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Abstract
Traditional resource management techniques (resource allocation, admis-

sion control and scheduling) have been found to be inadequate for many
shared Grid and distributed systems that face unpredictable and bursty work-
loads. They provide no incentive for users to request resources judiciously
and appropriately, and they do not capture the true value and importance (the
utility) of user jobs. Consequently, researchers and practitioners have been
examining the appropriateness of ‘market-inspired’ resource management
techniques in ensuring that users are treated fairly, without unduly favour-
ing one set of users over another. Such techniques aim to smooth out access
patterns and reduce the chance of transient overload, by providing incentives
for users to be flexible about their resource requirements and job deadlines.
We examine the recent evolution of these systems, looking at the state of the
art in price setting and negotiation, grid economy management and utility-
driven scheduling and resource allocation, and identify the advantages and
limitations of these systems. We then look to the future of these systems,
examining the emerging ‘Catallaxy’ market paradigm and present Mercato,
a decentralised, Catallaxy inspired architecture that encapsulates the future
directions that need to be pursued to address the limitations of current gener-
ation of market oriented Grids and Utility Computing systems.

1 Introduction

The rise of Grid Computing [14] has led to knowledge breakthroughs in fields as
diverse as climate modelling, drug design and protein analysis, though the harness-
ing of computing, network, sensor and storage resources owned and administered
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by many different organisations. These fields (and other so-called Grand Chal-
lenges) have benefited from the economies of scales that Grid Computing brings,
tackling difficult problems that would be impossible to feasibly solve using the
computing resources of a single organisation.

Despite the obvious benefits of Grid Computing, there are still many issues to
be resolved. As the Grid Computing paradigm has become more popular, large
Grid Computing organisations are facing new problems, such as excessive spikes
in demand for resources coupled with strategic and adversarial behaviour by users.
Such conditions have been observed on PlanetLab [29, 7], which whilst not specif-
ically considered a Grid is one of the largest open-access distributed systems of it’s
kind, and Mirage [10], a shared sensornet testbed, among other examples.

In both of these systems, bursty periods of high contention for available re-
sources have been observed, where demand frequently exceeds supply. PlanetLab
load often corresponds closely to deadlines for major computing and networking
conferences, where disparate research teams are competing for resources to run
their experiments on [29]. Mirage is one of very few real sensor network testbeds
available, and is of prime interest to commercial and academic researchers across
the globe wishing to explore the behaviour of their algorithms on a real system [26].
As a result, it can be difficult to get access to this system at peak times.

In these situations, traditional resource management techniques (resource allo-
cation, admission control and scheduling) have been found by many researchers to
be lacking in ensuring fair and equitable access to resources [21, 35]. Traditional
resource management techniques for clusters focus on metrics such as maximis-
ing throughput, and minimising mean waiting time and slowdown. These metrics
fail to capture more subtle requirements of users, such as quality of service con-
straints. Consequently, researchers have been examining the appropriateness of
‘market-inspired’ resource management techniques in ensuring users are treated
fairly, without unduly favouring one set of users over another. To achieve this,
there needs to be incentives for users to be flexible about their resource require-
ments and job deadlines, and utilise these systems outside of peak time. Similarly,
there needs to be provisions for a user with urgent work to be satisfied rapidly,
where possible. These aims are achieved by users assigning a utility to their jobs
- effectively a fixed or time-varying valuation that captures various quality of ser-
vice constraints (deadline, importance, and satisfaction) associated with a users
job. This utility typically represents the amount they are willing to compensate a
service provider to satisfy their job demands. Shared Grid systems are then viewed
as a marketplace, where users compete for resources based on the perceived utility
or value of their jobs.

The notion of utility is not restricted to end-users alone, especially in com-
mercial grid and cluster systems. As is the case in free markets, all participants
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(described in Section 2.1) are self-interested entities that attempt to maximise their
own gain. Service providers in commercial systems will attempt to maximise their
own utility. In this instance, the utility they receive may directly correlate to the
profit (i.e. the difference between the cost of offering the service and the compensa-
tion they receive) they make. One or many brokers can operate in grid and cluster
systems, acting as a middleman between end-users and service providers. They
can perform a number of important functions, such as aggregating resources from
many providers and negotiate and enforce quality of service targets, reducing the
complexity of access for end-users. As compensation for performing these value-
added functions, brokers generate utility for itself by selling access to resources at
a higher cost than what they pay a service provider, generating a profit.

In this paper we examine many recent advances in the field of utility-oriented
grid computing markets. There have been prior surveys of market-based resource
management [39], utility computing [40] and Grid Economies [9]. This survey is
intended to complement these prior works, by covering the most recent research in
Grid Computing Markets. In Section 2 we provide an overview of market-based
approaches for utility-driven distributed systems, highlighting the benefit of utility-
driven computing and explaining the role of the market in Grid computing. In
Section 3 we examine the state of the art in market-based utility computing, ex-
amining the benefits of utility-driven pricing, resource allocation, scheduling, ad-
mission control. Section 4 describes the so-called ‘Catallaxy’ paradigm, which has
moved the research focus from stand-alone grid marketplaces to multiple, linked,
decentralised and autonomic ‘free market’. In Section 5 we present our Catallaxy-
inspired ad-hoc Grid Market architecture, called Mercato.

2 Overview of market-based approaches for utility-driven
distributed systems

As networked resources such as grids, clusters and sensors are being aggregated
and shared amongst multiple stake-holders with often competing goals, there has
been a rising consensus that traditional scheduling techniques are insufficient. In-
deed, simply aiming to maximise utilisation for service providers and minimise
waiting time and slow down for end-users does not always capture the diverse val-
uations that participants in these systems place on the successful execution of jobs
and services. Instead, the notion of maximising the utility of each participant in
these system is becoming a priority.

The behaviour, roles and responsibilities of each of these participants as well
as how they each measure utility are explored in Section 2.1. An overview of the
motivation behind market-drive utility computing and the obstacles that need to be
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overcome is presented in Section 2.2. In Section 2.3 we look at some of the emerg-
ing technology trends that are allowing service providers unprecedented flexibility
in partitioning and allocating their resources for computing marketplaces.

2.1 Participants

Participants, or ‘actors’ in a utility-oriented Grid Computing markets can be gen-
erally classified as belonging to one of three categories: users, brokers and service
providers. In some instances, participants may actually perform the functions from
more than one category - a users may also offer some of its own resources to other
participants, (acting as a service provider), or a service provider may aggregate
other resources along with its own (acting as a broker). Each actor in the system
is a self-interested, utility maximising entity. How each actor measures and max-
imises its utility depends on the system it operates in - the behaviour exhibited in a
shared system where market-driven techniques are used simply to regulate access
differs greatly from a profit-driven commercial system. Many of these differences
are highlighted from out study of existing systems in Section 3.

A user requires access to more resources than it has available, for require-
ments that can range from jobs to be processed, to web services that need to be run
on networked computers. These users are willing to proportionally compensate a
provider to satisfy their requirements depending on the utility they receive. The
sophistication of this compensation depends on the system being used, as outlined
in Section 3.1.

Rather than dealing with multiple heterogeneous service providers directly,
users obtain access to resources via one or many brokers. These brokers act as
‘middlemen’ by virtualising and making available the resources of multiple ser-
vice providers, removing the complexity from the user of multiple architectures,
operating systems and middleware. This aggregation allows greater economies of
scale, improving throughput and reducing cost. Brokers can have more specific
responsibilities, such as reserving resource slots, scheduling jobs and services on
resources held by service providers, performing admission control to avoid over-
load and ensuring that a user’s quality of service targets can be met.

Service providers satisfy the needs of end-users by providing the resources (i.e.
disk, memory, CPU, access to sensors, etc.) that is requested by end users and ar-
bitrated by brokers. A service provider may offer its services through multiple
brokers, and even offer more resources than it has available to give, in an effort to
improve utilisation via statistical multiplexing. A service provider is ultimately re-
sponsible for ensuring that all its commitments are met. It must ensure appropriate
performance isolation for jobs and services running on its resources, to ensure that
users quality of service targets are satisfied. This can be achieved by appropriate
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partitioning or scheduling of its resources.

