
OpenStack Neat: A Framework for Dynamic
Consolidation of Virtual Machines in OpenStack

Clouds – A Blueprint

Anton Beloglazov and Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory
Department of Computing and Information Systems

The University of Melbourne, Australia
a.beloglazov@student.unimelb.edu.au

rbuyya@unimelb.edu.au

14th of August 2012

Contents

1 Summary 2

2 Release Note 3

3 Rationale 3

4 User stories 4

5 Assumptions 4

6 Design 5

6.1 Components . 6

6.1.1 Global Manager . 6

6.1.2 Local Manager . 9

6.1.3 Data Collector . 11

6.2 Data Stores . 11

1

6.2.1 Central Database . 12

6.2.2 Local File-Based Data Store 12

6.3 Configuration File . 13

7 Implementation 14

7.1 Libraries . 14

7.2 Global Manager . 15

7.3 Local Manager . 15

7.4 Data Collector . 16

8 Test/Demo Plan 17

9 Unresolved issues 17

10 BoF agenda and discussion 17

11 References 17

1 Summary

OpenStack Neat is a project intended to provide an extension to OpenStack imple-
menting dynamic consolidation of Virtual Machines (VMs) using live migration. The
major objective of dynamic VM consolidation is to improve the utilization of physical
resources and reduce energy consumption by re-allocating VMs using live migration
according to their real-time resource demand and switching idle hosts to the sleep
mode. For example, assume that two VMs are placed on two different hosts, but the
combined resource capacity required by the VMs to serve the current load can be
provided by just one of the hosts. Then, one of the VMs can be migrated to the host
serving the other VM, and the idle host can be switched to a low power mode to save
energy.

Apart from consolidating VMs, the system should be able to react to increases in
the resource demand and deconsolidate VMs when necessary to avoid performance
degradation. In general, the problem of dynamic VM consolidation can be split into
4 sub-problems:

1. Deciding when a host is considered to be underloaded, so that all the VMs
should be migrated from it, and the host should be switched to a low power
mode, such as the sleep mode.

2

2. Deciding when a host is considered to be overloaded, so that some VMs should
be migrated from the host to other hosts to avoid performance degradation.

3. Selecting VMs to migrate from an overloaded host out of the full set of the
VMs currently served by the host.

4. Placing VMs selected for migration to other active or re-activated hosts.

This work is conducted within the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory at the University of Melbourne. The problem of dynamic VM
consolidation considering Quality of Service (QoS) constraints has been studied from
the theoretical perspective and algorithms addressing the sub-problems listed above
have been proposed [1], [2]. The algorithms have been evaluated using CloudSim
and real-world workload traces collected from more than a thousand PlanetLab VMs
hosted on servers located in more than 500 places around the world.

The aim of the OpenStack Neat project is to provide an extensible framework for
dynamic consolidation of VMs based on the OpenStack platform. The framework
should provide an infrastructure enabling the interaction of components implement-
ing the 4 decision-making algorithms listed above. The framework should allow
configuration-driven switching of different implementations of the decision-making al-
gorithms. The implementation of the framework will include the algorithms proposed
in our previous works [1], [2].

2 Release Note

The functionality covered by this project will be implemented in the form of services
separate from the core OpenStack services. The services of this project will interact
with the core OpenStack services using their public APIs. It will be required to
create a new Keystone user within the service tenant. The project will also require
a new MySQL database for storing historical data on the resource usage by VMs.
The project will provide a script for automated initialization of the database. The
services provided by the project will need to be run on the management as well as
compute hosts.

3 Rationale

The problem of data center operation is high energy consumption, which has risen by
56% from 2005 to 2010, and in 2010 accounted to be between 1.1% and 1.5% of the
global electricity use [3]. Apart from high operating costs, this results in substantial
carbon dioxide (CO2) emissions, which are estimated to be 2% of the global emissions
[4]. The problem has been partially addressed by improvements in the physical
infrastructure of modern data centers. As reported by the Open Compute Project,
Facebook’s Oregon data center achieves a Power Usage Effectiveness (PUE) of 1.08,

3

http://www.cloudbus.org/
http://www.cloudbus.org/
http://code.google.com/p/cloudsim/
https://www.planet-lab.org/
http://opencompute.org/

which means that approximately 93% of the data center’s energy consumption are
consumed by the computing resources. Therefore, now it is important to focus on the
resource management aspect, i.e. ensuring that the computing resources are efficiently
utilized to serve applications.

