
Performance Analysis of Allocation Policies

for InterGrid Resource Provisioning

Marcos Dias de Assunção a,∗, Rajkumar Buyya a

aGrid Computing and Distributed Systems (GRIDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne
Victoria 3010, Australia

Abstract

Several Grids have been established and used for varying science applications during
the last years. Most of these Grids, however, work in isolation and with different
utilisation levels. Previous work introduced an architecture and a mechanism to
enable resource sharing amongst Grids. It demonstrated that there can be bene-
fits for a Grid to offload requests or provide spare resources to another Grid, thus
reducing the cost of over-provisioning. These benefits derive from the fact that re-
source utilisation within a Grid has fixed and operational costs such as those with
electricity providers and system administrators. In this work, we address the prob-
lem of resource provisioning to Grid applications in multiple-Grid environments.
The provisioning is carried out based on availability information obtained from
queueing-based resource management systems deployed at the provider sites who
are the participants of the Grids. We evaluate the performance of different alloca-
tion policies. In contrast to existing work on load sharing across Grids, the policies
described here take into account the local load of resource providers, imprecise avail-
ability information and the monetary compensation of providers. In addition, we
evaluate these policies along with mechanism that allows resource sharing amongst
Grids. Experimental results obtained through simulation show that the mechanism
and policies are effective in redirecting requests thus improving the applications’
average weighted response time.

Key words: resource provisioning, Grid computing, interGrid resource allocation

∗ Corresponding author. Address: 111 Barry Street, Carlton, VIC, 3053, Australia.
Email addresses: marcosd@csse.unimelb.edu.au (Marcos Dias de Assunção),

raj@csse.unimelb.edu.au (Rajkumar Buyya).

Preprint submitted to Elsevier 3 July 2008

1 Introduction

Advances in Grid computing have enabled the creation of Grid-based resource
sharing networks such as TeraGrid [1,2], Naregi [3], Open Science Grid [4],
and PlanetLab [5]. These networks, composed of multiple resource providers,
enable collaborative work and resource sharing amongst groups of individuals
and organisations. These collaborations, widely known as Virtual Organisa-
tions (VOs) [6], require resources from multiple computing sites.

Although these Grids have contributed to various sciences and disciplines,
they mostly work in isolation. The Grid Interoperability Now - Community
Group (GIN-CG) [7] is working on providing interoperability between Grids by
developing components and adapters that enable secure job submissions, data
transfers and information queries. Even though GIN-CG’s efforts are relevant,
its members also highlight the need for common allocation and brokering of
resources across Grids. 1 In addition, Iosup et al. [8] have identified the need
for resource management across Grids. They have shown that there is a load
imbalance between current Grids.

The resource utilisation within a Grid has fixed and operational costs such
as those with electricity providers and system administrators. Consequently,
there can be benefits for a Grid to provide spare capacity to peering Grids,
possibly in return for regular payments, and to acquire resources from peering
Grids to serve occasional internal peak demands. This load management ap-
proach can reduce the costs incurred by over-provisioning. We have proposed
in previous work [9] a resource exchange mechanism that enables a Grid, un-
der peak load conditions, to redirect requests to another Grid. In contrast to
existing work in load management across Grids [8,7] the proposed mechanism
takes into account the monetary compensation of resource providers. In this
work, we address the problem of resource provisioning in environments with
multiple Grids.

Emerging deadline-driven Grid applications require access to several resources
and predictable Quality of Service (QoS). However, it is difficult to provision
resources to these applications because of the complexity of providing guaran-
tees about the start or completion times of applications currently in execution
or waiting in the queue. The resources contributed by providers participating
of a Grid are generally clusters of computers managed by queueing-based Re-
source Management Systems (RMSs), such as PBS [10] and Condor [11]. These
RMSs generally use optimisations to the First Come First Served (FCFS) pol-
icy such as backfilling to reduce the scheduling queue fragmentation, improve
job response time and maximise resource utilisation. These optimisations make

1 The personal communication amongst GIN-CG members is online at:
http://www.ogf.org/pipermail/gin-ops/2007-July/000142.html

2

it difficult to predict the resource availability over a time frame as the jobs’
start and completion times are dependent on resource workloads.

Grid users commonly access resources from a Grid via mediators such as bro-
kers or gateways [12,13]. The design of gateways that provision resources to
deadline-driven applications relying on information given by current RMSs
may be complex and prone to scheduling decisions that are far from opti-
mal. Furthermore, a gateway representing a Grid can have peering arrange-
ments or contracts with other gateways through which they co-ordinate the
resource provisioning. This complicates provisioning even further as now a
gateway needs to not only provision resources to its users, but also provision
spare capacity to other gateways. Previous work has demonstrated how in-
formation about fragments in the scheduling queue, or free time slots, can be
obtained from RMSs and provided to gateways to be provisioned to Grid ap-
plications[14,15]. In this work, we utilise this information as basis for resource
provisioning across Grids.

The present work specifically extends previous studies on InterGrid load man-
agement [9] and resource provisioning in multiple-site environments [15] in
the following manner. First, we extend the provisioning policies in order to
consider the cost of delegating resources to a gateway. Second, the mecha-
nism for load management across Grids that previously assumed an ON/OFF
approach for modelling resource providers’ load, now utilises information ob-
tained from scheduling policies using conservative backfilling and multiple
resource partitions. Previous studies used of ON/OFF models [16] wherein on
and off intervals represent off-peak and peak periods respectively. However,
the queuing-based scheduling policies enhance the evaluation of the overall
mechanism by modelling a scenario closer to reality. Third, the experiments
carried out in this work measure the jobs’ average weighted response time and
the amount of currency spent by gateways in the contract network for each
scenario. Experimental results show that the approach is effective reducing
the applications’ average weighted response time.

The rest of this paper is organised as follows. Section 2 presents the related
work. In Section 3, we describe the InterGrid scenario. We describe the poli-
cies used by resource providers in Section 4. Section 5 discusses the resource
provisioning and load sharing across Grids. We present and elaborate on the
performance evaluation and experimental results in Section 6. Section 7 con-
cludes the paper and presents future work.

2 Related Work

The proposed InterGrid architecture, mechanisms and policies are related to
previous systems and techniques in several manners. Namely, we focus on

3

research related to:

Resource sharing networks and inter-operation efforts: Several Grids
have been built over the past few years [1–4], but most of these work in isola-
tion. Recently, two major initiatives have attempted to link resource sharing
networks: the Global Environment for Network Innovations (GENI) [17] and
the GIN-CG under the Open Grid Forum [7]. GENI has evolved from the
PlanetLab architecture [5] to allow the federation of autonomous networks
controlled by different organisations [17]. GIN-CG [7] is leveraging community
efforts to address problems regarding security, standard job submission, data
management and information services. GIN-CG highlights the importance of
policies for interGrid brokering and resource management. The present work
attempts to build on these to investigate resource management in the Inter-
Grid.

Iosup et al. [8] have presented a seminal work on inter-operation of Grids. In
a similar way, gateways work as site recommenders so matching requests to
resources available. On the other hand, the policies presented here differ with
respect to the resource exchange protocol and the consideration for economic
compensation for the resources acquired from the providers.

Intermediate resource agents: Shirako [18,19] provides an architecture for
resource management based on a resource leasing abstraction. Sites delegate
limited power to allocate their resources by registering their offerings with bro-
kers. Guest applications can acquire resources from brokers by leasing them
for a specified time. Grit et al. [20] investigate the number of Virtual Machine
(VM) migrations incurred when a broker and provider sites use either con-
flicting or synchronised policies for resource provisioning and VM placement.
They show that when providers and the broker use conflicting policies, the
number of migrations can be high. This paper focuses on the policies for re-
source exchange amongst gateways, which are similar to brokers in Shirako.
However, to the best of our knowledge, resource exchange amongst Shirako
brokers has not been explored yet.