2.2 Utility computing and the role of market-based techniques

Lai attempts to motivate the use of market-based techniques for resource assign-
ment, whilst exploring the pitfalls of such approaches [21]. Over a long enough
time frame, Lai notes that Proportional Share is not sufficient to reach economic
efficiency, as there is no incentive for users to shift their usage from high demand
periods to low demand periods. Simple fixed price schemes are not as efficient as
variable price in addressing this transient peak load, assuming a variable demand.
Indeed, the more variable the demand the greater the efficiency loss of a fixed price
scheme. When this is combined with a controlled pool of funds, users have an
incentive to truthfully reveal their valuation of tasks. Finer grained bidding for
resources can occur, where users can choose between reserved resources or best
effort scheduling, depending on necessity.

Shneidman et al. have noted important emerging properties of these systems,
where users are self-interested parties that both consume and supply resources,
demand often exceeds resource supply, and centralised (global) approaches can-
not be used due to the sheer scale of these systems [35]. The authors claim the
goal is no longer maximising utilisation, especially when demand exceeds supply,
and more intelligent allocation techniques are needed than just best effort or ran-
domised allocation. They propose that a efficient allocation mechanism (i.e. social
policy) that can allocate resources is needed that allocates resources to users who
have the highest utility for them, favours small experiments (a common practice in
scheduling) and underrepresented stake-holders (e.g. those that have been denied
or refrained from receiving service in the past) and maximises revenue.

The authors note that many recent developments make market-based tech-
niques appropriate and timely, as they could be immediately deployed in many
commercial scenarios (such as test-beds and shared grids) to solve real world prob-
lems. Developments in Virtual Machine technology (Xen [6], VMWARE, etc.) and
other resource isolation techniques (Linux Class-based Kernel Resource Manage-
ment, BSD Jails [32]) can be used to partition, isolate and share resources. Com-
binatorial bidding languages are emerging that are sufficiently expressive, and can
be often solved as mixed integer optimisation problems in modern solver packages
like CPLEX [27].

Shneidman et al. state that there are a number of problems that need to be
solved to make effective market-based, utility driven approaches a reality. Re-
source allocation policies must be explicitly defined, particularly, what are the
social policy goals that need to be met? However, we note that it is unclear at
this point who (i.e. users, administrators, service providers) should mandate these
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goals. Sellers of resources must be able to divide resources efficiently both ex-
plicitly and implicitly (e.g. memory is useless without at least some CPU) into
resource bundles. However, whilst tools to achieve this (e.g. Xen, CKRM) are ma-
turing they still have some way to go. Buyers needs must be predicted so required
resources are not misestimated, leading to waste (e.g excess resources that have
been reserved and not used, or wasted due to unfinished experiments that may be
invalid).

Forecasting resource requirements is challenging and new for users. It is un-
clear whether market can resolve this, or whether ‘practice’ runs in a best effort
staging grounds are needed so users can gain experience predicting their needs.
However, such staging grounds may be impractical in reality, and is in opposition
to the free market approach of ‘letting the market work it out’ by allowing users to
suffer the consequences of poor choices. Users need to find the true value of re-
sources they wish to reserve. The currency system needs to be well defined (either
virtual or real), and receive ongoing care so that it functions correctly to max-
imise the utility of the system, avoiding the typical problems of starvation (users
run out of money), depletion (users hoard currency or leave the system) and infla-
tion (currency is injected into the system without limit). The use of real money is
favoured by many researchers to encourage more honest valuations of resources in
the system. An effective means to calculate and express valuation of resources is
needed for efficient operation of these systems. Bidding languages are becoming
more sophisticated and are well suited to this task. However, intuitive interfaces
are needed to construct these bids, allowing users to easily and accurately express
their preferences.

Linked market-based mechanisms have been proposed as an interesting pos-
sibility, quantifying the value of cluster time at one network versus another (in a
similar fashion to currency exchanges). This is complementary with the move from
centralised approaches to catallaxy inspired [13, 3] distributed and autonomic sys-
tems, described in Section 4.

2.3 Emerging technologies for computing marketplaces

The more recent growth in popularity of broadly accessible virtualisation solu-
tions (such as Xen [6], VMWARE [1]) and services (Amazon Cloud [2], Planet-
Lab [7]) provides an interesting framework where a lightweight virtual machine
(VM) image can be a unit of execution (i.e. instead of a ‘task’ or process) and
migration [25]. Whilst virtual machines and containers are hardly new technol-
ogy, they have only recently become ubiquitous, and now run with hardware as-
sistance (using paravirtualisation on recent Intel VT-x and AMD Pacifica enabled
processors) on commodity computers and operating systems, rather than expensive
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‘big-iron’ Unix machines. Recent developments, described by Nelson et al., have
allowed migration of unmodified applications encapsulated in virtual machines,
even if these applications to be unaware of the mechanics behind it. This migration
can be achieved in a work-conserving fashion without the running application nor
any dependant clients or external resources being aware that it has occurred. The
VMWARE management capabilities makes this possible encapsulating the state of
the VM, such CPU, networking, memory and I/O while the virtual machine is still
running. It can transfer open network connections due to the layer of indirection
provided by the VMWARE Virtual Machine layer. Physical memory is often the
largest overhead in terms of state that must be migrated. Stopping a VM to save
and transfer this state can cause a lengthy downtime, making the migration process
far from transparent. As such, this is handled in situ by a virtual memory layer [37],
allowing memory state to be transferred whilst a VM is still running by iteratively
pre-copying memory to the destination node and marking it as temporarily inac-
cessible to the source.

Nelson et al. found that for a variety of CPU, I/O and memory bound work-
loads, VM migration in a local cluster can be fast and transparent for the applica-
tions themselves and any dependent clients and external resources. In most causes
downtime was kept under a second, short enough to avoid a noticeable lapse in
service by clients. If the VMs are simply batch workloads, this is even less of an
issue. Even if migration takes several seconds, this must be contrasted with the
probable runtime of a virtual machine, which could be in the order of minutes or
hours. As such, the benefits of migration would depend on the nature of the virtual
machine workload.

3 The state-of-the-art in market-based utility computing

Utility-driven distributed computing marketplaces are typically made up of several
key components and processes. Users can have jobs that need to be processed,
for which they are willing to compensate an entity to perform. The level of com-
pensation depends on a number of factors, including the currency available to the
client, the contention for resources and the urgency of the job. These factors are
considered in the price setting and negotiation phase, described in Section 3.1.

As described previously, one or many brokers can exist in a grid marketplace,
acting as a ‘middleman’ by aggregating and virtualising access to disparate Grid re-
sources offered by service providers. In the face of competition from many clients
for grid resources, brokers and service providers must manage these resources ef-
fectively, meeting demand where possible but ultimately maximising the utility (i.e.
revenue) gained. This is achieved via utility-driven resource allocation, scheduling
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and admission control, described in Section 3.2.
For a grid marketplace to be sustainable, the grid economy must be managed

effectively. If users have an unlimited supply of currency, there is no rewards or
disincentives for users to manage their currency and use it prudently and truth-
fully, revealing their true valuation for jobs. As such, the currency (whether real
or virtual) must be carefully managed to ensure equity for all participants. This is
discussed in further detail in Section 3.3.

Some systems address many or all of the above aspects of market-based, utility-
driven distributed systems. As such, we will first introduce these systems below:

Buyya et al. proposed an economy driven resource management architecture
for global computational grids [8, 9]. This consists of a generic framework, called
GRACE, for negotiation and trading resources dynamically in conjunction with
existing grid components, such as local schedulers and grid or meta-schedulers.
The function of GRACE is to enable supply and demand-driven pricing of re-
sources to regulate and control access to computational resources in a grid.

The Bellagio [4] is a system that seeks to allocate resources for distributed
computing infrastructures in an economically efficient fashion to maximise aggre-
gate end-user utility. In this system, users identify resources of interest via a re-
source discovery mechanism (such as SWORD [28]) and register their preference
(via a constrained supply of virtual currency) for said resources over time and space
using combinatorial auction bids [27]. Unlike existing work that focuses on con-
tention for a single resource (CPU cycles), they are motivated by scenarios where
users express interest in ‘slices’ of heterogeneous goods (e.g. disk space, memory,
bandwidth).

Chun et al. [10] propose a so-called microeconomic resource allocation scheme
(using combinatorial auctions within a closed virtual currency environment) for
sensornet testbed resource management, called Mirage. The operation of Mirage
is very similar to that of Bellagio however it is a real-world deployed system,
and observations of this system have revealed many users behaving strategically to
exploit the system.

