
 1

A Taxonomy of Workflow Management Systems for Grid Computing

Jia Yu and Rajkumar Buyya1

Grid Computing and Distributed Systems (GRIDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
http://www.gridbus.org

ABSTRACT

With the advent of Grid and application technologies, scientists and engineers are building more and more
complex applications to manage and process large data sets, and execute scientific experiments on
distributed resources. Such application scenarios require means for composing and executing complex
workflows. Therefore, many efforts have been made towards the development of workflow management
systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various
approaches for building and executing workflows on Grids. We also survey several representative Grid
workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the
taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of
state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.

Keywords: grid computing, resource management, scheduling, taxonomy, workflow management.

1. INTRODUCTION

Grids [51] have emerged as a global cyber-infrastructure for the next-generation of e-Science applications
by integrating large-scale, distributed and heterogeneous resources. Scientific communities, such as high-
energy physics, gravitational-wave physics, geophysics, astronomy and bioinformatics, are utilizing Grids
to share, manage and process large data sets. In order to support complex scientific experiments, distributed
resources such as computational devices, data, applications, and scientific instruments need to be
orchestrated while managing the application workflow operations within Grid environments [92].

Workflow is concerned with the automation of procedures whereby files and data are passed between
participants according to a defined set of rules to achieve an overall goal [35]. A workflow management
system defines, manages and executes workflows on computing resources. Imposing the workflow
paradigm for application composition on Grids offers several advantages [117] such as:

• Ability to build dynamic applications which orchestrate distributed resources.
• Utilization of resources that are located in a particular domain to increase throughput or reduce

execution costs.
• Execution spanning multiple administrative domains to obtain specific processing capabilities.
• Integration of multiple teams involved in managing of different parts of the experiment workflow

– thus promoting inter-organizational collaborations.

Figure 1 shows the architecture and functionalities supported by various components of the Grid workflow
system based on the workflow reference model [35] proposed by Workflow Management Coalition (WfMC)
[137] in 1995. At the highest level, functions of Grid workflow management systems could be
characterized into build time functions and run time functions. The build-time functions are concerned with
defining, and modeling workflow tasks and their dependencies; while the run-time functions are concerned
with managing workflow executions and interactions with Grid resources for processing workflow
applications. Users interact with workflow modeling tools to generate a workflow specification, which is
submitted to a run-time service called the workflow enactment service for execution. Major functions

1 Corresponding author, raj@cs.mu.oz.au

 2

provided by the workflow enactment service are scheduling, fault management and data movement. The
workflow enactment service may be built on the top of low level Grid middleware (e.g. Globus toolkit [59],
UNICORE [128] and Alchemi [86]), through which the workflow management system invokes services
provided by Grid resources. At both the build-time and run-time stages, the information about resources
and applications may need to be retrieved using Grid information services.

In the recent past, several Grid workflow systems have been proposed and developed for defining,
managing and executing scientific workflows. In order to enhance our understanding of the field, we
propose a taxonomy that primarily (a) captures architectural styles and (b) identifies design and
engineering similarities and differences between them. There are a number of proposed taxonomies for
distributed and heterogeneous computing such as [20][29][73][108]. However, none of these focuses on
distributed workflow managements. The taxonomy provides an in-depth understanding of building and
executing workflows on Grids. It compares different approaches and also helps users to decide on
minimum subset of features required for their systems.

The rest of the paper is organized as follows: Section 2 presents the taxonomy that classifies approaches
based on major functions and architectural styles of Grid workflow systems. In Section 3, we provide a
detailed survey of several selected Grid workflow systems and the mapping of the proposed taxonomy to
the systems. We conclude in Section 4 with a discussion and identification of areas that need further work.

2. TAXONOMY

The taxonomy characterizes and classifies approaches of workflow management in the context of Grid
computing. As shown in Figure 2, it consists of five elements of a Grid workflow management system: (a)

Grid Workflow Application Modeling
& Definition Tools

Grid Workflow
Specification

Grid Workflow Enactment Service

Grid Resources

Resource Info Service

Application Info Service

Build Time

Run Time

Grid Users

Workflow Design
& Definition

Workflow Execution
& Control

Interaction with Grid
resources

Grid Information Services

……

Interaction with
Information services

workflow change

Workflow Scheduling

Fault ManagementData Movement

Grid Middleware

Grid Workflow Application Modeling
& Definition Tools

Grid Workflow
Specification

Grid Workflow Enactment Service

Grid Resources

Resource Info Service

Application Info Service

Build Time

Run Time

Grid Users

Workflow Design
& Definition

Workflow Execution
& Control

Interaction with Grid
resources

Grid Information Services

……

Interaction with
Information services

workflow change

Workflow Scheduling

Fault ManagementData Movement

Grid Middleware

Figure 1. Grid Workflow Management System.

 3

workflow design, (b) information retrieval, (c) workflow scheduling, (d) fault tolerance and (e) data
movement. In this section, we look at each element and its taxonomy in detail.

2.1 Workflow Design

As shown in Figure 3, workflow design includes four key factors, namely (a) workflow structure, (b)
workflow model/specification, (c) workflow composition system, and (d) workflow QoS (Quality of
Service) constraints.

2.1.1 Workflow Structure

A workflow is composed by connecting multiple tasks according to their dependencies. The workflow
structure, also referred as workflow pattern [2][3][6], indicates the temporal relationship between these
tasks. Figure 4 shows the workflow structure taxonomy. In general, a workflow can be represented as a
Directed Acyclic Graph (DAG) [110] or a non-DAG.

In DAG-based workflow, workflow structure can be classified as sequence, parallelism, and choice.
Sequence is defined as an ordered series of tasks, with one task starting after a previous task has completed.
Parallelism represents tasks which are performed concurrently, rather than serially. In choice control
pattern, a task is selected to execute at run-time when its associated conditions are true.