Federated clusters and load sharing: Ranjan et al. [21] have proposed
a Service Level Agreement (SLA) based coordination mechanism for Grid
superscheduling. Different from that work, an InterGrid Gateway is a broker
with partial information about the free time slots of resource from a group of
providers and does not have full control over the contributed resources.

Balazinska et al. [22] have proposed a load balancing mechanism for Medusa.
Medusa is a stream processing system that allows the migration of stream
processing operators from overloaded resources to resources with spare capac-
ity. We have taken inspiration from Medusa’s mechanism and extended it to
support the exchange of resources amongst Grids. The mechanism used for
load sharing amongst gateways is derived from Medusa, but differs in terms of
the negotiation protocol for exchanging resources between Grids, the resource

4

selection and request redirection policies.

Wang and Morris [23] provide a taxonomy on load sharing in distributed sys-
tems. Some findings include that efficiency in load sharing depends on the
environment and server-initiative tends to outperform source-initiative strate-
gies when the same amount of information about stakeholders is available. In
our scenario, resources have multiple processors; also, resources are hetero-
geneous in the number of processors. These make the local scheduling sub-
problem different; in addition, resource management across Grids introduces
a third subproblem: the load sharing between Grids. Surana et al. [24] address
the load balancing in DHT-based P2P networks. Nodes of the P2P system
run virtual servers responsible for ranges of objects in the address space; they
inform directories about the load in the virtual servers whereas the directories
periodically compute reassignments and trigger migrations of virtual servers to
achieve balance. This work, in contrast, does not perform migration of virtual
servers, and focus on the redirection and assignment of resources to requests.

Resource provisioning: Singh et al. [14,25] have presented a provisioning
model wherein Grid sites provide information on the time slots over which sets
of resources will be available. The sites provide their resources to the Grid in
return for payments, thus they present a cost structure consisting of fixed and
variable costs over the resources provided. The provisioning model is evaluated
considering the scheduling of workflow applications. The main goal is to find a
subset of the aggregated resource availability, termed resource plan, such that
both the allocation cost and the application makespan are minimised. They
utilise a Multi-Objective Genetic Algorithm (MOGA) approach to approxi-
mate the group of resource plans that correspond to the Pareto-optimal set.
Experiments have been carried out considering one cluster and one broker at
time. Our work differs from that by Singh et al. in the sense that it previously
investigated multiple approaches to obtain availability information and how
reliable this information can be in multiple site environments [15]. In this pa-
per we utilise this information and evaluate the load sharing across brokers
(in this work termed gateways), which was not explored by Singh et al.

EASY backfilling and conservative backfilling: Schedulers generally use
optimisations to the FCFS policy such as EASY backfilling and conservative
backfilling [26], which allow a job to jump in the queue and execute earlier
than jobs that arrived before it; given that enough resources are available and
other waiting jobs are not delayed. Under conservative backfilling, a job can be
used to backfill and execute earlier given that it does not delay any other job
waiting in the queue. EASY backfilling, on the other hand, uses a job to backfill
and start execution if it does not delay only the first job in the queue - also
termed pivot job. The schedule generally contains the expected completion of
running jobs and the start time of the pivot job only. Some schedulers allow
the system administrator to configure the maximum number of pivots, which
in turn enables the scheduler to maintain the start and expected completion

5

times of up to the maximum number of pivot jobs [27]. In such case, if the
maximum number of pivots is set to 5, for example, and there are 5 jobs waiting
in the queue, a 6th job that just arrived is used to backfill if it does not delay
any of the 5 pivot jobs. If the maximum number of pivots is set to a large
number, the EASY backfilling algorithm becomes conservative backfilling. We
utilise and extend policies based on these techniques for resource provisioning.

Multiple resource partition policies: Work on multiple resource partitions
and priority scheduling has shown to reduce the job slowdown compared to
EASY backfilling policies [28]. We build on this effort and extend it to enable
other multiple partition policies. We also propose a new multiple resource
partition policy based on load forecasts for resource provisioning.

3 Provisioning in InterGrid Environments

The InterGrid is an architecture and policies for enabling resource sharing
across Grids. Figure 1 provides an overview of the architecture, whereas a
detailed discussion of the architecture is available in previous work [29]. The
resources provisioned and exchanged between Grids can be physical or virtual
resources such as Virtual Machines (VMs).

Grid

InterGrid

Gateway

Resource
Provider

Resource
Provider

Resource
Provider

Grid users'

requests

P
ro
v
id
e
r'
s
 l
o
c
a
l

lo
a
d
 o
r
lo
c
a
l
u
s
e
rs
'

re
q
u
e
s
ts

Availability

information

InterGrid

Gateway

Peering

Arrangements

or Contracts

Grid users'

requests

Grid

Fig. 1. The provisioning scenario with multiple Grids considered in this work.

A Resource Provider (RP) contributes a share of computational resources,
storage resources, networks, application services or other type of resource to
a Grid in return for regular payments. A RP has local users whose resource
demands need to be satisfied, yet it delegates provisioning rights over spare
resources to an InterGrid Gateway (IGG) by providing information about the
resources available in the form of free time slots. A free time slot includes
information about the number of resources available, their configuration and
time frame over which they will be available. The resources provided can be

6

physical or virtual resources such as Virtual Machines (VMs) and the delega-
tion can be made through a secure protocol such as SHARP [30]. Protocols
for secure delegation, however, are not in the scope of this paper; this work
focus on the resource provisioning aspect. Although a Grid can have a resource
management system of its own (i.e. an IntraGrid Resource Manager), for the
sake of simplicity here, a RP delegates provisioning rights directly to an IGG.

A Grid has peering arrangements with other Grids, managed by IGGs and,
through which they coordinate the use of resources of the InterGrid. An IGG
is aware of the terms of the peering with other Grids; provides Grid selection
capabilities by selecting a Grid able to provide the required resources; and
replies to requests from other IGGs.

CLient applications (CLs) can implement resource management mechanisms
of their own. However, we envisage that applications can have performance and
environment isolation provided by Distributed Virtual Environments (DVEs),
which can be created on top of the InterGrid and can span multiple Grids.
DVEs can leverage virtualisation technologies [31] and provide an overlay net-
work comprising the resources allocated from the InterGrid. When a CL re-
quires a number of resources to deploy or execute an application, it requests
the IGG based on the application demand. When the individual Grid can-
not provide the required resources, the IGG selects a peering Grid based on
the peering agreements and the policies in place. The CL is then given a re-
source ticket that will later be passed to the selected provider in return for
the required resources.

4 Resource Provider Policies

We have previously investigated scheduling policies for resource providers [15]
that enable an IGG to obtain resource availability information in the form of
free time slots. This work considers a subset of the investigated policies, which
have previously demonstrated good performance. The policies utilise an ‘avail-
ability profile’ similar to that described by Mu’alem and Feitelson [26]. The
availability profile is a list whose entries describe the CPU availability at par-
ticular times in the future. These correspond to the completion or start of jobs
and advance reservations. Jobs with the same completion time or scheduled
to start at the completion of another job share entries in the profile. By scan-
ning the availability profile and using load forecasts the resource providers
inform the gateway about the free time slots; the gateway in turn can carry
out provisioning decisions based on this information.

