 Child-PartitionHandling(i) [see below]
13 while Q is not empty do
14 ←i remove the first element in Q

15 ← 2S all parent task partitions of i

16 if 2S ∈∀ j ,][jscheduled is true then][max][
3Sj

jdlist
∈

←

17 else put i into Q
18 compute an optimal schedule for i using STS
19 Child-PartitionHandling(i)

 Child-PartitionHandling(i):
20][←idl get expected completion time of i

21 ←2S get child task partitions of i

22 for all 2 Sj ∈ do
23 if j is a branch partition then
24][][idljst ←
25 compute an optimal schedule for j using BTS
26 ←k get the child partition of j
27 put k into a queue Q
28 else put j into Q

 7

unexecuted partitions will not be affected as long as the delay
does not exceed the minimum processing time of the
remaining unexecuted tasks in the branch.

In addition to handling task execution delay, the level-by-
level task partition based approach can also be applied for
managing other dynamic situations such as service
unavailability and service policy change.

IV. PERFORMANCE EVALUATION

The performance of QoS-based workflow scheduling
algorithm described in Section III has been evaluated through
simulation using the GridSim Toolkit [4]. We conducted
several experiments by simulating the structure of a protein
annotation workflow application (see Figure 10) developed
by the London e-Science Centre [3]. The number in bracket
next to the task represents the length of task in MI (million
instructions). Every task in the workflow requires a certain
type of service for processing.

We simulated 15 types of services and each service type is
supported by 5 different service providers. That is, we
simulated 80 service providers. Table I shows attributes an
instance of 5 different service providers in terms of their
processing capacity in MIPS (Million Instructions Per
Second), delivery/processing time in second and price in G$.
They all deliver the same type of service required for
executing task 3. We extended GridSim to support service
discovery with request based on QoS parameters. As
indicated in Figure 11, the workflow system first discovers
available services for every task via Grid Index Service (GIS)
within GridSim and then queries the services to obtain their
processing time and price. The processing time of a task on a
service depends on the complexity of the task and the
combined capability of resource used for service provision.
As indicated in Figure 6, services with lower processing time
are delivered at higher price.

 Table I. QoS attributes of
 services of different providers for

 executing task 3.

 Fig. 10. A workflow for the protein annotation.

In our first experiment, we compare our proposed
scheduling algorithm denoted as Deadline Min-Cost with
three other scheduling algorithms: Greedy-Cost, Greedy-Time
and 100-Random Selection. The Greedy-Cost and Greedy-
Time algorithms always arrive at the best immediate solution
while searching for an answer. The Greedy-Cost algorithm
selects the cheapest service for executing each task, whereas
the Greedy-Time algorithm selects the fastest service. The
100-Random Selection algorithm uses the average value of

execution time and execution cost captured through the
repeated execution of workflow application 100 times in
which services are selected randomly.

Fig. 11. Service discovery in GridSim.

The two main measurements used to evaluate the
scheduling approaches are the time constraint and execution
cost. The former indicates whether the schedule produced by
the scheduling approach meets the required deadline, while
the latter indicates how much it costs to schedule the
workflow tasks on the simulated service Grid.

Figure 12 compares the execution time and cost generated
by the planner using the four scheduling approaches. As
shown in Figure 12a, the expected execution time of
workflow using Deadline Min-Cost algorithm increases as
users relax their deadline. The workflow execution time for
Greedy-Cost and 100-Random Selection algorithms is higher
and cannot meet the users’ requirements when the deadline is
lower. The Greedy-Time algorithm can complete earlier than
the Deadline Min-Cost algorithm but its execution cost is
much higher (Figure 12b). Figure 12b shows that the
execution cost of workflow using Deadline Min-Cost
algorithm is reduced as users relax their deadline.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 500 1000 1500 2000 2500 3000 3500

E
xp

ec
te

d
E

xe
cu

tio
n

Ti
m

e
(s

ec
on

ds
)

User’s Deadline (seconds)

Deadline Min-Cost
Greedy-Time
Greedy-Cost

100-Random Selection

a. Expected execution time of four scheduling approaches.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 500 1000 1500 2000 2500 3000 3500

E
xp

ec
te

d
E

xe
cu

tio
n

C
os

t (
G

$)

User’s Deadline (seconds)

Deadline Min-Cost
Greedy-Time
Greedy-Cost

100-Random Selection

b. Expected execution cost of four scheduling approaches.