In addition to all patterns contained in a DAG-based workflow, a non-DAG workflow also includes the
iteration structure in which sections of workflow tasks in an iteration block are allowed to be repeated.
Iteration is also known as loop or cycle. The iteration structure is quite frequently used in scientific
applications, where one or more tasks need to be executed repeatedly [91]. For example, in a promoter
identification workflow [85] as shown in Figure 5, step 5 to step 8 are executed iteratively to create and
refine a promoter model.

DAG Non-DAG

Workflow Structure

Sequence Choice Iteration Parallelism Sequence Choice Parallelism

Figure 4. Workflow Structure Taxonomy.

Figure 2. Elements of a Grid Workflow Management System.

Workflow
Design

Information
Retrieval

Workflow
Scheduling

Fault
Tolerance

Data
Movement

Grid Workflow Management System

 Workflow
Structure

Workflow
Composition System

Figure 3. Workflow Design Taxonomy.

 Workflow
Model/Specification

Workflow
QoS Constraints

Workflow Design

 4

These four types of workflow structure, namely sequence, parallelism, choice and iteration, can be used to
construct many complex workflows. Moreover, sub-workflows can also use these types of workflow
structure as building blocks to form a large-scale workflow.

2.1.2 Workflow Model/Specification

Workflow Model (also called workflow specification) defines a workflow including its task definition and
structure definition. As shown in Figure 6, there are two types of workflow models, namely abstract and
concrete. They are also referred to as abstract workflows and concrete workflows [40][42]. In some
literature (e.g. [84]), concrete models are referred to as executable workflows.

In an abstract model, a workflow is described in an abstract form in which the workflow is specified
without referring to specific Grid resources for task execution. An abstract model provides a flexible way
for users to define workflows without being concerned about low-level implementation details. Tasks in an
abstract model are portable and can be mapped onto any suitable Grid services at run-time by using suitable
discovery and mapping mechanisms. Using abstract models also eases the sharing of workflow descriptions
between Grid users [42]; in particular it benefits the participants of Virtual Organizations (VOs) [52].

In contrast, a concrete model binds workflow tasks to specific resources. In some cases, a concrete model
may include tasks acting as data movement to transfer data in and out of the computation and data
publication to publish newly derived data into VO [42]. In other situations, tasks in a concrete model may
also include necessary application movement to transfer computational code to a data site for large scale
data analysis.

Given the dynamic nature of the Grid environment, it is more suitable for users to define workflow
applications in abstract models. A full or partial concrete model can be generated just before or during
workflow execution according to the current status of resources. Additionally, in some systems [144], every
task in a workflow is concretized only at the time of task execution. However, concrete models may be
used by some end users who want to control the execution sequence [75].

Workflow Model/Specification

Concrete Abstract

Figure 6. Workflow Model Taxonomy.

MicroArray
analysis

Clusfavor
analysis

GenBank
sequence
retrieval

NCBI BLAST
search

Transfac
search

Promoter
Identification

Promoter
Model

generator

NCBI BLAST
search

new candidate target genes

Figure 5. Promoter Identification Workflow [85].

Step 1 Step 2
Step 3

Step 4

Step 5 Step 6 Step 7 Step 8

 5

2.1.3 Workflow Composition System

Workflow composition systems are designed for enabling users to assemble components into workflows.
They need to provide a high level view for the construction of Grid workflow applications and hide the
complexity of underlying Grid systems. Figure 7 shows the taxonomy for the workflow composition
systems. User-directed composition systems allow users to edit workflows directly, whereas automatic
composition systems generate workflows for users automatically. In general, users can use workflow
languages for language-based modeling and the tools for graph-based modeling to compose workflows.

Within language-based modeling, users may express workflow using a markup language such as Extensible
Markup Language (XML) [132] (e.g. GridAnt [75], WSFL [79], XLANG [125], BPEL4WS [14], W3C
XML-Pipeline language [135], and Gridbus Workflow [144]) or other formats (e.g. Condor DAGman
[120]). Language-based modeling may be convenient for skilled users, but they require users to memorize a
lot of language-specific syntax. In addition, it is impossible for users to express a complex and large
workflow by scripting workflow components manually. However, workflow languages are more
appropriate for sharing and manipulation, whereas the graphical representations are intuitive but they
require to be converted into other forms for manipulation. So in most Grid systems, workflow languages
are designed to bridge the gap between the graphical clients and the Grid workflow execution engine [62].
XML-based languages are used widely for workflow specification as it facilitates information description
in a nested structure. Moreover, many tools are provided to validate XML syntax and verify XML
documents against XML schema [134] or DTD (Document Type Definition) [132]. Furthermore, many
XML parsing tools (e.g. JDOM [69] and dom4j [44]) are widely available.

Graph-based modeling allows graphical definition of an arbitrary workflow through a few basic graph
elements. It allows users to work with a graphical representation of the workflow. Users can compose and
review a workflow by just clicking and dropping the components of interest. It avoids low-level details and
hence enables users to focus on higher levels of abstraction at application level [64]. The major modeling
approaches are Petri Nets [104], UML (Unified Modeling Language) [99] and user-defined component.
Graph-based modeling is preferred by users as opposed to language-based modeling.

Petri Nets are a special class of directed graphs that can model sequential, parallel, loops and conditional
execution of tasks [62][65]. They have been used in many workflow management systems such as Grid-
Flow [62], FlowManager [78], and XRL/Flower [131]. UML activity diagrams [102] have also been
extended and applied as a workflow specification language [17][45][105]. Compared with UML activity
diagrams, Petri Nets have formal semantics and have been used widely for constructing several workflows
[1][46]. A vast number of algorithms and tools for Petri Nets analysis have been developed along the years
[89]. However, Eshuis et al. [46] argue that Petri Nets may be unable to model workflow activities
accurately without extending its semantics and this drawback has been addressed in UML activity diagrams.
Rather than following the standard syntax and semantics of Petri Nets and UML, many workflow editors
for Grid workflow tools create their own graphical representation of workflow components. For example,
Triana [123] allows users to predefine software components and reuse them to design DAG-based
workflows. Kepler [12] provides graphical environment and a framework that supports the design and reuse
of grid workflows. These tools are more convenient for users to manipulate their workflow applications, as

Figure 7. Workflow Composition System Taxonomy.