Figure 2 illustrates how a resource provider supplies the gateway with infor-
mation on the free time slots. The example considers conservative backfilling.
Under conservative backfilling, a job is used to backfill and start execution ear-

7

Free Time Slot 3

Job 1

Job 2

Job 3

Job 4

Free Time Slot 1

Free Time Slot 4

TimeCurrent
Time

Planning
Horizon

Job 5

Scheduling Queue

Free Time Slot 2

P
ro
c
e
s
s
in
g
 E
le
m
e
n
ts

Free
Time
Slot 5

Next interval for
providing resource

availability information

...

Fig. 2. Free time slots (conservative backfilling).

lier than expected, given that it does not delay any other job in the scheduling
queue [26]. In order to reduce complexity, the schedule for the job is generally
determined at its arrival and the availability profile is updated accordingly.
Given those conditions, it is possible to obtain the free time slots by scanning
the availability profile. In that case, the availability profile is scanned until a
given time horizon thus creating windows of availability or free time slots; the
finish time of a free time slot is either the finish time of a job in the waiting
queue or the planning horizon. The horizon corresponds to the time limit up
to which the availability information is evaluated. If the horizon is set to ∞,
the provider will be disclosing all the information. The availability informa-
tion can either be provided on a periodical basis wherein provider and gateway
agree on an interval at which the former sends the availability information.

We have also investigated other policies based on multiple resource parti-
tions [28] and load forecasts [15]. In our implementation, the policy divides
the resources available in multiple partitions and assigns jobs to these par-
titions according to given predicates. A partition can borrow resources from
another when they are not in use by the latter and borrowing is allowed by
the scheduler. We introduced a new policy in which, at time intervals, the par-
titions are resized by the scheduler based on a load forecast computed from
information collected at previous intervals. As load forecasts are prone to be
imprecise, when the scheduler resizes partitions, it also schedules reallocation
events. At a reallocation event, the scheduler evaluates whether the load fore-
cast has turned out to be an underestimation or not. If the forecast load was
underestimated, the policy resizes the partitions according to the load from
the last resizing period until the current time and backfills the jobs, starting
with the local jobs.

Algorithm 1 describes two procedures used by the load forecast policy. The
policy invokes getFreeTimeSlots every time the provider needs to send the
availability information to the gateway; the procedure getFreeTimeSlots trig-
gers reallocationEvent to verify whether the previous forecast has turned out

8

to be precise or if a reallocation is required.

procedure getFreeTimeSlots()1

begin2

set the number of pivots of local and Grid partitions to ∞3

schedule / backfill jobs in the waiting queue4

set the number of pivots of local and Grid partitions to 15

actualLoad← load of waiting/running jobs6

forecast← get the load forecast7

percToProvide← min{0, 1− actualLoad}8

slots← obtain the free time slots9

slots← resize slots according to percToProvide10

if percToProvide > 0 then11

inform gateway about slots12

schedule reallocation event13

schedule next event to obtain free time slots14

end15

procedure reallocationEvent()16

begin17

localLoad← obtain the local load18

forecast← get the previously computed forecast19

if localLoad > forecast then20

set the number of pivots of local partition to ∞21

schedule / backfill jobs in the waiting queue22

set the number of pivots of grid partition to ∞23

schedule / backfill jobs in the waiting queue24

slots← obtain the free time slots25

inform gateway about slots26

else27

schedule the next reallocation event28

end29

Algorithm 1: Provider’s load forecasting policy.

We use EASY backfilling with configurable maximum number of pivots, sim-
ilarly to MAUI scheduler [27]. This enables the policy to be converted to
conservative backfilling by setting the maximum number of pivots to a large
value, here represented by ∞. From line 3 to 4 of Algorithm 1, the scheduler
becomes conservative backfilling based by setting the number of pivots in each
partition to∞. It also schedules the jobs currently waiting in the queue. After
that, the scheduler returns to EASY backfilling (line 5). Then, from line 6 to
10, the scheduler obtains the load forecast and the free time slots and resizes
the free time slots by modifying the number of CPUs according to the amount
of resources expected to be available over the next interval. Next, the scheduler
triggers a reallocation event. From line 20 to 24 the scheduler verifies whether
the forecast was underestimated. If that is the case, it throws the towel and

9

turns the policy to conservative backfilling and informs the gateway about the
availability.

The policies described in the previous work [15] did not consider the pricing
of resources by providers. In this work we apply a mechanism for pricing the
free time slots delegated by a resource provider to the gateway. The resource
providers use a pricing function for a resource unit given by Equation 1.

price = cost+ (cost ∗ load) (1)

where cost is the fixed cost of a unit of resource at the provider; load is obtained
from the policy in use by the resource provider; load is the estimate when the
policy supports forecasts or the actual load of both running and waiting jobs
in the queue. A resource unit corresponds to one resource per second (i.e. a
second of a CPU). Although straightforward, this pricing function has two
components that capture namely the fixed cost of resources and the variable
price caused by the demand.

5 Resource Provisioning and Load Sharing

For each IGGi representing the Grid gi, the allocation of its resources by its
user communities over a unit of time represents a cost. The real-valued cost
function of the participating IGGi is represented by costi(L), where 0 6 L 6 1
is the current load determined by the number of resource units in use in Grid
gi. Therefore, the cost given by costi(L) depends on the number of resources
allocated by the requests. Although each Grid could have its own cost function,
in this work, the participating Grids utilise a quadratic cost function. The use
of a quadratic function allows us to specify contracts with price ranges as
discussed later in this section.

The cost function costi(L) is given by [Lunits ∗ (pcost + (pcost ∗ (βL)2)] where
Lunits is the number of units in use at load L, β is a small constant value that
determines how steep the cost curve is as the load approaches 1 and pcost is
the average price that IGGi pays to resource providers for a resource unit.
The price of a resource unit within IGGi is given by the second part of the
cost function (i.e. pcost + (pcost ∗ (βL)2). We derive the average price pcost paid
by IGGi to resource providers for a resource unit using Equation 2; where n is
the number of resource providers in Grid gi; cpi is the price of a resource unit
at resource provider i; and rui is the number of resource units contributed
by provider i until a given time horizon. This horizon is the request deadline
when calculating the marginal cost described next, or the time of the next
contract update; that is, the next time when the IGGs update the prices of

10

units negotiated.

pcost =
n∑
i=1

(
cpi

(
rui∑n
j=1 ruj

))
(2)

Request redirections are based on the per request marginal cost,mci : (u, L)→
< which is the increment in cost for Grid gi for agreeing to provide resource
units required by request u given its current load or allocations. If the request
u requires resource units that place uload load in Grid gi, then the marginal
cost of serving u is derived by Equation 3.

mci = costi(L+ uload)− costi(L) (3)

Each Grid gi has a load threshold, by crossing which it considers itself over-
loaded. The redirection of requests is enabled between Grids that have ne-
gotiated contracts, at within the contracted price range. A contract Ci,j be-
tween IGGi and IGGj has a price range PR(Ci,j) : [pricemin, pricemax], where
pricemin and pricemax are the minimum and maximum prices respectively paid
by IGGi for a resource unit allocated from IGGj. IGGi can hold contracts
with multiple Grids. During periods of peak load, IGGi can redirect requests
to IGGj if and only if both have a contract. Based on the current load levels,
they agree on a final price pricefinal within PR(Ci,j). IGGi pays the amount
equivalent to (pricefinal∗ number of units). The redirection occurs when a
Grid forwards requests to another because the marginal cost of fulfilling the
requests is higher than the amount that it would have to pay to the other
Grid to serve them.

