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Abstract 
 

Recently many data center scale of computer 

systems are built in order to meet the high storage and 

processing demands of data-intensive and compute-

intensive applications. MapReduce is one of the most 

popular programming models designed to support the 

development of such applications. It is initially 

proposed by Google for simplifying the development of 

large scale web search applications in data centers 

and has been proposed to form the basis of a “data 

center computer”. This technical report presents a 

realization of MapReduce for .NET-based data centers, 

including the programming model and runtime system. 

The design and implementation of MapReduce.NET 

are described and its performance evaluation is 

presented. 

 

1. Introduction 
 

Recently several organisations are building data center 

scale of computer systems to meet the increasing 

demands of high storage and processing requirements 

of data-intensive and compute-intensive applications. 

On the industry front, companies such as Google and 

its competitors have constructed large scale data 

centers to provide stable web search services with high 

quality of response time and availability. Although 

Google does not disclose the size of their server 

infrastructure, it is reported to be around 450,000 to 

several million commodity machines dispersed across 

about 25 data centers [10]. Microsoft also presents the 

result of a research project, called Dryad [11], using 

over 1,800 processors to perform computations 

accessing up to 10 terabytes of data. 

On the other side, many scientific research works 

increasingly rely on large scale data sets and powerful 

processing ability provided by super computer systems, 

commonly referred to e-Science [17].  

The high demanding requirements on data centers 

are also reflected by the increasing popularity of cloud 

computing [3][13]. With cloud, IT-related capabilities 

can be provided as service, which is accessible through 

Internet or World Wide Web. Representative systems 

for cloud computing include Google App Engine, and 

Amazon Elastic Compute Cloud (EC2). Google App 

Engine provides a service to web developers for 

accessing the infrastructure of Google. Users do not 

need to maintain physical servers, while the 

infrastructure can automatically scale up to meet the 

requests of users. Amazon EC2 allows customers to 

rent computers on which to run their own applications 

through a commercial web service. The scalable 

deployment of applications is facilitated by requesting 

an arbitrary number of Virtual Machines through the 

web service interface. 

Although the popularity of data centers is increasing, 

it is still a challenge to provide a proper programming 

model which is able to support convenient access to the 

large scale data for performing computations while 

hiding all low level details of physical environments. 

Within all the candidates, MapReduce is one of most 

popular programming models designed for data centers. 

It was originally proposed by Google to handle large-

scale web search applications [9] and has been proved 

to be an effective programming model for developing 

data mining, machine learning and search applications 

in data centers. Especially, it can improve the 

productivity for those junior developers without 

required experiences of distributed/parallel 

development. Moreover, since MapReduce was 

proposed in 2004, there are many efforts trying to 

support MapReduce on other architectures [4][12] and 

exploring various ways to make it more suitable for 

wider applications [2][15]. Recently, MapReduce has 

been proposed to form the basis of ‘data center 

computer’ [5]. 
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.NET is the standard platform of Windows 

applications and it has been extended to support 

parallel computing applications.  For example, the 

parallel extension of .NET 4.0 supports the Task 

Parallel Library and Parallel LINQ, while MPI.NET [6] 

implements a high performance library for the message 

passing interface. Therefore, it is reasonable to expect 

that .NET should be an indispensable component for 

Windows-based data centers. This technical report 

presents an implementation of MapReduce for 

the .NET platform, called MapReduce.NET. The 

realization of MapReduce for .NET faces several 

challenges. First, we expect the MapReduce.NET does 

not only support search related applications, it can also 

facilitate a much wider variety of applications, even 

including some compute-intensive applications. Second, 

to handle large scale data, .NET lacks a distributed 

storage facility, like Google File System used by 

Google MapReduce. Third, a more efficient scheduling 

algorithm is expected to handle various types of 

applications. We cannot address all of the above 

challenges within this technical report. Instead, we 

summarize the details of one basic implementation of 

MapReduce.NET. In particular, this technical report 

describes the following matters: 

• MapReduce.NET: a MapReduce programming 

model designed for the .NET platform with the C# 

programming language. 

• A runtime system of MapReduce.NET deployed 

in an Enterprise Grid environment by the 

assistance of Aneka [18]. 

