
An Autonomic Cloud Environment for Hosting ECG Data Analysis Services

Suraj Pandey1, William Voorsluys1, Sheng Niu1, Ahsan Khandoker2, Rajkumar Buyya1

1Cloud Computing and Distributed Systems Laboratory 2 Electrical and Electronic Engineering
Department of Computer Science and Software Engineering The University of Melbourne, Australia

The University of Melbourne, Australia ahsank@unimelb.edu.au
{spandey, williamv, sniu, raj}@csse.unimelb.edu.au

Abstract

Advances in sensor technology, personal mobile devices,
wireless broadband communications, and Cloud computing
are enabling real-time collection and dissemination of per-
sonal health data to patients and health-care professionals
anytime and from anywhere. Personal mobile devices, such
as PDAs and mobile phones, are becoming more powerful
in terms of processing capabilities and information man-
agement and play a major role in peoples daily lives. This
technological advancement has led us to design a real-time
health monitoring and analysis system that is Scalable and
Economic for people who require frequent monitoring of
their health. In this paper, we focus on the design aspects
of an autonomic Cloud environment that collects peoples
health data and disseminates them to a Cloud based infor-
mation repository and facilitates analysis on the data us-
ing software services hosted in the Cloud. To evaluate the
software design we have developed a prototype system that
we use as an experimental testbed on a specific use-case,
namely, the collection of electrocardiogram (ECG) data ob-
tained at real-time from volunteers to perform basic ECG
beat analysis.

1 Introduction
Advancing the field of health informatics has been listed

as one of the 14 engineering grand challenges for the 21st
century [7]. Activities in this field include acquiring, man-
aging, and using biomedical information, from personal to
global levels, to enhance the quality and efficiency of medi-
cal care and the response to widespread public health emer-
gencies. Particularly, in the personal level, biomedical engi-
neers envision “a new system of distributed computing tools
that will collect authorized medical data about people and
store it securely within a network designed to help deliver
quick and efficient care” [7].
In this direction, several technological advances and new

concepts, such as wearable medical devices, Body Area
Networks (BANs), pervasive wireless broadband commu-
nications and Cloud computing, are enabling advanced mo-
bile health-care services that benefit both patients and health
professionals. Specially, they enable the development of a
system to perform remote real-time collection, dissemina-
tion and analysis of medical data for the purpose of man-
aging chronic conditions and detecting health emergencies.
For example, by leveraging a mobile phone processing ca-
pability, its integration with body sensors, and its Inter-
net access, a personal health monitoring system could alert
health professionals when the patient needs attention, or
even perform automatic intervention, e.g. trigger automatic
release of drugs into the body when necessary.
The usefulness of a pervasive health information system

is clear to those who require continuous monitoring but of-
ten reside far from their health service provider and have
difficulty attending frequent therapy sessions. This need
and the availability of the aforementioned technologies has
led us to envision and design a Cloud computing-based real-
time health monitoring and analysis framework capable of
aiding health-care professionals better manage patient bases
by reducing or eliminating on-site consultations.
Our objective is to propose an architecturally generic

Cloud-based system to accommodate multiple scenarios
where patients need to be remotely monitored and recorded
data must be analysed by a computing system and become
available to be visualised by specialists or by the patients
themselves. Although our design and prototype are generic
to accommodate several use cases, in this paper, we focus
on one motivational case, namely: the monitoring of pa-
tients who suffer from cardiac arrhythmias, requiring con-
tinuous episode detection. Electrocardiogram (ECG) data
from commodity wearable sensors are obtained in real-time
and used to perform episode detection and classification.
The overall functionality of an ECG monitoring and

analysis system involves the following steps:



1. A patient is equipped with a wireless ECG sensor at-
tached to their body and a mobile device that is capable
of communicating to the Internet;

2. The wireless ECG sensor module collects patient’s
data and forwards it the mobile device via Bluetooth
without user intervention;

3. A client software in the mobile device transmits the
data to the ECG analysis Web Service, which is hosted
by a Cloud computing-based software stack. This
communication can happen with a home wireless gate-
way or directly via the mobile’s data connectivity (e.g.
mobile 3G network);