Figure 3 illustrates the negotiation between IGGi and IGGj that have a price
range contract. Consider that IGGi sends an offer to IGGj when IGGi’s
marginal cost is higher than the minimum price of the contract with IGGj (1).
IGGj in turn sends an accept whose price is the price in the initial offer if its
own marginal cost is lower than the amount that IGGi is willing to pay (2). If
IGGj’s marginal cost is higher than the amount offered by IGGi, but smaller
than the maximum amount that IGGi would possibly pay (i.e. pricemax ∗
requestunits), then it sends a counter-offer whose price is mcj/requestunits (3);
otherwise, the offer is rejected (4). IGGi in turn, will accept the counter-offer if
its marginal cost is still higher than the amount asked by IGGj (5); otherwise,
the counter-offer is rejected (6).

5.1 Contract Types

There are two kinds of contracts: fixed price (i.e. PR(Ci,j) : [pricemax, pricemax]
where pricemax is the fixed price) and price range contracts (i.e. PR(Ci,j) :
[pricemax −∆, pricemax), where ∆ determines the price range. In the case of

11

Consumer:
IGGi

Contractor:
IGGj

1 sendOffer(rq,poffer)

3 [poffer*rqunits < mcj(rq,L) AND
 mcj(rq,L) <= pmax*rqunits]
sendCounterOffer(rq, mc/rqunits)

2 [poffer*rqunits >= mcj(rq,L)]
sendAccept(rq,poffer)

4 [mcj(rq,L) > pmax*rqunits]
sendReject(rq)

6 [pct * rqunits > mci(rq,L)]
rejectUsage(rq)

5 [pct * rqunits < mci(rq,L)]
confirmUsage(rq)

rq = request
poffer = priceoffer
pct = pricecounter-offer
pmax = pricemax
rqunits = requestunits

Fig. 3. Redirection negotiation.

price range contracts, participating Grids have to negotiate the final price at
runtime. As discussed by Balazinska et al. [22], a load management mecha-
nism based on fixed price contracts may present disadvantages in some cases.
For example, it reduces the flexibility in redirecting requests as a Grid can
only offload requests if its marginal cost is higher than the exact price of a
contract.

We define the price range for a resource unit considering the decrease of load
k from the load L. Let u be a request that requires uunits resource units and
causes an increase in load uload. The decrease in the per-unit marginal cost
due to removing k from the Grid’s L is represented by δk, which is defined by
Equation 4.

δk(L) =
mc(u, L− uload)−mc(u, L− k − uload)

uunits
(4)

δk is the approximate difference in the cost function gradient evaluated at the
load level including and excluding load k. Given a contract with fixed price
pricemax, L is the maximum load that an IGG can approach before its per
resource unit marginal cost exceeds pricemax. In order to estimate the price
range for a resource unit in the contracts in our experiments, we let L be the
load threshold; uunits be 1 and ∆ = δk. We evaluate different values for L and
k.

12

5.2 Provisioning Policies

The provisioning policies define how an IGG provisions resources to its Grid
users and how it offloads requests to peering Grids considering a contract net-
work [9]. Additionally, it specifies how the IGG accepts requests from other
Grids. During a given time interval or while requests previously submitted
are being handled, IGGi stores the requests in the waiting queue. After the
interval (5 minutes in the experiments performed in this work), IGGi orders
the contracts in ascending order of price and for each contract IGGi evaluates
whether there are requests that can be redirected to peer IGGj. The redirec-
tion occurs if the price that IGGi would pay to peer IGGj is lower than the
request’s marginal cost; otherwise, the request is served by the local Grid.

On the other hand, the peer IGGj stores offers containing requests during a
time interval (also 5 minutes in the experiments performed here). After each
interval, IGGj evaluates the offers. It sorts the offers by decreasing order of
price and checks whether the price offered is higher than the requests’ marginal
cost. If that is the case, IGGj accepts the request. IGGj then creates a resource
ticket for the request. If the marginal cost is higher than the amount offered
but lower than the maximum amount IGGi would be willing to pay (i.e.
the amount based on the maximum price specified in the contract), IGGj

will create a counter offer whose price is the request’s marginal cost. If the
marginal cost is higher than the maximum price IGGi can pay, then the offer
is rejected (Figure 3).

IGGs use an earliest start time policy to select the resources to serve a re-
quest. To calculate the load in the Grid, the load caused by the request and
consequently its marginal cost we use the request deadline [9]. As the requests
considered in this work require a best-effort service and do not have a dead-
line, we create a virtual deadline given by: the latest start time based on the
time slots held by the gateway plus the runtime estimate.

5.3 Storing Free Time Slots at the IGG

The resource providers issue free time slots and send them to the IGG on
a periodical basis. The IGG maintains the availability information given by
a provider on a modified red-black tree [32]. Each node has two references
namely to its predecessor and successor nodes thus forming a linked list. This
tree is analogous to the availability profile described by Mu’alem and Feitel-
son [26]; the nodes are ordered according to their times. That is, a free slot
may lead to the creation of two nodes in the tree, namely to mark its start
and finish times; free time slots can share nodes.

13

6 Performance Evaluation

6.1 Experimental Scenario

The simulated environment is composed of three Grids, namely DAS-2 in the
Netherlands and Grid’5000 and AuverGrid in France. The Grids DAS-2 [33],
Grid’5000 [34] and AuverGrid [35] comprise 5, 15 and 5 clusters respectively.
For detailed information on the characteristics of the clusters we refer to Iosup
et al. [8] and the Grid Workloads Archive website. 2 Figure 4 presents the
environment simulated.

DAS-2
Grid’5000

AuverGrid

AuverGrid provider site

Grid’5000 provider site

DAS-2 provider site

Peering arrangement

Grid

IGG
IGG

IGG

1

2

3

Fig. 4. Contract topology simulated.

The evaluation is performed through simulation by using a modified version
of GridSim. 3 We resort to simulation because it provides a controllable envi-
ronment and enables us to carry out repeatable experiments.

The workloads of the Grids are modelled using traces obtained from the Grid
Workloads Archive. We divided the traces into 4-month intervals. We use the
interval between the 9th-12th months of DAS-2’ trace, the 5th-8th months of
AuverGrid’s and the 17th-20th months of Grid’5000’s. We make an effort to
eliminate the cool-down phase in which resources start become idle by the lack

2 More details about the modelled resources and the traces used can be obtained
from the Grid Workloads Archive at http://gwa.ewi.tudelft.nl/pmwiki/
3 More information about the changes in the simulator is available at
http://www.gridbus.org/intergrid/gridsim.html

14

of job submissions. Specifically, the last simulation event is the arrival of the
last job submitted in any of the utilised workloads. Additionally, we attempt
to eliminate the system warm-up by disregarding the first two weeks of the
experiments. For the load forecast policy, the second week is used for training.

The resource providers’ local jobs are generated according to the workload
model proposed by Lublin and Feitelson [36]; we refer to this model as Lublin
99. We configure the Lublin 99 model to generate type-less jobs (i.e. we do
make distinctions between batch and interactive jobs); the maximum number
of CPUs used by the generated jobs is set accordingly to the number of nodes
in the clusters; we generate four month long workloads. We change two param-
eters of the Lublin 99 model when generating the workload for each cluster.
The medium size of a parallel job (specified in log2) is set to log2m− θ where
m is the number of CPUs in the system and θ is drawn uniformly from 1.5 to
3.5. In addition, the inter-arrival rate of jobs is modified by setting the β of
the used gamma distribution to a value uniformly distributed between 0.4871
and 0.55. These changes lead to workloads with different loads and different
arrival rates, which we believe is representative of Grid resources. For load
forecasting we use a weighted exponential moving average [37], considering a
window of 25 intervals.