• A distribute storage system, called WinDFS, 

which can support a distributed storage service 

required by MapReduce.NET. 

 

The remainder of this technical report is organized 

as follows. Section 2 reviews the MapReduce 

programming model and Aneka. Section 3 discusses 

the related work. Section 4 presents the architecture of 

MapReduce.NET. Section 5 describes the performance 

evaluation of the system. Section 6 presents our 

conclusions. 

 

2. Background Overview 
 

MapReduce is triggered by map and reduce 

operations in functional languages, such as Lisp. This 

model abstracts computation problems through two 

functions: map and reduce. All problems formulated in 

this way can be parallelized automatically. 

Essentially, the MapReduce model allows users to 

write Map/Reduce components with functional-style 

code. These components are then composed as a 

dataflow graph with fixed dependency relationship to 

explicitly specify its parallelism.  Finally, MapReduce 

runtime system can transparently explore the 

parallelism and schedule these components to 

distributed resources for execution. 

All data processed by MapReduce are in the form of 

key/value pairs. The execution happens in two phases. 

In the first phase, a map function is invoked once for 

each input key/value pair and it can generate output 

key/value pairs as intermediate results. In the second 

one, all the intermediate results are merged and 

grouped by keys. The reduce function is called once for 

each key with associated values and produces output 

values as final results. 

 

2.1. MapReduce Model 
A map function takes a key/value pair as input and 

produces a list of key/value pairs as output. The type of 

output key and value can be different from input key 

and value: 

),(),(:: 2211 valuekeylistvaluekeymap ⇒  

A reduce function takes a key and associated value 

list as input and generates a list of new values as output: 

)())(,(:: 322 valuelistvaluelistkeyreduce ⇒  

 

2.2. MapReduce Execution 
A MapReduce application is executed in a parallel 

manner through two phases. In the first phase, all map 

operations can be executed independently with each 

other. In the second phase, each reduce operation may 

depend on the outputs generated by any number of map 

operations. However, similar to map operations, all 

reduce operations can be executed independently. 

From the perspective of dataflow, MapReduce 

execution consists of m independent map tasks and r 

independent reduce tasks, each of which may be 

dependent on m map tasks. Generally the intermediate 

results are partitioned into r pieces for r reduce tasks. 

The MapReduce runtime system schedules map and 

reduce tasks to distributed resources. It handles many 

tough problems: parallelization, concurrency control, 

network communication, and fault tolerance. 

Furthermore, it performs several optimizations to 

decrease overhead involved in scheduling, network 

communication and intermediate grouping of results. 

 

2.3. Aneka 
Aneka [18] is a .NET-based enterprise Grid 

software platform, which allows the creation of 

enterprise Grid environments, and it is used to simply 

the deployment of MapReduce.NET in distributed 

environments. Each Aneka node consists of a 

configurable container, hosting mandatory and optional 
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services. The mandatory services provide the basic 

capabilities required in a distributed system, such as 

communications between Aneka nodes, security, and 

membership. Optional services can be installed to 

support the implementation of different programming 

models in Grid environments. MapReduce.NET is 

implemented as optional services of Aneka. 

 

3. Related Work 
 

Since MapReduce was proposed by Google as a 

programming model for developing distributed data 

intensive applications in data centers, it has received 

much attention from the computing industry and 

academy. Many projects are exploring ways to support 

MapReduce on various types of distributed architecture 

and for wider applications. For instance, Hadoop [1] is 

an open source implementation of MapReduce 

sponsored by Yahoo!. Phoenix [4] implemented the 

MapReduce model for the shared memory architecture, 

while M. Kruijf and K. Sankaralingam implemented 

MapReduce for the Cell B.E. architecture [12]. 

A team from Yahoo! research group made an 

extension on MapReduce by adding a merge phase 

after reduce, called Map-Reduce-Merge, to perform 

join operations for multiple related datasets. Dryad 

supports an interface for composing a DAG (Directed 

Acyclic Graph) for data parallel applications, which 

can facilitate much more complex components than 

MapReduce. 

