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Abstract

Data-intensive Grid applications need access to large
datasets that may each be replicated on different resources.
Minimizing the overhead of transferring these datasets to
the resources where the applications are executed requires
that appropriate computational and data resources be se-
lected. In this paper, we introduce a heuristic for the se-
lection of resources based on a solution to the Set Covering
Problem (SCP). We then pair this mapping heuristic with
the well-known MinMin scheduling algorithm and conduct
performance evaluation through extensive simulations.

1 Introduction

Grids [8] aggregate computational, storage and network
resources to provide pervasive access to their combined ca-
pabilities. Additionally, Data Grids [6, 12] provide services
such as low latency transport protocols and data replication
mechanisms to distributed data-intensive applications that
need to access, process and transfer large datasets stored in
distributed repositories. Such applications are commonly
used by communities of researchers in domains such as
high-energy physics, astronomy and biology.

Distributed data-intensive applications commonly con-
sist of tasks that process datasets that are located on various
storage repositories or data hosts. Each of these datasets
may be replicated at several locations that are connected to
each other and to the computational sites (or compute re-
sources) through networks of varying capability. Also, the
datasets are generally large enough (of the order of Giga-
Bytes (GB) and higher) that transferring them from stor-
age resources to the eventual point of execution produces
a noticeable impact on the execution time of the applica-
tion. Therefore, mapping tasks to the appropriate compute
resources for execution and to the corresponding data re-

sources for accessing the required datasets such that the
overall execution time is minimized is a challenging prob-
lem.

The work in this paper is mainly concerned with schedul-
ing applications that consist of a collection of tasks without
interdependencies, each of which requires multiple datasets,
onto a set of Grid resources. (Each task is translated into a
job that is scheduled on to a computational resource and
requests datasets from the storage resources so identified.
Therefore, for the rest of the paper, we will refer to such
tasks as jobs as well.) The scheduling strategy has to map a
task on to a resource set consisting of one compute resource
to execute the task and one data host each for transferring
each dataset required for the computation. In this paper, we
present such a mapping heuristic based on a solution to the
SCP and evaluate it against other heuristics through simula-
tion.

The rest of the paper is structured as follows: the next
section presents the resource model and the application
model that we target in the research presented in this paper.
The mapping heuristic is presented in the following section
and is succeded by details of experimental evaluation and
consequent results. Finally, we present related work and
conclude the paper.

2 Model

2.1 Resource Model

We model the target data-intensive computing environ-
ment based on existing production testbeds such as the Eu-
ropean DataGrid testbed [12] or the United States Grid3
testbed [9]. As an example, Figure 1 shows a subset of
European DataGrid Testbed 1 derived from Bell, et. al [2].
The resources in the figure are spread across 7 countries and
belong to different autonomous administrative domains.

In such Grid networks, we consider a data-intensive
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Figure 1. European Data Grid Testbed 1 [2].

computing environment to consist of M compute resources
R = {rm}M

m=1 and P data hosts,D = {dp}
P
p=1, collec-

tively referred to as resources. A compute resource is a high
performance computing platform such as a cluster consist-
ing of processing nodes that are connected in a private local
area network and are managed by a batch job submission
system hosted at the ”head” or ”front-end” node that is con-
nected to the public Internet. A data host can be a stor-
age resource such as a Mass Storage Facility connected to
the Internet or may be simply a storage device attached to
a compute resource in which case, it inherits the network
properties of the latter. It is important to note that even in
the second case, the data host is considered as a separate
entity from the compute resource.

Data is organised in the form of datasets that are repli-
cated on the data hosts by a separate replication process that
follows a strategy (e.g. [2]) that takes into consideration var-
ious factors such as locality of access, load on the data host
and available storage space. Information about the datasets
and their location is available through a catalog such as the
Storage Resource Broker Metadata Catalog [19].

Figure 2 shows a simplified data-intensive computing
environment consisting of four compute resources and an
equal number of data hosts connected by links of differ-
ent bandwidths. We consider the logical network topology
wherein each resource is connected to every other resource
by a distinct network link. The time taken by a compute
resource to access a dataset located on the storage resource
at the same site is limited only by the intra-site bandwidth
if the storage is a separate physical machine or by the band-
width between the hard disk and other peripherals if the
storage is on the compute machine itself. In both cases, it is
considered to be an order of magnitude lower than the time
taken to access a dataset through the Internet from other
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Figure 2. A data-intensive environment.

sites as there is contention for bandwidth among the vari-
ous sites. Therefore, for the purpose of this study, only the
bandwidth between different physical sites is taken into ac-
count .