Dynamic consolidation of VMs has been shown to be efficient in improving the
utilization of data center resources and reducing energy consumption, as demonstrated
by numerous studies [5–16]. In this project, we aim to implement an extensible
framework for dynamic VM consolidation specifically targeted at the OpenStack
platform.

4 User stories

• As a Cloud Administrator or Systems Integrator, I want to support dynamic
VM consolidation to improve the utilization of the data center’s resources and
reduce energy consumption.

• As a Cloud Administrator, I want to minimize the price of the service provided
to the consumers by reducing the operating costs through the reduced energy
consumption.

• As a Cloud Administrator, I want to decrease the carbon dioxide emissions
into the environment by reducing energy consumption by the data center’s
resources.

• As a Cloud Administrator, I want to provide QoS guarantees to the consumers,
while applying dynamic VM consolidation.

• As a Cloud Service Consumer, I want to pay the minimum price for the
service provided through the minimized energy consumption of the computing
resources.

• As a Cloud Service Consumer, I want to use Green Cloud resources, whose
provider strives to reduce the impact on the environment in terms of carbon
dioxide emissions.

5 Assumptions

• Nova uses a shared storage for storing VM instance data, thus supporting
live migration of VMs. For example, a shared storage can be provided using
Network File System (NFS), or GlusterFS as described in [17].

• All the compute hosts must have a user, which is enabled to switch the machine
into the sleep mode, which is also referred to as “Suspend to RAM”. This user
is used by the global controller to connect to the compute hosts using SSH and
switch them into the sleep mode when necessary.

4

6 Design

Figure 1: The deployment diagram

The system is composed of a number of components and data stores, some of which
are deployed on the compute hosts, and some on the management host (Figure 1).
In the following sections, we discuss the design and interaction of the components, as
well as the specification of the data stores, and available configuration options.

5

6.1 Components

As shown in Figure 1, the system is composed of three main components:

• Global manager – a component that is deployed on the management host and
makes global management decisions, such as mapping VM instances on hosts,
and initiating VM migrations.

• Local manager – a component that is deployed on every compute host and makes
local decisions, such as deciding that the host is underloaded or overloaded,
and selecting VMs to migrate to other hosts.

• Data collector – a component that is deployed on every compute host and
is responsible for collecting data about the resource usage by VM instances,
as well as storing these data locally and submitting the data to the central
database.

6.1.1 Global Manager

Figure 2: The global manager: a sequence diagram

6

The global manager is deployed on the management host and is responsible for making
VM placement decisions and initiating VM migrations. It exposes a REST web service,
which accepts requests from local managers. The global manager processes only
one type of requests – reallocation of a set of VM instances. As shown in Figure 2,
once a request is received, the global manager invokes a VM placement algorithm
to determine destination hosts to migrate the VMs to. Once a VM placement is
determined, the global manager submits a request to the Nova API to migrate the
VMs. The global manager is also responsible for switching idle hosts to the sleep
mode, as well as re-activating hosts when necessary.

VM Placement. The global manager is agnostic of a particular implementation
of the VM placement algorithm in use. The VM placement algorithm to use can be
specified in the configuration file described later using the algorithm_vm_placement
option. A VM placement algorithm can call the Nova API to obtain the information
about host characteristics and current VM placement. If necessary, it can also query
the central database to obtain the historical information about the resource usage by
the VMs.

REST API. The global manager exposes a REST web service (REST API) for
accepting VM migration requests from local managers. The service URL is defined ac-
cording to configuration options defined in /etc/neat/neat.conf, which is discussed
further in the paper. The two relevant options are:

• global_manager_host – the name of the host running the global manager;

• global_manager_port – the port of the REST web service exposed by the
global manager.