Other efforts are trying to find out ways for making 

MapReduce support wider applications. For instance, 

MRPSO [2] utilizes the Hadoop implementation of 

MapReduce to parallelize a compute-intensive 

application, Particle Swarm Optimization. Researchers 

from Intel currently work on making MapReduce 

suitable for performing earthquake simulation, image 

processing and general machine learning computations. 

DISC (Data-Intensive Scalable Computing) [14] started 

to explore suitable programming models for data-

intensive computations with using MapReduce as a 

start point. 

MapReduce is used for the education purpose. For 

example, several companies have plans to make 

computing resources available to universities for 

teaching the MapReduce programming model. 

 

4. Architecture 
 

There are several MapReduce implementations, 

respectively for data centers [1][9], shared memory 

multi-processor [4] and the Cell architecture [12]. 

MapReduce.NET resembles Google’s design with 

special emphasis on the .NET and Windows platform. 

The design of MapReduce.NET aims to reuse as 

many existing Windows components as possible. Fig. 1 

illustrates the architecture of MapReduce.NET. Our 

implementation is assisted by several distributed 

component services from Aneka [18].  

Besides Aneka, WinDFS supports MapReduce.NET 

with a distributed storage service over the .NET 

platform. WinDFS organizes the disk spaces on all the 

available resources as a virtual storage pool and 

provides an object based interface with a flat name 

space, which is used to manage data stored in it. To 

process local files, MapReduce.NET can also directly 

talk with CIFS or NTFS. 

 

 
 

The remainder of this section presents details on the 

programming model and runtime system. 

 

3.1. MapReduce APIs 
The implementation of MapReduce.NET exposes 

similar APIs as Google MapReduce. Fig. 2 and 3 

illustrate the interface presented to users in C# 

language. To define Map/Reduce functions, users need 

to inherit from Mapper or Reducer class and override 

corresponding abstract functions. To execute the 

MapReduce application, user first needs to create a 

MapReduceApp class, as illustrated in Fig. 4, and set it 

with corresponding Mapper and Reducer classes. Then, 

input files should be configured before starting the 

execution, as illustrated in Fig. 3. The input files can be 

local files or files in the distributed store.  

 

 

Basic Distributed Services of Aneka 

 
Membership Failure Detector Configuration Deployment 

Windows 

Machine 

Windows 

Machine 

Windows 

Machine 

Windows 

Machine 

WinDFS (Distributed Store System) CIFS/NTFS 

MapReduce.NET 

Application 

Machine Learning 

Application 

Bioinformatics 

Application 

Web Search 

 

Fig. 1 Architecture of MapReduce .NET 

abstract class Mapper 

{ 

abstract void Map(object key, object value) 

} 

Fig. 2 API for Map Function 
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The input data type to the Map function is the object, 

which is the root type of all types in C#. For Reduce 

function, the input is organized as a collection and the 

data type is IEnumerator, which is an interface of 

supporting an iteration operation on the collection. The 

data type of each value in the collection is also object. 

 

 
With object, any type of data, including user defined 

or system build-in type, can be accepted as input. 

However, for user defined types, users need to provide 

methods to extract their data from a stream, which may 

locate in memory or disk. 

 

3.2. Runtime System 
The execution of a MapReduce computation 

in .NET environments consists of 5 major phases: Map, 

Partition, Sort, Merge and Reduce. The overall flow of 

execution is illustrated in Fig. 4. The execution starts 

with the Map phase. It iterates the input key/value pairs 

and invokes the map function defined by users on each 

key/value pair. The results generated by the Map phase 

are passed to the Partition, Sort and Merge phases, 

which perform sorting and merging operations to group 

the values with identical keys. The result is an array, 

each element of which is a group of values for each key. 

Finally, the Reduce phase takes the array as input and 

invokes the reduce function defined by users on each 

element of the array. 

The execution of MapReduce.NET is orchestrated 

by a scheduler. The scheduler is implemented as a 

MapReduce.NET Scheduler service in Aneka, while all 

the major 5 phases are implemented as a 

MapReduce.NET Executor service. With Aneka, the 

MapReduce.NET system can be deployed in cluster or 

data center environments. Typically, the runtime 

system consists of one master machine for a scheduler 

service and multiple worker machines for executor 

services. As a normal setting illustrated by Fig. 6, each 

worker machine is configured with one instance of 

executor and the master machine is configured with the 

scheduler instance. 