Markup

User-directed

Graph-based Modeling

Automatic

Others

Language-based Modeling

Petri Net UML User-defined Component

Workflow Composition System

 6

they provide a more user-friendly programming environment. They have also been integrated into
underlying local applications, Grid middleware and monitoring systems. For example, P-GRADE [71][83]
interoperates with a wide range of parallel applications in addition to Condor and Globus based Grid
middleware. It also allows users to access and modify program code of a workflow task through a graphical
editor. However, lack of standards hinders the collaboration between these projects. Many works are thus
replicated such as different user interfaces developed by different projects for the same functionality.
Moreover, workflow structures supported by most of them are limited to only sequence and parallelism.

Graph-based modeling is very intuitive and can be handled easily even by a non-expert user. However, the
layout of workflow components on a display screen can become very huge and difficult to manage [101].
One of the solutions to overcome this limitation is to use hierarchical graph definition [65]. Another
solution is to have a system which composes workflows automatically. Pegasus [42] is one such automatic
composition system for Grid computing; it has to be adapted to particular applications, because the
composition is based on application-dependent metadata. It receives a metadata description of desired data
products and initial input values from users. The tasks are then composed automatically to form a workflow
by querying a virtual data catalog [53] that contains information for data derivation of application
components. Compared with user-directed systems, automatic composition systems are ideal for large scale
workflows which are very time consuming to compose manually. However, the automatic composition of
application components is challenging because it is difficult to capture the functionality of components and
data types used by the components [27] [101].

2.1.4 Workflow QoS Constraints

In a Grid environment, there are a large number of similar or equivalent resources provided by different
parties. Grid users can select suitable resources and use them for their workflow applications. These
resources may provide the same functionality, but optimize different QoS measures. In addition, different
users or applications may have different expectations and requirements. Therefore, it is not sufficient for a
workflow management system to only consider functional characteristics of the workflow. QoS
requirements such as time limit (deadline) and expenditure limit (budget) for workflow execution also need
to be managed by workflow management systems. Users must be able to specify their QoS expectations of
the workflow at the design level. Then, the actions conducted by workflow systems using run-time must be
chosen according to the initial QoS requirements.

Figure 8 shows the taxonomy of Grid workflow QoS constraints based on a QoS model for Web services
based workflow provided by Cardoso et al. [28] and QoS of Web services [88][103]. It includes five
dimensions: time, cost, fidelity, reliability and security. Time is a basic measure of performance. For
workflow systems, it refers to the total time required for completing the execution of a workflow. Cost
represents the cost associated with the execution of workflows including the cost for managing workflow
systems and usage charge of Grid resources for processing workflow tasks. Fidelity refers to the
measurement related to the quality of the output of workflow execution. Reliability is related to the number
of failures for execution of workflows. Security refers to confidentiality of the execution of workflow tasks
and trustworthiness of resources.

As indicated in Figure 9, there are two different ways to assign QoS constraints in a workflow model. One
way is to allow users to assign QoS constraints at task-level. The overall QoS can be assessed by computing
all individual tasks. For example, a user assigns desired execution time for every task in a workflow. The
deadline for the entire workflow execution can be calculated by a workflow reduction algorithm (e.g.
SWR(w) algorithm [26]). Another way is to assign QoS constraints at workflow-level, allowing users to

Reliability Security Fidelity Cost Time

Workflow QoS Constraints

Figure 8. Workflow QoS Constraints Taxonomy.

 7

define the overall workflow QoS requirements. However, QoS constraints for each task may be required by
schedulers for resource allocation at run-time. For the time dimension, users are likely to specify a deadline
for the entire workflow execution rather than for every single task. In order to fulfill the deadline for the
entire workflow, the scheduler needs to decide how fast each task has to be processed using a deadline
assignment approach (e.g. Ultimate Deadline, Effective Deadline, Equal Slack, and Equal Flexibility
strategies in [72]).

2.2 Information Retrieval

A Grid workflow management system does not execute the tasks itself, but it merely coordinates the
execution of the tasks by the Grid resources. To map tasks onto suitable resources, information about the
resources has to be retrieved from appropriate sources [141]. As indicated in Figure 10, there are three
dimensions of information retrieval: static information, historical information and dynamic information.

Static information refers to information that does not vary with time. It may include infrastructure-related
(e.g. the number of processors), configuration-related (e.g. operating system, libraries), QoS-related (e.g.
flat usage charge), access-related (e.g. service operations), and user-related information (e.g.
authentication ID). Generally, static information is utilized by Grid workflow management systems to pre-
select resources during the initiation of the workflow execution.

As Grid resources are not dedicated to the owners of the workflow management systems, the Grid
workflow management system also needs to identify dynamic information such as resource accessibility,
system workload, and network performance during execution time. Unlike static information, dynamic
information reflects the status of the Grid resources, such as load average of a cluster, available disk space,
CPU usage, and active processes. It also includes task execution information and market related
information such as dynamic resource price.

Historical information is obtained from previous events that have occurred such as performance history and
execution history of Grid resources and application components. Generally, workflow management systems
can analyze historical information to predict the future behaviors of resources and application components
on a given set of resources. Historical information can also be used to improve the reliability of future
workflow execution. For example, the user can correct the logic of a failed workflow according to the log
of the workflow system.

Dynamic Information Static Information

Information Retrieval

Figure 10. Information Retrieval Taxonomy.

Infrastructure-related

Configuration-related

QoS-related

Access-related

User-related Resource-related

Execution-related

Market-related

Historical Information

Workflow-level Task-level

QoS Constraints Assignment

Figure 9. QoS Constraints Assignment Taxonomy.