2.2 Application Model
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Figure 3. Job Model.

The application is composed of a set of N jobs with-
out interdependencies, J = {ji}

N
i=1

. Typically, N � M .
Each job j, j ∈ J requires a subset F j = {f j

k}
K
k=1

of a set
of datasets, F , which are each replicated on a subset of P
data hosts, D = {dp}

P
p=1

. For a dataset f ∈ F , Df ⊆ D
is the set of data hosts on which f is replicated. Each job
requires one processor in a compute resource for execut-
ing the job and one data host each for accessing each of
the K datasets required by the job. The compute resource
and the data hosts thus selected are collectively referred to
as the resource set associated with the job and is denoted by
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Sj = {{r}, {dk}
K
k=1

} where r ∈ R is the compute resource
where the job is to be executed and dk is the data host se-
lected for accessing f j

k ∈ F j . Figure 3 shows an example
of such a job j ∈ J that requires resources shown in Figure
2.
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Figure 4. Job Execution Stages and Times.

Figure 4 shows an example of a data-intensive job with
the times involved in various stages shown along a horizon-
tal time-axis. Tw is the time spent in waiting in the queue
on the compute resource and Tc is the time spent by the job
in purely computational operations (also called computation
time). Tw and Tc are functions of the load and processing
speed of the compute resource. Tfi

is the time required to
transfer the file fi from its data host to the compute resource
and is dependent on the available bandwidth between the
two. The completion time for the job, Tj , is the wallclock
time taken for the job to finish execution and is a function of
these three times. For large datasets, the data transfer time
impacts the completion time significantly. While the trans-
fer time is determined by the manner in which the dataset
is processed by the job, it is also influenced by the selec-
tion of data hosts. For example, many applications request
and receive required datasets in parallel before starting com-
putation. In this case, Tj = Tw + max1≤i≤K(Tfi

) + Tc

However, the number of simultaneous transfers determines
the bandwidth available at the receiver end for each transfer
and therefore, the Tfi

. Transfer times can be minimized by
locating a compute resource associated with a data host that
has the maximum number of datasets required by the job
so that the bulk of the data access is local. This would also
benefit the case where the job accesses datasets sequentially.

We wish to minimize the total makespan [14] of the ap-
plication consisting of N such data-intensive jobs. To that
end, we follow the well-known MinMin heuristic, proposed
in [14], to schedule the entire set of jobs. The MinMin
heuristic submits the task with the minimum MCT to the
compute resource that guarantees it. Therefore, our aim
here is to select a resource set that produces the Minimum
Completion Time (MCT) for a job. We adopt the strategy of
finding the resource set with the least number of datahosts
required to access the datasets required for a job and then,
finding a suitable compute resource to execute it. We exper-
imentally show that this approach produces schedules that

are competitive with the best and is reasonably fast as well.

3 Scheduling

Figure 5 lists a generic scheduling algorithm for schedul-
ing a set of jobs on a set of distributed compute resources.
Each of the steps can be implemented independently of each
other and therefore, many strategies are possible. In this pa-
per, we concentrate on the process within the for loop, i.e.,
finding the appropriate resource set for a job.

The scheduler forms a part of a larger application exe-
cution framework such as a resource broker (e.g.[24]). The
resource broker is able to identify resources that meet mini-
mum requirements of the application such as architecture
(instruction set), operating system, storage threshold and
data access permissions and these are provided as suitable
candidates for job execution to the scheduler.

while there exists unsubmitted jobs do
Update the resource performance data based on job
scheduled in previous intervals
Update network data between resources based on current
conditions
foreach unsubmitted job do

Find the MCT and the resource set that guarantees
that time

end
repeat

Heuristically assign mapped jobs to each compute
resource

until all jobs are submitted or no more jobs can be
submitted
Wait until the next scheduling event.

end
Figure 5: A Generic Scheduling Algorithm.