4. The analysis software carries out numerous computa-
tions over the received data taking the reference from
the existing demographic data, and the patient’s his-
toric data. Computations concern comparison, classi-
fication, and systematic diagnosis of heartbeats, which
can be time-consuming when done for long time peri-
ods for large number of users;

5. The software then appends the latest results to the pa-
tient’s historic record maintained in private and secure
Cloud-based storage, so that authenticated users can
access it anytime from anywhere. Physicians will later
interpret the features extracted from the ECG wave-
form and decide whether the heartbeat belongs to the
normal (healthy) sinus rhythm or to an appropriate
class of arrhythmia;

6. The diagnosis results are disseminated to the patient’s
mobile device and/or monitor, their doctor and/or
emergency services at predefined intervals;

7. The monitoring and computing processes are repeated
according to user’s preference, which may be hourly
or daily over a long period of time.

1.1 Challenges and Approach
To design a computing system architecture that effi-

ciently supports the above mentioned activities, numerous
challenges need to be addressed, including scalability and
cost restrictions. Cloud computing fits well as an enabling
technology in this scenario as it presents a flexible stack of
computing, storage and software services at low cost. We
now discuss these challenges in detail and explain in high
level how we tackle them by leveraging various Cloud com-
puting services in our ECG monitoring and analysis use
case. Specific architectural details and examples are de-
scribed in Section 4.
Scalability: In order to support efficient monitoring and

automated analysis of large patient populations, it is essen-
tial to have an infrastructure that provides high throughput,
high volume storage and reliable communication. We are
especially interested in two scalability measures: a) hor-
izontal scalability – the ability for a system to easily ex-

pand its resource pool to accommodate heavier load; b) ge-
ographic scalability – the ability to maintain performance,
usefulness, or usability regardless of expansion from con-
centration in a local area to a more distributed geographic
pattern. Similarly, the system must be able to contract its
resource pool in situations when the load decreases. In the
Cloud computing model, the ability of a system to seam-
lessly expand and contract is known as elasticity.
In our use case, the system may be used by a variable

number of users located in different locations. In addition,
configuration preferences available in the mobile software
allow users to adjust the reporting frequency in which read-
ings are sent for remote analysis. Our software architecture
must be able to seamlessly handle the changes that these
preferences cause in request pattern. For this purpose, our
architecture encompasses services deployed at all three lay-
ers of the Cloud computing stack, i.e software, platform and
infrastructure levels.
A scalable web server hosts a Web Service (the system’s

front-end) that receives and manages the distribution of user
requests to subsequent components. At the platform level,
we employ a middleware software that manages available
resources and scheduling of computing tasks onto them. In
other words, the middleware manages the system’s elastic-
ity, scaling compute resources so that ECG analysis results
can be delivered quick enough to maintain a user accept-
able Quality of Service (QoS). At the infrastructure level,
we rely on third-party Infrastructure-as-a-Service providers,
which offer pay-as-you-go compute and storage services
that can be deployed in various geographical regions.
Economy: Our system offers a Software (ECG monitor-

ing and analysis) as a Service for public users, who will pay
for it on per-analysis basis. At the same time, our system
is also a consumer of infrastructure level Cloud services.
Cloud computing service providers charge its users accord-
ing to a pay-as-you-go model. There are costs associated
with the use of computation, network bandwidth, storage,
software services, monitoring, accounting, and content de-
livery. In order to attract and retain end-users, we need to
maintain a high standard of QoS at minimal cost to users,
while minimizing the system’s own underlying cost. To ac-
complish this objective, the middleware aims at maximiz-
ing resource utilization by judiciously distributing and re-
distributing workload to existing or newly provisioned re-
sources. The challenge in this case is being able to simulta-
neously satisfy QoS and lower resource usage cost.
The remainder of this paper is organized as follows: Sec-

tion 2 lists related work and discusses the uniqueness of our
approach; Section 3 describes the ECG data analysis pro-
cess and how we model the problem as a workflow; Sec-
tion 4 presents details of the implemented prototype system;
Section 5 discusses experimental results; finally, Section 6
concludes our paper listing future work.