 8

Several information services are available for accessing static and dynamic information about Grid
resources. For example, Monitoring and Discovery System (MDS) [109] provides static hardware
information such as CPU type, memory size and software information such as operating system
information, and some dynamic information such as CPU load snapshot. Network Weather Service (NWS)
[136] provides additional dynamic information about availability of CPU, memory, and bandwidth. An
object oriented model for publication and retrieval of electronic resources is given in [33].

2.3 Workflow Scheduling

Casavant et al. [29] categorized task scheduling in distributed computing systems into ‘local’ task
scheduling and ‘global’ task scheduling. Local scheduling involves handling the assignment of tasks to
time-slices of a single resource whereas global scheduling involves deciding where to execute a task.
According to this definition, workflow scheduling is a kind of global task scheduling as it focuses on
mapping and managing the execution of inter-dependent tasks on shared resources that are not directly
under its control.

The workflow scheduler needs to coordinate with diverse local management systems as Grid resources are
heterogeneous in terms of local configuration and policies. Taking into account users’ QoS constraints is
also important in the scheduling process so as to satisfy user requirements. In this section, we discuss
workflow scheduling taxonomy from the view of (a) scheduling architecture, (b) decision making, (c)
planning scheme, (d) scheduling strategy, and (e) performance estimation as shown in Figure 11.

2.3.1 Scheduling Architecture

The architecture of the scheduling infrastructure is very important for scalability, autonomy, quality and
performance of the system [63]. Three major categories of workflow scheduling architecture as shown in
Figure 12 are centralized, hierarchical and decentralized scheduling schemes.

In a centralized workflow enactment environment, one central workflow scheduler makes scheduling
decisions for all tasks in the workflow. The scheduler has the information about the entire workflow and
collects information of all available processing resources. It is believed that the centralized scheme can
produce efficient schedules because it has all necessary information [63]. However, it is not scalable with
respect to the number of tasks, the classes and number of Grid resources. It is thus only suitable for a small
scale workflow or a large scale workflow in which every task has the same objective (e.g. same class of
resources).

Unlike centralized scheduling, both hierarchical and decentralized scheduling allow tasks to be scheduled
by multiple schedulers. Therefore, one scheduler only maintains the information related to a sub-workflow.
Thus, compared to centralized scheduling, they are more scalable since they limit the number of tasks
managed by one scheduler. However, the best decision made for a partial workflow may lead to sub-
optimal performance for the overall workflow execution. Moreover, conflict problems are more severe

Scheduling Architecture

Decentralized Hierarchical Centralized

Figure 12. Scheduling Architecture Taxonomy.

Planning Scheme

Figure 11. Workflow Scheduling Taxonomy.

Strategies Decision Making Performance Estimation

Workflow Scheduling

Architecture

 9

[90]. One example of conflict is that tasks from different sub-workflows scheduled by different schedulers
may compete for the same resource.

For hierarchical scheduling, there is a central manager and multiple lower-level sub-workflow schedulers.
This central manager is responsible for controlling the workflow execution and assigning the sub-
workflows to the low-level schedulers. For example, in GridFlow project [25], there is one workflow
manager and multiple lower-level schedulers. The workflow manager schedules sub-workflows onto
corresponding lower-level schedulers. Each lower-level scheduler is responsible for scheduling tasks in a
sub-workflow onto resources owned by one organization. The major advantage of using the hierarchical
architecture is that the different scheduling policies can be deployed in the central manager and lower-level
schedulers [63]. However, the failure of the central manager will result in entire system failure.

 In contrast, there are multiple schedulers without a central controller in decentralized scheduling. Every
scheduler can communicate with each other and schedule a sub-workflow to another scheduler with lower
load. Compared to hierarchical scheduling, decentralized scheduling is more scalable but faces more
challenges to generate optimal solutions for overall workflow performance and minimize conflict problems.

2.3.2 Decision Making

There is no single best solution for mapping workflows onto resources for all workflow applications, since
the applications can have very different characteristics. It depends to some degree on the application
models to be scheduled. In general, decisions about mapping tasks in a workflow onto resources can be
based on the information of the current task or of the entire workflow and can be of two types, namely local
decision and global decision [40] as shown in Figure 13. Scheduling decisions made with reference to just
the task or sub-workflow at hand are called local decisions whereas scheduling decisions made with
reference to the whole workflow are called global decisions.

Local decision based scheduling only takes one task or sub-workflow into account, so it may produce the
best schedule for the current task or sub-workflow but could also reduce the entire workflow performance.
An example given by Deelman et al. [40] assumes that there is a data-intensive application where the
overall run-time is driven by data transfer costs. Consider a situation where the output of a task is very
large. If the selection of a resource for a task is based only on a local decision without consideration of data
transfer between other resources, when selection of a resource for child tasks need to be made, the initial
selection may be found to be a poor choice if latency between the nodes is very high. This would lead to
higher data transfer costs for this child task and hence the entire workflow.

Scheduling workflow tasks using global decision improves the performance of entire workflow. There are
some algorithms for scheduling task graphs in parallel systems that could be applied to Grid workflow
scheduling. Li et al. [80] developed the Forward-Looking Analysis Method (FLAM). It analyses
dependencies of the entire graph to resolve the conflicts of parallel tasks which compete for the same
resource. It is believed that global decision based scheduling can provide a better overall result. However, it
may take much more time in scheduling decision making. Thus, the overhead produced by global
scheduling could reduce the overall benefit and may even exceed the benefits it will produce [40].
Therefore, the choice of decision making for workflow scheduling should not be made without considering
balance between the overall execution time and scheduling time. However, for some applications such as a
data analysis application where the outputs of tasks in the workflow are always smaller than the inputs,
using local decision based scheduling is sufficient.

Decision Making

Global Local

Figure 13. Decision Making Taxonomy.

 10

2.3.3 Planning Scheme

A planning scheme is a method for translating abstract workflows to concrete workflows. As shown in
Figure 14, schemes for the schedule planning of workflow applications can be categorized into either static
scheme or dynamic scheme. In a static scheme, concrete models have to be generated before the execution
according to current information about the execution environment and the dynamically changing state of
the resources is not taken into account. In contrast, a dynamic scheme uses both dynamic information and
static information about resources to make scheduling decisions at run-time.

