
 1

MapReduce Programming Model for .NET-based Distributed Computing

Chao Jin and Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

Email: {chaojin, raj}@csse.unimelb.edu.au

Abstract

Recently many data center scale of computer

systems are built in order to meet the high storage and

processing demands of data-intensive and compute-

intensive applications. MapReduce is one of the most

popular programming models designed to support the

development of such applications. It is initially

proposed by Google for simplifying the development of

large scale web search applications in data centers

and has been proposed to form the basis of a “data

center computer”. This technical report presents a

realization of MapReduce for .NET-based data centers,

including the programming model and runtime system.

The design and implementation of MapReduce.NET

are described and its performance evaluation is

presented.

1. Introduction

Recently several organisations are building data center

scale of computer systems to meet the increasing

demands of high storage and processing requirements

of data-intensive and compute-intensive applications.

On the industry front, companies such as Google and

its competitors have constructed large scale data

centers to provide stable web search services with high

quality of response time and availability. Although

Google does not disclose the size of their server

infrastructure, it is reported to be around 450,000 to

several million commodity machines dispersed across

about 25 data centers [10]. Microsoft also presents the

result of a research project, called Dryad [11], using

over 1,800 processors to perform computations

accessing up to 10 terabytes of data.

On the other side, many scientific research works

increasingly rely on large scale data sets and powerful

processing ability provided by super computer systems,

commonly referred to e-Science [17].

The high demanding requirements on data centers

are also reflected by the increasing popularity of cloud

computing [3][13]. With cloud, IT-related capabilities

can be provided as service, which is accessible through

Internet or World Wide Web. Representative systems

for cloud computing include Google App Engine, and

Amazon Elastic Compute Cloud (EC2). Google App

Engine provides a service to web developers for

accessing the infrastructure of Google. Users do not

need to maintain physical servers, while the

infrastructure can automatically scale up to meet the

requests of users. Amazon EC2 allows customers to

rent computers on which to run their own applications

through a commercial web service. The scalable

deployment of applications is facilitated by requesting

an arbitrary number of Virtual Machines through the

web service interface.

Although the popularity of data centers is increasing,

it is still a challenge to provide a proper programming

model which is able to support convenient access to the

large scale data for performing computations while

hiding all low level details of physical environments.

Within all the candidates, MapReduce is one of most

popular programming models designed for data centers.

It was originally proposed by Google to handle large-

scale web search applications [9] and has been proved

to be an effective programming model for developing

data mining, machine learning and search applications

in data centers. Especially, it can improve the

productivity for those junior developers without

required experiences of distributed/parallel

development. Moreover, since MapReduce was

proposed in 2004, there are many efforts trying to

support MapReduce on other architectures [4][12] and

exploring various ways to make it more suitable for

wider applications [2][15]. Recently, MapReduce has

been proposed to form the basis of ‘data center

computer’ [5].

 2

.NET is the standard platform of Windows

applications and it has been extended to support

parallel computing applications. For example, the

parallel extension of .NET 4.0 supports the Task

Parallel Library and Parallel LINQ, while MPI.NET [6]

implements a high performance library for the message

passing interface. Therefore, it is reasonable to expect

that .NET should be an indispensable component for

Windows-based data centers. This technical report

presents an implementation of MapReduce for

the .NET platform, called MapReduce.NET. The

realization of MapReduce for .NET faces several

challenges. First, we expect the MapReduce.NET does

not only support search related applications, it can also

facilitate a much wider variety of applications, even

including some compute-intensive applications. Second,

to handle large scale data, .NET lacks a distributed

storage facility, like Google File System used by

Google MapReduce. Third, a more efficient scheduling

algorithm is expected to handle various types of

applications. We cannot address all of the above

challenges within this technical report. Instead, we

summarize the details of one basic implementation of

MapReduce.NET. In particular, this technical report

describes the following matters:

• MapReduce.NET: a MapReduce programming

model designed for the .NET platform with the C#

programming language.

