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ABSTRACT 
 
With the advent of Grid and application technologies, scientists and engineers are building more and more 
complex applications to manage and process large data sets, and execute scientific experiments on 
distributed resources. Such application scenarios require means for composing and executing complex 
workflows. Therefore, many efforts have been made towards the development of workflow management 
systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various 
approaches for building and executing workflows on Grids. We also survey several representative Grid 
workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the 
taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of 
state-of-the-art in Grid workflow systems, but also identifies the areas that need further research. 
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1. INTRODUCTION 

 
Grids [51] have emerged as a global cyber-infrastructure for the next-generation of e-Science applications 
by integrating large-scale, distributed and heterogeneous resources. Scientific communities, such as high-
energy physics, gravitational-wave physics, geophysics, astronomy and bioinformatics, are utilizing Grids 
to share, manage and process large data sets. In order to support complex scientific experiments, distributed 
resources such as computational devices, data, applications, and scientific instruments need to be 
orchestrated while managing the application workflow operations within Grid environments [92].  
 
Workflow is concerned with the automation of procedures whereby files and data are passed between 
participants according to a defined set of rules to achieve an overall goal [35]. A workflow management 
system defines, manages and executes workflows on computing resources. Imposing the workflow 
paradigm for application composition on Grids offers several advantages [117] such as:  

• Ability to build dynamic applications which orchestrate distributed resources. 
• Utilization of resources that are located in a particular domain to increase throughput or reduce 

execution costs.  
• Execution spanning multiple administrative domains to obtain specific processing capabilities.  
• Integration of multiple teams involved in managing of different parts of the experiment workflow 

– thus promoting inter-organizational collaborations. 
 

Figure 1 shows the architecture and functionalities supported by various components of the Grid workflow 
system based on the workflow reference model [35] proposed by Workflow Management Coalition (WfMC) 
[137] in 1995. At the highest level, functions of Grid workflow management systems could be 
characterized into build time functions and run time functions. The build-time functions are concerned with 
defining, and modeling workflow tasks and their dependencies; while the run-time functions are concerned 
with managing workflow executions and interactions with Grid resources for processing workflow 
applications. Users interact with workflow modeling tools to generate a workflow specification, which is 
submitted to a run-time service called the workflow enactment service for execution. Major functions 
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provided by the workflow enactment service are scheduling, fault management and data movement. The 
workflow enactment service may be built on the top of low level Grid middleware (e.g. Globus toolkit [59], 
UNICORE [128] and Alchemi [86]), through which the workflow management system invokes services 
provided by Grid resources. At both the build-time and run-time stages, the information about resources 
and applications may need to be retrieved using Grid information services.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the recent past, several Grid workflow systems have been proposed and developed for defining, 
managing and executing scientific workflows. In order to enhance our understanding of the field, we 
propose a taxonomy that primarily (a) captures architectural styles and (b) identifies design and 
engineering similarities and differences between them. There are a number of proposed taxonomies for 
distributed and heterogeneous computing such as [20][29][73][108]. However, none of these focuses on 
distributed workflow managements. The taxonomy provides an in-depth understanding of building and 
executing workflows on Grids. It compares different approaches and also helps users to decide on 
minimum subset of features required for their systems. 
 
The rest of the paper is organized as follows: Section 2 presents the taxonomy that classifies approaches 
based on major functions and architectural styles of Grid workflow systems. In Section 3, we provide a 
detailed survey of several selected Grid workflow systems and the mapping of the proposed taxonomy to 
the systems. We conclude in Section 4 with a discussion and identification of areas that need further work.  
  
 
2. TAXONOMY 
 
The taxonomy characterizes and classifies approaches of workflow management in the context of Grid 
computing. As shown in Figure 2, it consists of five elements of a Grid workflow management system: (a) 
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Figure 1. Grid Workflow Management System.  
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workflow design, (b) information retrieval, (c) workflow scheduling, (d) fault tolerance and (e) data 
movement. In this section, we look at each element and its taxonomy in detail.   
 
 
 
 
 
 
 
 
 
 
2.1 Workflow Design  
 
As shown in Figure 3, workflow design includes four key factors, namely (a) workflow structure, (b) 
workflow model/specification, (c) workflow composition system, and (d) workflow QoS (Quality of 
Service) constraints.  
 

 
 
 
 
 
 
 
 
 
2.1.1 Workflow Structure 
 
 
 
 
 
 
 
 
 
 
A workflow is composed by connecting multiple tasks according to their dependencies. The workflow 
structure, also referred as workflow pattern [2][3][6], indicates the temporal relationship between these 
tasks. Figure 4 shows the workflow structure taxonomy. In general, a workflow can be represented as a 
Directed Acyclic Graph (DAG) [110] or a non-DAG. 
 
In DAG-based workflow, workflow structure can be classified as sequence, parallelism, and choice.  
Sequence is defined as an ordered series of tasks, with one task starting after a previous task has completed. 
Parallelism represents tasks which are performed concurrently, rather than serially. In choice control 
pattern, a task is selected to execute at run-time when its associated conditions are true.  
 
In addition to all patterns contained in a DAG-based workflow, a non-DAG workflow also includes the 
iteration structure in which sections of workflow tasks in an iteration block are allowed to be repeated. 
Iteration is also known as loop or cycle. The iteration structure is quite frequently used in scientific 
applications, where one or more tasks need to be executed repeatedly [91]. For example, in a promoter 
identification workflow [85] as shown in Figure 5, step 5 to step 8 are executed iteratively to create and 
refine a promoter model.  

DAG Non-DAG 
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Sequence   Choice Iteration  Parallelism Sequence   Choice Parallelism 

Figure 4. Workflow Structure Taxonomy. 
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These four types of workflow structure, namely sequence, parallelism, choice and iteration, can be used to 
construct many complex workflows. Moreover, sub-workflows can also use these types of workflow 
structure as building blocks to form a large-scale workflow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.1.2 Workflow Model/Specification 
 
Workflow Model (also called workflow specification) defines a workflow including its task definition and 
structure definition. As shown in Figure 6, there are two types of workflow models, namely abstract and 
concrete. They are also referred to as abstract workflows and concrete workflows [40][42]. In some 
literature (e.g. [84]), concrete models are referred to as executable workflows.  
 
In an abstract model, a workflow is described in an abstract form in which the workflow is specified 
without referring to specific Grid resources for task execution.  An abstract model provides a flexible way 
for users to define workflows without being concerned about low-level implementation details. Tasks in an 
abstract model are portable and can be mapped onto any suitable Grid services at run-time by using suitable 
discovery and mapping mechanisms. Using abstract models also eases the sharing of workflow descriptions 
between Grid users [42]; in particular it benefits the participants of Virtual Organizations (VOs) [52]. 
 
 
 
 
 
 
 
 
 
In contrast, a concrete model binds workflow tasks to specific resources. In some cases, a concrete model 
may include tasks acting as data movement to transfer data in and out of the computation and data 
publication to publish newly derived data into VO [42]. In other situations, tasks in a concrete model may 
also include necessary application movement to transfer computational code to a data site for large scale 
data analysis.   
 
Given the dynamic nature of the Grid environment, it is more suitable for users to define workflow 
applications in abstract models. A full or partial concrete model can be generated just before or during 
workflow execution according to the current status of resources. Additionally, in some systems [144], every 
task in a workflow is concretized only at the time of task execution. However, concrete models may be 
used by some end users who want to control the execution sequence [75].  
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Figure 6. Workflow Model Taxonomy. 
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2.1.3 Workflow Composition System 
 
Workflow composition systems are designed for enabling users to assemble components into workflows.  
They need to provide a high level view for the construction of Grid workflow applications and hide the 
complexity of underlying Grid systems. Figure 7 shows the taxonomy for the workflow composition 
systems. User-directed composition systems allow users to edit workflows directly, whereas automatic 
composition systems generate workflows for users automatically.  In general, users can use workflow 
languages for language-based modeling and the tools for graph-based modeling to compose workflows. 
 
Within language-based modeling, users may express workflow using a markup language such as Extensible 
Markup Language (XML) [132] (e.g. GridAnt [75], WSFL [79], XLANG [125], BPEL4WS [14], W3C 
XML-Pipeline language [135], and Gridbus Workflow [144]) or other formats (e.g. Condor DAGman 
[120]). Language-based modeling may be convenient for skilled users, but they require users to memorize a 
lot of language-specific syntax. In addition, it is impossible for users to express a complex and large 
workflow by scripting workflow components manually. However, workflow languages are more 
appropriate for sharing and manipulation, whereas the graphical representations are intuitive but they 
require to be converted into other forms for manipulation. So in most Grid systems, workflow languages 
are designed to bridge the gap between the graphical clients and the Grid workflow execution engine [62]. 
XML-based languages are used widely for workflow specification as it facilitates information description 
in a nested structure. Moreover, many tools are provided to validate XML syntax and verify XML 
documents against XML schema [134] or DTD (Document Type Definition) [132]. Furthermore, many 
XML parsing tools (e.g. JDOM [69] and dom4j [44] ) are widely available.  
 