 

 
After users submit MapReduce.NET applications to 

the scheduler, it deploys the scheduling policy from 

configuration to map sub tasks to different resources. 

During the execution, it monitors the progress of each 

task and takes corresponding task migration operation 

in case some nodes are much slower than others due to 

heterogeneity or interference of dominated users. 

 

 
 

In the following, we discuss the details of each 

major phase on the executor of MapReduce.NET. 

 

Master Machine Worker Machine n 

Aneka Container 

WinDFS 

Aneka Container 

MapReduce.NET 
Executor 

MapReduce.NET 
Scheduler 

Monitor 

Policy 

Fig. 6 Configuration of MapReduce.NET with 

Aneka 
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Fig. 5 Overall Flow of MapReduce.NET Execution 

class MapReduceApp 

{ 

    void RegisterMapper (Type mapper) 

    void RegisterReducer(Type reducer) 

    void SetInputFiles(list input) 

list GetOutputFiles() 

bool Execute() 

} 

Fig. 3 Execution API for Applications 

abstract class Reducer 

{ 

    abstract void Reduce(IEnumerator values) 

} 

Fig. 3 API for Reduce Function 
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3.2.1. Map Phase. The executor extracts each input 

key/value pair from the input file. For each key/value 

pair, it invokes the map function defined by users. The 

result generated by the map function is first buffered in 

the memory. The memory buffer consists of many 

buckets and each one is for different partition. When 

the size of all results buffered in the memory reaches a 

predefined maximal threshold, they are sent to the sort 

phase and written to the disk to save space for holding 

intermediate results of next round of map invocations. 

 

3.2.2. Partition Phase. Partition of the results 

generated by map functions is achieved in two places: 

in memory and on disk. In the Map phase, the results 

generated by map function are first buffered in memory, 

where there is one bucket for each partition. The 

generated result determines its partition through a hash 

function, which may be defined by users. Then the 

result is appended to the tail of bucket of its partition. 

When the size of buffered results exceeds the maximal 

threshold, each bucket is written to disk as an 

intermediate file. After one map task finishes, all the 

intermediate files for each partition are merged into one 

partition. 

 

3.2.3. Sort Phase. Before the buffered results are 

written to disk, elements in each bucket are sorted in 

memory. They are written to disk by the sorted order, 

maybe ascending or descending. The sort algorithm we 

adopt is quick sort [16]. On average, the complexity of 

this algorithm is O(n·log(n)). We choose it because it is 

always reported faster than other sort algorithms. 

 

3.2.4. Merge Phase. To prepare inputs for the Reduce 

phase, we need to merge all the intermediate files for 

each partition. First, the executor fetches intermediate 

files, which are generated in the Map phase, from 

neighbor machines. Then, they are merged to group 

values with same key and at the same time, sort keys by 

a predefined order. Since all the key/value pairs in the 

intermediate files are already in a sorted order, we 

deploy a heap sort to achieve the group operation. Each 

node in the heap corresponds to one intermediate file. 

Repeatedly, we pick the key/value pair on the top node, 

and then adjust the shape of the heap to sift the heap 

node with the biggest key up to the top position. At the 

same time, we group the values associated with same 

key. 

 

3.2.5. Reduce Phase. In our implementation, the 

Reduce phase is combined with the Merge phase. 

During the process of heap sort, we combine all the 

values associated with same key and then invoke the 

reduce function defined by users to perform reduction 

operation on these values. All the results generated by 

reduce function are written to disk according the order 

by which they are generated. 

 

3.3. Memory Management 
 

Managing memory efficiently is critical for the 

performance of applications. On each executor, the 

memory consumed by MapReduce.NET mainly 

includes memory buffers for intermediate results, 

memory space for quick sort and buffers for input and 

output files. 

In configuration, administrator can specify a 

maximal value for the size of memory used by 

MapReduce.NET.  This size is normally determined by 

the physical configuration of machines and the memory 

requirement of applications. The memory management 

is illustrated by Fig. 7. 