• A runtime system of MapReduce.NET deployed

in an Enterprise Grid environment by the

assistance of Aneka [18].

• A distribute storage system, called WinDFS,

which can support a distributed storage service

required by MapReduce.NET.

The remainder of this technical report is organized

as follows. Section 2 reviews the MapReduce

programming model and Aneka. Section 3 discusses

the related work. Section 4 presents the architecture of

MapReduce.NET. Section 5 describes the performance

evaluation of the system. Section 6 presents our

conclusions.

2. Background Overview

MapReduce is triggered by map and reduce

operations in functional languages, such as Lisp. This

model abstracts computation problems through two

functions: map and reduce. All problems formulated in

this way can be parallelized automatically.

Essentially, the MapReduce model allows users to

write Map/Reduce components with functional-style

code. These components are then composed as a

dataflow graph with fixed dependency relationship to

explicitly specify its parallelism. Finally, MapReduce

runtime system can transparently explore the

parallelism and schedule these components to

distributed resources for execution.

All data processed by MapReduce are in the form of

key/value pairs. The execution happens in two phases.

In the first phase, a map function is invoked once for

each input key/value pair and it can generate output

key/value pairs as intermediate results. In the second

one, all the intermediate results are merged and

grouped by keys. The reduce function is called once for

each key with associated values and produces output

values as final results.

2.1. MapReduce Model
A map function takes a key/value pair as input and

produces a list of key/value pairs as output. The type of

output key and value can be different from input key

and value:

),(),(:: 2211 valuekeylistvaluekeymap ⇒

A reduce function takes a key and associated value

list as input and generates a list of new values as output:

)())(,(:: 322 valuelistvaluelistkeyreduce ⇒

2.2. MapReduce Execution
A MapReduce application is executed in a parallel

manner through two phases. In the first phase, all map

operations can be executed independently with each

other. In the second phase, each reduce operation may

depend on the outputs generated by any number of map

operations. However, similar to map operations, all

reduce operations can be executed independently.

From the perspective of dataflow, MapReduce

execution consists of m independent map tasks and r

independent reduce tasks, each of which may be

dependent on m map tasks. Generally the intermediate

results are partitioned into r pieces for r reduce tasks.

The MapReduce runtime system schedules map and

reduce tasks to distributed resources. It handles many

tough problems: parallelization, concurrency control,

network communication, and fault tolerance.

Furthermore, it performs several optimizations to

decrease overhead involved in scheduling, network

communication and intermediate grouping of results.

2.3. Aneka
Aneka [18] is a .NET-based enterprise Grid

software platform, which allows the creation of

enterprise Grid environments, and it is used to simply

the deployment of MapReduce.NET in distributed

environments. Each Aneka node consists of a

configurable container, hosting mandatory and optional

 3

services. The mandatory services provide the basic

capabilities required in a distributed system, such as

communications between Aneka nodes, security, and

membership. Optional services can be installed to

support the implementation of different programming

models in Grid environments. MapReduce.NET is

implemented as optional services of Aneka.

3. Related Work

Since MapReduce was proposed by Google as a

programming model for developing distributed data

intensive applications in data centers, it has received

much attention from the computing industry and

academy. Many projects are exploring ways to support

MapReduce on various types of distributed architecture

and for wider applications. For instance, Hadoop [1] is

an open source implementation of MapReduce

sponsored by Yahoo!. Phoenix [4] implemented the

MapReduce model for the shared memory architecture,

while M. Kruijf and K. Sankaralingam implemented

MapReduce for the Cell B.E. architecture [12].

A team from Yahoo! research group made an

extension on MapReduce by adding a merge phase

after reduce, called Map-Reduce-Merge, to perform

join operations for multiple related datasets. Dryad

supports an interface for composing a DAG (Directed

Acyclic Graph) for data parallel applications, which

can facilitate much more complex components than

MapReduce.