3.1 Mapping Heuristic

For a job j ∈ J , consider a graph Gj = (V, E) where
V = (

⋃

f∈F j{Df}) ∪ F j and E is the set of all directed
edges {d, f} such that d ∈ Df . As an example, for the
job in Figure 3, we can derive the graph shown in Figure
6(a). Our aim here is to find the minimum set H of data
hosts such that there exists an edge from a member of H
to f for every f ∈ Fj in G and no other set H ′ ⊂ H
satisfies that requirement. The set H is called the minimal
dominating vertex set for graph G. However, it is possible
that more than one such set exists for a graph. Our interest
is in finding a minimal dominating set of datahosts such that
the MCT is reduced.

From Figure 6(a), we can build a reduced adjacency ma-
trix A for graph G wherein aik = 1 if data host di con-
tains fk. Such an adjacency matrix is shown in Figure 7(a).
Therefore, the problem of finding the minimum dominat-
ing sets for G is now equivalent to finding the sets of the
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Figure 6. (a) Directed graph of data resources
and data sets for job j.(b) A dominating set
for the data graph.
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Figure 7. (a) Adjacency Matrix. (b) Tableau.

least number of rows such that every column contains an
entry of 1 in atleast one of the rows. Another way to look at
the problem is to consider the data hosts as sets of datasets.
Then, the problem becomes finding the minimum number
of such sets (data hosts) such that all datasets can be “cov-
ered”. This problem has been studied extensively as the Set
Covering Problem [1].

Christofides [7] provides an approximate tree search al-
gorithm for finding a solution to the general Set Covering
Problem. Based on this algorithm, we propose a mapping
heuristic to find a minimum dominating set that ensures the
smallest makespan. The heuristic is listed in Figure 8.

At the start of the process, from the adjacency matrix, we
create a tableau T consisting of K blocks of rows, where the
kth block consists of rows corresponding to data hosts that
contain fk. An example of a tableau generated from the ad-

Begin Main
Step 1. For a job J, create the adjacency matrix A with data
hosts forming the rows and datasets forming the columns.
Step 2. Sort the rows of A in the descending order of the
number of 1’s in a row.
Step 3. Create the tableau T from sorted A and begin with
initial solution set Bfinal = φ, B = φ, E = φ and z =∞
Step 4. Search(Bfinal,B,T,E,z)
Step 5. Sj ← {{r}, Bfinal} where r ∈ R such that
MCT (Bfinal) is minimum
End Main

Search(Bfinal,B,T,E,z)
Step 1. Find minimum k, such that fk /∈ E. Let Tk be the
block of rows in T corresponding to fk. Set a pointer q to the
top of Tk.
while q does not reach the end of Tk do

FT ← {fi|tqi = 1 ∧ 1 ≤ i ≤ K}
B ← B ∪ {dk

q }, E ← E ∪ FT

if E = Fj then
if z > MCT (B) then

Bfinal ← B, z ←MCT (B)

else Search(Bfinal, B,T,E,z)
B ← B − {dk

q }, E ← E − FT

Increment q
end

Figure 8: Listing for SCP-based Mapping Heuristic.

jacency matrix of Figure 7(a) is shown in Figure 7(b). The
set of data hosts B keeps track of the current solution set
of datahosts, the set E contains the datasets already cov-
ered by the solution set and the variable z keeps track of the
makespan offered by the current solution set. The final so-
lution set is stored in Bfinal. During execution, the blocks
are searched sequentially starting from the kth block where
k is the smallest index, 1 ≤ k ≤ K such that fk /∈ E.
Within the kth block, let dk

q mark the data host under con-
sideration where q is a row pointer within block k. We add
dk

q to B and all the datasets for which the corresponding
row contains 1, to E as they are already covered by dk

q .
These datasets are removed from consideration and the pro-
cess then moves to the next uncovered block until E = Fj ,
that is, all the datasets have been covered. The function
MCT (B) computes the completion time for each compute
resource combined with the solution set B and returns with
the MCT so found.

Through the recursive procedure outlined in the listing,
the heuristic then backtracks and discovers other solution
sets. The solution set that guarantees minimum makespan
is then chosen as the final . The search terminates when
the first block is exhausted. Therefore, before the tableau
is created, we sort the rows of the adjacency matrix (that
is, the data hosts) in the descending order of the number
of columns with 1’s (or the number of datasets contained).
Also, in the tableau, the same sorting order is applied to the
rows in each block. As the minimal dominating sets would
obviously contain atleast one of the datahosts with the maxi-
mum number of datasets, this increases the chances of more
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dominating sets being in the path of the search function
within the proposed heuristic. Overall, the running time of
the mapping heuristic is given by O(MK2) where MK2 is
the number of resource sets that are searched by the heuris-
tic to find one that provides the least completion time.