The service URL is composed as follows:

http://<global_manager_host>:<global_manager_port>/

Since the global manager processes only a single type of requests, it exposes only one
resource: /. The resource is accessed using the PUT method, which initiates a VM
reallocation process. This service requires the following parameters:

• admin_tenant_name – the admin tenant name of Neat’s admin user registered
in Keystone. In this context, this parameter is not used to authenticate in any
OpenStack service, rather it is used to authenticate the client making a request
as being allowed to access the web service.

• admin_user – the admin user name of Neat’s admin user registered in Keystone.
In this context, this parameter is not used to authenticate in any OpenStack
service, rather it is used to authenticate the client making a request as being
allowed to access the web service.

7

• admin_password – the admin password of Neat’s admin user registered in
Keystone. In this context, this parameter is not used to authenticate in any
OpenStack service, rather it is used to authenticate the client making a request
as being allowed to access the web service.

• vm_uuids – a coma-separated list of UUIDs of the VMs required to be migrated.

• reason – an integer specifying the resource for migration: 0 – underload, 1 –
overload.

If the provided credentials are correct and the vm_uuids parameter includes a list of
UUIDs of existing VMs in the correct format, the service responses with the HTTP
status code 200 OK.

The service uses standard HTTP error codes to response in cases of errors detected.
The following error codes are used:

• 400 – bad input parameter: incorrect or missing parameters;

• 401 – unauthorized: user credentials are missing;

• 403 – forbidden: user credentials do not much the ones specified in the configu-
ration file;

• 405 – method not allowed: the request is made with a method other than the
only supported PUT;

• 422 – unprocessable entity: one or more VMs could not be found using the list
of UUIDs specified in the vm_uuids parameter.

Switching Hosts On and Off. One of the main features required to be supported
by the hardware in order to take advantage of dynamic VM consolidation to save
energy is Wake-on-LAN. This technology allows a computer being in the sleep
(Suspend to RAM) mode to be re-activated by sending a special packet over network.
This technology has been introduced in 1997 by the Advanced Manageability Alliance
(AMA) formed by Intel and IBM, and is currently supported by most of the modern
hardware.

Once the required VM migrations are completed, the global manager connects to
the source host and switches into in the Suspend to RAM mode. Switching to the
Suspend to RAM mode can be done, for example, using programs included in the
pm-utils package. To check whether the Suspend to RAM mode is supported, the
following command can be used:

pm-is-supported --suspend

8

http://en.wikipedia.org/wiki/Wake-on-LAN

The Suspend to RAM mode is supported if the command returns 0, otherwise it is
not supported. In this case, the Suspend to RAM mode can be replaced with the
Standby or Suspend to Disk (Hibernate) modes. The following command can be
used to switch the host into the Suspend to RAM mode:

pm-suspend

To re-activate a host using the Wake-on-LAN technology, it is necessary to send
a special packet, called the magic packet. This can be done using the ether-wake
program as follows:

ether-wake <mac address>

Where <mac address> is replaced with the actual MAC address of the host.

6.1.2 Local Manager

The local manager component is deployed on every compute host and is invoked
periodically to determine when it necessary to reallocate VM instances from the host.
A high-level view of the workflow performed by the local manager is shown in Figure
3. First of all, it reads from the local storage the historical data on the resource usage
by VMs stored by the data collector described in the next section. Then, the local
manager invokes the specified in the configuration underload detection algorithm
to determine whether the host is underloaded. If the host is underloaded, the local
manager sends a request to the global manager’s REST API to migrate all the VMs
from the host and switch the host to the sleep mode.

If the host is not underloaded, the local manager proceeds to invoking the specified
in the configuration overload detection algorithm. If the host is overloaded, the local
manager invokes the configured VM selection algorithm to select the VMs to migrate
from the host. Once the VMs to migrate from the host are selected, the local manager
sends a request to the global manager’s REST API to migrate the selected VMs from
the host.