Other efforts are trying to find out ways for making

MapReduce support wider applications. For instance,

MRPSO [2] utilizes the Hadoop implementation of

MapReduce to parallelize a compute-intensive

application, Particle Swarm Optimization. Researchers

from Intel currently work on making MapReduce

suitable for performing earthquake simulation, image

processing and general machine learning computations.

DISC (Data-Intensive Scalable Computing) [14] started

to explore suitable programming models for data-

intensive computations with using MapReduce as a

start point.

MapReduce is used for the education purpose. For

example, several companies have plans to make

computing resources available to universities for

teaching the MapReduce programming model.

4. Architecture

There are several MapReduce implementations,

respectively for data centers [1][9], shared memory

multi-processor [4] and the Cell architecture [12].

MapReduce.NET resembles Google’s design with

special emphasis on the .NET and Windows platform.

The design of MapReduce.NET aims to reuse as

many existing Windows components as possible. Fig. 1

illustrates the architecture of MapReduce.NET. Our

implementation is assisted by several distributed

component services from Aneka [18].

Besides Aneka, WinDFS supports MapReduce.NET

with a distributed storage service over the .NET

platform. WinDFS organizes the disk spaces on all the

available resources as a virtual storage pool and

provides an object based interface with a flat name

space, which is used to manage data stored in it. To

process local files, MapReduce.NET can also directly

talk with CIFS or NTFS.

The remainder of this section presents details on the

programming model and runtime system.

3.1. MapReduce APIs
The implementation of MapReduce.NET exposes

similar APIs as Google MapReduce. Fig. 2 and 3

illustrate the interface presented to users in C#

language. To define Map/Reduce functions, users need

to inherit from Mapper or Reducer class and override

corresponding abstract functions. To execute the

MapReduce application, user first needs to create a

MapReduceApp class, as illustrated in Fig. 4, and set it

with corresponding Mapper and Reducer classes. Then,

input files should be configured before starting the

execution, as illustrated in Fig. 3. The input files can be

local files or files in the distributed store.

Basic Distributed Services of Aneka

Membership Failure Detector Configuration Deployment

Windows

Machine

Windows

Machine

Windows

Machine

Windows

Machine

WinDFS (Distributed Store System) CIFS/NTFS

MapReduce.NET

Application

Machine Learning

Application

Bioinformatics

Application

Web Search

Fig. 1 Architecture of MapReduce .NET

abstract class Mapper

{

abstract void Map(object key, object value)

}

Fig. 2 API for Map Function

 4

The input data type to the Map function is the object,

which is the root type of all types in C#. For Reduce

function, the input is organized as a collection and the

data type is IEnumerator, which is an interface of

supporting an iteration operation on the collection. The

data type of each value in the collection is also object.

With object, any type of data, including user defined

or system build-in type, can be accepted as input.

However, for user defined types, users need to provide

methods to extract their data from a stream, which may

locate in memory or disk.

3.2. Runtime System
The execution of a MapReduce computation

in .NET environments consists of 5 major phases: Map,

Partition, Sort, Merge and Reduce. The overall flow of

execution is illustrated in Fig. 4. The execution starts

with the Map phase. It iterates the input key/value pairs

and invokes the map function defined by users on each

key/value pair. The results generated by the Map phase

are passed to the Partition, Sort and Merge phases,

which perform sorting and merging operations to group

the values with identical keys. The result is an array,

each element of which is a group of values for each key.

Finally, the Reduce phase takes the array as input and

invokes the reduce function defined by users on each

element of the array.

The execution of MapReduce.NET is orchestrated

by a scheduler. The scheduler is implemented as a

MapReduce.NET Scheduler service in Aneka, while all

the major 5 phases are implemented as a

MapReduce.NET Executor service. With Aneka, the

MapReduce.NET system can be deployed in cluster or

data center environments. Typically, the runtime

system consists of one master machine for a scheduler

service and multiple worker machines for executor

services. As a normal setting illustrated by Fig. 6, each

worker machine is configured with one instance of

executor and the master machine is configured with the

scheduler instance.