We perform experiments considering L in Equation 4 equals to 99% of utilisa-
tion and k set to 10% of the Grid’s resources. In this case, when the fixed price
(pricemax) of a contract is the marginal cost of accepting a request requiring
one resource unit of the Grid’s capacity when the Grid is 99% utilised. The
price range contract has a maximum price of pricemax and a minimum price
given by pricemax minus the difference between the request marginal cost at
99% and at 89% of utilisation.

6.2 Performance Metrics

The performance evaluation considers two metrics: the Average Weighted Re-
sponse Time (AWRT) [38] of jobs and the percentage of the generated load
redirected by the IGGs. The AWRT measures how long in average users wait
to have their jobs executed. A short AWRT indicates that on average users do
not wait long for their jobs to complete. The redirected load demonstrates the
performance of the mechanism in terms of managing peak loads; the AWRT,
on the other hand, demonstrates whether the response time of user requests is
improved through peering of IGGs or not. Although we do not provide a cost
minimisation policy, the experiments also measure the amount of currency

15

spent by IGGs in acquiring resources to serve its users.

AWRTk =

∑
j∈τk

pj ·mj · (cj − sj)∑
j∈τk

pj ·mj

(5)

The AWRT is given by Equation 5, where mj is the number of processors re-
quired by job j, pj is the execution time of the job, cj is the time of completion
of the job and sj is its submission time. The resource consumption (pj ·mj)
of each job j is used as the weight.

6.3 Policy Acronyms

To reduce space, we abbreviate the name of the policies in the following man-
ner. A policy name comprises two parts separated by +. The first part repre-
sents the policy employed by the provider whereas the second represents the
gateway policy. In the resource provider’s side, Eb stands for EASY backfill-
ing, Cb for Conservative backfilling, M for Multiple partitions and Mf for
Multiple partitions with load forecast. On the other side, for the gateway’s pol-
icy, least-load means ‘submit to least loaded resource’, earliest represents
‘select the earliest start time’ based on the free time slots given by providers on
a periodical basis. This way, EbMf+earliest-partial for example, indicates
that providers use EASY backfilling, multiple partitions and load forecasts,
whereas the gateway submits jobs selecting the earliest start time based on
the availability information sent by providers at regular intervals.

6.4 Experimental Results

The parameters used for the experiments are summarized in Table 1. The fixed
cost of a resource in Equation 1 is drawn uniformly from 0.9 to 1. The load
threshold (L) and k are set to 99% and 10% respectively. The IGGs inform
one another about the fixed prices or the price ranges in their contracts based
on the current resource demand at intervals between 2 and 6 hours.

First Experiment: The first experiment evaluates the AWRT of both Grid
and local jobs in a scenario wherein the providers send the availability informa-
tion to the IGG every 12 hours. Figure 5 shows the AWRT of Grid applications
for four sets of allocation policies (i.e. Eb+least-load and EbMf+, Cb+ and
CbM+earliest-start). The initial four bars represent the AWRT under no peer-
ing between IGGs, that is, the IGGs have no contracts with one another and
therefore do not redirect requests. Bars 5 to 7 represent the AWRT of Grid
jobs when fixed-price contracts are established amongst IGGs, whereas bars 8

16

to 10 show the AWRT under price range contracts. The EASY backfilling with
‘submit to the least loaded resource’ (i.e. bar 1) is shown for the sake of com-
parison. We observe that in an overall, the AWRT is reduced by the peering
of Grids under both fixed-price and price-range contracts. This occurs despite
the fact that IGGs accumulate a number of requests to be handled every 5
minutes when contracts exist, in contrast to Eb+least-load in which requests
are handled upon their arrival at the gateway. The load forecast based policy
(EbMf+earliest-start) leads to a decrease in the AWRT of Grid jobs in both
fixed-price and price-range contracts, but it does not perform as good as the
conservative backfilling based policies. However, our initial expectations were
that this policy would have less impact on the providers’ local jobs because
they resize the free time slots given to the gateway based on load forecasts.

 200

 250

 300

 350

 400

 450

 500

 550

A
W

R
T

 (
×1

03)

Average Weighted Response Time of Grid Jobs

Eb+least-load (no contracts)
EbMf+earliest-start (no contracts)

Cb+earliest-start (no contracts)
CbM+earliest-start (no contracts)

EbMf+earliest-start (fixed-price contracts)
Cb+earliest-start (fixed-price contracts)

CbM+earliest-start (fixed-price contracts)
EbMf+earliest-start (price-range contracts)

Cb+earliest-start (price-range contracts)
CbM+earliest-start (price-range contracts)

Fig. 5. Average Weighted Response Time (AWRT) of Grid jobs.

The AWRT of local jobs show the impact of peering of Grids in the providers’
user applications (Figure 6). Similarly to the Grid applications, the AWRT of
local jobs is reduced with the peering of IGGs. The reduction is more accen-
tuated for the load forecast based policy, confirming our expectations that by
providing load forecasts, even if not very precise, the gateway can schedule
jobs accounting for the providers’ local load. Intriguingly, the AWRT of both
Grid and local jobs under price range contracts is similar to, and in same cases
worse than, that of fixed-price contracts. Although Grids can redirect more re-
quests under price-range contracts, this redirection does not seem to improve
the jobs’ AWRT. This is probably caused by the fact that IGGs handle the
requests and offers every 5 minutes. With price-range contracts, IGGs redirect
more requests and this delay seems to impact on the AWRT. We can improve
this scenario by introducing a buy-it-now mechanism where a Grid could make
an offer for immediate access to resources [39]. However, the investigation of

17

such a mechanism is not in the scope of this paper.

 200

 250

 300

 350

 400
A

W
R

T
 (

×1
03)

Average Weighted Response Time of Providers’ Local Jobs

Eb+least-load (no contracts)
EbMf+earliest-start (no contracts)

Cb+earliest-start (no contracts)
CbM+earliest-start (no contracts)

EbMf+earliest-start (fixed-price contracts)
Cb+earliest-start (fixed-price contracts)

CbM+earliest-start (fixed-price contracts)
EbMf+earliest-start (price-range contracts)

Cb+earliest-start (price-range contracts)
CbM+earliest-start (price-range contracts)

Fig. 6. Average Weighted Response Time (AWRT) of providers’ jobs.

Figure 7 presents the percentage from the load from each Grid migrated to
other Grids when providers send availability information every 12 hours. A
previous investigation [9] revealed that the job acceptance is higher when
the contracts define a price range, which allows Grids to redirect more load.
However, with a price range defined by k = 10%, Grids do not redirect more
load in all the cases. For example, Figure 7 shows that when providers use
conservative backfilling without multiple partitions, DAS-2 and AuverGrid in
fact redirect less load. The investigation of the impact of different price ranges
on provisioning under the all the policies described here is not in the scope of
this paper.

Second Experiment: The second experiment performed evaluates the AWRT
of Grid jobs in three situations wherein the providers send the availability in-
formation to the gateway firstly every 24 hours, secondly every 12 and finally
every 6 hours. Table 2 shows the AWRT of Grid jobs per Grid under each
scenario. In our previous study [9], we noticed that AuverGrid has a higher
load than DAS-2 and Grid’5000. The table shows that Grids with a low utili-
sation do not have a decrease in the AWRT of their Grid users’ applications.
In fact, we can notice that in price range contracts, the AWRT is worsened. In
contrast, AuverGrid has a substantial reduction in the AWRT of its Grid jobs.
We can conclude that in terms of improving the AWRT, the peering of Grids
with very different utilisation levels may not benefit the under-utilised Grids.
However, as presented next, the Grids have economic benefits. In addition,
the mechanism achieves its goal of redirecting requests from a Grid with high
utilisation to others with lower utilisation levels as shown in Figure 7.