 
Graph-based modeling allows graphical definition of an arbitrary workflow through a few basic graph 
elements. It allows users to work with a graphical representation of the workflow. Users can compose and 
review a workflow by just clicking and dropping the components of interest.  It avoids low-level details and 
hence enables users to focus on higher levels of abstraction at application level [64]. The major modeling 
approaches are Petri Nets [104], UML (Unified Modeling Language) [99] and user-defined component. 
Graph-based modeling is preferred by users as opposed to language-based modeling. 
 
Petri Nets are a special class of directed graphs that can model sequential, parallel, loops and conditional 
execution of tasks [62][65]. They have been used in many workflow management systems such as Grid-
Flow [62], FlowManager [78], and XRL/Flower [131]. UML activity diagrams [102] have also been 
extended and applied as a workflow specification language [17][45][105]. Compared with UML activity 
diagrams, Petri Nets have formal semantics and have been used widely for constructing several workflows 
[1][46]. A vast number of algorithms and tools for Petri Nets analysis have been developed along the years 
[89]. However, Eshuis et al. [46] argue that Petri Nets may be unable to model workflow activities 
accurately without extending its semantics and this drawback has been addressed in UML activity diagrams. 
Rather than following the standard syntax and semantics of Petri Nets and UML, many workflow editors 
for Grid workflow tools create their own graphical representation of workflow components. For example, 
Triana [123] allows users to predefine software components and reuse them to design DAG-based 
workflows. Kepler [12] provides graphical environment and a framework that supports the design and reuse 
of grid workflows. These tools are more convenient for users to manipulate their workflow applications, as 

Figure 7.  Workflow Composition System Taxonomy. 
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they provide a more user-friendly programming environment. They have also been integrated into 
underlying local applications, Grid middleware and monitoring systems. For example, P-GRADE [71][83] 
interoperates with a wide range of parallel applications in addition to Condor and Globus based Grid 
middleware. It also allows users to access and modify program code of a workflow task through a graphical 
editor. However, lack of standards hinders the collaboration between these projects. Many works are thus 
replicated such as different user interfaces developed by different projects for the same functionality. 
Moreover, workflow structures supported by most of them are limited to only sequence and parallelism.  
 
Graph-based modeling is very intuitive and can be handled easily even by a non-expert user. However, the 
layout of workflow components on a display screen can become very huge and difficult to manage [101]. 
One of the solutions to overcome this limitation is to use hierarchical graph definition [65]. Another 
solution is to have a system which composes workflows automatically. Pegasus [42] is one such automatic 
composition system for Grid computing; it has to be adapted to particular applications, because the 
composition is based on application-dependent metadata. It receives a metadata description of desired data 
products and initial input values from users. The tasks are then composed automatically to form a workflow 
by querying a virtual data catalog [53] that contains information for data derivation of application 
components. Compared with user-directed systems, automatic composition systems are ideal for large scale 
workflows which are very time consuming to compose manually. However, the automatic composition of 
application components is challenging because it is difficult to capture the functionality of components and 
data types used by the components [27] [101].   
 
2.1.4 Workflow QoS Constraints 
 
In a Grid environment, there are a large number of similar or equivalent resources provided by different 
parties. Grid users can select suitable resources and use them for their workflow applications. These 
resources may provide the same functionality, but optimize different QoS measures. In addition, different 
users or applications may have different expectations and requirements. Therefore, it is not sufficient for a 
workflow management system to only consider functional characteristics of the workflow. QoS 
requirements such as time limit (deadline) and expenditure limit (budget) for workflow execution also need 
to be managed by workflow management systems. Users must be able to specify their QoS expectations of 
the workflow at the design level. Then, the actions conducted by workflow systems using run-time must be 
chosen according to the initial QoS requirements. 
 
 
 
 
 
 
 
 
 
Figure 8 shows the taxonomy of Grid workflow QoS constraints based on a QoS model for Web services 
based workflow provided by Cardoso et al. [28] and QoS of Web services [88][103]. It includes five 
dimensions: time, cost, fidelity, reliability and security. Time is a basic measure of performance. For 
workflow systems, it refers to the total time required for completing the execution of a workflow. Cost 
represents the cost associated with the execution of workflows including the cost for managing workflow 
systems and usage charge of Grid resources for processing workflow tasks. Fidelity refers to the 
measurement related to the quality of the output of workflow execution. Reliability is related to the number 
of failures for execution of workflows. Security refers to confidentiality of the execution of workflow tasks 
and trustworthiness of resources.  
 
As indicated in Figure 9, there are two different ways to assign QoS constraints in a workflow model. One 
way is to allow users to assign QoS constraints at task-level. The overall QoS can be assessed by computing 
all individual tasks. For example, a user assigns desired execution time for every task in a workflow. The 
deadline for the entire workflow execution can be calculated by a workflow reduction algorithm (e.g. 
SWR(w) algorithm [26]). Another way is to assign QoS constraints at workflow-level, allowing users to 

Reliability Security Fidelity Cost Time 

Workflow QoS Constraints 

Figure 8. Workflow QoS Constraints Taxonomy. 
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define the overall workflow QoS requirements. However, QoS constraints for each task may be required by 
schedulers for resource allocation at run-time. For the time dimension, users are likely to specify a deadline 
for the entire workflow execution rather than for every single task. In order to fulfill the deadline for the 
entire workflow, the scheduler needs to decide how fast each task has to be processed using a deadline 
assignment approach (e.g. Ultimate Deadline, Effective Deadline, Equal Slack, and Equal Flexibility 
strategies in [72]).  
 
 
 
 
 
 
 
 
 
2.2 Information Retrieval  
 
A Grid workflow management system does not execute the tasks itself, but it merely coordinates the 
execution of the tasks by the Grid resources. To map tasks onto suitable resources, information about the 
resources has to be retrieved from appropriate sources [141]. As indicated in Figure 10, there are three 
dimensions of information retrieval: static information, historical information and dynamic information.  
 
Static information refers to information that does not vary with time. It may include infrastructure-related 
(e.g. the number of processors), configuration-related (e.g. operating system, libraries), QoS-related (e.g. 
flat usage charge), access-related (e.g. service operations), and user-related information (e.g. 
authentication ID). Generally, static information is utilized by Grid workflow management systems to pre-
select resources during the initiation of the workflow execution.  
 
 

 
 
As Grid resources are not dedicated to the owners of the workflow management systems, the Grid 
workflow management system also needs to identify dynamic information such as resource accessibility, 
system workload, and network performance during execution time. Unlike static information, dynamic 
information reflects the status of the Grid resources, such as load average of a cluster, available disk space, 
CPU usage, and active processes. It also includes task execution information and market related 
information such as dynamic resource price.  
 
Historical information is obtained from previous events that have occurred such as performance history and 
execution history of Grid resources and application components. Generally, workflow management systems 
can analyze historical information to predict the future behaviors of resources and application components 
on a given set of resources. Historical information can also be used to improve the reliability of future 
workflow execution. For example, the user can correct the logic of a failed workflow according to the log 
of the workflow system. 
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Figure 10. Information Retrieval Taxonomy. 
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Several information services are available for accessing static and dynamic information about Grid 
resources. For example, Monitoring and Discovery System (MDS) [109] provides static hardware 
information such as CPU type, memory size and software information such as operating system 
information, and some dynamic information such as CPU load snapshot. Network Weather Service (NWS) 
[136] provides additional dynamic information about availability of CPU, memory, and bandwidth. An 
object oriented model for publication and retrieval of electronic resources is given in [33]. 
 
 
2.3 Workflow Scheduling 
 
Casavant et al. [29] categorized task scheduling in distributed computing systems into ‘local’ task 
scheduling and ‘global’ task scheduling. Local scheduling involves handling the assignment of tasks to 
time-slices of a single resource whereas global scheduling involves deciding where to execute a task.  
According to this definition, workflow scheduling is a kind of global task scheduling as it focuses on 
mapping and managing the execution of inter-dependent tasks on shared resources that are not directly 
under its control.  
 
The workflow scheduler needs to coordinate with diverse local management systems as Grid resources are 
heterogeneous in terms of local configuration and policies. Taking into account users’ QoS constraints is 
also important in the scheduling process so as to satisfy user requirements.  In this section, we discuss 
workflow scheduling taxonomy from the view of (a) scheduling architecture, (b) decision making, (c) 
planning scheme, (d) scheduling strategy, and (e) performance estimation as shown in Figure 11.  
 
 
 
 
 
 
 
 
2.3.1 Scheduling Architecture 
 
The architecture of the scheduling infrastructure is very important for scalability, autonomy, quality and 
performance of the system [63]. Three major categories of workflow scheduling architecture as shown in 
Figure 12 are centralized, hierarchical and decentralized scheduling schemes.   
 
 
 
 
 
 
 
 
In a centralized workflow enactment environment, one central workflow scheduler makes scheduling 
decisions for all tasks in the workflow. The scheduler has the information about the entire workflow and 
collects information of all available processing resources.  It is believed that the centralized scheme can 
produce efficient schedules because it has all necessary information [63]. However, it is not scalable with 
respect to the number of tasks, the classes and number of Grid resources. It is thus only suitable for a small 
scale workflow or a large scale workflow in which every task has the same objective (e.g. same class of 
resources).  
 