Similarly to the global manager, the local manager can be configured to use specific
underload detection, overload detection, and VM selection algorithm using the
configuration file discussed further in the paper.

Underload Detection. Underload detection is done by a specified in the con-
figuration underload detection algorithm (algorithm_underload_detection). The
algorithm has a pre-defined interface, which allows substituting different implementa-
tions of the algorithm. The configured algorithm is invoked by the local manager
and accepts historical data on the resource usage by VMs running on the host as an
input. An underload detection algorithm returns a decision of whether the host is
underloaded.

9

Figure 3: The local manager: an activity diagram

10

Overload Detection. Overload detection is done by a specified in the configu-
ration overload detection algorithm (algorithm_overload_detection). Similarly
to underload detection, all overload detection algorithms implement a pre-defined
interface to enable configuration-driven substitution of difference implementations.
The configured algorithm is invoked by the local manager and accepts historical data
on the resource usage by VMs running on the host as an input. An overload detection
algorithm returns a decision of whether the host is overloaded.

VM Selection. If a host is overloaded, it is necessary to select VMs to migrate
from the host to avoid performance degradation. This is done by a specified in
the configuration VM selection algorithm (algorithm_vm_selection). Similarly to
underload and overload detection algorithms, different VM selection algorithm can
by plugged in according to the configuration. A VM selection algorithm accepts
historical data on the resource usage by VMs running on the host and returns a set
of VMs to migrate from the host.

6.1.3 Data Collector

The data collector is deployed on every compute host and is executed periodically to
collect the CPU utilization data for each VM running on the host and stores the data
in the local file-based data store. The data is stored as the average number of MHz
consumed by a VM during the last measurement interval. The CPU usage data are
stored as integers. This data format is portable: the stored values can be converted
to the CPU utilization for any host or VM type, supporting heterogeneous hosts and
VMs.
The actual data is obtained from Libvirt in the form of the CPU time consumed by
a VM to date. Using the CPU time collected at the previous time frame, the CPU
time for the past time interval is calculated. According to the CPU frequency of the
host and the length of the time interval, the CPU time is converted into the required
average MHz consumed by the VM over the last time interval. The collected data are
stored both locally and submitted to the central database. The number of the latest
data values stored locally and passed to the underload / overload detection and VM
selection algorithms is defined using the data_collector_data_length option in
the configuration file.
At the beginning of every execution, the data collector obtains the set of VMs
currently running on the host using the Nova API and compares them to the VMs
running on the host at the previous time step. If new VMs have been found, the
data collector fetches the historical data about them from the central database and
stores the data in the local file-based data store. If some VMs have been removed,
the data collector removes the data about these VMs from the local data store.

6.2 Data Stores

As shown in Figure 1, the system contains two types of data stores:

11

• Central database – a database deployed on the management host.

• Local file-based data storage – a data store deployed on every compute host and
used for storing resource usage data to use by local managers.

The details about the data stores are given in the following subsections.

6.2.1 Central Database

The central database is used for storing historical data on the resource usage by
VMs running on all the compute hosts. The database is populated by data collectors
deployed on the compute hosts. The data are consumed by VM placement algorithms.
The database contains two tables: vms and vm_resource_usage.

The vms table is used for storing the mapping between UUIDs of VMs and the
internal database IDs:

CREATE TABLE vms (
the internal ID of a VM
id BIGINT UNSIGNED NOT NULL AUTO_INCREMENT,
the UUID of the VM
uuid CHAR(36) NOT NULL,
PRIMARY KEY (id)

) ENGINE=MyISAM;

The vm_resource_usage table is used for storing the data about the resource usage
by VMs:

CREATE TABLE vm_resource_usage (
the ID of the record
id BIGINT UNSIGNED NOT NULL AUTO_INCREMENT,
the id of the corresponding VM
vm_id BIGINT UNSIGNED NOT NULL,
the time of the data collection
timestamp TIMESTAMP NOT NULL,
the average CPU usage in MHz
cpu_mhz MEDIUMINT UNSIGNED NOT NULL,
PRIMARY KEY (id)

) ENGINE=MyISAM;

6.2.2 Local File-Based Data Store

The data collector stores the resource usage information locally in files in the
<local_data_directory>/vm directory, where <local_data_directory> is defined
in the configuration file using the local_data_directory option. The data for each

12

VM are stored in a separate file named according to the UUID of the corresponding
VM. The format of the files is a new line separated list of integers representing the
average CPU consumption by the VMs in MHz during the last measurement interval.