Other heuristics that are possible or have been proposed
include the ones described below:

Compute-First - In this mapping, a compute resource
that ensures minimum computation time (Tc) is selected for
the job first followed by choosing data hosts that have the
best bandwidths to the selected resource. This is in contrast
to our approach that places more importance on selection of
data hosts. The running time of this heuristic is O(MK).

Greedy - This heuristic builds the resource set by iterat-
ing through the list of datasets and making a greedy choice
for the data host for accessing each dataset, followed by
choosing the nearest compute resource for that data host.
At the end of each iteration, it checks whether the compute
resource so selected is better than the one selected in pre-
vious iteration when the data hosts selected previously are
considered. This heuristic was presented in [23]. The run-
ning time of this heuristic is O(KP ).

Brute Force - In this case, all the possible resource sets
for a particular job are generated and the one guaranteeing
the MCT is chosen for the job. While this heuristic guar-
antees that the resource set selected will be the best for the
job, it searches through MP K resource sets at a time. This
leads to unreasonably large search spaces for higher values
of K. For example, for a job requiring 5 datasets with 20
possible data hosts and 20 available compute resources, the
search space will consist of 64 ∗ 106 resource sets.

A point to note is that the sets of datasets required by 2 or
more jobs in the same set are not mutually exclusive. Any
dataset that is transferred during from one resource to an-
other is retained at the receiver and therefore, this presents
an additional source of data to successive jobs requiring ac-
cess to that dataset.

4 Experiments

We have used GridSim with its new Data Grid capabil-
ities [22] to simulate the data-intensive environment and
evaluate the performance of scheduling algorithms. For
evaluation, we have used the EU DataGrid topology based
on the testbed shown in Figure 1. The details of the Grid
resources used in our evaluation is shown in Table 1. All
the resources were simulated as clusters with a batch job
management system using space-shared policy, as a front-
end to single CPU processing nodes. The CPUs are rated in
terms of MIPS (Million Instructions Per Sec). The resource
at CERN was considered as a pure data source (data host)
in our evaluation and hence, no jobs were submitted to it.
To model resource contention caused by multiple users, we

Table 1. Resources within EDG testbed used
for evaluation.

Resource Name
(Location)

No. of
Nodes

CPU
Rating
(MIPS)

Storage
(TB)

Load

RAL (UK) 41 1140 2.75 0.9
Imperial College
(UK)

52 1330 1.80 0.95

NorduGrid (Nor-
way)

17 1176 1.00 0.9

NIKHEF (Nether-
lands)

18 1166 0.50 0.9

Lyon (France) 12 1320 1.35 0.8
CERN (Switzer-
land)

– – 12 –

Milano (Italy) 7 1,000 0.35 0.5
Torino (Italy) 4 1330 0.10 0.5
Catania (Italy) 5 1200 0.25 0.6
Padova (Italy) 13 1,000 0.05 0.4
Bologna (Italy) 20 1140 5.00 0.8

associate a mean load with each resource. The load factor is
the ratio of the number of CPUs that are occupied to the to-
tal number of CPUs available within a resource. During the
simulation, for each resource, we derive the instantaneous
resource load from a Gaussian distribution with its mean as
the load shown in Table 1.

Similarly, we model the variability of the available net-
work bandwidth by associating an availability factor with
a link which is the ratio of the available bandwidth to the
total bandwidth. During simulation, the instantaneous mea-
sure is derived from another Gaussian distribution centered
around a mean availability factor is assigned at random to
each of the links.

Within this evaluation, we consider a universal set of
datasets, each of which are replicated on one or more of
the resources. Studies of similar environments [16] have
shown that the size of the datasets follow a heavy-tailed
distribution in which there are larger numbers of smaller
size files and vice versa. Therefore, we generate the set of
datasets with sizes distributed according to the logarithmic
distribution in the interval [1GB, 6GB]. The distribution of
datasets depends on many factors itself including variations
in popularity, the replication strategy employed and the na-
ture of the fabric. Within our evaluation, we have used two
commonly considered patterns of file distribution:

• Uniform : Here, the distribution of datasets is modeled
on a uniform random probability distribution. In this
scenario, each file is equally likely to be replicated at
any site.
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• Zipf : Zipf-like distributions follow a power law model
in which the probability of occurence of the ith ranked
file in a list of files is inversely proportional to i−a

where a ≤ 1. In other words, a few files are dis-
tributed widely whereas most of files are found in one
or two places. This models a scenario where the files
are replicated on the basis of popularity. It has been
shown that Zipf-like distributions holds true in cases
such as requests for pages in World Wide Web where
a few of the sites are visited the most [3]. This sce-
nario has been evaluated for a Data Grid environment
in related publications [4].