Unlike centralized scheduling, both hierarchical and decentralized scheduling allow tasks to be scheduled 
by multiple schedulers.  Therefore, one scheduler only maintains the information related to a sub-workflow. 
Thus, compared to centralized scheduling, they are more scalable since they limit the number of tasks 
managed by one scheduler. However, the best decision made for a partial workflow may lead to sub-
optimal performance for the overall workflow execution.  Moreover, conflict problems are more severe 
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Figure 12. Scheduling Architecture Taxonomy. 
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[90].  One example of conflict is that tasks from different sub-workflows scheduled by different schedulers 
may compete for the same resource.  
 
For hierarchical scheduling, there is a central manager and multiple lower-level sub-workflow schedulers. 
This central manager is responsible for controlling the workflow execution and assigning the sub-
workflows to the low-level schedulers.  For example, in GridFlow project [25], there is one workflow 
manager and multiple lower-level schedulers. The workflow manager schedules sub-workflows onto 
corresponding lower-level schedulers. Each lower-level scheduler is responsible for scheduling tasks in a 
sub-workflow onto resources owned by one organization. The major advantage of using the hierarchical 
architecture is that the different scheduling policies can be deployed in the central manager and lower-level 
schedulers [63]. However, the failure of the central manager will result in entire system failure. 
 
 In contrast, there are multiple schedulers without a central controller in decentralized scheduling. Every 
scheduler can communicate with each other and schedule a sub-workflow to another scheduler with lower 
load. Compared to hierarchical scheduling, decentralized scheduling is more scalable but faces more 
challenges to generate optimal solutions for overall workflow performance and minimize conflict problems.  
  
2.3.2 Decision Making 
 
There is no single best solution for mapping workflows onto resources for all workflow applications, since 
the applications can have very different characteristics. It depends to some degree on the application 
models to be scheduled. In general, decisions about mapping tasks in a workflow onto resources can be 
based on the information of the current task or of the entire workflow and can be of two types, namely local 
decision and global decision [40] as shown in Figure 13. Scheduling decisions made with reference to just 
the task or sub-workflow at hand are called local decisions whereas scheduling decisions made with 
reference to the whole workflow are called global decisions.  
 
 
 
 
 
 
 
 
 
Local decision based scheduling only takes one task or sub-workflow into account, so it may produce the 
best schedule for the current task or sub-workflow but could also reduce the entire workflow performance. 
An example given by Deelman et al. [40] assumes that there is a data-intensive application where the 
overall run-time is driven by data transfer costs. Consider a situation where the output of a task is very 
large. If the selection of a resource for a task is based only on a local decision without consideration of data 
transfer between other resources, when selection of a resource for child tasks need to be made, the initial 
selection may be found to be a poor choice if latency between the nodes is very high. This would lead to 
higher data transfer costs for this child task and hence the entire workflow. 
 
Scheduling workflow tasks using global decision improves the performance of entire workflow. There are 
some algorithms for scheduling task graphs in parallel systems that could be applied to Grid workflow 
scheduling. Li et al. [80] developed the Forward-Looking Analysis Method (FLAM). It analyses 
dependencies of the entire graph to resolve the conflicts of parallel tasks which compete for the same 
resource. It is believed that global decision based scheduling can provide a better overall result. However, it 
may take much more time in scheduling decision making. Thus, the overhead produced by global 
scheduling could reduce the overall benefit and may even exceed the benefits it will produce [40]. 
Therefore, the choice of decision making for workflow scheduling should not be made without considering 
balance between the overall execution time and scheduling time. However, for some applications such as a 
data analysis application where the outputs of tasks in the workflow are always smaller than the inputs, 
using local decision based scheduling is sufficient.   
 

Decision Making 

Global Local 

Figure 13. Decision Making Taxonomy. 
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2.3.3 Planning Scheme 
 
A planning scheme is a method for translating abstract workflows to concrete workflows. As shown in 
Figure 14, schemes for the schedule planning of workflow applications can be categorized into either static 
scheme or dynamic scheme. In a static scheme, concrete models have to be generated before the execution 
according to current information about the execution environment and the dynamically changing state of 
the resources is not taken into account. In contrast, a dynamic scheme uses both dynamic information and 
static information about resources to make scheduling decisions at run-time. 

 
Static schemes, also known as full-ahead planning, include user-directed and simulation-based scheduling. 
In user-directed scheduling, users emulate the scheduling process and make resource mapping decisions 
according to their knowledge, preference and/or performance criteria. For example, users prefer to map 
tasks to resources on which they have not experienced failures. In simulation-based scheduling, the ‘best’ 
schedule is achieved by simulating task execution on a given set of resources before a workflow starts 
execution. The simulation can be processed based on static information or the result of performance 
estimation. For example, in GridFlow [25], the ‘best’ resource selected for scheduling a task is based on the 
predictive task execution time that resource provides.  
 
Dynamic schemes include prediction-based and just in-time scheduling. Prediction-based dynamic 
scheduling uses dynamic information in conjunction with some results based on prediction. It is similar to 
simulation-based static scheduling, in which the scheduler is required to predict the performance of task 
execution on resources and generate a near optimal schedule for the task before it starts execution. 
However, it changes the initial schedule dynamically during the execution. For example, GrADS [32] 
generates preliminary mapping by using prediction results, but it migrates a task execution to another 
resource when its initial contract is broken or a better resource is found for execution. Sakellariou et al. 
[110] developed a low-cost rescheduling policy for the mapping of workflows on Grids. It considers 
rescheduling workflow tasks at a few carefully selected points during execution in a dynamically changing 
Grid environment, since the initial schedule built using inaccurate predictions can affect performance 
significantly.  
 
Rather than making a schedule ahead, just in-time scheduling [42] only makes scheduling decision at the 
time of task execution. Planning ahead in Grid environments may produce a poor schedule, since it is a 
dynamic environment where utilization and availability of resources varies over time and a better resource 
can join at any time. Moreover, it is not easy to accurately predict the execution time of all application 
components on Grid resources. However, as the technology of advance reservation [119] for various 
resources improves, it is believed that the role of static and prediction-based planning will increase [40].  
 
2.3.4 Scheduling Strategy 
 
In general, scheduling workflow applications in a distributed system is an NP-complete problem [50]. 
Therefore, many heuristics have been developed to obtain near-optimal solutions to match users’ QoS 
constraints. As shown in Figure 15 we categorize strategies of major scheduling approaches into 
performance-driven, market-driven and trust-driven.  
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Figure 14. Planning Scheme Taxonomy. 
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Performance-driven strategies try to find a mapping of workflow tasks onto resources that achieves optimal 
execution performance such as minimize overall execution time. Most of Grid workflow scheduling 
systems falls in this category. GrADS [32] optimizes DAG-based workflows using Min-Min, Max-Min and 
Suffrage heuristics, hoping to obtain minimum completion times. Prodan et al. [106] use classical genetic 
algorithms with cycle elimination techniques to minimize non-DAG based workflow execution on Grids.  
 
  
 
 
 
 
 
 
 
Market-driven strategies employ market models to manage resource allocation for processing workflow 
tasks. They apply computational economy principle and establish an open electronic marketplace between 
workflow management systems and participating resource providers. Workflow schedulers act as 
consumers buying services from the resource providers and pay some notion of electronic currency for 
executing tasks in the workflow. The tasks in the workflow are dynamically scheduled at run-time 
depending on resource cost, quality and availability, to achieve the desired level of quality for deadline and 
budget. Unlike the performance-driven strategy, market-driven schedulers may choose a resource with later 
deadline if its usage price is cheaper. Market-driven strategies have been applied to several Grid systems 
such as Nimrod-G [21] and Gridbus data resource broker [130]. One example of the market-driven 
workflow scheduling proposed by Geppert et al. [58] utilizes market mechanisms during the task 
assignment. In the system, bids are collected from eligible resource providers for each task. The optimal bid 
is selected by computing the amount of time and cost saved or overdrawn up to the point. If the execution 
time has been minimized at the expense of an overdrawn cost, a bid with lower price will be chosen as the 
optimal bid. Consequently, scheduler assigns the task to the resource whose provider offers the optimal bid. 
A recent work on cost-based scheduling of workflow tasks on Grids is reported in [19]. 
 
Recently, trust-driven scheduling approaches (e.g. CCOF project in [147] and GridSec project in 
[114][115]) in distributed systems are emerging.  Trust-driven schedulers select resources based on their 
trust levels. For example, within GridSec, the scheduler accesses the trust level of Grid sites. It maps tasks 
onto resources whose trust level is higher than users’ demand. Trust model of resources is based on 
attributes such as security policy, accumulated reputation, self-defense capability, attack history, and site 
vulnerability. By using trust-driven approaches, workflow management systems can reduce the chance of 
selecting malicious hosts, and non-reputable resources [147]. Therefore, overall accuracy and reliability of 
workflow execution will be increased.  
 
2.3.5 Performance Estimation  
 
In order to produce a good schedule, estimating the performance of tasks on resources is crucial, especially 
for constructing a preliminary workflow schedule. By using performance estimation techniques, it is 
possible for workflow schedulers to predict how tasks in a workflow or sub-workflow will behave on 
distributed heterogeneous resources and thus make decisions on how and where to run them. As indicated 
in Figure 16, there are several performance estimation approaches: simulation, analytical modeling, 
historical data, on-line learning, and hybrid.  
 