The Tycoon [20, 22] system is a market-based resource allocation system that
utilises an Auction Share scheduling algorithm where users trade off their prefer-
ences for low latency (e.g. for a web server), high utilisation (e.g. batch computing)
and risk.

Libra [34] is a computational economy-based scheduling system for clusters
that focuses on improving the utility, and consequently the Quality of Service,
delivered to users. Libra is intended to be implemented in the resource management
and scheduling (RMS) logic of cluster computing systems, such as PBS [16].

FirstPrice and FirstReward are two utility-driven scheduling heuristics that
balance the risk of future costs against the potential gains (reward) for accepting
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Table 1: Summary of price setting and negotiation

System Name Price Setting Acceptance Criteria Penalty
Bellagio [4] Fixed ‘Threshold’-based N/A
Mirage [10] Fixed ‘Winner Determination Problem’ N/A
Tycoon [20, 22] Fixed First/Second Price No
Libra Fixed Minimum Cost No
Li [23] Fixed nth Price No
FirstPrice [11] Variable None No
FirstReward [19] Variable Risk versus reward Yes
FirstProfit [31] Variable Risk versus per-job reward Yes
FirstOpportunity [31] Variable Affect on profit Yes
Aggregate Utility [5] Variable Contract feasibility / profitability Yes

tasks [19]. The importance of using admission control in such schemes is also
illustrated. Tasks in such systems are batch jobs that utilise resources (that are
predicted accurately by the client) but provide no value until completion. Each job
is characterised by a utility function that gives the task a value as a function of its
completion time. This value reduces over time, and if unbounded can be a negative
value (i.e. penalty) placed on the service provider. These systems do not model the
currency economy or injection (unlike Bellagio and Mirage). Sealed bids are used
and no price signals to buyers are assumed.

Popovici and Wilkes examine profit-based scheduling and admission control
algorithms called FirstProfit and FirstOpportunity that consider a scenario where
(grid) service providers rent resources from resource providers (rather than running
and administering them), acting as a “middleman” [31]. Clients have jobs that need
processing with price values (specifically a utility function) associated to them.
The service provider rents resources from the resource provider at a cost, and price
differential is the jobs profit that goes to the service provider. Complicating matters
is the fact that resource uncertainty exists, as resources may be over-provisioned. If
the service provider promises resources they cannot deliver, the clients QoS targets
will not be met and the price they will pay will decline, as defined by the clients
utility function. It is assumed that service providers have some domain expertise
and can reasonably predict running times of jobs in advance. The accuracy of this
estimator was modelled using a normal distribution.
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3.1 Price setting and negotiation

In a market-driven distributed system, users express the value or ‘utility’ they place
on successful and timely processing of their jobs through the process of price set-
ting and negotiation. Users can attempt to have their job prioritised and allocated
a greater proportion of resources by increasing the price they are willing to pay
to a service provider for the privilege. Conversely, users can endeavour to save
their currency when processing low priority tasks by specifying flexible deadlines.
Such preferences are captured by the price setting and negotiation mechanisms of
a given grid computing market. These price setting and negotiation approaches are
presented below, and summarised in Table 1.

3.1.1 Fixed price models

The GRACE [8, 9] system does not specifically prescribe a particular price model,
claiming it should be left up to each participant to define their own utility-maximising
strategies when negotiating for access to resources. However, the interactions de-
scribed in preliminary work on GRACE closely resemble a double auction [8],
where ‘asks’ and ‘bids’ are traded that can incorporate costs and flexible deadlines
(to trade-off against cost) until a fixed agreement is struck, or the negotiation is
abandoned. Such double auctions were subsequently been found to be highly effi-
cient by Placek and Buyya, and were integrated into Storage Exchange, a platform
that allows organisations to treat storage as a tradeable resource [30].

Market inspired systems such as Bellagio [4] and Mirage [10] utilise second-
price and first-price auctions respectively to schedule and allocate resources. In
each case, users specify a fixed value bid for a set of resources over time and
space. Auctions are held at fixed intervals (e.g. every hour for Bellagio), and users
are either notified if they are successful (and are allocated the requested resources),
or are denied access if unsuccessful. Users are encouraged to bid their true value in
this approach, as they must wait until the next auction to try again, potentially with
a modified bid to improve their chances of success. Users only have limited means
to express the utility of their job, via the fixed price they are willing to pay, the
duration of time they need the resources for and the deadline it must be completed
by.

The Tycoon [20, 22] system similarly uses auctions, but removes the onus on
the user to adjust their bids based on their success at auction. So called ‘parent-
agents’ are controlled for each application a user wants to run, which manage the
budget and the associated child-agents. A user specifies high level parameters (such
as the number of credits available to that parent, the deadline and the number of
hosts needed). A child agent initiates the bidding process, potentially liaising with
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multiple providers. It monitors the progress of these negotiations and reports it
up the chain. An auctioneer computes efficient first or second price bids for CPU
slices based on the funds and information presented by the child nodes interacting
with it. Funds can be received upon entry into the system, and also at regular
intervals, but this element or its effect is not explored further.

Li et al. propose an iterative gradient climbing price setting approach to balance
supply and demand in agent-driven grid marketplaces [23]. In this approach, the
participants iteratively establish prices using a gradient climbing adaptation such
that supply meets demand, using an nth price auction scheme. While each bid
uses a fixed price, future bids are automatically modified based on current market
conditions. If a price is rejected, an agent subsequently increases its bid; if it is
accepted it reduces its bid. In this manner, Agents in the market act independently
to maximise their own individual profits.

3.1.2 Variable price models

In the FirstPrice/FirstReward [19] and FirstProfit/FirstOpportunity [31] job schedul-
ing systems, each users job is characterised by a utility function that gives the task a
value as a function of its completion time. This value reduces over time, and if un-
bounded can be a negative value (i.e. penalty) placed on the service provider. Jobs
provide no value to the user until they are completed. Each jobs deadline is equal
to its minimum runtime, so any delay incurs an immediate cost. After this point,
the compensation that the provider receives decays linearly as time progresses past
the deadline.

AuYoung et al. proposes using aggregate utility functions in conjunction with
individual utility functions for sets of jobs, described as a ‘contract’ [5]. An aggre-
gate utility function is proposed in the form of aggregate utility = αxβ . For a
contract the overall payment is the sum of the per-job prices multiplied by the value
of the aggregate utility function. The parameters can be changed to reflect the users
preference in having a full set of tasks processed. When α is 1 and β is 0, the user
is indifferent as to whether a partial of compete set is processed. α is 1 and β is
1 there is a linear relationship between the level of completeness in processing the
set and the aggregate utility function. When α is 1 and β increases, the user places
a higher dependency on the majority of the jobs completing in a set, penalising the
provider if this is not the case. β controls the clients sensitivity to the aggregate
metric a high β and α value would result in high risk for the service provider, but
high reward if they can satisfy as much of a contract (i.e. set) as possible getting a
“bonus”.
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Table 2: Summary of Utility-driven Resource Management Systems

System Name Allocation Scheduler Adm. Control
Bellagio [4] SHARE [12] Proportional Share N/A
Mirage [10] Auction-based Proportional Share N/A
Tycoon [20, 22] Auction-based Auction Share No
Libra N/A Proportional Share Yes (basic)
Li [23] Double Auction Proportional Share N/A
FirstPrice [11] N/A Highest Unit Value First No
FirstReward [19] N/A Highest Unit Value First1 Yes
FirstProfit [31] N/A Highest Per-job Profit First Yes
FirstOpportunity [31] N/A Highest Total Profit First Yes
Aggregate Utility [5] N/A Highest Contract Profit First Yes

3.2 Utility-driven Resource Management Systems (RMS)

Utility-driven resource management systems (RMS) actively consider the utility of
participants when performing resource allocation, scheduling and admission con-
trol. Some well known utility-aware resource management systems are presented
below, and summarised in Table 2.

3.2.1 Auction-based resource allocation

Bellagio: A ‘second-price’ style auction is employed in Bellagio [4] to encourage
users to reveal the true value they place on these resources. The auctions are then
held every hour using using SHARE [12] which allocates resources by clearing a
combinatorial auction. Given that clearing such combinatorial auctions is known
to be NP-Complete, SHARE utilises approximation algorithms to determine the
winner. The Bellagio system assumes that an authentication entity exists that au-
thenticates bids, resource capabilities (reservations) and account balances, such as
SHARP [15]. The virtual currency economy is managed such that one user cannot
dominate the available resources for lengthy periods of time. This currency system
is explained in further detail in Section 3.3.