Henceforth, we will consider the distribution applied to be
described by the variable Dist. We also control the dis-
tribution of datasets through a parameter called the degree
of replication which is the maximum possible number of
copies of any dataset in a Data Grid. The degree of replica-
tion in our evaluation is 5.

On the application side, there are three variables that de-
termine the performance of the application: the size of the
application or the number of jobs in the application (N ),
the number of datasets required by each job (K) and the
computational size of a job (Size(j)) expressed in Million
Instructions (MI). For each job, K datasets are selected at
random from the universal set of datasets. For the pur-
pose of comparison, we keep K a constant among all the
jobs in a set although this is not a condition imposed on
the heuristic itself. An experiment is described by the tuple
(N, K, Size, Dist). At the beginning of each experiment,
the set of datasets, their distribution among the resources
and the set of jobs are generated. This configuration is then
kept constant while each of the four mapping heuristics are
evaluated in turn. To keep the resource and network con-
ditions repeatable among evaluations, we use the Colt ran-
dom number generator [11] with a constant seed. As there
are numerous variables involved, we have conducted eval-
uation with different values for N, K, Size and Dist. We
have conducted 50 such experiments and in the next section,
we present results of our evaluation.

4.1 Results

Table 2. Summary of Evaluations
Mapping
Heuristic

Geometric
Mean

Avg. deg Avg. rank

Compute-
First

37593.71 69.01 (19.4) 3.63 (0.48)

Greedy 36927.44 71.86 (50.55) 3.23 (0.71)
SCP 24011.17 7.68 (10.42) 1.67 (0.6)
Brute Force 23218.49 3.87 (6.46) 1.47 (0.58)
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Figure 9. Makespan vs Number of Jobs.

The results of our evaluations are summarised in Table 2
and are based on the methodology provided in [5]. SCP
refers to the heuristic proposed in this paper. For each map-
ping heuristic, the table contains three values: 1) Geomet-
ric Mean of the makespans, 2) Average degradation (Avg.
deg.) from the best heuristic and 3) Average ranking (Avg.
rank) of each heuristic. The geometric mean is used as the
makespans vary in orders of magnitude according to param-
eters such as number of jobs per application set, number
of files per job and the size of each job. Degradation for
a heuristic is the difference between the makespan of that
heuristic and that of the best heuristic for a particular exper-
iment and expressed as a percentage of the latter. The aver-
age degradation is computed as an arithmetic mean over all
experiments and the standard deviation of the population
is given in the parantheses next to the means in the table.
This is the measure of how far a heuristic is away from the
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best heuristic for an experiment. A lower number certainly
means that the application is on an average the best one. The
ranking is in the ascending order of makespans produced by
the heuristics, that is, lower the makespan, lower the rank
of the heuristic. The standard deviation of the population is
provided alongside the averages in the table.

The three values together provide a consolidated view of
the performance of each heuristic. For example, we can
see that on average Compute-First and Greedy both per-
form worse than either SCP or Brute Force. However, the
standard deviation of the population is much higher in the
case of Greedy than that of Compute-First. Therefore, it can
also be said that Compute-First can be expected to perform
worst most of time. Indeed, in a few of the experiments,
Greedy performed as good or even better than SCP while
Compute-First never came close to the performance of the
other heuristics.
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Between SCP and Brute Force, as expected, the latter is
the clear winner having a consistently lower score than the
former. However, the computational complexity of Brute
Force means that as the number of datasets per job in-
creases, the number of resource sets that need to be con-
sidered by the Brute Force heuristic increases dramatically.
The geometric mean and average rank of SCP is close to
that of Brute Force heuristic. The average rank is less than
2 for both heuristics which implies that in many scenarios,
SCP provides a better performance than Brute Force.