After users submit MapReduce.NET applications to

the scheduler, it deploys the scheduling policy from

configuration to map sub tasks to different resources.

During the execution, it monitors the progress of each

task and takes corresponding task migration operation

in case some nodes are much slower than others due to

heterogeneity or interference of dominated users.

In the following, we discuss the details of each

major phase on the executor of MapReduce.NET.

Master Machine Worker Machine n

Aneka Container

WinDFS

Aneka Container

MapReduce.NET
Executor

MapReduce.NET
Scheduler

Monitor

Policy

Fig. 6 Configuration of MapReduce.NET with

Aneka

 Input

Key/Value

Pairs

Mapper

 Reducer

Mapper

Mapper

 Reducer

 Reducer

Map

Partition

Merge

Reduce

Result

Sort

Fig. 5 Overall Flow of MapReduce.NET Execution

class MapReduceApp

{

 void RegisterMapper (Type mapper)

 void RegisterReducer(Type reducer)

 void SetInputFiles(list input)

list GetOutputFiles()

bool Execute()

}

Fig. 3 Execution API for Applications

abstract class Reducer

{

 abstract void Reduce(IEnumerator values)

}

Fig. 3 API for Reduce Function

 5

3.2.1. Map Phase. The executor extracts each input

key/value pair from the input file. For each key/value

pair, it invokes the map function defined by users. The

result generated by the map function is first buffered in

the memory. The memory buffer consists of many

buckets and each one is for different partition. When

the size of all results buffered in the memory reaches a

predefined maximal threshold, they are sent to the sort

phase and written to the disk to save space for holding

intermediate results of next round of map invocations.

3.2.2. Partition Phase. Partition of the results

generated by map functions is achieved in two places:

in memory and on disk. In the Map phase, the results

generated by map function are first buffered in memory,

where there is one bucket for each partition. The

generated result determines its partition through a hash

function, which may be defined by users. Then the

result is appended to the tail of bucket of its partition.

When the size of buffered results exceeds the maximal

threshold, each bucket is written to disk as an

intermediate file. After one map task finishes, all the

intermediate files for each partition are merged into one

partition.

3.2.3. Sort Phase. Before the buffered results are

written to disk, elements in each bucket are sorted in

memory. They are written to disk by the sorted order,

maybe ascending or descending. The sort algorithm we

adopt is quick sort [16]. On average, the complexity of

this algorithm is O(n·log(n)). We choose it because it is

always reported faster than other sort algorithms.

3.2.4. Merge Phase. To prepare inputs for the Reduce

phase, we need to merge all the intermediate files for

each partition. First, the executor fetches intermediate

files, which are generated in the Map phase, from

neighbor machines. Then, they are merged to group

values with same key and at the same time, sort keys by

a predefined order. Since all the key/value pairs in the

intermediate files are already in a sorted order, we

deploy a heap sort to achieve the group operation. Each

node in the heap corresponds to one intermediate file.

Repeatedly, we pick the key/value pair on the top node,

and then adjust the shape of the heap to sift the heap

node with the biggest key up to the top position. At the

same time, we group the values associated with same

key.

3.2.5. Reduce Phase. In our implementation, the

Reduce phase is combined with the Merge phase.

During the process of heap sort, we combine all the

values associated with same key and then invoke the

reduce function defined by users to perform reduction

operation on these values. All the results generated by

reduce function are written to disk according the order

by which they are generated.

3.3. Memory Management

Managing memory efficiently is critical for the

performance of applications. On each executor, the

memory consumed by MapReduce.NET mainly

includes memory buffers for intermediate results,

memory space for quick sort and buffers for input and

output files.