18

 0

 5

 10

 15

 20

 25

 30

DAS AuverGrid Grid’5000

Lo
ad

 P
er

ce
nt

ag
e

Load Redirected to Other Grids per Contract and Policy Types

EbMf+earliest-start (fixed-price contracts)
Cb+earliest-start (fixed-price contracts)

CbM+earliest-start (fixed-price contracts)
EbMf+earliest-start (price-range contracts)

Cb+earliest-start (price-range contracts)
CbM+earliest-start (price-range contracts)

Fig. 7. Percentage of load generated by each Grid that was redirected to other Grids.

The experiments show that load management across Grids through resource
exchange considering the economic compensation of resource providers is pos-
sible. The amount of load migrated shows that Grids balance their load and
redirect requests thus minimising the costs with resource usage. The alloca-
tion policies allow gateways to make decisions on resources provided to peering
Grids.

During the second experiment, we also evaluated the number of currency units
spent by each IGG to acquire resources either from its providers or from other
IGGs when contracts exist. Table 3 summarises the results. It also presents
the amount of currency received by each IGG from other IGGs. The amount
received by one IGG does not include the quantity paid by its users to execute
their applications. Although the load redirection mechanism redirects requests
based on their marginal cost, it does not provide a cost minimisation approach.
That is, the marginal cost is calculated once a schedule for the job is found
or a ticket is created. To schedule the job, the gateway uses an earliest start
approach without searching for the cheapest resource. Despite this limitation,
the results presented in Table 3 corroborate those from Table 2. AuverGrid
has a reduction in the amount of currency spent acquiring resources when
contracts are established. For example, when providers send the availability
information every 24 hours, the amounts spent by AuverGrid for EbMf, Cb and
CbM are 388175, 389507 and 385897 respectively. If Grid establish fixed-price
contracts, AuverGrid’s expenditure with resources for EbMf, Cb and CbM
decrease, respectively, to 369901, 366215 and 363983. DAS-2 and Grid’5000 on
the other hand, tend to spend more acquiring resources than if peering did not
exist. However, they have an increase in the amount earned from other Grids.

19

As example, DAS-2 spends an amount of 28005, but receives 72102 from other
Grids. Even though as of writing we are investigating further the advantages
of peering for each Grid, we can conclude that Grids benefit from peering
even when they pay a higher price for resources because the amount earned
from other Grids generally contribute in reducing the overall expenditure with
resources.

7 Conclusions and Future Work

This paper presents the performance evaluation of policies for resource pro-
visioning across Grids and it demonstrates how Grids can redirect requests
to other Grids during periods of peak demand. We have presented simula-
tion results that demonstrate that the mechanism and policies are effective to
redirect requests across Grids leading to a reduction in the Average Weighted
Response Time (AWRT) of Grid applications. The interGrid load sharing
mechanism provides economic incentives to Grids to redirect or accept re-
quests from other Grids. Although underloaded Grids had the AWRT of their
user applications increased, they had economic benefits given by the amount
of currency received from other Grids. The experiments demonstrate that, de-
spite the imprecise resource availability information given by providers, the
load management across Grids through resource exchange is possible while
accounting for the economic compensation of resource providers. 4

We plan to investigate how IGGs can co-ordinate resource provisioning via
shared spaces implemented atop Distributed Hash Tables (DHT) or other
P2P systems. We are extending the mechanism by providing means for Grids
to redirect requests across several Grids (i.e. it will support transitive rela-
tionships between the Grids in the contract network). Future investigations
also include more sophisticated resource provisioning policies for the gate-
ways, specially for handling advance reservation requests, more sophisticated
load forecasting techniques and the impact of varying price-range contracts
on provisioning.

Acknowledgements

We thank Marco Netto, Sungjin Choi, Mukaddim Pathan and Alexandre di
Costanzo from the University of Melbourne for sharing their thoughts on the
topic. We are grateful to Dr. Franck Cappello, Dr. Olivier Richard, Dr. Em-
manuel Medernach and the Grid Workloads Archive group for making the

4 We are currently implementing the proposed architecture. Software requirement
specifications and other details are available at: http://www.gridbus.org/intergrid/

20

Grid workload traces available. This work is supported by DEST and ARC
Project grants. Marcos’ PhD research is partially supported by National ICT
Australia (NICTA).

References

[1] C. Catlett, P. Beckman, D. Skow, I. Foster, Creating and operating national-
scale cyberinfrastructure services, Cyberinfrastructure Technology Watch
Quarterly 2 (2) (2006) 2–10.

[2] T. Dunning, R. Nandkumar, International cyberinfrastructure: Activities
around the globe, Cyberinfrastructure Technology Watch Quarterly 2 (1).
URL http://www.ctwatch.org/quarterly/articles/2006/02

[3] K. Miura, Overview of Japanese science Grid project NAREGI, Progress in
Informatics (2006) 67–75.

[4] Open Science Grid, http://www.opensciencegrid.org (2005).

[5] L. Peterson, S. Muir, T. Roscoe, A. Klingaman, PlanetLab architecture: An
overview, Tech. Rep. PDN-06-031, PlanetLab Consortium, Princeton, USA
(May 2006).

[6] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the Grid: Enabling scalable
virtual organizations, International Journal of Supercomputer Applications
15 (3) (2001) 200–222.

[7] Grid Interoperability Now Community Group (GIN-CG),
http://forge.ogf.org/sf/projects/gin (2006).
URL http://forge.ogf.org/sf/projects/gin

[8] A. Iosup, D. H. J. Epema, T. Tannenbaum, M. Farrellee, M. Livny,
Inter-operating Grids through delegated matchmaking, in: 2007 ACM/IEEE
Conference on Supercomputing (SC 2007), Reno, USA, 2007.

[9] M. D. de Assunção, R. Buyya, A resource exchange mechanism for InterGrid
load management, Technical report, Grid Computing and Distributed Systems
(GRIDS) Laboratory, The University of Melbourne, Australia (April 2008).

[10] OpenPBS: The portable batch system software, Veridian Systems, Inc.,
Mountain View, CA (2005).
URL http://www.openpbs.org/scheduler.html

[11] The Condor Project homepage, http://www.cs.wisc.edu/condor/ (2005).

[12] R. Buyya, D. Abramson, J. Giddy, Nimrod/g: An architecture for a resource
management and scheduling system in a global computational grid, in: 4th
International Conference on High Performance Computing in Asia-Pacific
Region (HPC Asia 2000), Beijing, China, 2000, pp. 283–289.

21

[13] S. Venugopal, R. Buyya, L. Winton, A grid service broker for scheduling e-
science applications on global data grids: Research articles, Concurrency and
Computation: Practice and Experience (CCPE) 18 (6) (2006) 685–699.

[14] G. Singh, C. Kesselman, E. Deelman, A provisioning model and its
comparison with best-effort for performance-cost optimization in Grids, in: 16th
International Symposium on High Performance Distributed Computing (HPDC
2007), ACM Press, Monterey, California, USA, 2007, pp. 117–126.

[15] M. D. de Assunção, R. Buyya, Performance analysis of multiple site resource
provisioning: Effects of the precision of availability information, Technical
report, Grid Computing and Distributed Systems (GRIDS) Laboratory, The
University of Melbourne, Australia (May 2008).