Experimental results show that Bellagio scales well to clearing auctions involv-
ing thousands of bids and resources. Bellagio generates more utility for its users
than a standard proportional share resource allocation under a variety of load con-

1Risk-aware
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ditions. Bellagio is especially effective under higher system load, spreading out
resource requests in order to maximise overall utility. The fairness of the Bellagio
policy (with regards to protecting light users against starvation from heavy users)
can be ensured by using an appropriate currency distribution policy.

Mirage: The resource allocation problem for sensornet testbeds (such as Mi-
rage [10]) is well suited to combinatorial auctions, as resources are both substitutes
(specific machine allocation is often not important) and complimentary (partial re-
quest allocation is not useful, but full allocation are complementary to each other).
Mirage can locate and reserve resources based on per-node attributes (e.g. a certain
feature needed at each node) but not inter-node attributes (e.g. node is 10 metres
from other node). The bid format language used by Mirage for users to express
their preferences is based on XOR [27], allowing them to request resources over
both space and time, with the valuation and deadline flexibility of their bid con-
tributing to the probability of a successful bid.

While observing the system over a period of 4 months, the authors observed
that the values users placed on resources varied over four orders of magnitude,
validating the auction-based approach. Users also requested a range of resource
allocations and duration’s, highlighting the flexibility of the bidding language by
allowing users to share access to the system where appropriate and improving utili-
sation. However, as the authors observed a live system, it was not compared against
any baseline scheduler, so the increase in overall utility was not quantified.

Tycoon: The Tycoon [20, 22] system utilises an Auction Share scheduling algo-
rithm where users trade off their preferences for low latency, high utilisation and
risk - depending on their specific requirements. Many schedulers in similar sys-
tems utilise proportional share, where processes are allocated an interval, which is
weighted by the importance of that process. As the authors note this method can
be abused, as it depends on users truthfully valuing their process, and as the sum
of weights increases each processors share approaches zero. The Tycoon approach
encourages users to devise specialised strategies for each specific application they
need to run, based on their needs. Tycoon utilises an agent-driven approach, which
removes much of the complexity (and, we note, the control) in devising effective
market-driven strategies for users processes.

When a market strategy is adapted to proportional scheduling, it performs well
under high utilisation - equivalent to a best case proportional scheduling scenario
where users value their jobs truthfully. When no market principles are used and
users value their tasks strategically, utility converges to zero as the load increases.

An auction strategy attempts to provide the best elements of many approaches
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high utilisation (proportional share), low latency (borrowed virtual time share) and
low risk (resource reservation). Users specify their preference based on application-
specific needs. A proportional share scheduler can only hope to achieve high utili-
sation or low latency / fairness, but not both, and users are not encouraged to value
their tasks truthfully. The limited results demonstrate that an Auction share ap-
proach can be effective in ensuring predictable latency and also be fair by yielding
the CPU when not needed.

Combinatorial Exchange: Schnizler et al. propose to formulate the resource
trading and allocation problem as a multi-attribute combinatorial exchange model [33].
Like many other grid economy researchers, the authors claim that traditional (e.g.
FCFS) allocation and scheduling are not sufficient in market driven computational
grids, as they fail to capture the utility (i.e. true) valuation that users place on the
successful processing of their jobs. Flat rate pricing schemes for grid economies
are also insufficient, as they do not capture the variability in demand and user util-
ity that exists. The authors state certain desirable properties that any pricing and
allocation scheme should have in an economy driven grid:

• Allocative efficiency: Pareto efficiency dictates that any allocation mecha-
nism must ensure that one agent is made better off without making at least
one agent worse off. If user utility is equivalent and transferable, then a
mechanism should maximise the sum of individual utilities.

• Incentive compatible: All participants must report their preferences (i.e. val-
uations) truthfully.

• Individual Rationality: Requires that users participating in a mechanism
have a higher utility than before they joined - otherwise they have no in-
centive to participate.

• Budget balance: A mechanism is budget balanced if the amount of prices
sum to zero over all participating agents. This can be achieved by a closed
loop currency system where payments are redistributed among the agents,
with no funds removed nor injected from outside. Weak balanced budget
occurs when participants make payments to the mechanism, but not vice
versa.

• Computational / Communication tractability: The cost in computing the out-
come of allocating resources in an optimal or near optimal fashion must be
considered, as well as the communication effort that is needed to converge
on these goals.
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The underlying environment must also consider the following domain specific
requirements:

• Simultaneous trading: Support of multiple buyers and multiple sellers.

• Trading dependant resources: Buyers demand combinations (‘bundles’) of
resources, and may bid on many such bundles at once though XOR bids.

• Support for multi-attribute resource: A single resource may have multiple
resources that are of interest to a buyer (e.g. a HDD has capacity and access
time)

.
Existing market-based approaches do not account for time nor quality con-

straints in the bidding and auction process. As such, the authors introduce a bid-
ding language to express the auction process for a computation grid, capturing the
pertinent elements of a users bid - such as the makeup and quality requested for a
specific resource bundle, and the valuation they place on it. The problem is formu-
lated as a generalisation of the combinatorial allocation problem, which is known
to be NP-complete. The objective function attempts to maximise the surplus V ∗,
which is the sum of the difference between the buyers valuations and the sellers
reservation prices. A Vickrey-Clarke-Groves pricing mechanism is assumed, but is
not the focus of the paper. The proposed approach is simulated, and its computa-
tional tractability is shown (by solving the auctions using the well known CPLEX
solver), clearly demonstrating the optimisation problem does not scale. The sim-
ulation shows an exponential relationship between the numbers of orders and the
CPU time needed to compute the results of the auction. A scenario with 140 bun-
dles comprising 303 bids took nearly a minute to compute, highlighting the critical
need for a faster approximate solution to clear auctions.

3.2.2 Scheduling

Libra: As well as submitting typical parameters required by batch computing
job submission systems such as estimated runtime E, location of data sets and
expected output, the Libra [34] system allows users to express more descriptive
requirements by parameters such as deadline D and budget B. A deadline denotes
when the user needs the results of the job by, and the budget denotes how much
they are willing to pay to have the job completed by the deadline. However, the op-
eration of Libra depends on several limiting assumptions; that only one centralised
gateway is used to submit jobs to the cluster, that there must be no background
jobs (the cluster nodes are dedicated), that CPU time is divisible and reservable,
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and that the estimated runtime E is accurate. The RMS makes a simple minimum
cost computation for a submitted job, to see if a user’s budget B is sufficient to
cover the cost, C = α ∗ E + β ∗ E/D, where α and β are the coefficients. The
α parameter captures the raw cost of the resources required and the duration they
are needed for, whilst β denotes the incentive offered to the user for specifying an
actual deadline. This ensures that a user is charged for the cluster hours it uses,
regardless of deadline, whilst considering the user’s flexibility regarding the pro-
cessing deadline and compensating or penalising them accordingly. This provides
a good mix of user and provider satisfaction. If the budget is sufficient, the provider
will check whether a cluster node can feasibly meet the prescribed deadline, given
its existing commitments. If no node can meet the deadline, the job is rejected. In
this case, a user should try again later or try a more relaxed deadline. By doing this,
Libra can guarantee an accepted job will be processed before its deadline, provided
the runtime estimate E is accurate.

Libra’s proportional share approach allowed more jobs to be completed by their
deadline (and consequently less jobs rejected) for a variety of cluster and workload
combinations. However, such proportion share scheduling is not appropriate for
all workloads - specifically, memory intensive jobs would suffer due to excessive
context switching. Furthermore, Libra’s approach critically depends on the qual-
ity of the runtime estimation to schedule jobs and resources effectively. However,
accurate runtime estimates cannot be guaranteed for many batch or cluster work-
loads [24, 36].