 
 
 
 
 
 
 
 

Scheduling Strategy 

Trust-driven Market-driven Performance-driven 

Figure 15. Scheduling Strategy Taxonomy. 

Performance Estimation 

Figure 16. Performance Estimation Taxonomy. 
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Simulation approaches [43][148] provide resource simulation environments to emulate the execution of 
tasks in the workflow prior to its actual execution. In analytical modeling [32][37][98], a scheduler predicts 
the performance of tasks in workflow on a given set of resources based on an analytic metric. For example, 
in GrADS [32], two types of performance models are developed, namely memory hierarchy performance 
model and computational model. By using these models, one can predict memory requirements and the 
execution time of an application component for a resource according to the associated problem size. The 
historical data approach [68][91][113] relies on historical data to predict the task’s execution performance. 
The historical data related to a particular user’s application performance or experience can also be used in 
predicting the share of available of resources for that user while making scheduling decisions based on QoS 
constraints. The on-line learning approach predicts task execution performance from on-line experience 
without prior knowledge of the environment’s dynamics.  For example, Buyya et al. [22] and Galstyan et al. 
[57] map a job onto a ‘best’ Grid resource by learning the completion time of most recent jobs submitted to 
resources. As historical and on-line learning approaches use experimental data, they can be broadly termed 
as empirical modeling approaches for performance estimation. 
 
In certain conditions, these approaches could be used together in a hybrid approach for generating 
performance evaluation of workflow tasks. For instance, Bacigalupo et al. [16] use both layered queuing 
modeling and historical performance data to predict the performance of dynamic e-Commerce systems on 
heterogeneous servers. In addition, GrADS constructs computational models semi-automatically by 
emulating the execution of workflow components on small data sets. That is, it uses a combination of 
historical and analytical approaches for performance estimation. 
 
2.4 Fault Tolerance 
 
In a Grid environment, workflow execution failure can occur for various reasons: the variation in the 
execution environment configuration, non-availability of required services or software components, 
overloaded resource conditions, system running out of memory, and faults in computational and network 
fabric components. Grid workflow management systems should be able to identify and handle failures and 
support reliable execution in the presence of concurrency and failures.  
 

 
As shown in Figure 17, Hwang et al. [66] divided workflow failure handling techniques into two different 
levels, namely task-level and workflow-level. Task-level techniques mask the effects of the execution failure 
of tasks in the workflow, while workflow-level techniques manipulate the workflow structure such as 
execution flow to deal with erroneous conditions.  
 
Task-level techniques have been widely studied in parallel and distributed systems. They can be cataloged 
into retry, alternate resource, checkpoint/restart and replication. The retry technique [121] is the simplest 
failure recovery technique, as it simply tries to execute the same task on the same resource after failure. 
The alternate resource technique [121] submits failed task to another resource. The checkpoint/restart 
technique [36] moves failed tasks transparently to other resources, so that the task can continue its 
execution from the point of failure. The replication technique [7][66] runs the same task simultaneously on 
different Grid resources to ensure task execution provided that at least one of the replicas does not fail.  
 
Workflow-level techniques include alternate task, redundancy, user-defined exception handling and rescue 
workflow. The first three approaches proposed in [66] assume there is more than one implementation for a 

Rescue  
workflow 

Checkpoint 
/Restart 

Replication Retry Alternate  
Task 

User-defined  
Exception 
Handling 

Redundancy 

Task-level Workflow-level 

Fault Tolerance 

Alternate  
Resource 

Figure 17. Fault Tolerance Taxonomy. 
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certain computation with different execution characteristics. The alternate task technique executes another 
implementation of a certain task if the previous one failed, while the redundancy technique executes 
multiple alternative tasks simultaneously. The user-defined exception handling allows the users to specify a 
special treatment for a certain failure of a task in workflow. The rescue workflow technique developed in 
Condor DAGMan system [36] ignores the failed tasks and continues to execute the remainder of the 
workflow until no more forward progress can be made. Then, a rescue workflow description called rescue 
DAG, which indicates failed nodes with statistical information, is generated for later submission.  
 
2.5 Intermediate Data Movement 
 
 
 
 
 
 
 
 
 
 
 
 
For Grid workflow applications, the input files of tasks need to be staged to a remote site before processing 
the task. Similarly, output files may be required by their children tasks which are processed on other 
resources. Therefore, the intermediate data has to be staged out to the corresponding Grid sites. Some 
systems require users to manage intermediate data transfer in the workflow specification, rather than 
providing automatic mechanisms to transfer intermediate data. As indicated in Figure 18, we categorize 
approaches of automatic intermediate data movement into centralized, mediated and peer-to-peer.  
 
Basically a centralized approach transfers intermediate data between resources via a central point. For 
example, a central workflow execution engine can collect the execution results after task completion and 
transfer them to the processing entities of corresponding successors.  Centralized approaches are easy to 
implement and suit workflow applications in which large-scale data flow is not required.  
 
In a mediated approach, rather than using a central point, the locations of the intermediate data are managed 
by a distributed data management system. For example, in Pegasus system, the intermediate data generated 
at every step is registered in a replication catalog service [30], so that input files of every task can be 
obtained by querying the replication catalog service. Mediated approaches are more scalable and suitable 
for applications which need to keep intermediate data for later use.  
 
A peer-to-peer approach transfers data between processing resources. Since data is transmitted from the 
source resource to the destination resource directly without involving any third-party service, peer-to-peer 
approaches save the transmission time and reduce the bottleneck problem caused by the centralized and 
mediated approaches. Thus, they are suitable for large-scale intermediate data transfer. However, there are 
more difficulties in deployment because they require every Grid node to be capable of providing both data 
management and movement service. In contrast, centralized and meditated approaches are more suitable to 
be used in applications such as bio-applications, in which users need to monitor and browse intermediate 
results. In addition, they also need to record them for future verification purposes.  
 
3. GRID WORKFLOW MANAGEMENT SYSTEM SURVEY  
 
In this section, we present a detailed survey of existing Grid workflow systems in addition to mapping the 
proposed taxonomy. Table 1 shows the summary of selected Grid workflow management projects. A 
comparison of various Grid workflow systems and their categorization based on the taxonomy is shown in 
Table 2, Table 3, and Table 4.  
 
 

              Intermediate Data Movement 

User-directed Automatic  

Centralized   Mediated  Peer-to-Peer  

Figure 18. Intermediate Data Movement. 
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Name Organization  Prerequisite Grid 

Integration  
Applications Availability 

DAGMan 
[120] 

University of 
Wisconsin-
Madison, USA. 
http://www.cs.wisc
.edu/condor/dagma
n/ 
 

Condor  Condor which 
can run on top 
of Globus 
Toolkit 
version 2 
(GT2) 

Compute-
intensive  

GPL(General 
Public License) 

Pegasus 
[41] 

University of 
Southern 
California, USA. 
http://pegasus.isi.e
du 
 

Condor 
DAGMan,  
Globus RLS. 

Condor and 
Globus. 

Targeted for 
data-intensive, 
but supports 
other types. 

GTPL (Globus 
Toolkit Public 
License)  

Triana 
[123] 

Cardiff University, 
UK. 
http://www.trianac
ode.org/ 
 

Grid 
Application 
Toolkit 
(GAT) 

GAT (JXTA, 
Web 
services, 
Globus) 

Compute-
intensive 

the Apache 
Software 
License  

ICENI 
[93] 

London e-Science 
Centre, UK. 
http://www.lesc.ic.
ac.uk/iceni/ 
 

Globus 
Toolkit 

Jini, JXTA, 
Globus 

Compute-
intensive 

ICENI Open 
Source Code 
Licence 

Taverna 
[100] 

Collaboration 
between several 
European Institutes 
and industries. 
http://taverna.sourc
eforge.net/ 
 

Java 1.4+ Web 
services, 
Soaplab, 
local 
processor, 
BioMoby, 
etc. 
 

Service Grids GNU Lesser 
General Public 
License (LGPL) 

GridAnt 
[75] 

Argonne National 
Laboratory, USA. 
http://www.cogkit.
org/ 
 

Apache Ant, 
Globus 
Toolkit 

GT2, GT3, 
GT4 

Client controllable 
workflow 
applications 

GTPL 

GrADS 
[18] 

Collaboration 
between several 
American  
Universities. 
http://www.hiperso
ft.rice.edu/grads/ 
 

Globus 
Tookit, 
Autopilot, 
NWS 

Globus, 
Parallel 
Systems (e.g. 
MPI)  

Compute-
intensive and 
communication-
intensive 
applications with 
MPI components 

Not yet available 
in public 

GridFlow 
[25] 

University of 
Warwick, UK 
http://www.dcs.war
wick.ac.uk/researc
h/hpsg/workflow/w
orkflow.html 

Agent-based 
Resource 
Management 
System, 
Performance 
Analysis and 
Characterize 
Environment 
(PACE) 

Parallel 
Systems (e.g. 
MPI and 
PVM) 

MPI and PVM 
based 
components 

Not yet available 
in public  

Table 1. Summary of Grid Workflow Management Projects. 