According to this maximal memory configuration, 

we set the memory buffer used by intermediate results 

and input/output files. Our default buffer size for 

input/output files is 16MB. The input and output files 

are from the local disk. Therefore, we use FileStream 

in .NET to control the access to local files, including 

configuration of the size of file buffer. 

The memory buffer for intermediate results is 

implemented by MemoryStream of .NET, which is 

actually a stream in memory. All the results generated 

by map function are translated into byte array and 

append to the tail of the stream in memory. An array of 

indices is used to facilitate accessing each element in 

this stream. Indices in this array record the position of 

each intermediate value in the stream. When the size of 

the stream in memory plus the size of index array 

exceeds the predefined maximal value, quick sort is 

invoked to sort all the buffered intermediate values and 

then write them to disk. 

 

 
 

 

 

 

Map/Reduce Invocation 

 Key,Value Key,Value Key,Value 

 
Buffer 

Partition/Sorting 

User Application

Memory

Disk

 

Fig. 7 Memory Management of MapReduce.NET 
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3.4. WinDFS 
 

In order to provide a distributed storage system 

MapReduce.NET, we designed and implemented 

WinDFS using the C# programming language. 

WinDFS can be deployed in a dedicated cluster 

environment or a shared Enterprise Grid environment. 

Every machine running a WinDFS instance can 

contribute a certain amount of disk space. All the 

contributed disk spaces are organized as a virtual data 

pool. WinDFS provides an object based interface with 

a flat name space for that data pool. The object can 

also be taken as a file. Each object contained in 

WinDFS is identified by a unique name, which is 

actually a GUID in .NET. WinDFS supports put and 

get operations on objects. 

The runtime system of WinDFS consist of an index 

server with a bunch of object server. Objects are 

distributed to object servers, while the location 

information for each object is maintained by the index 

server. The index server also is responsible for keeping 

the reliability of objects in the system. 

As a representative configuration, the instance of 

object server runs on each worker machine for 

managing local objects, while the meta server can be 

on the master machine.  

 

4. Schedule Framework 
 

This section describes the scheduling model for 

coordinating multiple resources to execute MapReduce 

computation. The scheduling is conducted by the 

MapReduce.NET scheduler. 

The major 5 phases of MapReduce.NET are grouped 

into two tasks: Map task and Reduce task. The Map 

task executes 3 phases: map, partition and sort, while 

the Reduce task executes merge and reduce. Given a 

MapReduce.NET job, it consists of m Map tasks and r 

Reduce tasks. Each Map task has an input file and 

generates r result files. Each Reduce task has m inputs 

files, which are generated by m Map tasks. 

Normally the input files for Map tasks are ready in 

WinDFS prior to execution and thus the size of each 

Map input file can be determined before scheduling. 

During the execution, Map tasks dynamically generate 

output files, the size of which is difficult to determine 

prior to job execution. 

The system aims to be deployed in an Enterprise 

Grid environment, which essentially organizes idle 

resources within a company or department as virtual 

super computer. Normally, resources in Enterprise Grid 

are shared by two categories of users. The first one is 

the owner of resources, who has priority to use their 

resources; the second one is the users of idle resources, 

who should not disturb the normal usage of resource 

owner. Therefore, with Enterprise Grid, besides the 

traditional problems of distributed system, such as 

complex communications and failures, we have to face 

a new challenge: soft failure. Soft failure stands for the 

resource involved in MapReduce execution has to quit 

computation due to domination by its owner. 

Due to the above dynamic features of 

MapReduce.NET application and Enterprise Grid 

environments, we did not choose a static scheduling 

algorithm. On the contrary, we deploy a just in time 

scheduling policy for mapping Map and Reduce tasks 

to distributed resources in an Enterprise Grid. 

The scheduling algorithm for the MapReduce.NET 

applications starts with scheduling Map tasks. 

Specifically, all Map tasks are scheduled as 

independent tasks. The Reduce tasks, however, are 

dependent on the Map tasks. Whenever Reduce task is 

ready, i.e. all its inputs are generated by Map tasks, it 

will be scheduled according to status of resources. The 

scheduling algorithm aims to optimize the execution 

time for MapReduce.NET, which is achieved by 

minimizing the execution of Map and Reduce phases 

respectively. 