FirstPrice and FirstReward: FirstPrice [19] sorts and greedily schedules jobs
based on a schedule that will maximise (per unit) return. FirstReward [19] consid-
ers both the per unit return for accepting a task and the risk of losing gains in the
future. A Present Value (PV) approach is utilised that considers the yield countered
by a discount rate on future gains that could be made. A high discount rate causes
the system to discount (avoid) future gains and focus on short running quick profit
jobs - a risk adverse strategy. Experiments demonstrated that a high discount rate
is appropriate when there is a large skew between job values in the job mix. The in-
tegration of opportunity costs for the value of the potential loss incurred by taking
one job over another. Ideally, jobs should only be deferred (to chase extra profit)
if they have have a low decay rate, even if they have a high unit gain. The reward
metric is a tuneable metric that considers potential gain with opportunity costs, that
can be weighted to control the degree of which the system considers expected gain.
When penalties are bounded, it is beneficial to take some risk in order to gain more
profit the heuristic biases against low value jobs, and the penalty is capped. When
the penalty is uncapped, taking considerable risks on future gain begins to become
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a poor strategy.

FirstOpportunity and FirstOpportunityRate: Popovici and Wilkes propose
two profit-based scheduling algorithms [31]. The first of these is FirstOpportu-
nity, which examines the effect of running a job on others in the queue. Builds
a new schedule for pending workload by selecting each job in turn (using only
the most profitable shape for that job) and uses FirstProfit to generate a schedule
for the remaining jobs. Finally, the job is chosen that generates the schedule with
the highest total profit. The second algorithm is FirstOpportunityRate; similar to
FirstOpportunity but considers the job that produces the highest aggregate profit in
proportion to the total schedule length.

When accurate resource information is available, FirstReward and FirstPrice
have a higher acceptance rate and utilisation under low load, as they do not con-
sider resource cost, only profit. FirstOpportunity and FirstOpportunityRate have
the most accurate profit estimation (at admission control stage) under all shown
load conditions as they consider existing jobs as well as the newly arriving job.
Under more severe decay rates, FirstOpportunityRate has consistently better per-
formance and accuracy, as it prioritises smaller, higher profit jobs. Under variable
resource availability and price, FirstOpportunity and FirstOpportunityRate are the
best policies as they consider resource costs as well as price, whereas other policies
schedule on client utility or job size alone.

When uncertain resource information is available, FirstProfit was extended to
consider profit reward versus probability of achieving that profit, the other poli-
cies are uncertainty-oblivious. FirstProfit admitted fewer jobs when uncertainty
increased, reducing its risk exposure (i.e. accepting jobs then not meeting client
targets). Profit rate was increased as FirstProfit took slightly more risk (20%)

Aggregate Utility: The use of aggregate utility functions in conjunction with
traditional, single job utility functions is explored AuYoung et. al. [5]. These
aggregate functions are used to reflect an end-user’s preference for a “set” of jobs
to be completed in or close to its entirety, and the resulting utility they place on
such needs. These job sets or contracts are assumed to describe the individual
jobs (number of jobs, size, arrival rates) and their utility accurately and are well
behaved. A job’s value is equal to its utility function at the moment it completes,
or its maximum penalty if cancelled.

3.2.3 Admission control

FirstPrice and FirstReward: The use of admission control combined with First-
Price and FirstReward [19] is valuable especially under conditions of high system
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load. A decision can be made regarding whether it is beneficial to accept a task
before the system accepts it by looking at how it integrates into the existing task
mix. A slack metric is utilised that considers the amount of additional delay it
can impose on a job before it becomes unprofitable to accept it. High slack jobs
are desirable as they can be potentially rescheduled if a more profitable job comes
along.

PositiveOpportunity: PositiveOpportunity [31] is the admission control compo-
nent of FirstOpportunity and FirstOpportunityRate. PositiveOpportunity computes
job schedule (based on matching scheduling policy) for all tasks including new
job (with all possible job shapes for new job enumerated), then all tasks not in-
cluding new job. The admission control algorithm then chooses most rewarding
scheduling. If job is in said schedule, it is admitted

Aggregate Utility: Admission control can also be done for both contracts (sets
of jobs) and individual jobs [5]. When new contracts arrive, feasibility and prof-
itability tests are done to ensure it is worth a providers while. Admission control is
also done at the per-job level with each jobs individual utility function. However,
the utility function includes a bias that reflects the intrinsic value of the job when
processed as part of the set it belongs to.

LibraRisk: The Libra RMS has some rudimentary admission control functional-
ity [34]. If a job has insufficient budget to cover the cost of execution, it is rejected.
If a job has a sufficient budget, but cannot be accommodated by a cluster node
using its current deadline, it is also rejected. LibraRisk [38] addresses one of the
key weaknesses of Libra by enhancing the admission control, considering delays
caused by inaccurate runtime estimates. Each newly arriving job is examined to
gauge the risk of that job causing a deadline to be exceeded (and a delay resulting)
in the cluster. Specifically, the risk of delay is computed for each node in the clus-
ter, and a job is only accepted if it can be accommodated on a node such that there
is zero risk of delay. Experimental results showed in in the face of inaccurate user
runtime estimates, LibraRisk accepted and completed more jobs than Libra, whilst
maintaining better slowdown across a variety of workload conditions.

3.3 Managing the grid economy

Managing the grid economy effectively is crucial to the success of any market-
driven grid computing system. Indeed, without some form of constraint and scarcity
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in the economy there is little incentive for users to value and bid on their jobs truth-
fully. With unbounded currency, users would simply bid the largest amount pos-
sible with unrealistic deadlines regardless of the relative importance of their jobs,
with no thought of rationing out their currency for later use. If all users bid in this
fashion, the market-based approach becomes redundant and offers no benefit over
traditional ‘fair’ scheduling.

There are two major considerations for managing the grid economy. The first is
whether to use virtual or real currency as the means of incentive and compensation
to participants in grid computing markets. The advantages and disadvantages of
both approaches are discussed in Section 3.3.1. The second consideration is how
the currency in question is managed - that is, how it is injected, taxed, controlled
and dispersed. This is described in Section 3.3.2.

3.3.1 Virtual vs. Real Currency

A well-defined currency system is essential to ensure resources are efficiently
shared and allocated in a grid computing marketplace. The use of virtual or real
currencies each have their own advantages and disadvantages. Shneidman et al. [35]
found that most deployed computational markets use virtual currency, due to its
low risk and low stakes in case of mismanagement or abuse. However, they note
that virtual currency has its drawbacks, due to requiring careful initial and ongo-
ing management of the virtual currency economy, which is often ignored due to
the low stakes involved. There is also a critical lack of liquidity and flexibility in
virtual currencies, with users unable to ‘cash-out’ or transfer their credits to other
systems easily, if at all.

These approaches tend to be most appropriate for single marketplaces, such
as researchers from one organisation sharing a HPC cluster. In this instance, it is
simply a means to regulate access, especially under high contention, and encourage
socially responsible behaviour from users. Whilst they represent fairly simplistic
marketplaces, currency still need to be managed appropriately for any benefit to be
realised over traditional scheduling and resource allocation techniques.

The use of real currency is appealing for a number of reasons. In some compu-
tational marketplaces, users must contribute their own resources (e.g. CPU, disk,
etc.) in order to be granted credits to access the wider shared resources. This
can be prohibitive for some, may want shorter term access and do not wish to be
permanent participants in a grid. Allowing these users to buy access using real cur-
rency can lower the bar for entry and increase overall utilisation and revenue for
the system overall. Real currency formats (e.g. USD, Euro, etc.) are universally
recognised and are easily transferable and exchanged, and are managed outside
the scope of a grid marketplace, by linked free markets and respective government
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policy. However, many of the same problems that exist in real-world economies
apply to computational marketplaces. It is entirely possible for one user to be de-
nied access to a system (effectively priced out of the market) by another user with
more money. The distribution of wealth held by users will have a critical effect on
the a computational grid’s accessibility, affordability and utilisation. As such, care-
ful consideration must be given when choosing between virtual and real currency
systems. For a shared system, where the aim is equality of access, a real currency
system may be inappropriate. For a profit-driven commercial grid marketplace, an
economy based on real currency would likely be the most appealing option.

3.3.2 Currency management and dispersal

The Bellagio [4] system offers some rudimentary controls on the distribution of
wealth in the virtual economy - such as when to inject currency into system and
how much. This subsequently controls the share of resources received by partici-
pating users. The total amount of currency that can be accumulated by a given user
is bounded to reduce chance of abuse. This avoids situations such as a user hoard-
ing currency for lengthy periods of time, then dominating the available resources
causing starvation.