 15 

Name Organization  Prerequisite Grid 
Integration  

Applications Availability 

Toolkit,  Titan 
 

Unicore 
[11]  

Collaboration 
between German 
research 
institutions and 
industries 
http://www.unicore
.org/ 
 

Unicore 
middleware 

Unicore Computational-
intensive and 
MPI components 

Community  
Source License  

Gridbus 
workflow 
[144] 

The University of 
Melbourne, 
Australia. 
http://www.gridbus
.org 

Globus 
Toolkit 

GT2 Computational-
and Data-
intensive  

GPL 

 
Askalon 
[49] 

 
University of 
Innsbruck 
http://dps.uibk.ac.at
/askalon 
 

 
Globus 
Toolkit 

 
GT2, GT4, 
WSRF, Web 
services 

 
Performance- 
oriented 
applications 

 
GTPL 

Karajan 
[76] 

Argonne National 
Laboratory 
http://www.cogkit.
org 

Java 1.4 GT2, GT3, 
GT4, Condor, 
runtime exec, 
ssh, 
WebDAV 
 

Those required to 
access Grid 
middleware  

GPTL 

Kepler 
[12] 

A cross-project 
collaboration. 
http://kepler-
project.org/ 

Java Globus, 
Storage 
Resource 
Broker(SRB), 
EcoGrid, 
Web services 

Scientific 
workflow 
applications 

UC Berkeley 
License 

 
 
 

Project 
Name 

Structure Model Composition 
Systems 

QoS Constraints 

DAGMan DAG Abstract User-directed 
• Language-based 

User specified rank 
expression for 
desired resources 
 

Pegasus DAG Abstract User-directed 
• Language-based  

Automatic 
 

N/A 

Triana  Non-DAG Abstract User-directed 
• Graph-based  
 

N/A 
 

ICENI Non-DAG Abstract User-directed 
• Language-based  
• Graph-based 

Metrics specified by 
users 

Table 2. Workflow Design Taxonomy Mapping. 
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Project 
Name 

Structure Model Composition 
Systems 

QoS Constraints 

Taverna DAG 
 

Abstract/
Concrete 

User-directed  
• Language-based   
• Graph-based 

 

N/A 

GridAnt Non-DAG  Concrete User-directed 
• Language-based 

 

N/A 
 

GrADS DAG Abstract User-directed 
• Language-based 

Estimated 
application 
execution time 
 

GridFlow DAG Abstract User-directed 
• Graph-based 
• Language-based 
 

Application 
execution time 
 

Unicore 
  

Non-DAG Concrete User-directed 
• Graph-based 
 

N/A 
 

Gridbus 
workflow 

DAG Abstract/
Concrete 

User-directed 
• Language-based 
 

Deadline, Cost 
minimisation 
 

Askalon Non-DAG Abstract User-directed 
• Graph-based 
• Language-based 

 

Constrains and 
properties specified 
by users or pre-
defined 
 

Karajan Non-DAG Abstract User-directed 
• Language-based 
• Graph-based 
 

N/A 

Kepler Non-DAG Abstract/
Concrete 

User-directed 
• Graph-based 

N/A 

 
 
 

Project 
Name 

Architecture Decision 
Making 

Planning 
Scheme 

Strategies Performance 
Estimation 

DAGMan Centralized Local Just in-time Performance-
driven 
 

N/A 

Pegasus Centralized Local/ 
Global 

User-directed/ 
Just in-time 
 

Performance-
driven 

Historical Data, 
Analytical modeling 

Triana  Decentralized Local Just in-time Performance-
driven 

N/A 
 

ICENI Centralized Global Prediction-
based 

Performance 
& Market-
driven 
 

Historical Data 

Taverna Centralized Local Just in-time Performance-
driven 
 

N/A 
 

GridAnt Centralized User- User-directed User-defined* N/A 

Table 3. Workflow Scheduling Taxonomy Mapping. 
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Project 
Name 

Architecture Decision 
Making 

Planning 
Scheme 

Strategies Performance 
Estimation 

defined*  
 

GrADS Centralized Local/ 
Global 

Prediction-
based 

Performance-
driven  
 

Historical data 
(empirical) , 
Analytical modeling 
 

GridFlow Hierarchical Local Simulation-
based 

Performance-
driven 
 

Analytical modeling 

Unicore  
 
 

Centralized User-
defined* 

User-directed User-defined* N/A 

Gridbus 
Workflow 

Hierarchical Local User-directed 
Just in-time 
 

Market-driven Historical data 
(empirical) 

Askalon Decentralized Global Just in-time/ 
Prediction-
based 

Performance 
& Market-
driven 
 

Analytical modeling, 
Historical data 

Karajan  Centralized User-
defined* 
 

User-defined* User-defined* N/A 

Kepler Centralized User-
defined* 

User-defined* User-defined* N/A 

*user-defined - the architecture of the system has been explicitly designed for user extension.    
 
 
 

Project 
Name 

Information Retrieval Fault-tolerance Data 
Movement 

DAGMan Resource information is retrieved by 
Condor Matchmaker that manages 
resource and task info advertisement 
and notification. 

Task Level 
• Migration 
• Retrying 

Workflow Level  
• Rescue workflow  

 

User-
directed 

Pegasus Resource information retrieved 
through Globus MDS and RLS. 
Application component information 
is retrieved from the GriPhyN 
Transformation Catalog. 
 

Based on DAGMan Mediated 

Triana Based on GAT protocol 
 

Based on GAT manger Peer-to-Peer 

ICENI Application component information 
is retrieved by the component 
metadata service and performance 
repository service. 
 

Based on middleware Mediated 

Taverna Service information is retrieved 
through DAML-S web service 
ontology, domain ontology 
information service, and UDDI.  
 

Task Level  
• Retry 
• Alternate Resource 
 

Centralized 

Table 4. Information Retrieval, Fault-tolerance and Data Movement Taxonomy Mapping. 
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Project 
Name 

Information Retrieval Fault-tolerance Data 
Movement 

GridAnt Resource information is retrieved 
through Globus MDS. 

User-defined* User-
directed 
 

GrADS Resource information is retrieved 
through Globus MDS and GrADS 
information service (GIS). Dynamic 
information is retrieved by NWS. 
Autopilot is used for provide 
performance contract information. 
 

Task Level in rescheduling 
work in GrADS, but not in 
workflows. 

Peer-to-Peer 

GridFlow Resource information is retrieved 
through Titan  

Task Level 
• Alternate resource 
 

Peer-to-Peer 

Unicore 
 

Unicore information service Based on Unicore 
middleware 
 

Mediated 

Gridbus 
workflow 

Resource information is retrieved 
through the Grid Market Directory  
 

Task Level 
• Alternate resource 

Centralized 

Askalon Static information 
• Infrastructure-related 
• Configuration-related 
• QoS-related 
Dynamic information 
• Resource-related 
• Execution-related 
 

Task Level 
• Retry 
• Alternate resource 
Workflow level 
• Rescue workflow 
 

Centralized 
User-
directed 
 

Karajan User-defined* Task Level 
• Retry 
• Alternate resource 
Workflow Level 
• User-defined exception 

handling 
 

User-
directed 

Kepler User-defined* Task Level 
• Alternative resource 
Workflow Level 
• User-defined exception 

handling 
• Workflow rescue 

Centralized 
Mediated 
Peer-to-Peer 

*user-defined - the architecture of the system has been explicitly designed for user extension.    
          
        
3.1 Condor DAGMan 
 
Condor [81][120][124] is a specialized resource management system (RMS) developed at the University of 
Wisconsin-Madison for compute-intensive jobs. Condor provides a High Throughput Computing (HTC) 
environment based on large collections of distributed computing resources ranging from desktop 
workstations to super computers. Condor-G, a component within Condor, utilizes Globus GRAM serving 
as a uniform interface to heterogeneous batch systems, thus enabling large scale computational Grids. 
Matchmaking within Condor, matches jobs and available resources according to their job and resource 
classified advertisement. When more than one resource satisfies the job requirement, the resource with 
higher value of rank expression, which expresses the desirability of a match, is preferred. 
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The Directed Acyclic Graph Manager (DAGMan) [36][120] is a meta-scheduler for Condor jobs. While 
Condor aims to discover available machines for the execution of jobs, DAGMan handles the dependencies 
between the jobs.  DAGMan uses DAG as the data structure to represent job dependencies. Each job is a 
node in the graph and the edges identify their dependencies. Each node can have any number of “parent” or 
“children” nodes. Children cannot run until their parents have completed. Cycles, where two jobs are both 
descended from one another, are prohibited, because it would lead to deadlock. DAGMan does not support 
automatic intermediate data movement, so users have to specify data movement transfer through pre-
processing and post-processing commands associated with processing job.  
 
The individual job execution is managed by Condor scheduler. So if a job fails due to the nature of the 
distributed system, such as loss of network connection, it will be recovered by Condor while DAGMan is 
unaware of such failures. However, DAGMan is responsible for reporting errors for the set of submitted 
jobs, and generates a rescue DAG. In the case of a job failure, the remainder of the DAG continues until no 
more progress can be made. A failed node can be retried a configurable number of times. The rescue DAG 
indicates the uncompleted portions of the DAG with detail of failures. Users can correct the errors of failed 
jobs and resubmit the rescue DAG.  
 