During execution, each executor waits task execution 

commands from the scheduler. For a Map task, 

normally its input data locates locally. Otherwise, the 

executor needs to fetch input data from neighbors. For 

a Reduce task, the executor has to fetch all the input 

and merge them before execution. Furthermore, the 

executor monitors the progress of executing task and 

frequently reports the progress to the scheduler. 

 

5. Performance Evaluation 
 

We have implemented the MapReduce.NET system, 

including the programming model, runtime system and 

scheduling framework. It has been deployed on desktop 

machines of several student laboratories in Melbourne 

University. This section reports the performance 

evaluation for the runtime system based on two real 

applications: word count and distributed sort. 

All the experiments are executed in an enterprise 

Grid consisting of 33 nodes drawn from 3 student 

laboratories. For distributed experiments, one machine 

was set as master and the rest were configured as 

worker machines. Each machine has a single Pentium 4 

processor, 1GMB of memory, 160GB IDE disk (10GB 

is dedicated for WinDFS storage), 1 Gbps Ethernet 
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network and runs Windows XP. 

5.1. Samples Applications 
The two sample applications, word count and 

distributed sort, are benchmarks used by Google 

MapReduce and Phoenix systems. To implement the 

Word Count application, users just need to split words 

for each text file in the map function and sum the 

appearance number for each word in the reduce 

function. For sort application, users do not have to do 

anything within map and reduce functions, while the 

MapReduce runtime system performs sorting 

automatically. 

 

5.2. System Overhead 
MapReduce can be taken as a parallel design pattern, 

which trades performance to improve the simplicity of 

programming. Essentially, the Sort and Merge phases 

of MapReduce runtime system introduce extra 

overhead. However, the sacrificed perform cannot be 

overwhelming. Otherwise, it is not acceptable for users. 

In this section, we evaluate the overhead of 

MapReduce.NET with local execution. During local 

execution, the input is from local disk and all 5 major 

phases of MapReduce.NET executes sequentially on 

single machine. This is called a local runner and can be 

used for debug purposes. 

 

 

 
Fig. 8 Overhead Decouple of MapReduce.NET 

For local execution, both sample applications were 

configured as follows: 

• The Word Count application took the example text 

files used by Phoenix [4], with 3 settings of input 

sizes of raw data: 10MB, 100MB and 1GB 

respectively.  

• The Sort application sorts a number of records. 

Each record consists of a key and a value. Both the 

key and value are random integers. Three 

configurations of input size were adopted: 10 

million, 100 million and 1,000 million records 

respectively. Correspondingly, the sizes of raw 

data are about 15MB, 150MB and 1.48GB.  

 

 

 
Fig. 9 Cache Impacts of MapReduce.NET 

 

The performance result is split into 3 parts: sort, 

IO+Map and Merge+Reduce. The sort part is the 

execution consumed by the sort phase, while the time 

consumed by the rest of Map task is recorded by 

IO+Map part, which includes the time consumed by 

reading input file, invoking map functions and writing 

partitions of intermediate results to disk. The 

Merge+Reduce part is the execution time of the Reduce 

task. Fig. 8 illustrates the percentage of these 3 parts 

for executing Sort and Word Count applications 

respectively. We can see that different types of 

application have different percentage distribution for 
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each part. For Word Count, the time consumed by the 

reduce and merge phases can even be ignored. The 

reason is the size of results of Word Count is 

comparatively small. Differently from Word Count, the 

reduce and merge phases of Sort application still takes 

an important percentage. For both applications, as the 

growth of problem size, the percentage of IO+Map part 

is correspondingly increasing. Since the map and 

reduce function of both applications just executed very 

simple tasks, actually the time consumed by the 

IO+Map part mainly consists of the contributions from 

IO operations. 

Next, we check the impact of buffer size on the 

execution time of applications. In particular, the 

experiments were executed with the different sizes of 

memory buffer for intermediate results. The results are 

illustrated in Fig. 9. In the experiments, the size of 

memory buffer was set to be 128MB, 256MB and 

512MB respectively and the results for both 

applications under each configuration are illustrated. 