6.3 Configuration File

The configuration of OpenStack Neat is stored in /etc/neat/neat.conf in the
standard INI format using the # character for denoting comments. The configuration
includes the following options:

• sql_connection – the host name and credentials for connecting to the MySQL
database specified in the format supported by SQLAlchemy;

• admin_tenant_name – the admin tenant name for authentication with Nova
using Keystone;

• admin_user – the admin user name for authentication with Nova using Key-
stone;

• admin_password – the admin password for authentication with Nova using
Keystone;

• global_manager_host – the name of the host running the global manager;

• global_manager_port – the port of the REST web service exposed by the
global manager;

• local_data_directory – the directory used by the data collector to store the
data on the resource usage by the VMs running on the host (the default value
is /var/lib/neat);

• local_manager_interval – the time interval between subsequent invocations
of the local manager in seconds;

• data_collector_interval – the time interval between subsequent invocations
of the data collector in seconds;

• data_collector_data_length – the number of the latest data values stored
locally by the data collector and passed to the underload / overload detection
and VM placement algorithms;

• compute_user – the user name for connecting to the compute hosts to switch
them into the sleep mode;

• compute_password – the password of the user account used for connecting to
the compute hosts to switch them into the sleep mode;

• sleep_command – a shell command used to switch a host into the sleep mode,
the compute_user must have permissions to execute this command (the default
value is pm-suspend);

13

• algorithm_underload_detection – the fully qualified name of a Python func-
tion to use as an underload detection algorithm;

• algorithm_overload_detection – the fully qualified name of a Python func-
tion to use as an overload detection algorithm;

• algorithm_vm_selection – the fully qualified name of a Python function to
use as a VM selection algorithm;

• algorithm_vm_placement – the fully qualified name of a Python function to
use as a VM placement algorithm.

7 Implementation

This section describes a plan of how the components described above are going to be
implemented.

7.1 Libraries

The following third party libraries are planned to be used to implement the required
components:

1. distribute – a library for working with Python module distributions, released
under the Python Software Foundation License.

2. sniffer – a Python auto-testing tool, released under the MIT License.

3. pyqcy – a QuickCheck-like testing framework for Python, released under the
FreeBSD License.

4. mocktest – a mocking library for Python, released under the LGPL License.

5. PyContracts – a Python library for Design by Contract (DbC), released under
the GNU Lesser General Public License.

6. SQLAlchemy – a Python SQL toolkit and Object Relational Mapper (used by
the core OpenStack service), released under the MIT License.

7. Bottle – a micro web-framework for Python, authentication using the same
credentials used to authenticate in the Nova API, released under the MIT
License.

8. python-novaclient – a Python Nova API client implementation, released under
the Apache 2.0 License.

9. Sphinx – a documentation generator for Python, released under the BSD
License.

14

https://bitbucket.org/tarek/distribute
https://github.com/jeffh/sniffer
https://github.com/Xion/pyqcy
https://github.com/gfxmonk/mocktest
https://github.com/AndreaCensi/contracts
http://www.sqlalchemy.org/
http://bottlepy.org/
https://github.com/openstack/python-novaclient
http://sphinx.pocoo.org/

7.2 Global Manager

The global manager component will provide a REST web service implemented using
the Bottle framework. The authentication is going to be done using the admin
credentials specified in the configuration file. Upon receiving a request from a local
manager, the following steps will be performed:

1. Parse the vm_uuids parameter and transform it into a list of UUIDs of the
VMs to migrate.

2. Call the Nova API to obtain the current placement of VMs on the hosts.

3. Call the function specified in the algorithm_vm_placement configuration op-
tion and pass the UUIDs of the VMs to migrate and the current VM placement
as arguments.