[16] A. AuYoung, L. Grit, J. Wiener, J. Wilkes, Service contracts and aggregate
utility functions, in: 15th IEEE International Symposium on High Performance
Distributed Computing (HPDC 2006), Paris, France, 2006, pp. 119–131.

[17] L. Peterson, J. Wroclawski, Overview of the GENI architecture, GENI Design
Document GDD-06-11, GENI: Global Environment for Network Innovations
(January 2007).
URL http://www.geni.net/GDD/GDD-06-11.pdf

[18] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, K. G. Yocum, Sharing
networked resources with brokered leases, in: USENIX Annual Technical
Conference, Boston, Massachusetts, 2006, pp. 199–212.

[19] L. Ramakrishnan, D. Irwin, L. Grit, A. Yumerefendi, A. Iamnitchi, J. Chase,
Toward a doctrine of containment: Grid hosting with adaptive resource control,
in: 2006 ACM/IEEE Conference on Supercomputing (SC 2006), ACM Press,
New York, NY, USA, 2006, p. 101.

[20] L. Grit, D. Inwin, A. Yumerefendi, J. Chase, Virtual machine hosting for
networked clusters: Building the foundations for ‘autonomic’ orchestration,
in: 1st International Workshop on Virtualization Technology in Distributed
Computing (VTDC 2006), Tampa, Florida, 2006.

[21] R. Ranjan, A. Harwood, R. Buyya, SLA-based coordinated superscheduling
scheme for computational Grids, in: IEEE International Conference on Cluster
Computing (Cluster 2006), Barcelona, Spain, 2006, pp. 1–8.

[22] M. Balazinska, H. Balakrishnan, M. Stonebraker, Contract-based load
management in federated distributed systems, in: 1st Symposium on Networked
Systems Design and Implementation (NSDI), USENIX, San Francisco, CA,
2004, pp. 197–210.

[23] Y.-T. Wang, R. J. T. Morris, Load sharing in distributed systems, IEEE
Transactions on Computers C-34 (3) (1985) 204–217.

[24] S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp, I. Stoica, Load
balancing in dynamic structured peer-to-peer systems, Performance Evaluation
63 (3) (2006) 217–240.

22

[25] G. Singh, C. Kesselman, E. Deelman, Application-level resource provisioning
on the grid, in: 2nd IEEE International Conference on e-Science and Grid
Computing (e-Science 2006), Amsterdam, The Netherlands, 2006, pp. 83–83.

[26] A. W. Mu’alem, D. G. Feitelson, Utilization, predictability, workloads, and
user runtime estimates in scheduling the IBM SP2 with backfilling, IEEE
Transactions on Parallel and Distributed Systems 12 (6) (2001) 529–543.

[27] D. B. Jackson, Q. Snell, M. J. Clement, Core algorithms of the Maui scheduler,
in: 7th International Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP ’01), LNCS, Springer-Verlag, London, UK, 2001, pp. 87–
102.

[28] B. G. Lawson, E. Smirni, Multiple-queue backfilling scheduling with priorities
and reservations for parallel systems, in: 8th International Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP ’02), LNCS, Springer-
Verlag, London, UK, 2002, pp. 72–87.

[29] M. D. de Assunção, R. Buyya, S. Venugopal, InterGrid: A case for
internetworking islands of Grids, Concurrency and Computation: Practice and
Experience (CCPE) 20 (8) (2008) 997–1024.

[30] Y. Fu, J. Chase, B. Chun, S. Schwab, A. Vahdat, SHARP: An architecture
for secure resource peering, in: 19th ACM Symposium on Operating Systems
Principles (SOSP 2003), New York, NY, USA, 2003, pp. 133–148.

[31] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, A. Warfield, Xen and the art of virtualization, in: 19th ACM
Symposium on Operating Systems Principles (SOSP ’03), ACM Press, New
York, NY, USA, 2003, pp. 164–177.

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, 2nd Edition, MIT Press / McGraw-Hill, Cambridge, Massachusetts,
2001.

[33] The distributed ASCI supercomputer 2 (DAS-2), Dutch University Backbone
(2006).

[34] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot,
Y. Jégou, S. Lantéri, J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet,
B. Quetier, O. Richard, E.-G. Talbi, T. Iréa, Grid’5000: a large scale and
highly reconfigurable experimental Grid testbed, International Journal of High
Performance Computing Applications 20 (4) (2006) 481–494.

[35] Conseil Régional Auvergne, AuverGrid, http://www.auvergrid.fr (2007).

[36] U. Lublin, D. G. Feitelson, The workload on parallel supercomputers: Modeling
the characteristics of rigid jobs, Journal of Parallel and Distributed Computing
63 (11) (2003) 1105–1122.

[37] J. E. Hanke, A. G. Reitsch, Business Forecasting, 5th Edition, Prentice-Hall,
Inc., Englewood Cliffs, USA, 1995.

23

[38] C. Grimme, J. Lepping, A. Papaspyrou, Prospects of collaboration between
compute providers by means of job interchange, in: Job Scheduling Strategies for
Parallel Processing, Vol. 4942 of Lecture Notes in Computer Science, Springer,
Berlin / Heidelberg, 2008, pp. 132–151.

[39] A. AuYoung, B. Chun, C. Ng, D. C. Parkes, A. Vahdat, A. Snoeren,
Practical market-based resource allocation, Technical report CS2007-0901, CSE,
University of California San Diego (2007).

24

Tables Referred in the Manuscript

Table 1. Description of the parameters used in the experiments.

Parameter Description

Number of Grids 3

Contract Topology all-to-all (see Figure 4)

Cost of a resource unit 0.90–1.00

Load threshold (%) 99

Value of k (%) 10

Time between contract updates (hours) 1–6

Number of clusters at DAS-2 5

Number of CPUs at DAS-2 400

Number of clusters at AuverGrid 5

Number of CPUs at AuverGrid 475

Number of clusters at Grid’5000 15

Number of CPUs at Grid’5000 1368

25

T
ab

le
2.

T
he

A
W

R
T

of
G

ri
d

jo
bs

un
de

r
di

ffe
re

nt
po

lic
ie

s
an

d
in

te
rv

al
s.

P
ro

v
id

er
s

se
n
d
in

g
av

ai
la

b
il
it
y

in
fo

rm
at

io
n

ev
er

y
24

h
ou

rs

N
o

co
nt

ra
ct

s
F

ix
ed

-p
ri

ce
co

nt
ra

ct
s

P
ri

ce
-r

an
ge

co
nt

ra
ct

s

G
ri

d
E

bM
f

C
b

C
bM

E
bM

f
C

b
C

bM
E

bM
f

C
b

C
bM

D
A

S
27

69
1

32
65

3
32

86
5

30
31

1
39

51
8

34
23

6
30

07
9

35
57

5
36

46
7

A
uv

er
G

ri
d

85
32

64
10

09
03

4
10

09
37

0
45

31
25

43
22

18
46

30
38

52
00

81
46

58
52

38
70

86

G
ri

d´
50

00
17

37
57

18
05

41
18

27
93

17
61

62
17

98
72

18
34

29
17

50
15

18
08

46
18

51
85

P
ro

v
id

er
s

se
n
d
in

g
av

ai
la

b
il
it
y

in
fo

rm
at

io
n

ev
er

y
12

h
ou

rs

D
A

S
25

85
8

28
87

6
28

96
9

28
08

2
34

05
9

33
24

3
28

09
6

33
28

7
33

91
5

A
uv

er
G

ri
d

97
93

86
10

02
69

2
99

98
48

55
62

94
47

02
93

49
72

27
55

19
42

54
99

30
49

74
93

G
ri

d´
50

00
17

86
81

17
70

33
17

67
17

17
24

10
17

87
09

17
57

60
17

73
35

17
82

20
17

85
22

P
ro

v
id

er
s

se
n
d
in

g
av

ai
la

b
il
it
y

in
fo

rm
at

io
n

ev
er

y
6

h
ou

rs

D
A

S
25

51
8

27
04

4
27

15
2

29
02

2
29

37
4

33
86

9
42

00
9

28
88

9
29

76
2

A
uv

er
G

ri
d

98
06

50
99

60
09

99
71

19
57

18
26

52
48

26
44

98
51

54
41

59
53

32
75

53
59

06

G
ri

d´
50

00
18

06
64

17
28

78
17

55
10

18
60

64
17

16
90

17
48

87
17

40
07

17
59

10
17

41
24

26

T
ab

le
3.