In configuration, administrator can specify a

maximal value for the size of memory used by

MapReduce.NET. This size is normally determined by

the physical configuration of machines and the memory

requirement of applications. The memory management

is illustrated by Fig. 7.

According to this maximal memory configuration,

we set the memory buffer used by intermediate results

and input/output files. Our default buffer size for

input/output files is 16MB. The input and output files

are from the local disk. Therefore, we use FileStream

in .NET to control the access to local files, including

configuration of the size of file buffer.

The memory buffer for intermediate results is

implemented by MemoryStream of .NET, which is

actually a stream in memory. All the results generated

by map function are translated into byte array and

append to the tail of the stream in memory. An array of

indices is used to facilitate accessing each element in

this stream. Indices in this array record the position of

each intermediate value in the stream. When the size of

the stream in memory plus the size of index array

exceeds the predefined maximal value, quick sort is

invoked to sort all the buffered intermediate values and

then write them to disk.

Map/Reduce Invocation

 Key,Value Key,Value Key,Value

Buffer

Partition/Sorting

User Application

Memory

Disk

Fig. 7 Memory Management of MapReduce.NET

 6

3.4. WinDFS

In order to provide a distributed storage system

MapReduce.NET, we designed and implemented

WinDFS using the C# programming language.

WinDFS can be deployed in a dedicated cluster

environment or a shared Enterprise Grid environment.

Every machine running a WinDFS instance can

contribute a certain amount of disk space. All the

contributed disk spaces are organized as a virtual data

pool. WinDFS provides an object based interface with

a flat name space for that data pool. The object can

also be taken as a file. Each object contained in

WinDFS is identified by a unique name, which is

actually a GUID in .NET. WinDFS supports put and

get operations on objects.

The runtime system of WinDFS consist of an index

server with a bunch of object server. Objects are

distributed to object servers, while the location

information for each object is maintained by the index

server. The index server also is responsible for keeping

the reliability of objects in the system.

As a representative configuration, the instance of

object server runs on each worker machine for

managing local objects, while the meta server can be

on the master machine.

4. Schedule Framework

This section describes the scheduling model for

coordinating multiple resources to execute MapReduce

computation. The scheduling is conducted by the

MapReduce.NET scheduler.

The major 5 phases of MapReduce.NET are grouped

into two tasks: Map task and Reduce task. The Map

task executes 3 phases: map, partition and sort, while

the Reduce task executes merge and reduce. Given a

MapReduce.NET job, it consists of m Map tasks and r

Reduce tasks. Each Map task has an input file and

generates r result files. Each Reduce task has m inputs

files, which are generated by m Map tasks.

Normally the input files for Map tasks are ready in

WinDFS prior to execution and thus the size of each

Map input file can be determined before scheduling.

During the execution, Map tasks dynamically generate

output files, the size of which is difficult to determine

prior to job execution.

The system aims to be deployed in an Enterprise

Grid environment, which essentially organizes idle

resources within a company or department as virtual

super computer. Normally, resources in Enterprise Grid

are shared by two categories of users. The first one is

the owner of resources, who has priority to use their

resources; the second one is the users of idle resources,

who should not disturb the normal usage of resource

owner. Therefore, with Enterprise Grid, besides the

traditional problems of distributed system, such as

complex communications and failures, we have to face

a new challenge: soft failure. Soft failure stands for the

resource involved in MapReduce execution has to quit

computation due to domination by its owner.

Due to the above dynamic features of

MapReduce.NET application and Enterprise Grid

environments, we did not choose a static scheduling

algorithm. On the contrary, we deploy a just in time

scheduling policy for mapping Map and Reduce tasks

to distributed resources in an Enterprise Grid.

The scheduling algorithm for the MapReduce.NET

applications starts with scheduling Map tasks.

Specifically, all Map tasks are scheduled as

independent tasks. The Reduce tasks, however, are

dependent on the Map tasks. Whenever Reduce task is

ready, i.e. all its inputs are generated by Map tasks, it

will be scheduled according to status of resources. The

scheduling algorithm aims to optimize the execution

time for MapReduce.NET, which is achieved by

minimizing the execution of Map and Reduce phases

respectively.