4. Call the Nova API to migrate the VMs according to the placement determined
by the algorithm_vm_placement algorithm.

When a host needs to be switched to the sleep mode, the global manager will use the
account credentials from the compute_user and compute_password configuration
options to open an SSH connection with the target host and then invoke the command
specified in the sleep_command, which defaults to pm-suspend.

When a host needs to be re-activated from the sleep mode, the global manager will
leverage the Wake-on-LAN technology and send a magic packet to the target host
using the ether-wake program and passing the corresponding MAC address as an
argument. The mapping between the IP addresses of the hosts and their MAC
addresses is initialized in the beginning of the global manager’s execution.

7.3 Local Manager

The local manager will be implemented as a Linux daemon running in the background
and every local_manager_interval seconds checking whether some VMs should
be migrated from the host. Every time interval, the local manager performs the
following steps:

1. Read the data on resource usage by the VMs running on the host from the
<local_data_directory>/vm directory.

2. Call the function specified in the algorithm_underload_detection configura-
tion option and pass the data on the resource usage by the VMs, as well as the
frequency of the CPU as arguments.

3. If the host is underloaded, send a request to the REST API of the global
manager and pass a list of the UUIDs of all the VMs currently running on the
host in the vm_uuids parameter, as well as the reason for migration as being
0.

15

4. If the host is not underloaded, call the function specified in the
algorithm_overload_detection configuration option and pass the data on
the resource usage by the VMs, as well as the frequency of the host’s CPU as
arguments.

5. If the host is overloaded, call the function specified in the algorithm_vm_selection
configuration option and pass the data on the resource usage by the VMs, as
well as the frequency of the host’s CPU as arguments

6. If the host is overloaded, send a request to the REST API of the global manager
and pass a list of the UUIDs of the VMs selected by the VM selection algorithm
in the vm_uuids parameter, as well as the reason for migration as being 1.

7. Schedule the next execution after local_manager_interval seconds.

7.4 Data Collector

The data collector will be implemented as a Linux daemon running in the background
and collecting data on the resource usage by VMs every data_collector_interval
seconds. When the data collection phase is invoked, the component performs the
following steps:

1. Read the names of the files from the <local_data_directory>/vm directory
to determine the list of VMs running on the host at the last data collection.

2. Call the Nova API to obtain the list of VMs that are currently active on the
host.

3. Compare the old and new lists of VMs and determine the newly added or
removed VMs.

4. Delete the files from the <local_data_directory>/vm directory corresponding
to the VMs that have been removed from the host.

5. Fetch the latest data_collector_data_length data values from the cen-
tral database for each newly added VM using the database connection in-
formation specified in the sql_connection option and save the data in the
<local_data_directory>/vm directory.

6. Call the Libvirt API to obtain the CPU time for each VM active on the host.

7. Transform the data obtained from the Libvirt API into the average MHz
according to the frequency of the host’s CPU and time interval from the
previous data collection.

8. Store the converted data in the <local_data_directory>/vm directory in
separate files for each VM, and submit the data to the central database.

9. Schedule the next execution after data_collector_interval seconds.

16

8 Test/Demo Plan

This need not be added or completed until the specification is nearing beta.

9 Unresolved issues

This should highlight any issues that should be addressed in further specifications,
and not problems with the specification itself; since any specification with problems
cannot be approved.

10 BoF agenda and discussion

Use this section to take notes during the BoF; if you keep it in the approved spec,
use it for summarising what was discussed and note any options that were rejected.

11 References

[1] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms and
adaptive heuristics for energy and performance efficient dynamic consolidation of
virtual machines in Cloud data centers,” Concurrency and Computation: Practice
and Experience (CCPE), 2012 (in press, accepted on September 2, 2011).

[2] A. Beloglazov and R. Buyya, “Managing Overloaded Hosts for Dynamic Con-
solidation of Virtual Machines in Cloud Data Centers Under Quality of Service
Constraints,” IEEE Transactions on Parallel and Distributed Systems (TPDS), 2012
(in press, accepted on August 2, 2012).