2 Related Work
The focus of this work is proposing a novel architectural

design and a use case for integrating Cloud andmobile com-
puting technologies to realize a health monitoring and anal-
ysis system. Our design makes use of all abstraction levels
of the Cloud stack. To the best of our knowledge there is no
work that studies such comprehensive integration. However
several works in the biomedical engineering and computer
science areas approach the automation of personal health-
care systems using similar technologies (i.e. mobile com-
puting, body sensor networks, and high performance com-
puting).
Jones et al. [5] propose an architecture for mobile man-

agement of chronic conditions and medical emergencies. It
focuses on defining generic mobile solution, in the sense
that it is not limited to a particular condition but can be
adapted to different clinical applications. It is also designed
to be easy to wear and use and as unobtrusive as possible.
Base on this architecture the authors implemented and tri-
alled two systems, namely: (i) Personal Health Monitor,
which focuses on personal/local monitoring and most of the
processing is done by the mobile phone itself; and (ii) Mo-
biHealth, which contains a processing and storage back-end
to suit applications that require higher processing capabil-
ity. Our architecture shares many of the objectives of [5],
but with a stronger aim in the processing and storage back-
end, which takes scalability, economy and QoS issues into
account.
Analysis of heartbeat waveforms can be time-consuming

and hence automated computer-based processing of ECG
data serves as a useful clinical tool. One of the major tasks
to be provided is the accurate determination of the QRS
complex [6]. Several algorithms have been proposed to ac-
curately detect and classify these signals by applying vari-
ous signal processing techniques, including wavelet trans-
forms [1], neural networks [4], and genetic algorithms [1]
(also refer to Kohler et al. [6] for a comprehensive survey
of QRS complex detection methods). Research in this area
points to the need of more accurate analysis methods, which
usually results in more compute and data intensive tech-
niques. This fact reinforces the importance of using novel
software and hardware platforms, such as our Cloud-based
architecture.
In more general context, cloud computing technologies

have been evaluated and considered viable to support sci-
entists on their computational requirements. For instance,
Deelman et al. [3] carried out a study to assess the cost
of doing science in the cloud by renting compute and stor-
age resources from Amazon Web Services to run a scien-
tific workflow, and concluded that costs could be reduced
with little impact on performance. Technologies, such as
MapReduce and Dryad have also been evaluated in the sci-
entific context to support data analysis problems that tradi-

Figure 1: A software system that integrates mobile and Cloud
computing services.

Figure 2: A workflow depicting ECG analysis.

tionally relied onMPI-style parallel programming [10]. Ad-
ditionally, Amazon Web Services has recently announced
specialised support for high-performance computing appli-
cations through its Cluster Compute Instances [12], which
offer a set of virtual machines linked via a fast network in-
terconnect.

Ranabahu et al.[11] identified the lack of scaling strategy
in Cloud middleware. They propose a horizontally replicat-
ing best practice that include load balancing layer, applica-
tion server layer and database layer. Their scaling strategy is
horizontal replication and includes rules that trigger replica-
tions, very similar to how we replicate the workflow engine
container.



(a) (b)

Figure 3: Graphs depicting results obtained after the analysis of
a heart beat data (obtained from a volunteer). (a) The ECG time
series graph clearly showing the P,Q,R,S and T points. (b) The RR
interval time series graph of the ECG graph plotted in (a).

3 ECG Data Analysis: A Case Study
ECG is the electrical manifestation of the contractile ac-

tivity of the hearts myocardium. The P, QRS, and T waves
characterise the ECG waveform, as depicted in Figure 2
and 3(a). The most prominent feature is the QRS complex,
where R denotes the peak of QRS complex. The ECG re-
mains the most common non-invasive method for diagnos-
ing heart diseases. Any disturbance in the regular rhyth-
mic activity of the heart (amplitude, duration, and shape of
rhythms) is known as arrhythmia. ECG is a low-cost, non-
invasive test for cardiac monitoring, which has become the
common diagnostic tool. Certain cardiac arrhythmias occur
occasionally and up to a few days of ECG recording may
be required using a Holter monitor in order to capture these
beats and episodes. However, Holter monitors are used to
record ECG data only and the analysis is performed offline.
Therefore, a continuous cardiac monitoring and online anal-
ysis system could detect these rare episodes of cardiac ar-
rhythmias as they occur. Identifying an arrhythmia requires
the classification of heartbeats. The rhythm of the ECG sig-
nal can then be determined through the classification of con-
secutive heartbeats.
Figure 2 depicts a workflow for a simple analysis of raw