This view is reinforced from the graphs in Figures 9-11
which show the effect of varying one of the variables, all
others kept constant. SCP and Brute-force give almost sim-
ilar performance while either of Greedy or Compute-First
is the worst in almost all cases. The effect of job distribu-
tion is most visible on the Greedy heuristic. When the files
are distributed according to the Zipf distribution, the perfor-
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mance of Greedy comes close to or in some cases, becomes
as competitive as SCP. This is due to the fact that in Zipf
distribution, there are most of the datasets are not replicated
widely and therefore, there is not as much choice of data-
hosts as there is in Uniform distribution. In such a case,
Greedy is able to form minimal resource sets. Also, it can be
seen that as the number of jobs increases, the makespan of
Compute-First and Greedy heuristic rise more steeply than
the other two.

5 Related Work

Casanova, et.al [5] extend three well-known schedul-
ing heuristics, (Max-min, Min-min and Sufferage) that were
introduced previously in [14] for scheduling independent
tasks onto heterogeneous resources, to consider data trans-
fer requirements . A fourth heuristic, XSufferage, was also
introduced to take into consideration sharing of files be-
tween tasks. However, the source of all the files for the
tasks is the resource that dispatches the jobs. Ranganathan,
et. al [20] discuss a decoupled scheduling architecture that
has two components: one schedules jobs to the resources
and the other replicates data on such resources in anticipa-
tion of the incoming jobs. Similar studies have been per-
formed for different replication strategies in [2]. Park and
Kim [17] propose a scheduler which schedules jobs close to
the source of data or else replicates the data to the job exe-
cution site. The difference between our work and the ones
presented before is that we explicitly consider the scenario
in which a job requires multiple datasets whereas the others
are restricted to one dataset per job.

Giersch, et. al [10] present a follow-up to [5] where
they consider the general problem of scheduling tasks re-
quiring multiple files that are replicated on several repos-
itories. They prove that this problem is NP-complete and
propose faster heuristics that are competitive with XSuffer-
age. However, the approach followed in their paper is that
of scheduling the jobs first and then replicating the data so
as to minimize access time. This general approach, also fol-
lowed by the previous papers and which we have evaluated
as Compute-First, may not produce the best schedules as
has been shown in the evaluation. On the other hand, we
consider the selections of computational and data resources
to be interrelated. Genetic Algorithm (GA) based heuristics
were introduced in [13] for scheduling decomposable tasks
and in [18] for sets of independent jobs that have data re-
quirements. We consider non-decomposable jobs that are
individually mapped to a set of resources. However, with
modification, GA can be used in our context and will be the
subject of a future evaluation. Mohamed and Epema [15]
present a Close-to-Files algorithm which searches the en-
tire solution space for a combination of computational and
storage resources that minimizes execution time. Their job

model is restricted to one dataset per file. This approach,
which we evaluate as Brute Force, produces good sched-
ules but becomes unmanageable for large solution spaces
that occur when more than one dataset is considered per
job. In a previous publication [23], we have introduced
the greedy mapping heuristic (Greedy) for the problem pre-
sented in this paper.

Similar studies have been conducted for parallel I/O in
clusters and other distributed systems in the presence of data
replication [21, 25]. However, we claim that the research
presented in this paper is substantially different from these.
For example, our heuristic favours those resources which
have more of the datasets required for a job and generally
tends to produce mappings that utilize the least number of
datahosts possible. This is different from optimizing par-
allel I/O which generally tends to spread the data transfers
across a larger number of resources to optimize bandwidth
usage. However, we do recognize that parallel I/O tech-
niques can be applied in the context of the problem pre-
sented and an investigation of these will be a part of our
future work.

6 Conclusion and Future Work

We have presented the problem of mapping an applica-
tion with a collection of jobs that require multiple datasets
that are each replicated on multiple data hosts to Grid re-
sources. We have also proposed a heuristic based on a solu-
tion to the Set Covering Problem. We have shown via sim-
ulation that the proposed heuristic is better than Compute-
First and Greedy approaches and leads to schedules that are
competitive with the exhaustive search approach while be-
ing orders of magnitude faster.

As part of immediate future work, we plan to evaluate
our heuristic against the GA strategy as has been presented
in related work. The performance of the SCP-based heuris-
tic in scenarios involving dependent tasks such as Directed
Acyclic Graphs (DAGs) also needs to be investigated. In
the long term future, we would like to explore the use of
parallel I/O optimization techniques in the problem space
presented in this paper.
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