The Mirage [10] system offers more sophisticated currency management fea-
tures. Some of its novel features (over Bellagio) include a proportional share profit
sharing, where proceeds from cleared auctions are distributed proportionally to idle
users to accumulate ad-hoc credit, and a savings tax to address unbalanced usage
patterns and avoid excessive accumulation of credit. Indeed, over time a users
credit regresses back to a baseline amount. The central bank and economy is more
sophisticated than Bellagio as users have standard currency as well as currency
‘shares’, which affect the proportion of currency distributed back to idle users (af-
ter an auction clears). Mirage also features a proportional savings tax imposed on
the currency held by users, known as the ‘use it or lose it’ policy.

Irwin, Chase et al. propose a self-recharging virtual currency system for shared
computing infrastructure such as test-beds like PlanetLab, Intel SensorWeb [17].
They aim to address the so-called ‘tragedy of the commons’ where individual
interests compete against the common good of all participants. They are primarily
motivated by its use in a Cereus-based system for service-oriented computing. The
authors propose recycling currency through the economy, while artificially capping
the rate of spending by users, seeking to avoid currency hoarding and starvation that
can occur in other market-based systems. The economy critically depends on an
accountable, third party verifiable ‘claim’ system such as SHARP [15] to manage
currency and resources.

In this system, credits recharge after a fixed recharge time from the time they
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are spent (or committed to a bid). This is in an effort to avoid hoarding and starva-
tion, but as the authors note if the recharge time is too short, this system resembles
a simple random lottery. If the recharge time is too long, it resembles a typical
money economy with all the endemic problems typically associated. Credit for a
user is capped at a fixed budget of c users cannot hold nor bid more than c credits
at any given time.

The fundamental issue in this proposal is when to recharge credits spent on
winning bids, as this will significantly affect user behaviour. Existing work recharges
credits when the purchased contract has expired, encouraging users to bid for short-
term gratification rather than biding their time and bidding into the future. A Cereus
system enforces a fixed interval recharge that occurs after a fixed time r after the
user commits credit to a bid, encouraging early bidding for auctions in the future.
Once committed, these credits are unavailable to users - they cannot bid on con-
current auctions with money they dont have.

However, without results it is unclear if this approach actually maximises end-
user utility. Consider a group of users, each with c credits bidding on a single
auction. All users bid c credits, and bid early. In a Cereus system, the broker
accepts all bids, and returns a proportional amount of resources to each end-user,
effectively negating the useful features of market-based scheduling. We propose
that a bounded, randomly distributed recharge time could potentially diffuse this
group behaviour. It is also unclear how the recharging currency system interacts
with multiple concurrent auctions, or with the length of contracts awarded to end-
users.

3.3.3 Trust models and accounting

SHARP is a framework for secure resource management (resource discovery and
allocation) for wide-area, decentralised networked computing platforms [15]. SHARP
provides participants with ‘claims’ on shared computing resources, which are prob-
abilistic (i.e. not guaranteed) promises over resources for a specified time period.
These claims can be utilised, subdivided or on-sold at the whim of the claim holder.
These claims form the basis of a decentralised resource peering, trading and barter-
ing system, with each claim being authorised by a chain of self-signed delegations
which is anchored in the site authority of the resource provider of that claim.

SHARP is particularly suited to shared networks that can partition its resources
into easily divisible units (slices), such as virtual machines. A local scheduler at
each resource has the ultimate responsibility for enforcing any successful resource
allocation claim. The resource claims themselves are split into two phases. In the
first phase, a service manager (acting on behalf of a user who needs resources)
obtains a ‘ticket’, representing a soft claim, that represents a probabilistic claim
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on a specific resource for a period of time. In the second phase, the ticket must
be converted into a concrete reservation by contracting the resources site authority
and requesting a ‘lease’. A ‘lease’ is a hard claim which is guaranteed valid, except
in the instance of a resource failure. The separation of the claims process into two
phases allows the site authority to consider current conditions (e.g. load) when
determining when to redeem the claim, how to redeem the claim or even to reject
the claim outright.

Claims in SHARP may be oversubscribed in that the agent acting on behalf
of a resource has issues more more tickets than it can support. This can improve
resource utilisation by statistical multiplexing, but also means that the claims them-
selves are probabilistic, and do not guarantee access. The probability of a claim
being successfully converted into a lease naturally depends on the level of over-
subscription. In the event of a claim being rejected, the victim can seek recourse
by presenting the rejected claim to the issuing agent, so that the responsible agent
can compensate them. In the instance that a resource is undersubscribed, the re-
source claims are effectively hard reservations.

Of course, SHARP does not function as an entire resource management system.
Particularly, the onus is on resource providers to manage and enforce allocations
created and held by participants that were generated by SHARP in the form of
tickets and leases. As SHARP is intended for use with systems without global
trust, where resources claims can be arbitrarily divided and given or on-sold to
anonymous third parties, security and abuse is a large problem. The extent of
this problem is largely dependent on the platform SHARP is deployed on, and
its ability to isolate users from one another, and to track prevent abuse. SHARP
mitigates some of this risk by only allowing access (but not control) to slices of
resources for fixed periods of time. If an abusive user is detected their access can
be revoked. The specifics of this revocation are again left to the local resource
managers themselves.

Motivated by the SHARP leasing framework, Irwin et al. extend this further
with SHIRAKO, a generic and extensible system for on-demand leasing of shared
network resources [18]. SHIRAKO brings dynamic logic to the leasing process,
allowing users to lease groups of resources from multiple providers over multiple
physical sites, through the services of resource brokers. SHIRAKO enhances the
functionality of SHARP by adapting to dynamic resource availability and chang-
ing load conditions through autonomous behaviour of the ‘actors’ in the system.
In particular, SHIRAKO allows ‘flexible’ resource allocation through leases which
can be re-negotiated and extended via mutual agreement, which was not possible
using SHARP alone. This removes the need to obtain a new lease for any residual
demand that exists once an existing lease expires, reducing resource fragmentation
and continuity. Additional logic is provided for making resource leases more flex-
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ible for users. A request can be defined as ‘elastic’ to specify a user will accept
fewer resources if its full allocation is not available. Requests can be ‘deferrable’
if a user will accept a later start time than what is specified in the lease if that time
is unavailable. Request groups are also defined, which can satisfy a users need for
co-scheduling. A set of tickets can be assigned to a request group, ensuring (where
possible) that each request is satisfied within a common time window.

4 Catallaxy market architectures

In the last 3 years there has been an increased research focus on the notion of
applying Austrian economist F.A. von Hayek’s notion of a ‘Catallaxy’ and applying
it to market-driven grid computing. The idea of ‘Catallactics’ considers markets
where prices evolve from the actions of economically self-interested participants.
Each participant tries to maximise their own gain whilst having limited information
available to them.

Eymann et al. have investigated the issues and requirements of implement-
ing an electronic grid market based on the concept of ‘Catallaxy’, a ‘free market’
economic self-organisation approach [13]. However, they found that solving this
problem is a complex multi-attribute allocation problem, found to be NP-complete
in previous work by other researchers in the field. The authors note that in interre-
lated markets, the allocation of resources and services in one market invariably in-
fluences the outcomes in the other market. These interactions should occur without
relying on a traditional centralised broker. Participants should be self-organising
and follow their own interest, maximising their own utility. A catallaxy approach
works on the principle that there are autonomous decentralised agents, which have
constant negotiation and price signalling occurring between them. Indeed, chang-
ing conditions (availability, competition) on the resource market will be reflected
by cascading price changes that reflect the respective scarcity and demand for a
resource. Participants must read these signals and react accordingly.

The principles of the catallaxy as applied to computation grids are stated by the
authors as follows:

1. Participants work for their own self-interest; each element is a utilisation
maximising entity.

2. Entities do not have global knowledge; they can only act on information as
it is made available to them. They must adapt to constantly changing signals
from downstream and upstream entities.

3. The market is simply a communications bus; price changes (e.g. increases
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and decreases) will dictate whether an entity looks for alternative sources to
procure a specific resource, making the market dynamic.

A prototype model for the ‘Catallaxy’ was presented by the authors, consist-
ing of an application layer and a service layer. In the application layer, complex
services are mapped to basic services. The service layer maps service requests to
actual resources provided by local resource managers.

The potential scenarios for existing grid marketplaces at the service layer typ-
ically fall into three categories; Contracting resources in advance, contracting re-
sources after finalising the service contract with client and contracting resources
during negotiation.