During execution, each executor waits task execution

commands from the scheduler. For a Map task,

normally its input data locates locally. Otherwise, the

executor needs to fetch input data from neighbors. For

a Reduce task, the executor has to fetch all the input

and merge them before execution. Furthermore, the

executor monitors the progress of executing task and

frequently reports the progress to the scheduler.

5. Performance Evaluation

We have implemented the MapReduce.NET system,

including the programming model, runtime system and

scheduling framework. It has been deployed on desktop

machines of several student laboratories in Melbourne

University. This section reports the performance

evaluation for the runtime system based on two real

applications: word count and distributed sort.

All the experiments are executed in an enterprise

Grid consisting of 33 nodes drawn from 3 student

laboratories. For distributed experiments, one machine

was set as master and the rest were configured as

worker machines. Each machine has a single Pentium 4

processor, 1GMB of memory, 160GB IDE disk (10GB

is dedicated for WinDFS storage), 1 Gbps Ethernet

 7

network and runs Windows XP.

5.1. Samples Applications
The two sample applications, word count and

distributed sort, are benchmarks used by Google

MapReduce and Phoenix systems. To implement the

Word Count application, users just need to split words

for each text file in the map function and sum the

appearance number for each word in the reduce

function. For sort application, users do not have to do

anything within map and reduce functions, while the

MapReduce runtime system performs sorting

automatically.

5.2. System Overhead
MapReduce can be taken as a parallel design pattern,

which trades performance to improve the simplicity of

programming. Essentially, the Sort and Merge phases

of MapReduce runtime system introduce extra

overhead. However, the sacrificed perform cannot be

overwhelming. Otherwise, it is not acceptable for users.

In this section, we evaluate the overhead of

MapReduce.NET with local execution. During local

execution, the input is from local disk and all 5 major

phases of MapReduce.NET executes sequentially on

single machine. This is called a local runner and can be

used for debug purposes.

Fig. 8 Overhead Decouple of MapReduce.NET

For local execution, both sample applications were

configured as follows:

• The Word Count application took the example text

files used by Phoenix [4], with 3 settings of input

sizes of raw data: 10MB, 100MB and 1GB

respectively.

• The Sort application sorts a number of records.

Each record consists of a key and a value. Both the

key and value are random integers. Three

configurations of input size were adopted: 10

million, 100 million and 1,000 million records

respectively. Correspondingly, the sizes of raw

data are about 15MB, 150MB and 1.48GB.

Fig. 9 Cache Impacts of MapReduce.NET

The performance result is split into 3 parts: sort,

IO+Map and Merge+Reduce. The sort part is the

execution consumed by the sort phase, while the time

consumed by the rest of Map task is recorded by

IO+Map part, which includes the time consumed by

reading input file, invoking map functions and writing

partitions of intermediate results to disk. The

Merge+Reduce part is the execution time of the Reduce

task. Fig. 8 illustrates the percentage of these 3 parts

for executing Sort and Word Count applications

respectively. We can see that different types of

application have different percentage distribution for

 8

each part. For Word Count, the time consumed by the

reduce and merge phases can even be ignored. The

reason is the size of results of Word Count is

comparatively small. Differently from Word Count, the

reduce and merge phases of Sort application still takes

an important percentage. For both applications, as the

growth of problem size, the percentage of IO+Map part

is correspondingly increasing. Since the map and

reduce function of both applications just executed very

simple tasks, actually the time consumed by the

IO+Map part mainly consists of the contributions from

IO operations.

Next, we check the impact of buffer size on the

execution time of applications. In particular, the

experiments were executed with the different sizes of

memory buffer for intermediate results. The results are

illustrated in Fig. 9. In the experiments, the size of

memory buffer was set to be 128MB, 256MB and

512MB respectively and the results for both

applications under each configuration are illustrated.