[3] J. Koomey, Growth in data center electricity use 2005 to 2010. Oakland, CA:
Analytics Press, 2011.

[4] Gartner Inc., Gartner estimates ICT industry accounts for 2 percent of global
CO2 emissions. Gartner Press Release (April 2007).

[5] R. Nathuji and K. Schwan, “VirtualPower: Coordinated power management in
virtualized enterprise systems,” ACM SIGOPS Operating Systems Review, vol. 41,
pp. 265–278, 2007.

[6] A. Verma, P. Ahuja, and A. Neogi, “pMapper: Power and migration cost aware ap-
plication placement in virtualized systems,” in Proc. of the 9th ACM/IFIP/USENIX
Intl. Conf. on Middleware, 2008, pp. 243–264.

[7] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee, C.
Hyser, and others, “1000 Islands: Integrated capacity and workload management

17

for the next generation data center,” in Proc. of the 5th Intl. Conf. on Autonomic
Computing (ICAC), 2008, pp. 172–181.

[8] D. Gmach, J. Rolia, L. Cherkasova, G. Belrose, T. Turicchi, and A. Kemper, “An
integrated approach to resource pool management: Policies, efficiency and quality
metrics,” in Proc. of the 38th IEEE Intl. Conf. on Dependable Systems and Networks
(DSN), 2008, pp. 326–335.

[9] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Resource pool management:
Reactive versus proactive or lets be friends,” Computer Networks, vol. 53, pp.
2905–2922, 2009.

[10] VMware Inc., “VMware Distributed Power Management Concepts and Use,”
Information Guide, 2010.

[11] G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu, “Mis-
tral: Dynamically Managing Power, Performance, and Adaptation Cost in Cloud
Infrastructures,” in Proc. of the 30th Intl. Conf. on Distributed Computing Systems
(ICDCS), 2010, pp. 62–73.

[12] W. Zheng, R. Bianchini, G. J. Janakiraman, J. R. Santos, and Y. Turner,
“JustRunIt: Experiment-based management of virtualized data centers,” in Proc. of
the 2009 USENIX Annual Technical Conf., 2009, pp. 18–33.

[13] S. Kumar, V. Talwar, V. Kumar, P. Ranganathan, and K. Schwan, “vManage:
Loosely coupled platform and virtualization management in data centers,” in Proc.
of the 6th Intl. Conf. on Autonomic Computing (ICAC), 2009, pp. 127–136.

[14] B. Guenter, N. Jain, and C. Williams, “Managing Cost, Performance, and
Reliability Tradeoffs for Energy-Aware Server Provisioning,” in Proc. of the 30st
Annual IEEE Intl. Conf. on Computer Communications (INFOCOM), 2011, pp.
1332–1340.

[15] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual machines
for managing SLA violations,” in Proc. of the 10th IFIP/IEEE Intl. Symp. on
Integrated Network Management (IM), 2007, pp. 119–128.

[16] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, “A Taxonomy and Survey
of Energy-Efficient Data Centers and Cloud Computing Systems,” Advances in
Computers, M. Zelkowitz (ed.), vol. 82, pp. 47–111, 2011.

[17] A. Beloglazov, S. F. Piraghaj, M. Alrokayan, and R. Buyya, “Deploying Open-
Stack on CentOS Using the KVM Hypervisor and GlusterFS Distributed File System,”
Technical Report CLOUDS-TR-2012-3, Cloud Computing and Distributed Systems
Laboratory, The University of Melbourne, Aug. 2012.

18

	Summary
	Release Note
	Rationale
	User stories
	Assumptions
	Design
	Components
	Global Manager
	Local Manager
	Data Collector

	Data Stores
	Central Database
	Local File-Based Data Store

	Configuration File

	Implementation
	Libraries
	Global Manager
	Local Manager
	Data Collector

	Test/Demo Plan
	Unresolved issues
	BoF agenda and discussion
	References