When contracting resources in advance, future demand must be forecast. It
is centralised and static solution, and can lead to poor utilisation. Contracting
resources after finalising the service contract with client can be risky, as insufficient
resources could be available. Contracting resources during negotiation is highly
desirable, as a user can choose between multiple providers based on cost, and can
also adapt to changing prices, reducing risk and ensuring the market is balanced.
The authors use the latter approach to form the basis of Catallaxy inspired grid
market.

The design of the service discovery mechanism is also critical. Eymann et
al. claim that centralised registries are not appropriate due to the decentralised
nature of buyers and sellers. Distributed Hash Tables may be suitable but lack
scalability in dynamic networks due to the state constantly changing, leading to
high communication and computational overhead.

The authors note that the choice of auction strategy used is also important in
a ‘Catallaxy’ driven grid marketplace. These can include fixed prices, Dutch auc-
tions, English auctions and Double auctions. When buyers and sellers set fixed
prices, if they are both in the ‘closure’ zone, a deal is reached. In a Dutch auction,
only the seller performs concessions, and the buyer remains at start price. Under
an English auction, the buyer performs concessions, and the seller remains at start
price. In a Double auction, both agents get closer after each negotiation step. How-
ever, we note that any auction approach chosen must be appropriate for the scale
and dynamism of linked ‘Catallaxy’ inspired grid marketplace, completing rapidly
with minimal computation and communication overhead.

Ardaiz et al. explore a decentralised, economic and utility-driven resource allo-
cation approach for resource allocation in a grid marketplace [3]. In such environ-
ments, each participant (client, service providers and resource providers) indepen-
dently try and maximise there own utility by following a self-interested strategy.
A decentralised approach is evaluated for grids of various densities and reliabil-
ity’s, and is compared against a centralised, statically optimal approach. In effect
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there are two markets operating one for resources (where service providers procure
resources from resource providers), and one for services (where clients procure ser-
vices from service providers). As such, the client is not aware of the particulars of
the resource provider, and vice versa. However, the service provider participates
and tries to maximise utility in both markets.

An experimental framework is presented in order to simulate varying grid mar-
kets under realistic settings with a topology following that of the Internet. There
are highly connected, high bandwidth and compute power centres (e.g. HPC fa-
cilities) and also smaller resources available toward the regional centres and edges
of the system. The various strategies and tendencies for negotiation in the two
markets are reflected probabilistically from a previous study of the catallaxy. The
range valuations and pricing limits that participants place on their negations are
very narrow, which is inconsistent with previous observations in deployed grid
marketplaces, where 4 orders of magnitude difference has been observed in valu-
ation, with little correlation to the service requirements needed. Each request unit
also requires an equal amount of computation and bandwidth power, and does not
reflect the mix of data and compute intensive jobs that are found in grid computing
workloads.

Under high load, high density grids, total utility and resource efficiency de-
crease for the baseline and distributed approaches, due to difficulties in making
successful allocations caused by high contention for resources. Response time is
worse for the distributed approach due to the flooding discovery mechanism used
to find resources. As grid density increases it takes longer for the distributed catal-
lactic approach to find and allocate resources, as the discovery time increases due
to resources being situated on the edges of the network. A small increase is seen in
the baseline approach, due to the need to monitor a larger number of resources. As
the network becomes more dynamic and prone to failure, the catallactic approach
shows better response time, as it is more resistant to poor allocation choices and
can re-negotiate with other resources in place of failed resources.

5 Mercato: A ‘Catallaxy’ inspired architecture for utility
computing

This section proposes a decentralised architecture, called Mercato, for utility com-
puting based on market mechanisms. Mercato builds on the work of systems dis-
cussed in the previous sections to enable an architecture where different entities
adopt interactions that enable them to improve their own utilities. Mercato uses
the Catallaxy paradigm as the basis of a decentralised framework where every par-
ticipant seeks to maximise their own utility and thereby, improve the utility of the
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entire system. However, unlike other systems surveyed in the previous section, it
does not impose nor propose specific market mechanisms for enabling the inter-
actions within the architecture. In this manner, the architecture reflects real-world
market economies in which different participants interact with each other using
mechanisms of their choosing.

As presented in Section 2.1, there are three main kinds of participants in Mer-
cato: users, brokers and providers. Users aim to have their own utility functions
that cover factors such as deadlines for executions and fidelity of results. They
are also constrained by the amount of resources that they can request at any time,
usually through a limited budget. Providers allocate shares of computational, data
or network resources to different users or brokers based on the gain in their utility
The service providers could maximise their utility either by maximising resource
utilisation (e.g. research computing centres) and/or by maximising profit from re-
source leases (commercial resource providers). Brokers mediate between the users
and the service providers. Brokers obtain resource shares from different providers
that they then resell to the users. A broker can accept requests from many users
who have a choice of submitting their requirements to different brokers. Brokers
gain their utility through the difference between the utility given to the users and
that obtained from the providers. The users, brokers and providers are bound to
their requirements and related compensations through Service Level Agreements
(SLAs). An SLA specifies the details of the service expected to be provided in
terms of metrics agreed upon by all parties, and the rewards or penalties for meet-
ing or violating the expectations, respectively. Figure 1 shows the participants and
the interactions between them in detail.

As presented previously, Eyemann, et. al. [13, 3] have proposed a Catallactic
architecture with two markets, one for resources and the other for services. The
service providers can be mapped to the brokers in Mercato. However, we propose
that interactions between participants be carried out through ad hoc markets, mar-
kets are created through the interactions of different components: i.e. by the users,
brokers and providers. These markets can be simple such as a broker and provider
coming to an agreement or they can be complex such as an resource exchange in
which bids from the brokers and providers are cleared at regular intervals. Thus,
by using ad hoc markets, our architecture differs significantly from those surveyed
previously.

5.1 Providers

A resource provider contains the following sub-systems:
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Price Setting Mechanisms Sets the current price for the resource based on mar-
ket conditions, user demand and current level of utilisation of the resource. Pricing
can be either fixed or variable

Admission Control and Negotiation Decides based on brokers’ proposals, which
of them are worth negotiating and which are not ( based on an initial estimate of
the utility that the proposal provides ). Once a broker is accepted, then the negotia-
tion proceeds until a deal is reached or the participants break off. At the end of the
process, the participants agree to a binding SLA.

Resource Management System The resource management system performs job
scheduling and allocation of nodes. It has an Advance Reservation component that
can identify nodes (or equivalent resource units ) to be reserved in advance and can
ensure that they are reserved through a transaction-oriented mechanism. The AR
is backed by the pervasive Logging component in this regard.

5.2 Brokers

Brokers mediate between users and providers and resolve users’ requirements into
SLAs with the providers. Traditionally the Gridbus broker has been a user agent,
wherein it will discover and schedule jobs on to resources to satisfy given appli-
cation and QoS requirements (only deadline and budget supported). The broker’s
utility is also tied to the users’ utility. In Mercato however, the broker has its own
utility function which is separate from that of the users. This utility comes from the
difference between what the broker pays the provider for the resource shares and
what the user pays the broker for executing the application. The broker therefore,
supports multiple users and selects only those users whose applications can pro-
vide it maximum utility. This draws on previous work in Sharp [15], Tycoon [22]
and Shirako [18] projects.

A broker therefore consists of the following components:

User Interface/ API is the primary interface for users to submit their applica-
tions and QoS requirements. The interface will support an API for user agents to
talk to the broker.

Admission Control Since the broker is interested in maximising its own utility,
the admission control component determines which users to accept based on their
potential to provide better utility than the others that have been rejected. (Expand
role)
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Resource Allocation and Management This component consists of four func-
tional sub-components.

• Scheduler - schedules users’ jobs based on the available resource shares,
the capability of the resources, the cost of using the shares and the utility
derived from the user. The role of this component is essentially to meta-
schedule over resource shares and therefore, most of the problems will be
knapsack-type.

• Negotiation Module - interacts with resource providers and other brokers
to gain or to trade resource shares. The negotiation module is informed by
the current conditions of the resources and the current demand to make its
decisions.

• Allocation Tracker - keeps track of the shares that have been gained by the
broker from the resource providers or from other brokers. (Expand role)

• Accounting Mechanism - keeps track of the shares used by the users

Execution Layer Runs the users’ application on the selected resources either
by starting/requesting a virtual machine instance or by submitting jobs ( follows
mechanism within the Gridbus broker for instance)

Logging Logs all the transactions to provide audit trails and recovery capabili-
ties.