ECG data. We chose this analysis process by referencing
the PhysioNet tutorial [9]. This analysis process serves as
a general analysis (not a clinical diagnosis) as also outlined
by several authors [2, 14]. In depth analysis of the ECG
data is out of scope for this paper.
The raw ECG data is the numerical readings of the sig-

nals obtained by placing electrodes at limbs of a subject.
Table 1 briefly describes the functions of each of the tasks
used in the workflow of Figure 2.
The results (numerical data and graphs) obtained after

the execution of the ECG application are all stored in Ama-
zon S3. Figure 3 depicts two of these results. They are
organized and stored in the Cloud storage according to user
details such as: user-id, age, gender, sleep time, etc. Cat-

Table 1: Description of tasks used in ECG analysis.

Task Name Description

wrsamp Reads the raw data to produce a binary
file with specified sample frequency,
gain, format, etc

ann2rr Creates an annotation file from ECG
data; creates RR interval series from
ECG annotation files

ihr Reads an annotation file and produces
an instantaneous heart rate signal

Plot Graph Plots the graphs of the heart rate signal,
RR interval, etc.

egorizing the data helps in further analysis of the results at
the comparison stage.
Apart from the ECG analysis, Figure 2 also depicts user

directed commands, such as: store & analyse, compare, and
plot/retrieve graphs. Store & analyse is issued by the mobile
client without the user’s intervention at regular intervals.
This command initiates the process starting from sampling
the ECG data (wrsamp) to plotting the graphs and storing
in the Cloud storage. Medical practitioners (also applicable
for users), who want to analyze historic data of patients, can
issue the ’compare’ command to compare all available ECG
data of any patient. The ‘plot/retrieve graph’ command sim-
ply returns already computed result to the user by retrieving
from the Cloud storage. These set of functions used in the
workflow are for demonstration purposes only and thus can
be expanded according to user requirements.

4 System Design
The advent of Cloud computing has enabled us to host

the software pack that analyses ECG data as Software-as-a-
Service (SaaS). The SaaS layer contains the tools for con-
ducting custom designed analysis of current and historic
ECG data of all users. We depict this in Figure 4, where
the boxes represent the SaaS, PaaS, and the IaaS layers, in
top-down order, respectively. This software is hosted as a
web-service such that any client-side implementation can
simply call the underlying functions (analyze, upload data,
etc.) without having to go through the complexities of the
underlying middleware. The PaaS layer controls the exe-
cution of the software using three major components: (i)
Container scaling manager, (ii) Workflow Engine [8], and
(iii) Aneka [13].
The workflow engine is hosted inside a container (e.g.

Tomcat container). The engine manages the execution of
tasks of the ECG application workflow depicted in Fig-
ure 2. As the number of requests from users grow, the con-
tainer scaling manager instantiates more containers so that
the user requests are distributed to workflow engines. This
load balancing is done at run-time based on two parameters:



Figure 4: Components of the personal health monitoring system.

(i) the number of requests queued at any workflow engine
waiting to be scheduled, (ii) the average number of requests
a container managed within a certain period of time (e.g. 1
hour).
The workflow engine packages the tasks and submits

them to Aneka. Aneka is a workload distribution and man-
agement platform (PaaS middleware) that accelerates ap-
plications in Microsoft .NET framework environments. As
Aneka does not differentiate the tasks submitted by the
workflow engine, it submits any task waiting in its queue
to the first available resource. Aneka is thus responsible
to handle the communication between the underlying in-
frastructure layer (IaaS) and the PaaS layer using a master-
worker framework. The Aneka master is the service run-
ning in the PaaS layer, whereas the Aneka workers are the
application executors installed in every VM instantiated at
the infrastructure level.
The “Dynamic Scalable Runtime” (DSR) module, which

we implemented as part of Aneka scheduling environment,
is responsible for maintaining the QoS of the applications
running as SaaS (e.g. ECG analysis software). For the ECG

application, the ‘response time’ is the only QoS parameter
we take into account in this paper. The DSR module keeps
track of response time of tasks submitted in the past (limited
time-frame), averages them and makes a decision whether
to instantiate more VMs if the average response time has in-
creased, or shut-down and release VMs if the response time
has decreased than a pre-specified threshold value. This
simple dynamic scaling in/out of VMs helps maintain the
user defined response time.