N
um

be
r

of
cu

rr
en

cy
un

it
sa

re
ce

iv
ed

by
an

IG
G

fr
om

ot
he

r
IG

G
s

(i
.e

.
re

ce
iv

ed
)b

an
d

sp
en

t
by

th
e

IG
G

ac
qu

ir
in

g
re

so
ur

ce
s

fr
om

it
s

pr
ov

id
er

s
or

fr
om

ot
he

r
IG

G
s

w
he

n
co

nt
ra

ct
s

ar
e

en
ab

le
d

(i
.e

.
sp

en
t)

.

P
ro

v
id

e
rs

se
n
d
in

g
a
v
a
il

a
b
il

it
y

in
fo

rm
a
ti

o
n

e
v
e
ry

2
4

h
o
u
rs

N
o

co
n
tr

ac
ts

F
ix

ed
-p

ri
ce

co
n
tr

ac
ts

P
ri

ce
-r

an
ge

co
n
tr

ac
ts

E
b
M

f
C

b
C

b
M

E
b
M

f
C

b
C

b
M

E
b
M

f
C

b
C

b
M

G
ri

d
sp

en
t

sp
en

t
sp

en
t

re
ce

iv
ed

sp
en

t
re

ce
iv

ed
sp

en
t

re
ce

iv
ed

sp
en

t
re

ce
iv

ed
sp

en
t

re
ce

iv
ed

sp
en

t
re

ce
iv

ed
sp

en
t

D
A

S
3
0
8
1
0

2
6
8
2
8

2
6
6
1
4

7
9
4
7
5

3
2
2
5
9

7
8
3
3
5

2
8
8
3
5

7
2
1
0
2

2
8
0
0
5

7
0
0
5
4

3
2
1
3
8

8
1
4
9
2

2
8
2
4
8

9
0
7
7
1

2
8
6
4
6

A
u
ve

rG
ri

d
3
8
8
1
7
5

3
8
9
5
0
7

3
8
5
8
9
7

1
1
4

3
6
9
9
0
1

8
1

3
6
6
2
1
5

2
3
6
3
9
8
3

1
2

3
7
7
9
5
9

9
9

3
6
7
1
8
3

1
3
2

3
6
3
5
0
6

G
ri

d
´5

00
0

1
8
1
2
7
5

1
5
7
0
9
3

1
5
9
9
0
0

2
5
9
7
0

1
8
1
6
7
1

2
3
5
6
6

1
5
6
5
7
7

2
2
8
6
4

1
5
7
8
0
0

2
5
1
3
2

1
8
1
6
5
1

2
1
6
8
0

1
5
7
1
8
6

2
6
1
4
3

1
5
7
6
6
0

P
ro

v
id

e
rs

se
n
d
in

g
a
v
a
il

a
b
il

it
y

in
fo

rm
a
ti

o
n

e
v
e
ry

1
2

h
o
u
rs

D
A

S
3
1
1
2
0

2
7
0
4
0

2
6
6
6
2

7
0
3
6
1

3
2
3
0
3

7
3
8
7
9

2
9
0
4
2

6
4
5
9
7

2
8
8
4
6

6
6
9
8
0

3
2
4
7
6

5
8
6
8
2

2
8
8
0
8

6
6
4
0
4

2
9
0
4
5

A
u
ve

rG
ri

d
3
7
8
8
2
5

3
8
8
7
8
4

3
8
7
5
2
5

1
0
9

3
7
8
3
8
5

7
0

3
7
2
7
2
4

2
3
7
3
5
4
0

2
5
0

3
7
7
6
4
3

0
3
7
5
7
2
8

7
5

3
7
0
3
1
6

G
ri

d
´5

00
0

1
8
1
4
6
2

1
6
0
9
7
0

1
5
9
3
2
7

1
2
8
9
2

1
7
9
9
3
8

1
3
7
6
1

1
6
0
5
4
0

1
6
6
4
2

1
6
3
1
8
4

1
7
4
1
9

1
8
1
9
4
7

1
4
7
1
8

1
6
0
0
5
7

2
0
1
9
6

1
6
1
2
8
5

P
ro

v
id

e
rs

se
n
d
in

g
a
v
a
il

a
b
il

it
y

in
fo

rm
a
ti

o
n

e
v
e
ry

6
h
o
u
rs

D
A

S
3
0
8
1
2

2
7
4
9
1

2
7
4
9
6

6
8
0
3
1

3
2
1
9
5

6
5
7
9
5

2
9
1
5
0

7
2
1
5
8

3
0
3
2
5

7
7
9
6
1

3
2
4
4
4

6
2
1
0
8

2
8
9
9
3

6
5
4
9
1

2
9
4
0
2

A
u
ve

rG
ri

d
3
8
9
5
9
2

3
9
0
2
1
5

3
8
8
9
6
3

2
3
1

3
7
7
7
0
3

1
7
0

3
7
4
4
1
1

4
3
1

3
7
6
0
4
2

6
3
1

3
7
7
8
5
6

2
0
5

3
7
4
6
7
3

3
7
1

3
7
5
3
9
5

G
ri

d
´5

00
0

1
7
9
3
3
5

1
6
4
1
6
3

1
6
3
6
6
5

1
6
8
0
3

1
8
0
7
7
0

1
8
1
8
5

1
6
2
9
8
8

1
1
9
7
9

1
6
4
2
6
3

1
4
2
3
3

1
7
9
9
4
4

1
8
7
3
1

1
6
3
6
2
6

1
3
7
1
1

1
6
3
1
5
3

a
T

o
m

in
im

is
e

th
e

sp
ac

e
us

ed
by

th
e

ta
bl

e,
th

e
am

ou
nt

s
sp

en
t

an
d

re
ce

iv
ed

w
he

re
di

vi
de

d
by

10
,0

00
.

b
P

le
as

e
no

te
th

at
‘r

ec
ei

ve
d’

is
th

e
am

ou
nt

re
ce

iv
ed

by
on

e
IG

G
fr

om
ot

he
rs

IG
G

an
d

do
es

no
t

in
cl

ud
e

th
e

am
ou

nt
pa

id
by

th
e

G
ri

d
us

er
s

to
ex

ec
ut

e
th

ei
r

ap
pl

ic
at

io
ns

.

27

Captions of the Figures Used in the Manuscript

1 The provisioning scenario with multiple Grids considered in
this work.

2 Free time slots (conservative backfilling).

3 Redirection negotiation.

4 Contract topology simulated.

5 Average Weighted Response Time (AWRT) of Grid jobs.

6 Average Weighted Response Time (AWRT) of providers’ jobs.

7 Percentage of load generated by each Grid that was redirected
to other Grids.

28