Fig. 12. Expected execution time and cost using four scheduling approaches.
Greedy-Time can complete the execution with earliest time, but the
corresponding cost is very high. Greedy-Cost can complete the execution
with cheapest cost, but it is unable to meet users’ deadlines when the
deadline is small.

Workflow
System

GIS

Grid
Service

register(service type)

register

QoSRequest (task 1)

Grid

Service

……

submit(task 1)

query(type A)

service list

 time, price

1

5

6

2 3 4

109

11

12 13

15

7

14

SignalP COILS2 SEG PROSITE

TMHMM

Prospero HMMer

PSI-BLAST BLAST IMPALA

Summary

PSI-PRED

3D-PSSM

Genome

Summary

SCOP

(40000) (100000) (300000)

(60000)

(40000)

8

(200000)

(40000) (100000) (300000)

(40000)

(60000)

(60000)

(40000)

(100000)

1

5

6

2 3 4

109

11

12 13

15

7

14

SignalP COILS2 SEG PROSITE

TMHMM

Prospero HMMer

PSI-BLAST BLAST IMPALA

Summary

PSI-PRED

3D-PSSM

Genome

Summary

SCOP

(40000) (100000) (300000)

(60000)

(40000)

8

(200000)

(40000) (100000) (300000)

(40000)

(60000)

(60000)

(40000)

(100000)

Service
ID

MIPS
Rating

Processing
Time
(sec)

Cost
(G$)

1 500 60 6

2 1000 30 12

3 1500 20 18

4 2000 15 24

5 2500 12 30

 8

We can see from Figure 12 that the Deadline Min-Cost
algorithm is the only one that considers users’ deadline
requirements while optimizing the cost. The Greedy-Time
and Greedy-Cost algorithms represent the scheduling
approaches that intend to achieve minimization of execution
time and cost respectively.

In another experiment, we executed the workflow with the
optimal services produced by the planner using the Deadline
Min-Cost algorithm. At run-time, we simulated delays for the
execution of task 6 as 0, 50, 100, 150, 200, 250 and 300
seconds. Figure 13 shows that actual workflow completion
time with and without rescheduling. We can see that
rescheduling is able to adapt to the delay time and complete
the workflow execution on time. However, the actual
execution cost increases (Figure 14), since the scheduler
switches the remaining tasks to more expensive services to
speed up execution. Therefore, there is a need for appropriate
penalty mechanisms to compensate for the loss caused by the
violation of the QoS guarantees.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

A
ct

ua
l E

xe
cu

tio
n

Ti
m

e
(s

ec
on

ds
)

Execution Delay Time (seconds) of Task 6 within Deadline 1000 seconds

with rescheduling
without rescheduling

Fig. 13. Actual execution time of task 6 (deadline 1000 seconds) with
rescheduling and without rescheduling for increasing delay.

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300

A
ct

ua
l E

xe
cu

tio
n

C
os

t (
G

$)

Execution Delay Time (seconds) of Task 6 within Deadline 1000 seconds

with rescheduling
expected cost

Fig. 14. Actual execution cost of task 6 (deadline 1000 seconds) with
rescheduling for increasing delay.

VI. CONCLUSION AND FUTURE WORK
Workflow management on “pay-per-use” service Grids has

not been addressed in existing Grid workflow systems. In this
paper, we presented a QoS-based workflow management
system. In this, we proposed a novel QoS-based workflow
scheduling algorithm that minimizes the cost of execution
while meeting the deadline. We also described task
partitioning and overall deadline assignment for optimized
execution planning and efficient run-time rescheduling. We
have utilized a Markov Decision Process approach to
schedule sequential workflow task execution.

The current system uses run-time rescheduling to handle
service agreement violations. In future work, we will further
enhance our scheduling method to handle more dynamic
scenarios such as dynamic pricing.