5 Performance Analysis
In this section, we present the experimental results ob-

tained as part of a demonstration at the Third IEEE In-
ternational Scalable Computing Challenge (SCALE 2010)
held in conjunction with the 10th IEEE International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid
2010), Melbourne, Australia, May 17-20, 2010 (Figure 7).

5.1 Experiment Setup
Table 2 lists the characteristics of the compute resources

we used during our experiment. We hosted Aneka PaaS
layer on Amazon EC2 infrastructure, scaling manager and
the workflow engine on a machine located at the University
of Melbourne. Both Aneka master and worker nodes were
hosted in Amazon EC2.

What is the problem? With a fixed number of Com-
pute resources (worker nodes) and fixed number of appli-
cation managers (Workflow Engine running in fixed num-
ber of Tomcat Containers), it is NOT possible to simulta-
neously handle increasingly large number of user requests
and satisfy quality of service (QoS = response time in our
application).

Proposed solution: Dynamically scale out/in the
worker nodes and the application manager (workflow en-
gine under Tomcat Container) so that any number of user
requests can be served in parallel by dynamically created
VM instances.
We implemented a simple heuristic to support our solu-

tion in the DSR module depicted in Figure 4:
1. If ‘average’ user response time is above the thresh-
old value (e.g. 1 minute), instantiate more resources
(worker nodes) until the response time decreases be-
low a threshold.

2. If user requests are not forwarded to the Aneka Cloud
timely, instantiate more containers with workflow en-
gine at the PaaS layer until Aneka resource utilization
increases to more than K% (e.g. 20%) of initial value.

Setup 1:We fix the number of Amazon EC2 resources to
25 VM instances and increase user requests from 80 to 2000
over time. We then monitor the response time of each of
these requests. We depict the response time for this scenario
in Figure 5[a-d].



Table 2: Characteristics of compute resources used in the experiment.

HW— SW Aneka Master Aneka Workers Workflow Engine running under
Tomcat Containers

CPU 2 virtual cores with 2.5 EC2 Compute
Units

1 virtual core with 1 EC2 Compute Unit 4 Cores Intel(R) Xeon(TM) 2.80GHz

Memory 1.7 GB 1.7 GB 2 GB
Storage 320 GB 160 GB 320 GB
Platform 32 bit Windows 32 bit Windows 64 bit Linux

Setup 2: We use a simple dynamic resource allocation
policy to instantiate Amazon EC2 resources at run time
based on the response time (upto a maximum of 50 VMs)
and increase user requests from 80 to 2000. We then mon-
itor the response time for each request. We depict the re-
sponse time for this setup in Figure 5[a-d]. The results ob-
tained from this setup are then compared to that of Setup
1.
Setup 3: We use only one container running the work-

flow engine that accepts all the user requests to be for-
warded to Aneka. The response time for this is depicted
in Figure 6(a).
Setup 4: We use multiple containers, each running a

workflow engine. The container scaling manager decides
the instantiation of these containers according to the num-
ber of user requests, as described in Section 4. The response
time obtained for this is depicted in Figure 6(b).

5.2 Description of Results
Setup 1 represents a non-scalable and costly method for

executing the ECG application. The compute resources are
fixed to 25 compute nodes (VMs), all the VMs are initially
instantiated and there is no means of addingmore VMs even
when the response time increases due to increasing num-
ber of user requests. Initially, when the number of user re-
quests were low (∼80 requests), the response time gradu-
ally increased from 30 seconds to 90 seconds, within the
first 30 seconds of job submission (Figure 5(a)). We then
increased the number of user requests to upto 2000 gradu-
ally and monitored the response time within the first 300,
1500, and 3000 seconds, as depicted in Figures 5[b-d], re-
spectively.
In Setup 2, we used a simple dynamic resource provi-

sioning policy so that we could scale in/out according to the
response time and also reduce the cost of using Cloud re-
sources. Initially, we started with 2 VMs serving as worker
nodes. This resulted in higher response time for user re-
quests less than 80 than in the static case (Figure 5(a)).
But, when the response time started to increase, the dy-
namic provisioning policy added more worker nodes to the
system. This runtime provisioning helped decrease the re-
sponse time, as clearly indicated by the rise and fall of the
response time in Figure 5(a). Similar to Setup 1, we contin-

ued to increase the number of user requests and monitored
the response time for 300, 1500, and 2000 seconds.
Table 3 compares the response time between Setup 1 and