Static schemes, also known as full-ahead planning, include user-directed and simulation-based scheduling.
In user-directed scheduling, users emulate the scheduling process and make resource mapping decisions
according to their knowledge, preference and/or performance criteria. For example, users prefer to map
tasks to resources on which they have not experienced failures. In simulation-based scheduling, the ‘best’
schedule is achieved by simulating task execution on a given set of resources before a workflow starts
execution. The simulation can be processed based on static information or the result of performance
estimation. For example, in GridFlow [25], the ‘best’ resource selected for scheduling a task is based on the
predictive task execution time that resource provides.

Dynamic schemes include prediction-based and just in-time scheduling. Prediction-based dynamic
scheduling uses dynamic information in conjunction with some results based on prediction. It is similar to
simulation-based static scheduling, in which the scheduler is required to predict the performance of task
execution on resources and generate a near optimal schedule for the task before it starts execution.
However, it changes the initial schedule dynamically during the execution. For example, GrADS [32]
generates preliminary mapping by using prediction results, but it migrates a task execution to another
resource when its initial contract is broken or a better resource is found for execution. Sakellariou et al.
[110] developed a low-cost rescheduling policy for the mapping of workflows on Grids. It considers
rescheduling workflow tasks at a few carefully selected points during execution in a dynamically changing
Grid environment, since the initial schedule built using inaccurate predictions can affect performance
significantly.

Rather than making a schedule ahead, just in-time scheduling [42] only makes scheduling decision at the
time of task execution. Planning ahead in Grid environments may produce a poor schedule, since it is a
dynamic environment where utilization and availability of resources varies over time and a better resource
can join at any time. Moreover, it is not easy to accurately predict the execution time of all application
components on Grid resources. However, as the technology of advance reservation [119] for various
resources improves, it is believed that the role of static and prediction-based planning will increase [40].

2.3.4 Scheduling Strategy

In general, scheduling workflow applications in a distributed system is an NP-complete problem [50].
Therefore, many heuristics have been developed to obtain near-optimal solutions to match users’ QoS
constraints. As shown in Figure 15 we categorize strategies of major scheduling approaches into
performance-driven, market-driven and trust-driven.

Static Dynamic

Planning Scheme

Figure 14. Planning Scheme Taxonomy.

User-directed Simulation-based Prediction-based Just in-time

 11

Performance-driven strategies try to find a mapping of workflow tasks onto resources that achieves optimal
execution performance such as minimize overall execution time. Most of Grid workflow scheduling
systems falls in this category. GrADS [32] optimizes DAG-based workflows using Min-Min, Max-Min and
Suffrage heuristics, hoping to obtain minimum completion times. Prodan et al. [106] use classical genetic
algorithms with cycle elimination techniques to minimize non-DAG based workflow execution on Grids.

Market-driven strategies employ market models to manage resource allocation for processing workflow
tasks. They apply computational economy principle and establish an open electronic marketplace between
workflow management systems and participating resource providers. Workflow schedulers act as
consumers buying services from the resource providers and pay some notion of electronic currency for
executing tasks in the workflow. The tasks in the workflow are dynamically scheduled at run-time
depending on resource cost, quality and availability, to achieve the desired level of quality for deadline and
budget. Unlike the performance-driven strategy, market-driven schedulers may choose a resource with later
deadline if its usage price is cheaper. Market-driven strategies have been applied to several Grid systems
such as Nimrod-G [21] and Gridbus data resource broker [130]. One example of the market-driven
workflow scheduling proposed by Geppert et al. [58] utilizes market mechanisms during the task
assignment. In the system, bids are collected from eligible resource providers for each task. The optimal bid
is selected by computing the amount of time and cost saved or overdrawn up to the point. If the execution
time has been minimized at the expense of an overdrawn cost, a bid with lower price will be chosen as the
optimal bid. Consequently, scheduler assigns the task to the resource whose provider offers the optimal bid.
A recent work on cost-based scheduling of workflow tasks on Grids is reported in [19].

Recently, trust-driven scheduling approaches (e.g. CCOF project in [147] and GridSec project in
[114][115]) in distributed systems are emerging. Trust-driven schedulers select resources based on their
trust levels. For example, within GridSec, the scheduler accesses the trust level of Grid sites. It maps tasks
onto resources whose trust level is higher than users’ demand. Trust model of resources is based on
attributes such as security policy, accumulated reputation, self-defense capability, attack history, and site
vulnerability. By using trust-driven approaches, workflow management systems can reduce the chance of
selecting malicious hosts, and non-reputable resources [147]. Therefore, overall accuracy and reliability of
workflow execution will be increased.

2.3.5 Performance Estimation

In order to produce a good schedule, estimating the performance of tasks on resources is crucial, especially
for constructing a preliminary workflow schedule. By using performance estimation techniques, it is
possible for workflow schedulers to predict how tasks in a workflow or sub-workflow will behave on
distributed heterogeneous resources and thus make decisions on how and where to run them. As indicated
in Figure 16, there are several performance estimation approaches: simulation, analytical modeling,
historical data, on-line learning, and hybrid.

Scheduling Strategy

Trust-driven Market-driven Performance-driven

Figure 15. Scheduling Strategy Taxonomy.

Performance Estimation

Figure 16. Performance Estimation Taxonomy.