3.2 Pegasus in GriPhyN 
 
GriPhyN [61] aims to support large-scale data management in physics experiments such as high-energy 
physics, astronomy, and gravitational wave physics. Pegasus [40][41][42] (Planning for Execution in Grids) 
is a workflow manger in GriPhyN developed by the University of Southern California. 
 
Pegasus performs a mapping from an abstract workflow to the set of available Grid resources, and 
generates an executable workflow. An abstract workflow can be constructed by querying Chimera [53], a 
virtual data system, or provided by users in DAX (DAG XML description). An abstract workflow describes 
the computation in terms of logical files and logical application components and indicates their 
dependencies in the form of Directed Acyclic Graph (DAG). Before mapping, Pegasus reduces the abstract 
workflow by reusing a materialized dataset which is produced by other users within a VO. Reduction 
optimization assumes that it is more costly to produce a dataset than access the processing results. The 
reduction algorithm removes any antecedents of the redundant jobs that do not have any unmaterialized 
descendents in order to reduce the complexity of the executable workflow.  
 
Pegasus consults various Grid information services to find the resources, software, and data that are used in 
the workflow. A Replica Location Service (RLS) [30] and Transformation Catalog (TC) [39] are used to 
locate the replicas of the required data, and to find the location of the logical application components 
respectively. Pegasus also queries Globus Monitoring and Discovery Service (MDS) [34] to find available 
resources and their characteristics.  
 
There are two methods used in Pegasus for resource selection, one is through random allocation, the other 
is through a performance prediction approach. In the latter approach, Pegasus interacts with Prophesy 
[68][140], which serves as an infrastructure for performance analysis and modeling of parallel and 
distributed applications. Prophesy is used to predict the best site to execute an application component by 
using performance historical data. Prophesy gathers and stores the performance data of every application. 
The performance information can provide insight into the performance relationship between the application 
and hardware and between the application, compilers, and run-time systems. An analytical model is 
produced based on the performance data and is used by the prediction engine to predict the performance of 
the application on different platforms. It is required that Pegasus send the request associated with 
information such as the component name, the semantic parameter names and their values, and the list of 
available resources. The ranking of the given resources is returned by Prophesy after the query is received.   
 
For ease of use, Pegasus is able to generate a workflow from a metadata description of the desired data 
product with the aid of artificial intelligence planning techniques. Although, the workflow execution of 
Pegasus is based on static planning and its executable workflow is transformed into Condor jobs for 
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execution management by Condor DAGMan, it has been recently extended to support just in-time 
scheduling [42] and pluggable task scheduling strategies. 
 
3.3 Triana  
 
Triana [122][123] is a visual workflow-oriented data analysis environment developed at Cardiff University. 
In 2002, Triana was extended to implement a consumer Grid [122] by using a peer-to-peer approach.  
Recently, Triana has been redesigned and integrated with Grids via GridLab GAT (Grid Application 
Toolkit) interface [10].  GAT defines a high level API for core Grid service access through JXTA [70], 
Web services [133], and OGSA [54][126]. 
 
Triana provides a visual programming interface with functionality represented by units. Applications are 
written by dragging the required units onto the workplace and connecting them to construct a workflow. 
Apart from many implemented tool units, Triana also provides a custom user interface to allow users to 
build their own units. Several control units (e.g. loop) and logic units (e.g. if) are also provided for users to 
control the logic of workflow execution. Since control and logic units are implemented as a standard Triana 
unit, it is easy to introduce new flow patterns. Interconnected units can also be grouped into a group unit, 
which has the same properties as normal unit.  
 
Triana clients such as Triana GUI can log into a Triana Controlling Service (TCS), remotely build and run 
a workflow and then visualize the result on their device (e.g. PC, PDA, etc). Each TCS interacts with the 
Triana engine and every engine provides a service and is capable of executing complete or partial task-
graphs locally, or by distributing the code to other servers based on the specified distribution policy for the 
supplied task-graph. The distribution policy is based on the concept of group units and two distribution 
policies have been implemented, namely parallel and peer-to-peer. Both policies distribute every unit in the 
group to separated hosts, however while the peer-to-peer mechanism relies on intermediate data being 
passed between hosts, there is no such host-based communication with the parallel policy. Since a 
distributed task-graph is not fixed to a specific set of resources, it can be dynamically allocated to available 
services in the most effective way. 
 
3.4 Workflow Management in ICENI 
 
The ICENI (Imperial College e-Science Network Infrastructure) [93][94] developed at London e-Science 
Centre provides component-based Grid middleware. Within ICENI, users construct an abstract workflow, 
which is a collection of components, and then submit this to ICENI environment for execution.  
 
Each ICENI component is described in terms of meaning, control flow and implementation. The workflow 
components are primarily composed based on a spatial view, in which all units are represented concurrently, 
with details of how they relate and interact with each other. Then a temporal view is derived from the 
spatial view by the system. In the temporal view, workflow information is attached to each component that 
consists of a graph in which the directed arcs contain the partnership according to the temporal dependence. 
Within ICENI, the workflow model is similar to that of the YAWL (Yet Another Workflow Language) [4], 
although simplified in certain respects. The workflow language includes all basic workflow structure such 
as sequence, parallelism, choice and iteration. 
  
The scheduling service [93][142][143] within ICENI is responsible for concretizing the abstract workflow. 
The scheduling task includes matching component meaning with component implementation and mapping 
these qualified components onto a suitable subset of the available resources. Several scheduling algorithms 
used to determine resource mapping have been implemented. They include random, best of n random, 
simulated annealing and game theory. Most schedulers implemented within ICENI aim to provide 
approximate optimal solutions to map the abstract workflow to a combination of component 
implementations and resources in terms of execution time and cost. The schedulers take into account all 
components in applications rather than standalone components. The scheduling framework also allows 
third-party scheduling algorithms to be plugged in.  
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ICENI has developed a performance repository system [91] which is able to monitor running applications 
and obtain and store performance data for the components within the applications. This data is stored 
within a repository with meta-data about the resource the component was executed on, the implementation 
of the component used, and the number of other components concurrently running on the same resource. 
This data can be used by schedulers for future runs of applications to estimate the execution times of each 
component within the workflow.  
 
Two scheduling schemes [93] are considered within ICENI, namely lazy scheduling and advanced 
reservation. The metadata of the component implementation indicates which scheme the component can 
benefit from. Non-reservation component is scheduled to a resource just before it is required, while 
reservation component has been allocated to a resource and has made a reservation in advance. The 
schedulers can interrogate the performance repository to predict execution in order to produce accurate 
reservation. The reservation negotiation protocol is based on WS-Agreement [60]. 
 
3.5 Taverna in myGrid 
 
Taverna [100] is the workflow management system of the myGrid [118] project, which aims to exploit Grid 
technology to develop high-level middleware for supporting personalized in silico experiments in biology.  
Taverna is a collaboration between several European universities, institutes and industries. The purpose of 
Taverna is used to assist scientists with the development and execution of bioinformatics workflows on the 
Grid. Taverna provides data models, enactor task extensions, and graphical user interfaces. FreeFluo [55] is 
also integrated into Taverna as a workflow enactment engine to transfer intermediate data and invoke 
services.  
 
In Taverna, data models can be represented in either a graphical format or in an XML based language 
called Simple Conceptual Unified Flow Language (SCUFL). The data model consists of inputs, outputs, 
processors, data flow and control flow. In addition to specifying execution order, the control flow can also 
be trigged by state transitions during the execution of parent processors. Compared to other workflow 
languages, such as the Business Process Execution Language for Web Services (BPEL4WS) [14] , SCUFL 
allows implicit iteration over incoming data sets based on a specified strategy. At the execution level, the 
workflow enactor also provides a multithreading mechanism to speed up the iteration process. Users are 
allowed to set the Thread property to specify how many concurrent instances will send parallel requests to 
the iteration processor. It is especially suitable for services that are capable of handling significant 
simultaneous processing, for example, a service that is backed by a cluster. It also can reduce service 
waiting time since workflow engine can send the next input data at the same time as the service is working 
on the current input.  
 
Taverna also provides a user-friendly multi-window environment for users to manipulate workflows, 
validate and select available resources, and then execute and monitor these workflows. The enactment 
status panel [121] of Taverna shows the current progress of a workflow invocation. It also allows the users 
to browse the intermediate and final results. Through the enactment panel, users can handle storage of those 
results on local or remote data stores in a variety of formats.  
 
Fault tolerance [121] in the workflow management of myGrid is achieved by setting configuration for each 
processor in the workflow, for example, the number of retries, time delay and alternate processors. It also 
allows users to specify the critical level for faults on each processor. If the processor is set as Critical, after 
all retries and alternates have failed, entire workflow execution will be terminated, otherwise, the workflow 
will continue but children nodes of the failed processor will never be invoked.  
 
 myGrid follows service-oriented grid architecture and supports several different types of services within the 
workflow management system, including WSDL-based [138] single operation web services, soaplab bio-
services [111] and local services such as programs coded as java classes. In addition, information services 
such as UDDI (the Universal Description, Discovery and Integration) [127] and ontology directory [139] 
are adopted for service discovery.  
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3.6 GridAnt 
 
The GridAnt [13][75] is an extensible client-side workflow management system developed by Argonne 
National Laboratory. It has been designed for Grid end-users as a convenient tool to express and control the 
execution sequence without having any expertise in sophisticated workflow systems. GridAnt focuses on 
distributed process management rather than the aggregation of services which is the concern of most other 
Grid-enabled workflow frameworks.  
 