5.3 Users

Users in Mercato attempt to gain utility by ensuring that their service demands
are met at the least cost possible. Users participate in the market(s) by interacting
directly with providers or by selecting a broker to fulfil their requirements. Using
brokers may ensure that the users are able to access resources through preferential
agreements negotiated by the former with the providers. A software program acting
on behalf of the user, also called user agent, may have the following functions
embodied in it:

• Pricing Agent - The pricing agent receives input about the current price lev-
els of resources from markets, brokers and/or providers. It also takes into
account the deadline to complete the user’s job and the priority accorded to
it to compute an internal valuation of the application. Based on these in-
puts, the pricing agent computes the budget that is required to achieve the
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user’s requirements. It can also advise the user, based on its estimates, as to
whether the deadline is too constrained or if the budget is lacking.

• Market Interface Module - This component discovers and negotiates with
the brokers and providers who may be able to execute the user’s application
within the given deadline. The negotiations can be conducted through market
mechanisms such as auctions or bargaining. The market interface uses the
pricing agent functions to identify the best deals for the users

6 Discussion

Based on our study of existing utility-driven and market based distributed comput-
ing architectures, we proposed a general purpose, ad-hoc utility computing frame-
work called ‘Mercato’ in Section 5. The functionality of the Mercato framework
was inspired by the emerging ‘Catallaxy’ paradigm, where multiple linked com-
puting marketplaces, each consisting of self-interested, utility-maximising entities,
interact and evolve depending on market conditions. Participants in these decen-
tralised systems are constantly adapting to current conditions depending on the
market signals.

In this section we discuss how Mercato intends to address many of the limita-
tions of existing utility computing systems, and complements the ‘Catallaxy’ view
of the next generation of computing marketplaces.

Many existing systems (such as Bellagio [4], Mirage [10], etc.) have restrictive
price setting and negotiation policies. Auctions are held at fixed intervals, and only
one type of auction is allowed (e.g. First Price, Second Price). Like GRACE [8, 9]
in Mercato we leave the choice of negotiation and pricing protocols up to each
participant in the system. This is crucial as the choice of pricing (fixed, variable)
and negotiation protocol (auction, one-to-one, agent driven, etc.), with the permu-
tations and combinations thereof having an enormous effect on the utility gained
by the participants, depending on the current market conditions. Issues such as
resource scarcity (or glut), economic conditions, time constraints, and the num-
ber of participants (i.e. competition) will result in very different results for each
combination of pricing and negotiation.

Management of the computational economy becomes considerably more com-
plicated when many disparate resource providers are linked together in the same
“marketplace”. Most of the systems studied in this paper are closed economies
where money is distributed and recycled through the system. The currency is typ-
ically virtual, not real, and as such have the associated strengths and weaknesses
described in Section 3.3.1. Most notably, virtual currencies lack liquidity and flex-
ibility, but offer low stakes and low risk for service providers in the event of abuse.
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To utilise these systems, users must earn credit through either in-kind contribution
of resources, or via periods of inactivity and judicious use of the available services.
Unfortunately, this can raise the barrier of entry, making it unsuitable for a user
who needs to access the service immediately, despite the fact they could be willing
to financially compensate a service provider if the option was available.

Many commercial service providers offer their resources in exchange for real
currency (e.g USD, Euro, etc). In these system the currency market is open, well
defined and liquid, and addresses some of the access issues that plague virtual
currency systems. Subject to availability, users can simply ‘buy in’ to get access to
a providers’ resources. Conversely, systems utilising real currency can face many
of the same issues that occur in real marketplaces, where access to systems can
be determined by who has the most money, and the distribution of wealth held by
users can be heavily skewed.

The Mercato broker is intended to broker interaction and interoperation be-
tween these two very different service paradigms. It is not appropriate to simply
dictate that one style of currency is used. For many distributed systems, grids and
testbeds, the intent of the system is to provide equitable access for as many peo-
ple as possible. These systems may have been created with government or grant
funds for greater social benefit, and as such any attempt to profit from these sys-
tems would be inappropriate, beyond basic cost recovery. In this instance, the
constrained virtual currency is simply a means to regulate access to the system.
For commercial providers, profit is the overriding motive, so virtual currency is not
appropriate means of compensation for the services it offers.

The broker in an ad-hoc Mercato marketplace acts as a ‘middleman’ between
the user and one or many service providers. These providers can be either com-
mercial or open access in nature. The broker is essentially a value-added service,
aggregating access to multiple providers that may not necessarily be accessible to
an end-user. In the case of open access systems that utilise virtual currency that
are tied to a particular system, a broker can ‘earn’ access for later use, via in-kind
contribution of resources, or simply accumulating credit by joining the system and
remaining idle. The broker can then utilise this credit when end-users request ac-
cess to these systems, removing the onus on the user to join or contribute to that
particular system and giving them immediate access. Such access could be pro-
cured from a broker for real currency (where the cost is dictated by the broker),
or by mutual agreement a user could offer virtual credit at a different computing
facility in exchange for access to the service provider offered by the broker. For
instance, we could envisage a scenario where a user offers a broker X access cred-
its from Mirage for Y access credits at Bellagio (depending on the relative worth,
negotiated by the user and the broker). Such trading arrangements could also be
made between different brokers in a marketplace.
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In Mercato, resource reservation, allocation and service guarantees largely de-
pend on the service provider. The service provider can choose whether it offers
‘hard’ or ‘soft’ guarantees, and whether compensation is given for missed dead-
lines or lack of service. A broker can then decide if it is satisfied with these guar-
antees when reselling the services of a provider. In the event that a service provider
continually fails to meet agreed quality of service targets, a broker can seek com-
pensation (if available) or simply terminate it’s arrangement with that provider, and
find another. The broker itself could potentially over-subscribe access to a given
service provider by selling more resources than it has acquired or reserved from a
provider. This can be risky as a provider (which has it’s own resource allocation
and admission control policies) can simply refuse a request for access to resources,
leaving the broker liable for over-promising on resources it does not have. In this
instance, a user could seek compensation from a broker (if available), or simply
find another, more reliable system.

A reputation system would also complement systems like Mercato, where con-
tinual offenders could earn a poor reputation, allowing others to avoid them where
possible. Conversely, good service could be rewarding with a positive reputation,
attracting more customers for service providers and brokers alike. Participants (i.e.
users, brokers and service providers) could track this individually, based on their
own experiences, or through a co-ordinated, decentralised registry.

As discussed in Section 2.3, the emergence of widely available, commod-
ity virtual machine technology has simplified administration and allocation of re-
sources for service providers. Virtual machine infrastructure such as Xen [6] and
VMWare [1] have allowed these providers to partition resources such as memory,
disk space and processor cores into virtual machines with arbitrary capabilities,
with minimal overhead. This can allow greater efficiencies for providers through
improved statistical multiplexing when hosting multiple virtual machines.

Despite this, brokers can still play an important role in VM-driven computing
marketplaces. They can provide numerous value-added services, such as providing
pre-made virtual machine images for common tasks, or base images for users to
trivially build upon and add their own application logic. A user could utilise such
base images to create their own custom, self-contained container for execution,
along with any data, libraries and applications that are needed for the duration of
execution. This removes a significant amount of complexity for users, removing
the need for them to ensure the relevant data, libraries and applications are available
on the target execution environment hosted by a service provider.
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7 Conclusion

In this work, we have evaluated the state of the art in market-drive utility comput-
ing platforms. In Section 2 we provided an overview of the key components of
these platforms, identifying the roles and responsibilities of the participants, the
effect of market-based techniques and the emerging technological advances that
are propelling market-driven utility computing platforms forward. In Section 3
we examined the state of the art in utility-oriented computing markets, identifying
the strengths and weakness of current related systems and approaches to pricing,
negotiation, resource and economy management. The Catallaxy approach to com-
puting marketplaces was highlighted in Section 4, showing the benefits of this new
decentralised, utility maximising framework in addressing the utility computing
problem. Motivated by this, and our prior survey, the Mercato framework was pre-
sented in Section 5. This flexible, ad-hoc utility computing framework seeks to
address many of issues highlighted in our survey. In Section 6 we discussed how
Mercato addresses the limitations of many existing utility computing systems, and
identify areas that need further attention for these approaches to flourish.
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