Historical
Data Hybrid

Analytical
Modeling

On-line
Learning Simulation

 12

Simulation approaches [43][148] provide resource simulation environments to emulate the execution of
tasks in the workflow prior to its actual execution. In analytical modeling [32][37][98], a scheduler predicts
the performance of tasks in workflow on a given set of resources based on an analytic metric. For example,
in GrADS [32], two types of performance models are developed, namely memory hierarchy performance
model and computational model. By using these models, one can predict memory requirements and the
execution time of an application component for a resource according to the associated problem size. The
historical data approach [68][91][113] relies on historical data to predict the task’s execution performance.
The historical data related to a particular user’s application performance or experience can also be used in
predicting the share of available of resources for that user while making scheduling decisions based on QoS
constraints. The on-line learning approach predicts task execution performance from on-line experience
without prior knowledge of the environment’s dynamics. For example, Buyya et al. [22] and Galstyan et al.
[57] map a job onto a ‘best’ Grid resource by learning the completion time of most recent jobs submitted to
resources. As historical and on-line learning approaches use experimental data, they can be broadly termed
as empirical modeling approaches for performance estimation.

In certain conditions, these approaches could be used together in a hybrid approach for generating
performance evaluation of workflow tasks. For instance, Bacigalupo et al. [16] use both layered queuing
modeling and historical performance data to predict the performance of dynamic e-Commerce systems on
heterogeneous servers. In addition, GrADS constructs computational models semi-automatically by
emulating the execution of workflow components on small data sets. That is, it uses a combination of
historical and analytical approaches for performance estimation.

2.4 Fault Tolerance

In a Grid environment, workflow execution failure can occur for various reasons: the variation in the
execution environment configuration, non-availability of required services or software components,
overloaded resource conditions, system running out of memory, and faults in computational and network
fabric components. Grid workflow management systems should be able to identify and handle failures and
support reliable execution in the presence of concurrency and failures.

As shown in Figure 17, Hwang et al. [66] divided workflow failure handling techniques into two different
levels, namely task-level and workflow-level. Task-level techniques mask the effects of the execution failure
of tasks in the workflow, while workflow-level techniques manipulate the workflow structure such as
execution flow to deal with erroneous conditions.

Task-level techniques have been widely studied in parallel and distributed systems. They can be cataloged
into retry, alternate resource, checkpoint/restart and replication. The retry technique [121] is the simplest
failure recovery technique, as it simply tries to execute the same task on the same resource after failure.
The alternate resource technique [121] submits failed task to another resource. The checkpoint/restart
technique [36] moves failed tasks transparently to other resources, so that the task can continue its
execution from the point of failure. The replication technique [7][66] runs the same task simultaneously on
different Grid resources to ensure task execution provided that at least one of the replicas does not fail.

Workflow-level techniques include alternate task, redundancy, user-defined exception handling and rescue
workflow. The first three approaches proposed in [66] assume there is more than one implementation for a

Rescue
workflow

Checkpoint
/Restart

Replication Retry Alternate
Task

User-defined
Exception
Handling

Redundancy

Task-level Workflow-level

Fault Tolerance

Alternate
Resource

Figure 17. Fault Tolerance Taxonomy.

 13

certain computation with different execution characteristics. The alternate task technique executes another
implementation of a certain task if the previous one failed, while the redundancy technique executes
multiple alternative tasks simultaneously. The user-defined exception handling allows the users to specify a
special treatment for a certain failure of a task in workflow. The rescue workflow technique developed in
Condor DAGMan system [36] ignores the failed tasks and continues to execute the remainder of the
workflow until no more forward progress can be made. Then, a rescue workflow description called rescue
DAG, which indicates failed nodes with statistical information, is generated for later submission.

2.5 Intermediate Data Movement

For Grid workflow applications, the input files of tasks need to be staged to a remote site before processing
the task. Similarly, output files may be required by their children tasks which are processed on other
resources. Therefore, the intermediate data has to be staged out to the corresponding Grid sites. Some
systems require users to manage intermediate data transfer in the workflow specification, rather than
providing automatic mechanisms to transfer intermediate data. As indicated in Figure 18, we categorize
approaches of automatic intermediate data movement into centralized, mediated and peer-to-peer.

Basically a centralized approach transfers intermediate data between resources via a central point. For
example, a central workflow execution engine can collect the execution results after task completion and
transfer them to the processing entities of corresponding successors. Centralized approaches are easy to
implement and suit workflow applications in which large-scale data flow is not required.

In a mediated approach, rather than using a central point, the locations of the intermediate data are managed
by a distributed data management system. For example, in Pegasus system, the intermediate data generated
at every step is registered in a replication catalog service [30], so that input files of every task can be
obtained by querying the replication catalog service. Mediated approaches are more scalable and suitable
for applications which need to keep intermediate data for later use.

A peer-to-peer approach transfers data between processing resources. Since data is transmitted from the
source resource to the destination resource directly without involving any third-party service, peer-to-peer
approaches save the transmission time and reduce the bottleneck problem caused by the centralized and
mediated approaches. Thus, they are suitable for large-scale intermediate data transfer. However, there are
more difficulties in deployment because they require every Grid node to be capable of providing both data
management and movement service. In contrast, centralized and meditated approaches are more suitable to
be used in applications such as bio-applications, in which users need to monitor and browse intermediate
results. In addition, they also need to record them for future verification purposes.

3. GRID WORKFLOW MANAGEMENT SYSTEM SURVEY

In this section, we present a detailed survey of existing Grid workflow systems in addition to mapping the
proposed taxonomy. Table 1 shows the summary of selected Grid workflow management projects. A
comparison of various Grid workflow systems and their categorization based on the taxonomy is shown in
Table 2, Table 3, and Table 4.

 Intermediate Data Movement

User-directed Automatic

Centralized Mediated Peer-to-Peer

Figure 18. Intermediate Data Movement.

 14

Name Organization Prerequisite Grid

Integration
Applications Availability

DAGMan
[120]

University of
Wisconsin-
Madison, USA.
http://www.cs.wisc
.edu/condor/dagma
n/

Condor Condor which
can run on top
of Globus
Toolkit
version 2
(GT2)

Compute-
intensive

GPL(General
Public License)

Pegasus
[41]

University of
Southern
California, USA.
http://pegasus.isi.e
du

Condor
DAGMan,
Globus RLS.

Condor and
Globus.

Targeted for
data-intensive,
but supports
other types.