Setup 2. In this table, 25-minRT and 25-MaxRT represent
the minimum and maximum response times when using 25
compute resources (Setup 1), respectively. Similarly, 50-
minRT and 50-MaxRT represent the minimum and maxi-
mum response times when using upto 50 compute resources
(Setup 2), respectively. Obviously, the response time we
recorded using dynamic provisioning policy (Setup 2) was
lower than that given by the static setup (Setup 1) for large
number of requests. This is because Setup 2 had an addi-
tional 25 VMs to use than Setup 1. But, dynamic provision-
ing still outweighed the static method when we measured
the percentage improvement in reducing the maximum re-
sponse time.
The quantitative difference between the two schemes

(static vs dynamic) can be solely measured by the percent-
age improvement (i.e. decrease in response time) in the
maximum response time. From the values tabulated in Ta-
ble 3, the percentage improvement for MaxRT starts from
5% and does not increase significantly upto 160 tasks (sec-
ond row of Table 3). But, when the number of tasks was
increased beyond 320, the percentage improvement is in
double digits (upto 44.4%). Thus, the MaxRT value de-
creases for Setup 2, clearly lowering the average response
time for all the tasks. These results are clearly in line with
the principle that tries to minimize the maximum value of a
set (MaxRT in our case) in order to get a global minimum of
the set (get an upper bound on the MaxRT), so that the av-
erage value is lowered. This is supported by the trend lines
we plotted for both the policies in Figures 5[a-e].
The trend lines (polynomial and/or linear fit of data) re-

flect the limitation on scalability of the system when using
static provisioning for large number of requests. For ex-
ample, in Figures 5[b-d], as we increased the number of
requests, the static provisioning policy took longer to com-
plete the requests with a higher response time than the dy-
namic provisioning policy. When the system is scaled out
depending on the number of requests, the overall response
time is much lower than in a rigid system as shown by Fig-
ure 5(d).
But, the dynamic provisioning policy performed poorly



Table 3: Difference between minimum Response Time (minRT) and Maximum Response Time (MaxRT) when using static (25 VMs) vs.
dynamic (upto 50 VMs) resource provisioning policies.

#Tasks 25-minRT 50-minRT %Improvement 25-MaxRT 50-MaxRT %Improvement

80 25 15 40% 95 90 5.2%
160 40 25 37.5% 110 105 4.5%
320 50 50 0% 275 225 18.2%
640 55 50 9% 700 600 14.2%
2000 200 100 50% 2700 1500 44.4%

(a) (b)

(c) (d)

Figure 5: Response time (QoS) when using either static or dynamic resource provisioning policy. Solid lines represent general trend.

for a short period of time, when the number of requests were
low (≤80 in our experiment). Figure 5(a) shows the addi-
tion of a new VM when the response time increases beyond
1 minute. This addition was able to decrease the response
time for some time (10 more seconds), but as the number of
requests grew, the system could not distribute the load well
as the dynamic provisioning policy did not have enough re-
sources available (Setup 2). On the other hand, the static
provisioning policy was able to sustain the load as there
were 25 resources on standby for use (Setup 1). However,
the response time increased linearly for the static case.

In Setup 3, we used a single container to handle all the
2000 tasks submitted by users. Even though the tasks were
submitted gradually (not all at once), majority of the tasks
got queued at the workflow engine and did not get submit-
ted for execution. This is evident by a sharp rise in response
time at the beginning for all the tasks, as depicted in Fig-
ure 6(a). The figure includes three independent executions
plotted in the same graph (square, triangle, and a cross rep-
resent ECG analysis tasks) to emphasize the similar nature
of the response time for repeated executions. As time pro-
gressed, tasks started to complete and the response time de-



(a) (b)

Figure 6: Response time obtained without (b) and with (a) container scaling manager.

creased from nearly 3000 seconds to 1̃800, as visible from
the negative slope of the graph of Figure 6(a). This was a
clear indication that the workflow engine was the bottleneck
and hence prevented the scalability of the system irrespec-
tive to the number of compute resources used.
Realizing the limitation of Setup 3, we decided to dy-

namically scale out/in the number of Workflow Engines
running so that the load (user requests) could be balanced
across each of the running containers. We could achieve
a gradual increase in response time as the number of user
requests increased, as depicted in Figure 6(b).