Different from our expectation, increasing the size of

buffer does not have a big impact on the execution time

for Word Count and Sort applications. One interesting

phenomena is the performance with 256M and 512M

buffer is even worse than that with 128M buffer. One

reasonable explanation is that a bigger memory buffer

can keep more intermediate results, which involves

extra overhead during performing quick sort. At the

same time, increasing the size of buffer can save the

number of IO operations, because the possibility of

combining records with same key is increasing. This

explains why the performance with 512M buffer is

better than with 256M buffer.

5.3. Overhead Comparison with Hadoop
This section compares the overhead of

MapReduce.NET with Hadoop, the open source

MapReduce implementation with Java language.

Hadoop is supported by Yahoo and aims to work as a

general purposed distributed platform. The DISC

project [14] is using Hadoop as the first step for

exploring suitable programming models for data

intensive scalable computing. The stable release of

Hadoop, version 0.16.4 was adopted for comparison.

To compare the overhead, we run the local runner of

Hadoop and MapReduce.NET respectively with same

size of input for Word Count and Sort applications.

The buffer size was configured to be 128MB for both

implementations. The input for Sort consists of 1,000

million records with 1.48GB raw data, while for Word

Count the size of raw input data is 1GB. The results are

illustrated in Fig. 10. MapReduce.NET performs worse

on the Word Count application than Hadoop, while

outperforming Hadoop on the Sort application.

Specifically, for Sort application, the sort phase of

Hadoop consumes longer time than the

MapReduce.NET, while its IO processing is more

efficient. Similar phenomenon happens for the Sort

application. However, the reduce and merge phases of

Hadoop took comparatively longer time than our

implementation.

Fig. 10 Overhead Comparison of Hadoop and

MapReduce.NET.

5.3. System Scalability
In this section, we evaluate the scalable performance

of MapReduce.NET in the distributed environment.

Since Hadoop does not have a parallel version on

Windows platform, we did not compare the parallel

performance with Hadoop.

Applications were configured as follows:

• Word Count: takes the example text files used by

Phoenix [4]. We duplicated the original text files to

generate an example input with 6GB raw data,

which is split into 32 files.

• Distributed Sort: sorts 5,000 million records in an

ascending order. The key of each record is a

random integer. The total raw data is about 7.6GB,

 9

which is partitioned into 32 files.

Fig. 11 illustrates the scalable performance result of

the Word Count application. In the figure, the

execution time of Map phase consists of the time from

starting execution to the finish of all Map tasks, while

the Reduce execution time consists of merge phase plus

invoking reduce functions on all the work machines.

From the results, we can see map, sort and partition

phases dominated the whole execution and the

performance increased as more resources were added

into the computation.

Fig. 11 Scalable Experiment of Word Count

Different from the Word Count application, the

Distributed Sort application has a nearly uniform

distribution of execution time for Map and Reduce

tasks, as illustrated in Fig. 12. However, this does not

effect the nearly linearly speedup while adding more

resources. The network traffic also takes an important

percentage of the whole execution, because the

intermediate result of distributed sort is actually same

as the original input data.

Based on the experiments of the above tow typical

MapReduce applications, MapReduce.NET is shown to

provide a scalable performance within homogenous

environments during the number of computation

machines increases.

Fig. 12 Scalable Experiment of Distributed Sort

6. Conclusion

This technical report presents MapReduce.NET, an

implementation of MapReduce over .NET platform.

The model and runtime system assemble Google’s

implementation. We evaluated the overhead of our

implementation and compared it with Hadoop, the open

source implementation. Besides the comparatively

small overhead, the system can also support a scalable

performance in distributed environments. The results

prove that our implementation can support reasonable

performance and is practical for usage as a generally

purposed platform for data-intensive applications.