GTPL (Globus
Toolkit Public
License)

Triana
[123]

Cardiff University,
UK.
http://www.trianac
ode.org/

Grid
Application
Toolkit
(GAT)

GAT (JXTA,
Web
services,
Globus)

Compute-
intensive

the Apache
Software
License

ICENI
[93]

London e-Science
Centre, UK.
http://www.lesc.ic.
ac.uk/iceni/

Globus
Toolkit

Jini, JXTA,
Globus

Compute-
intensive

ICENI Open
Source Code
Licence

Taverna
[100]

Collaboration
between several
European Institutes
and industries.
http://taverna.sourc
eforge.net/

Java 1.4+ Web
services,
Soaplab,
local
processor,
BioMoby,
etc.

Service Grids GNU Lesser
General Public
License (LGPL)

GridAnt
[75]

Argonne National
Laboratory, USA.
http://www.cogkit.
org/

Apache Ant,
Globus
Toolkit

GT2, GT3,
GT4

Client controllable
workflow
applications

GTPL

GrADS
[18]

Collaboration
between several
American
Universities.
http://www.hiperso
ft.rice.edu/grads/

Globus
Tookit,
Autopilot,
NWS

Globus,
Parallel
Systems (e.g.
MPI)

Compute-
intensive and
communication-
intensive
applications with
MPI components

Not yet available
in public

GridFlow
[25]

University of
Warwick, UK
http://www.dcs.war
wick.ac.uk/researc
h/hpsg/workflow/w
orkflow.html

Agent-based
Resource
Management
System,
Performance
Analysis and
Characterize
Environment
(PACE)

Parallel
Systems (e.g.
MPI and
PVM)

MPI and PVM
based
components

Not yet available
in public

Table 1. Summary of Grid Workflow Management Projects.

 15

Name Organization Prerequisite Grid
Integration

Applications Availability

Toolkit, Titan

Unicore
[11]

Collaboration
between German
research
institutions and
industries
http://www.unicore
.org/

Unicore
middleware

Unicore Computational-
intensive and
MPI components

Community
Source License

Gridbus
workflow
[144]

The University of
Melbourne,
Australia.
http://www.gridbus
.org

Globus
Toolkit

GT2 Computational-
and Data-
intensive

GPL

Askalon
[49]

University of
Innsbruck
http://dps.uibk.ac.at
/askalon

Globus
Toolkit

GT2, GT4,
WSRF, Web
services

Performance-
oriented
applications

GTPL

Karajan
[76]

Argonne National
Laboratory
http://www.cogkit.
org

Java 1.4 GT2, GT3,
GT4, Condor,
runtime exec,
ssh,
WebDAV

Those required to
access Grid
middleware

GPTL

Kepler
[12]

A cross-project
collaboration.
http://kepler-
project.org/

Java Globus,
Storage
Resource
Broker(SRB),
EcoGrid,
Web services

Scientific
workflow
applications

UC Berkeley
License

Project
Name

Structure Model Composition
Systems

QoS Constraints

DAGMan DAG Abstract User-directed
• Language-based

User specified rank
expression for
desired resources

Pegasus DAG Abstract User-directed
• Language-based

Automatic

N/A

Triana Non-DAG Abstract User-directed
• Graph-based

N/A

ICENI Non-DAG Abstract User-directed
• Language-based
• Graph-based

Metrics specified by
users

Table 2. Workflow Design Taxonomy Mapping.

 16

Project
Name

Structure Model Composition
Systems

QoS Constraints

Taverna DAG

Abstract/
Concrete

User-directed
• Language-based
• Graph-based

N/A

GridAnt Non-DAG Concrete User-directed
• Language-based

N/A

GrADS DAG Abstract User-directed
• Language-based

Estimated
application
execution time

GridFlow DAG Abstract User-directed
• Graph-based
• Language-based

Application
execution time

Unicore

Non-DAG Concrete User-directed
• Graph-based

N/A

Gridbus
workflow

DAG Abstract/
Concrete

User-directed
• Language-based

Deadline, Cost
minimisation

Askalon Non-DAG Abstract User-directed
• Graph-based
• Language-based

Constrains and
properties specified
by users or pre-
defined

Karajan Non-DAG Abstract User-directed
• Language-based
• Graph-based

N/A

Kepler Non-DAG Abstract/
Concrete

User-directed
• Graph-based

N/A

Project
Name

Architecture Decision
Making

Planning
Scheme

Strategies Performance
Estimation

DAGMan Centralized Local Just in-time Performance-
driven

N/A

Pegasus Centralized Local/
Global

User-directed/
Just in-time

Performance-
driven

Historical Data,
Analytical modeling

Triana Decentralized Local Just in-time Performance-
driven

N/A

ICENI Centralized Global Prediction-
based

Performance
& Market-
driven

Historical Data

Taverna Centralized Local Just in-time Performance-
driven

N/A

GridAnt Centralized User- User-directed User-defined* N/A

Table 3. Workflow Scheduling Taxonomy Mapping.

 17

Project
Name

Architecture Decision
Making

Planning
Scheme

Strategies Performance
Estimation

defined*

GrADS Centralized Local/
Global

Prediction-
based

Performance-
driven

Historical data
(empirical) ,
Analytical modeling

GridFlow Hierarchical Local Simulation-
based

Performance-
driven

Analytical modeling

Unicore

Centralized User-
defined*

User-directed User-defined* N/A

Gridbus
Workflow

Hierarchical Local User-directed
Just in-time

Market-driven Historical data
(empirical)

Askalon Decentralized Global Just in-time/
Prediction-
based

Performance
& Market-
driven

Analytical modeling,
Historical data

Karajan Centralized User-
defined*

User-defined* User-defined* N/A

Kepler Centralized User-
defined*

User-defined* User-defined* N/A

*user-defined - the architecture of the system has been explicitly designed for user extension.

Project
Name

Information Retrieval Fault-tolerance Data
Movement

DAGMan Resource information is retrieved by
Condor Matchmaker that manages
resource and task info advertisement
and notification.