GridAnt consists of four major components, namely workflow engine, run-time environment, workflow 
vocabulary and workflow monitoring. The workflow engine is the central controller that handles task 
dependencies, failure recoveries, performance analysis, and process synchronization. GridAnt workflow 
engine extends Ant [15], an existing commodity tool for controlling build process in Java, by adding 
additional components to support workflow orchestration and composition. GridAnt also provides an 
environment for inter-task communication, so that individual GridAnt tasks can read and write intermediate 
data by using a globally accessible whiteboard-style communication model. Several important constructs 
such as constants, arithmetic expressions, global variables, array references, and literals are supported by 
the run-time environment. GridAnt extends Ant’s vocabulary in the Grid domain with the addition of the 
tags such as grid-copy, grid-authenticate and grid-query. These new tags are used by users to predefine the 
Grid tasks and construct complex workflows at compile time. It uses a control construct provided by Ant 
container for expressing parallel and sequential tasks.  Furthermore, users are allowed to monitor the 
progress of the execution by means of graphical visualization tool.    
 
In addition to mapping complex client-side workflows, GridAnt can be used for testing the functionality of 
different Grid services. It has been developed to support version 2 and version 3 of the Globus toolkit [59] 
by using the Java CoG kit [74]. It has been applied for Position-Resolved Diffraction [13], which is a new 
experimental technique for the study of nanoscale structures as part of the Argonne National Laboratory’s 
advanced analytical electron microscope. 
 
3.7 Workflow management in GrADS 
 
The Grid Application Development Software (GrADS) project [18] aims to provide programming tools and 
execution environments for ordinary scientific users to develop, execute, and tune applications on the Grid. 
GrADS is a collaboration between several American Universities. GrADS supports application 
development either by assembling domain-specific components from a high-level toolkit or by creating a 
module by relatively low-level (e.g., MPI ) code [32].   
 
GrADS provides application-level scheduling to map workflow application tasks to a set of resources. New 
Grid scheduling and rescheduling methods [32] are introduced in GrADS. These scheduling methods are 
guided by an objective function to minimize the overall job completion time (makespan) of the workflow 
application. The scheduler obtains resource information by using services such as MDS [109] and NWS 
[136] and locates necessary software on the scheduled node by query GrADS Information Service (GIS). 
The workflow scheduler ranks each qualified resource for each application component. A rank value is 
calculated by using “a weighted sum of the expected execution time on the resource and the expected cost 
of data movement for the component.” After ranking, a performance matrix is constructed and used by the 
scheduling heuristics to obtain a mapping of components onto resources. Three heuristics have been 
applied in GrADS; those are Min-Min, Max-Min, and Sufferage heuristics [87].  
 
GrADS has built up an architecture-independent model of the workflow component from individual 
component models. It employs analytical models that are constructed semi-automatically from empirical 
models (historical data/sample execution data), in order to estimate the performance of a workflow 
component on a single Grid node. It uses hardware performance counters to collect operation counts from 
several executions of the workflow components with different, small-size input problems, and then it 
performs a least-squares fit to the data to construct computational models.  In addition, GrADS reuses 
distance data on small inputs to predict the faction of cache hits and misses on the given data and cache 
configuration by its memory-hierarchy performance models.  
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GrADS utilizes Autopilot [107] to monitor performance of the agreement between the application demands 
and resource capabilities. Once the contract is violated, the rescheduler [32] of the GrADS takes corrective 
actions. It has been implemented using two rescheduling approaches for MPI applications, the stop/restart 
approach and process swapping. In the former approach, an executing application component is suspended 
and migrated to a new resource if better resources are found for improving the execution performance [129]. 
As a migration event can involve large data transfers, expensive startup costs and significant application 
code modifications, process swapping provides a lightweight, but less flexible, alternative approach. In 
process swapping more machines than will actually be used for the computation are launched for an MPI 
application component, and slower machines in the active set are swapped with faster machines in the 
inactive set periodically, according to the performance of machines. 
 
3.8 GridFlow  
 
GridFlow [25] is a Grid workflow management system developed at the University of Warwick. This work 
is built on the top of an agent-based resource management system for Grid computing (ARMS) [24]. Rather 
than focusing on workflow specification and the communication protocol, GridFlow is more concerned 
about service-level scheduling and workflow management.  
 
There are three layers of Grid resource management within the GridFlow system: the Grid resource, the 
local Grid and the global Grid. A Grid resource is simply just a particular grid resource; local Grid consists 
of multiple Grid resources that belong to one organization; and a global Grid consists of all local Grids. 
Global Grid also provides a portal for compose the workflow.  
 
A workflow in GridFlow is represented as a flow of several different activities, each activity represented by 
a sub-workflow. Each sub-workflow is a flow of closely related tasks that is to be executed in a local grid. 
A portal has been developed by GridFlow as graphical user interface for users to compose workflow 
elements.   
 
The workflow management within GridFlow is conducted by a hierarchical scheduling system including 
global Grid workflow manager and local Grid sub-workflow scheduling. Global grid workflow manager 
receives requests from the GridFlow portal with the workflow description in the format of XML, and then 
simulates workflow execution to find a near-optimal schedule. After the users accept the simulated result, 
GridFlow schedules the workflow onto different local Grids through ARMS. Within ARMS, each agent 
represents a local Grid at a global level of Grid resource management, and conducts local Grid sub-
workflow scheduling. In contrast to the global Grid workflow management, the local Grid schedulers 
handle conflicts since scheduled sub-workflows may belong to different workflows.   
 
ARMS has integrated Titan [116], which utilizes performance data obtained from PACE [98], a toolset for 
resource performance and usage analysis, with iterative heuristic algorithms to minimize the makespan and 
idle time of a grid resource. PACE can exact control flow, and use an analytical model approach based on 
queuing theory, to predict application performance on a given set of resources such as time, scalability and 
system resource usage. Titan also provides Grid resource information.  
 
3.9 Workflow Management in Unicore Plus 
 
Unicore plus [128] provides seamless and secure access to distributed resources of the German high 
performance computing centers. Unicore plus is a follow-on project of Unicore (Uniform Interface to 
Computing Resources) [11], started in 1997 to improve uniform interfaces to distributed High Performance 
Computing and data resources using the mechanisms of the World Wide Web. Unicore plus provides a 
programming environment for users to design and execute job flow.  
 
Within Unicore, one job or job group that can be executed on any Unicore site may contains other jobs 
and/or job groups. The original Unicore job model supports jobs that are constructed as a set of directed 
acyclic graphs with temporal dependencies. Since Unicore version 4, advanced flow controls have been 
added, which include conditional execution (e.g. if-then-else), repeated execution (e.g. do-n), conditional 
repeated execution (e.g. do-repeat), and conditional suspend action (e.g. hold-job). In addition, three types 
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of run-time conditions are implemented for supporting conditional checking; these are based on the return 
code of a previous executed task, existence or properties of a file and whether a given time and date have 
passed.  
 
Unicore plus provides graphical tools that allow users to create a job flow and convert it into an Abstract 
Job Object (AJO) which is a serialized java object. The AJO is submitted from a user client to a Unicore 
server. The server translates the job specification into a number of batch jobs and dispatches them to the 
target resource. The server also makes sure that a successor is executed if its predecessors are finished and 
all necessary data is available at the executing site.  
 
Unicore allows users to specify jobs and different parts of job group onto multiple resources. The output of 
individual jobs may be needed by its successors.  Therefore, a temporary Unicore space is created for each 
job group for transferring data sets. Unicore also allows users to explicitly specify the transfer function as a 
task through GUI; it is also able to perform the necessary data movement function without user intervention.  
 
3.10 Workflow Management in Gridbus 
 
The Gridbus Toolkit [23] developed by the University of Melbourne provides Grid technologies for 
service-oriented utility computing. Its architecture is driven by the requirements of Grid economy [22]. A 
Grid economy mechanism has been proposed as a technique for efficient management of distributed 
resources.  It helps in efficient allocation of resources to different users and applications based on their QoS 
requirements in addition to regulation of the supply and demand for Grid resources. 
 
The workflow management in Gridbus [144] provides a simple XML-based workflow language for users to 
define their tasks and dependencies. The workflow description language of Gridbus is aimed towards 
enabling the expression of parameter sweep tasks [8] and users’ QoS requirements [146].  
 
The workflow engine of Gridbus provides a hierarchical scheduling architecture to adapt to heterogeneous 
and dynamic Grid environments. Within the workflow execution engine, the schedules of the workflow 
tasks are driven by the events by using the tuple-space model [56]. An event-driven mechanism with 
subscription-notification approach makes the workflow execution loosely-coupled and flexible. The system 
also supports just in-time scheduling, allowing scheduling decision to be made at the time of task execution. 
The scheduler can also reschedule failed tasks to an alternative resource. In addition, Grid Market Directory 
(GMD) [145] is utilized by the workflow schedulers for run-time resource discovery.   
 