Acknowledgements
This work is partially supported by research grants

from the Australian Research Council (ARC) and

Australian Department of Industry, Innovation, Science

and Research (DIISR). We thank Christian Vecchiola

and Jemal Abawajy for their comments on improving

the quality of the paper.

10. References

[1] Apache. Hadoop. http://lucene.apache.org/hadoop/.

 10

[2] A. W. McNabb, C. K. Monson, and K. D. Seppi,

Parallel PSO Using MapReduce, In Proceedings of the

Congress on Evolutionary Computation (CEC 2007),

Singapore, 2007.

[3] A. Weiss. Computing in the Clouds. netWorker,

11(4):16-25, Dec. 2007.

[4] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, C.

Kozyrakis, Evaluating MapReduce for Multi-core and

Multiprocessor Systems, Proceedings of the 13th Intl.

Symposium on High-Performance Computer Architecture

(HPCA), Phoenix, AZ, February 2007.

[5] D. A. Patterson, Technical perspective: the data center

is the computer, Communications of the ACM, 51-1, 105,

January 2008.

[6] D. Gregor and A. Lumsdaine, Design and

Implementation of a High-Performance MPI for C# and the

Common Language Infrastructure, Principles and Practice of

Parallel Programming, pp. 133-142, Feb. 2008, ACM.

[7] H. Sutter, J. Larus, Software and the Concurrency

Revolution, ACM Queue, Vol. 3, No. 7, pp 54–62, 2005.

[8] H. C. Yang, A. Dasdan, R. L. Hsiao, and D. S. P. Jr.

Map-reduce-merge: simplified relational data processing on

large clusters, Proceedings of SIGMOD, 2007.

[9] J. Dean and S. Ghemawat, MapReduce: Simplified Data

Processing on Large Clusters, Proceedings of the 6th

Symposium on Operating System Design and

Implementation (OSDI), San Francisco, CA, Dec., 2004.

[10] J. Markoff and S. Hansell. Hiding in plain sight, Google

seeks more power, New York Times, June 14, 2006.

[11] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,

Dryad: Distributed Data-Parallel Programs from Sequential

Building Blocks, European Conference on Computer Systems

(EuroSys), Lisbon, Portugal, March, 2007.

[12] M. Kruijf and K. Sankaralingam. MapReduce for the

Cell B.E. Architecture, TR1625, Technical Report,

Department of Computer Sciences, The University of

Wisconsin-Madison, 2007.

[13] R. Buyya, C. S. Yeo, and S. Venugopal, Market-

Oriented Cloud Computing: Vision, Hype, and Reality for

Delivering IT Services as Computing Utilities, Proceedings

of the 10th IEEE International Conference on High

Performance Computing and Communications (HPCC 2008),

Sept., 2008, Dalian, China.

[14] R. E. Bryant, Data-Intensive Supercomputing: The Case

for DISC, CMU-CS-07-128, Technical Report, Department

of Computer Science, Carnegie Mellon University, May,

2007.

[15] S. Chen, S. W. Schlosser. Map-Reduce Meets Wider

Varieties of Applications, IRP-TR-08-05, Technical Report,

Intel Research Pittsburgh, May, 2008.

[16] T. H. Cormen , C. E. Leiserson , R. L. Rivest , C. Stein,

Introduction to Algorithms, Second Edition, The MIT Press,

Massachusetts, USA.

[17] T. Hey and A. Trefethen. The data deluge: an e-Science

perspective. In F. Berman, G. C. Fix, and A. J. G. Hey,

editors, Grid Computing: Making the Global Infrastructure a

Reality, pp. 809–824.Wiley, 2003.

[18] X. Chu, K. Nadiminti, J. Chao, S. Venugopal, and R.

Buyya, Aneka: Next-Generation Enterprise Grid Platform

for e-Science and e-Business Applications, Proceedings of

the 3rd IEEE International Conference and Grid Computing,

Bangalore, India, Dec. 10-13, 2007.