6 Conclusions and Future Work
In this work, we presented an autonomic system that

integrates mobile computing and Cloud Computing for
analysing ECG data. We started by describing challenges
end-user applications are facing when using traditional
computing and service model. Our system addresses the is-
sues related to scalability and cost in a non-disruptive man-
ner. We demonstrate this with the help of an ECG Analysis
application. We have implemented a prototype of the sys-
tem and tested on volunteers.
As part of our ongoing work, we are working on heuris-

tics that minimizes the cost of using Cloud resources main-
taining user QoS satisfaction. This could be done by Cloud
resource provisioning, matchmaking, and user allocations
based on user priority and varying Cloud resource costs.

Acknowledgments
This work is partially supported through Australian Re-

search Council (ARC) Discovery Project grant. Our exper-
iments were conducted using Amazon Web Services (EC2
and S3) that kindly provided us an educational grant.

References
[1] M. Bahoura, M. Hassani, and M. Hubin. DSP Implementa-

tion of Wavelet Transform for Real Time ECG Wave Forms
Detection and Heart Rate Analysis. Computer methods and
programs in biomedicine, 52(1):35–44, 1997.

[2] G. D. Clifford. Advanced Methods & Tools For ECG Data
Analysis, http://www.robots.ox.ac.uk/ gari/ecgbook.html,
April Accessed - April 2010.

[3] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good.
The Cost of Doing Science on the Cloud: The Montage Ex-
ample. In Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, pages 1–12. IEEE Press, 2008.

[4] Y. Hu, W. Tompkins, J. Urrusti, and V. Afonso. Applica-
tions of Artificial Neural Networks for ECG Signal Detec-
tion and Classification. Journal of electrocardiology, 26:66–
73, 1993.

[5] V. Jones, A. V. Halteren, I. Widya, N. Dokovsky, R. Bults,
D. Konstantas, and R. Herzog. Mobihealth: Mobile Health
Services Based on Body Area Networks. Topics in Biomed-
ical Engineering. Springer US, Boston, MA, 2006.

[6] B.-U. Kohler, C. Hennig, and R. Orglmeister. The Principles
of Software QRS Detection. Engineering in Medicine and
Biology Magazine, IEEE, 21(1):42 –57, jan.-feb. 2002.

[7] National Academy of Engineering. Grand Challenges
for Engineering, http://www.engineeringchallenges.org, Ac-
cessed - July 2010.

[8] S. Pandey, W. Voorsluys, M. Rahman, R. Buyya, J. Dob-
son, and K. Chiu. A grid workflow environment for brain
imaging analysis on distributed systems. Concurrency and
Computation: Practice & Experience, 21(16):2118–2139,
November 2009.

[9] PhysioNet. http://www.physionet.org/tutorials/hrv/, Ac-
cessed - April 2010.

[10] X. Qiu, J. Ekanayake, S. Beason, T. Gunarathne, G. Fox,
R. Barga, and D. Gannon. Cloud Technologies for Bioinfor-
matics Applications. In Proceedings of the 2nd Workshop on
Many-Task Computing on Grids and Supercomputers, pages
1–10. ACM, 2009.

[11] A. Ranabahu and M. Maximilien. A Best Practice Model
for Cloud Middleware Systems. In Proceedings of the
Best Practices in Cloud Computing: Designing for the
Cloud, ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), Orlando FL, USA, 2009.

[12] J. Varia. Cloud Computing: Principles and Paradigms,
chapter Architecting Applications for the Amazon Cloud.
Wiley, New York, USA, 2010.

[13] C. Vecchiola, X. Chu, and R. Buyya. High Speed and Large
Scale Scientific Computing, chapter Aneka: A Software
Platform for .NET-based Cloud Computing, pages 267–295.
IOS Press, 2009. ISBN: 978-1-60750-073-5.

[14] F. G. Yanowitz. A “Method” of ECG Interpretation,
http://library.med.utah.edu/kw/ecg/ecg outline/Lesson2/index.html,
Accessed - April 2010.



Figure 7: Pictures taken during the SCALE 2010 demonstration of this work held at the CCGrid 2010 conference.