In contrast to other workflow management systems, the Gridbus workflow system emphasizes on the use of 
market-based principles and algorithms for resource allocation and scheduling applications in global Grid 
environments. It has been targeted to support applications in both scientific and business domains such as 
natural language processing and molecular modeling for drug discovery.  
 
3.11 Askalon 
 
Askalon [49] is a Grid application development and computing environment developed by the University 
of Innsbruck, Austria.  The main objective of Askalon is to simplify the development and optimization of 
mostly Grid workflow applications that can harness the power of Grid computing. 
  
Askalon comes with two separate composition systems, AGWL (Abstract Grid Workflow Language) [47] 
and Teuta [48], that support the development of Grid workflow applications. AGWL is an XML-based 
language. It provides a rich set of constructs to express sequence, parallelism, choice, and iteration 
workflow structure. In addition, programmers can specify high-level constraints and properties defined 
over functional and non-functional parameters for tasks and their dependencies which can be useful for a 
runtime system to optimize the workflow execution. Teuta supports the graphical specification of Grid 
workflow applications based on the UML activity diagram which is a graphical interface to AGWL. 
  
Askalon provides a new hybrid approach for scheduling workflow applications on the Grid through 
dynamic monitoring and steering combined with a static optimization. Static scheduling maps entire 
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workflows onto the Grid using genetic algorithms. A problem-independent objective function design allows 
to plug-in a variety of optimization metrics such as the execution time, efficiency, economical cost, or any 
user-defined QoS parameter. A dynamic scheduling algorithm takes into consideration the dynamic nature 
of the Grid resources such as machine crashes or external CPU and network load. Performance contracts 
are defined for every task and monitor whether tasks execute properly or whether they should be migrated. 
Askalon develops a fault tolerant execution engine that supports reliable workflow execution in the 
presence of resource failures through checkpointing and migration techniques. 
  
In order to provide automatic workflow orchestration, Askalon Grid Resource Management (GridARM) 
provides a distributed GT4-based registry to map generic or domain specific tasks to their implementations.  
Askalon also includes automatic search for performance problems and faults in Grid infrastructures and 
applications. The monitoring and performance analysis component provides static information of Grid 
infrastructure and dynamic information of computational resources, networks, and applications. Dynamic 
information of workflow-based applications is provided for the entire workflow as well as for invoked 
applications called within tasks. The performance of workflow components is estimated based on a training 
phase which measures the actual execution time of tasks for different loads and problem sizes on a variety 
of Grid sites.  The performance estimation of the workflow is conducted based on a combination of 
historical data obtained from a training phase and analytical modeling. 
 
3.12 Karajan 
 
Karajan [76][77], developed by Argonne National Laboratory, aims to provide an integrated approach of 
exposing workflow to the Grid community. It is an extensible workflow framework and can be easily 
utilized by third parties to provide workflow solutions for a variety of users.  It is derived from GridAnt and 
provides additional capabilities such as scalability, workflow structure and error handling.   
 
Karajan is part of Java CoG Kit. Java CoG Kit is based on modular design and provides mechanisms for 
fast application development and easy integration of the variety of Grid middleware. It provides a number 
of programming abstractions for job executions and file transfers. The concept of Grid providers is 
introduced to facilitate different middleware to be used as part of an instantiation of Grid abstractions. As a 
result, it is easy to integrate Karajan to any middleware. To date, it has been integrated into various 
versions of Globus, Condor, runtime exec, ssh, and some data transfer techniques such as WebDAV [31] 
and scp. Karajan leverages lower-level programming abstractions in Java CoG Kit to access the Grid, and 
at the same time it provides programming interfaces for higher level applications such as workflow 
schedulers and application portlets to develop users’ strategies. 
 
In addition to sequence and parallelism, Karajan supports choices and loops of workflow structures. It also 
provides a user friendly XML-based workflow language. Elements used for the description of workflow 
tasks are user-definable. Thus, the user can define names and parameters along with annotations and 
descriptions for a new element. A number of standard operators including mathematical and Boolean 
operators are defined for integration within execution control statements. It also provides advanced data 
structures such as list, range, and map (or hash tables) for repetitive tasks (e.g. parameter studies) as part of 
the workflow.    
 
A number of fault handling methods are supported in Karajan. Error handling allows users to integrate 
strategies for errors and exceptions into the workflow. Checkpointing enables users to store intermediate 
states of the workflow execution for later roll back when a problem occurs.  
 
3.13 Kepler 
 
Kepler [12][85] is one of the popular workflow systems with advanced features for composing scientific 
applications. It is derived from Ptolemy II system [82] and currently under development across a number of 
scientific data management projects. In addition to a user-friendly graphical user-interface and an 
extendable open source platform, Kepler also inherits the actor-oriented feature from Ptolemy II. It models 
a workflow system as a composition of independent components (actors) that communicate through well-
defined interfaces. An actor is an encapsulation of parameterized operations performed on input to produce 
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output data. An execution model of a workflow, which can be defined in a director object, imposes an 
execution order and communication mechanisms on the usable actors of the workflow. This modular design 
approach allows different execution models or machineries to be implemented and easily plugged into 
workflows without changing any of the components of workflows.   
 
Kepler has been extended to support seamless access to remote resources and services. A web service 
HARVESTER component can retrieve all service description files in a web page or service repository to 
create instantiations of web services actors in the user’s local actor library. Each web services actor can be 
instantiated for any particular operation specified in its service description. A number of fault-tolerant 
methods have been developed to make workflows with web services more reliable. Instead of associating a 
service operation with a fixed URL, a list of services is allowed to provide the alternative invocation during 
service failure. It is also able to produce partial results even when the entire workflow fails. Advanced 
failure handling can also be supported through extensions of exception-catching actors. In addition, Kepler 
has defined a set of Grid actors for access authentication, file copy, job execution, job monitoring, 
execution reporting, storage access, data discovery, and service discovery. 
 
 
4. SUMMARY AND DISCUSSION 
 
We have presented a taxonomy for Grid workflow management systems. The taxonomy focuses on 
workflow design, workflow scheduling, fault management and data movement. We also surveyed some 
workflow management systems for Grid computing and classify them into different categories using the 
taxonomy. This paper thus helps to understand key workflow management approaches and identify 
possible future enhancements.  
 
Many Grid workflow-enabled systems have developed graph-based editing environments. They allow users 
to compose the workflow by dragging and dropping components on a composition panel. A workflow 
abstract specification or concrete specification is then generated by these visual tools and passed to the 
workflow enactment engine. These processes are transparent to users for better usability. Currently, only 
Pegasus supports automatic workflow composition. In order to support the automatic composition, catalogs 
with rich information about application components and services need to be addressed. Besides GriPhyN 
Chimera system and UDDI (Universal Description, Discovery and Integration) directory service for web 
services discovery, many efforts from semantic Web such as DAML+OIL ontology [67] can be used for 
providing accurate description and flexible discovery of application components and services.   
 
Most of the Grid workflow projects discussed in this paper have their own graphical workflow modeling 
and language. Obviously, the lack of standardized syntax and semantic description for workflow modeling 
and language results in many replicated works. More effort is thus needed towards workflow modeling 
standardization. Even though there are some proposed workflow languages for web services such as 
BPEL4WS, they are still not sufficient due to lack of implementation, levels of abstraction and limited 
supported services [9].  
 
Quality of Service (QoS) issues have not been addressed very well in most Grid workflow management 
systems due to their focus on the use of system centric policies in resource allocation. However, when 
workflow management systems are used in commercial or production environments, supporting QoS at 
both specification and execution level becomes increasingly critical. At the specification level, workflow 
languages need to allow users to express their QoS requirements. At the execution level, the workflow 
scheduling must be able to map the workflow onto Grid resources to meet users’ QoS requirements.  
Therefore, the role of market-driven strategies will become increasingly important, currently being ignored 
in most Grid workflow management systems. Trust-based scheduling is another approach to improve QoS 
in open distributed systems such as Grid and peer-to-peer; however, it has not been addressed very well in 
the context of workflow management.   
 
It is impossible to make an optimal scheduler without knowledge of estimated time of task execution.  
Several performance information services are utilized in Grid workflow projects to predict performance 
prediction. One example is PACE employed in GridFlow project. It uses analytical model to predict 
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application performance, but the current implementation is only adapted to MPI program.  Prophesy used 
by Pegasus uses historical performance database to gain insight into the relationship between applications 
and resources in order to predict the performance of the applications on a given set of resources. Similarly, 
ICENI developed a performance repository system which is able to collect performance data for application 
components. GrADS have developed two analytical models for their GrADS programs. 
 
Given the dynamic nature of Grid environments, fault tolerance should be fully supported by Grid 
workflow management systems. However, most fault handling techniques have not been developed or 
implemented in many Grid workflow systems, especially at the workflow execution level. It is hard for a 
workflow management system to survive in real Grid environments without robust fault handling 
techniques.  
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