ACKNOWLEDGMENTS

We would like to thank Hussein Gibbins, Chee Shin Yeo,
Srikumar Venugopal, Sushant Goel, and Arun Konagurthu for
their comments on this paper. This work is partially supported
through StorageTek Fellowship and Australian Research
Council (ARC) Discovery Project grant.

REFERENCES
[1] S. Benkner, I. Brandic, G. Engelbrecht, R. Schmidt, “VGE - A

Service-Oriented Grid Environment for On-Demand Supercomputing”,
In the Fifth IEEE/ACM International Workshop on Grid Computing
(Grid 2004), Pittsburgh, PA, USA, November 2004.

[2] M.J. Buco et al, “Utility computing SLA management based upon
business objectives,” IBM System Journal, Vol. 43(1):159-178, 2004.

[3] A. O’Brien, S. Newhouse and J. Darlington, “Mapping of Scientific
Workflow within the e-Protein project to Distributed Resources”, In
UK e-Science All Hands Meeting, Nottingham, UK, Sep. 2004.

[4] R. Buyya and M. Murshed,
�

GridSim: A Toolkit for the Modeling
and Simulation of Distributed Resource Management and Scheduling
for Grid Computing

�

 Concurrency and Computation: Practice and
Experience, Vol. 14(13-15):1175-1220, Wiley Press, USA, 2002.

[5] K. Cooper et al, “New Grid Scheduling and Rescheduling Methods in
the GrADS Project”, NSF Next Generation Software Workshop,
International Parallel and Distributed Processing Symposium, Santa Fe,
IEEE CS Press, Los Alamitos, CA, USA, April 2004.

[6] E. Deelman et al, “Mapping Abstract Complex Workflows onto Grid
Environments”, Journal of Grid Computing, Vol.1:25-39, 2003.

[7] T. Eilam et al, “A utility computing framework to develop utility
systems”, IBM System Journal, Vol. 43(1):97-120, 2004.

[8] T. Fahringer et al, “ASKALON: a tool set for cluster and Grid
computing”, Concurrency and Computation: Practice and Experience,
17:143-169, Wiley InterScience, 2005.

[9] I. Foster et al, “The Physiology of the Grid”, Open Grid Service
Infrastructure WG, Global Grid Forum, 2002.

[10] A. Mayer et al, “ICENI Dataflow and Workflow: Composition and
Scheduling in Space and Time”, In UK e-Science All Hands Meeting,
Nottingham, UK, IOP Publishing Ltd, Bristol, UK, September 2003.

[11] S. Newhouse, “Grid Economy Services Architecture (GESA)”, Grid
Economic Services Architecture WG, Global Grid Forum, 2003.

[12] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An
Introduction”, MIT Press, Cambridge, MA, 1998.

[13] G. Thickins, “Utility Computing: The Next New IT Model”, Darwin
Magazine, April 2003.

[14] J. Yu, S. Venugopal, and R. Buyya, “A Market-Oriented Grid
Directory Service for Publication and Discovery of Grid Service
Providers and their Services”, Journal of Supercomputing, Kluwer
Academic Publishers, USA, 2005.

[15] J. Yu and R. Buyya, “A Taxonomy of Workflow Management Systems
for Grid Computing”, Technical Report, GRIDS-TR-2005-1, Grid
Computing and Distributed Systems Laboratory, University of
Melbourne, Australia, March 10, 2005.

[16] T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor - A
Distributed Job Scheduler. Beowulf Cluster Computing with Linux,
The MIT Press, MA, USA, 2002.

[17] G. Singh, E. Deelman, G. Mehta, K. Vahi, M. Su, B. Berriman, J.
Good, J. Jacob, D. Katz, A. Lazzarini, K. Blackburn, S. Koranda, "The
Pegasus Portal: Web Based Grid Computing", The 20th Annual ACM
Symposium on Applied Computing, Santa Fe, NM, Mar. 13 -17, 2005.

[18] A. Birnbaum, J. Hayes, W. Li, M. Miller, P. Bourne, H. Casanova,
“Grid workflow software for High-Throughput Proteome Annotation
Pipeline”, Proceedings of the First International Workshop on Life
Science Grid (LSGRID2004), Ishikawa, Japan, June 2004.