Different from our expectation, increasing the size of 

buffer does not have a big impact on the execution time 

for Word Count and Sort applications. One interesting 

phenomena is the performance with 256M and 512M 

buffer is even worse than that with 128M buffer. One 

reasonable explanation is that a bigger memory buffer 

can keep more intermediate results, which involves 

extra overhead during performing quick sort. At the 

same time, increasing the size of buffer can save the 

number of IO operations, because the possibility of 

combining records with same key is increasing. This 

explains why the performance with 512M buffer is 

better than with 256M buffer. 

 

5.3. Overhead Comparison with Hadoop 
This section compares the overhead of 

MapReduce.NET with Hadoop, the open source 

MapReduce implementation with Java language. 

Hadoop is supported by Yahoo and aims to work as a 

general purposed distributed platform. The DISC 

project [14] is using Hadoop as the first step for 

exploring suitable programming models for data 

intensive scalable computing. The stable release of 

Hadoop, version 0.16.4 was adopted for comparison. 

To compare the overhead, we run the local runner of 

Hadoop and MapReduce.NET respectively with same 

size of input for Word Count and Sort applications. 

The buffer size was configured to be 128MB for both 

implementations. The input for Sort consists of 1,000 

million records with 1.48GB raw data, while for Word 

Count the size of raw input data is 1GB. The results are 

illustrated in Fig. 10. MapReduce.NET performs worse 

on the Word Count application than Hadoop, while 

outperforming Hadoop on the Sort application. 

Specifically, for Sort application, the sort phase of 

Hadoop consumes longer time than the 

MapReduce.NET, while its IO processing is more 

efficient. Similar phenomenon happens for the Sort 

application. However, the reduce and merge phases of 

Hadoop took comparatively longer time than our 

implementation. 

 

 

 
Fig. 10 Overhead Comparison of Hadoop and  

MapReduce.NET. 

 

5.3. System Scalability 
In this section, we evaluate the scalable performance 

of MapReduce.NET in the distributed environment. 

Since Hadoop does not have a parallel version on 

Windows platform, we did not compare the parallel 

performance with Hadoop. 

Applications were configured as follows: 

• Word Count:  takes the example text files used by 

Phoenix [4]. We duplicated the original text files to 

generate an example input with 6GB raw data, 

which is split into 32 files.  

• Distributed Sort: sorts 5,000 million records in an 

ascending order. The key of each record is a 

random integer. The total raw data is about 7.6GB, 
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which is partitioned into 32 files. 

Fig. 11 illustrates the scalable performance result of 

the Word Count application. In the figure, the 

execution time of Map phase consists of the time from 

starting execution to the finish of all Map tasks, while 

the Reduce execution time consists of merge phase plus 

invoking reduce functions on all the work machines. 

From the results, we can see map, sort and partition 

phases dominated the whole execution and the 

performance increased as more resources were added 

into the computation. 

 

 

 
Fig. 11 Scalable Experiment of Word Count 

 

Different from the Word Count application, the 

Distributed Sort application has a nearly uniform 

distribution of execution time for Map and Reduce 

tasks, as illustrated in Fig. 12. However, this does not 

effect the nearly linearly speedup while adding more 

resources. The network traffic also takes an important 

percentage of the whole execution, because the 

intermediate result of distributed sort is actually same 

as the original input data. 

Based on the experiments of the above tow typical 

MapReduce applications, MapReduce.NET is shown to 

provide a scalable performance within homogenous 

environments during the number of computation 

machines increases.  

 

 

 

 
Fig. 12 Scalable Experiment of Distributed Sort 

 

6. Conclusion 
 

This technical report presents MapReduce.NET, an 

implementation of MapReduce over .NET platform. 

The model and runtime system assemble Google’s 

implementation. We evaluated the overhead of our 

implementation and compared it with Hadoop, the open 

source implementation. Besides the comparatively 

small overhead, the system can also support a scalable 

performance in distributed environments. The results 

prove that our implementation can support reasonable 

performance and is practical for usage as a generally 

purposed platform for data-intensive applications. 
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