Task Level
• Migration
• Retrying

Workflow Level
• Rescue workflow

User-
directed

Pegasus Resource information retrieved
through Globus MDS and RLS.
Application component information
is retrieved from the GriPhyN
Transformation Catalog.

Based on DAGMan Mediated

Triana Based on GAT protocol

Based on GAT manger Peer-to-Peer

ICENI Application component information
is retrieved by the component
metadata service and performance
repository service.

Based on middleware Mediated

Taverna Service information is retrieved
through DAML-S web service
ontology, domain ontology
information service, and UDDI.

Task Level
• Retry
• Alternate Resource

Centralized

Table 4. Information Retrieval, Fault-tolerance and Data Movement Taxonomy Mapping.

 18

Project
Name

Information Retrieval Fault-tolerance Data
Movement

GridAnt Resource information is retrieved
through Globus MDS.

User-defined* User-
directed

GrADS Resource information is retrieved
through Globus MDS and GrADS
information service (GIS). Dynamic
information is retrieved by NWS.
Autopilot is used for provide
performance contract information.

Task Level in rescheduling
work in GrADS, but not in
workflows.

Peer-to-Peer

GridFlow Resource information is retrieved
through Titan

Task Level
• Alternate resource

Peer-to-Peer

Unicore

Unicore information service Based on Unicore
middleware

Mediated

Gridbus
workflow

Resource information is retrieved
through the Grid Market Directory

Task Level
• Alternate resource

Centralized

Askalon Static information
• Infrastructure-related
• Configuration-related
• QoS-related
Dynamic information
• Resource-related
• Execution-related

Task Level
• Retry
• Alternate resource
Workflow level
• Rescue workflow

Centralized
User-
directed

Karajan User-defined* Task Level
• Retry
• Alternate resource
Workflow Level
• User-defined exception

handling

User-
directed

Kepler User-defined* Task Level
• Alternative resource
Workflow Level
• User-defined exception

handling
• Workflow rescue

Centralized
Mediated
Peer-to-Peer

*user-defined - the architecture of the system has been explicitly designed for user extension.

3.1 Condor DAGMan

Condor [81][120][124] is a specialized resource management system (RMS) developed at the University of
Wisconsin-Madison for compute-intensive jobs. Condor provides a High Throughput Computing (HTC)
environment based on large collections of distributed computing resources ranging from desktop
workstations to super computers. Condor-G, a component within Condor, utilizes Globus GRAM serving
as a uniform interface to heterogeneous batch systems, thus enabling large scale computational Grids.
Matchmaking within Condor, matches jobs and available resources according to their job and resource
classified advertisement. When more than one resource satisfies the job requirement, the resource with
higher value of rank expression, which expresses the desirability of a match, is preferred.

 19

The Directed Acyclic Graph Manager (DAGMan) [36][120] is a meta-scheduler for Condor jobs. While
Condor aims to discover available machines for the execution of jobs, DAGMan handles the dependencies
between the jobs. DAGMan uses DAG as the data structure to represent job dependencies. Each job is a
node in the graph and the edges identify their dependencies. Each node can have any number of “parent” or
“children” nodes. Children cannot run until their parents have completed. Cycles, where two jobs are both
descended from one another, are prohibited, because it would lead to deadlock. DAGMan does not support
automatic intermediate data movement, so users have to specify data movement transfer through pre-
processing and post-processing commands associated with processing job.

The individual job execution is managed by Condor scheduler. So if a job fails due to the nature of the
distributed system, such as loss of network connection, it will be recovered by Condor while DAGMan is
unaware of such failures. However, DAGMan is responsible for reporting errors for the set of submitted
jobs, and generates a rescue DAG. In the case of a job failure, the remainder of the DAG continues until no
more progress can be made. A failed node can be retried a configurable number of times. The rescue DAG
indicates the uncompleted portions of the DAG with detail of failures. Users can correct the errors of failed
jobs and resubmit the rescue DAG.

3.2 Pegasus in GriPhyN

GriPhyN [61] aims to support large-scale data management in physics experiments such as high-energy
physics, astronomy, and gravitational wave physics. Pegasus [40][41][42] (Planning for Execution in Grids)
is a workflow manger in GriPhyN developed by the University of Southern California.

Pegasus performs a mapping from an abstract workflow to the set of available Grid resources, and
generates an executable workflow. An abstract workflow can be constructed by querying Chimera [53], a
virtual data system, or provided by users in DAX (DAG XML description). An abstract workflow describes
the computation in terms of logical files and logical application components and indicates their
dependencies in the form of Directed Acyclic Graph (DAG). Before mapping, Pegasus reduces the abstract
workflow by reusing a materialized dataset which is produced by other users within a VO. Reduction
optimization assumes that it is more costly to produce a dataset than access the processing results. The
reduction algorithm removes any antecedents of the redundant jobs that do not have any unmaterialized
descendents in order to reduce the complexity of the executable workflow.

Pegasus consults various Grid information services to find the resources, software, and data that are used in
the workflow. A Replica Location Service (RLS) [30] and Transformation Catalog (TC) [39] are used to
locate the replicas of the required data, and to find the location of the logical application components
respectively. Pegasus also queries Globus Monitoring and Discovery Service (MDS) [34] to find available
resources and their characteristics.

There are two methods used in Pegasus for resource selection, one is through random allocation, the other
is through a performance prediction approach. In the latter approach, Pegasus interacts with Prophesy
[68][140], which serves as an infrastructure for performance analysis and modeling of parallel and
distributed applications. Prophesy is used to predict the best site to execute an application component by
using performance historical data. Prophesy gathers and stores the performance data of every application.
The performance information can provide insight into the performance relationship between the application
and hardware and between the application, compilers, and run-time systems. An analytical model is
produced based on the performance data and is used by the prediction engine to predict the performance of
the application on different platforms. It is required that Pegasus send the request associated with
information such as the component name, the semantic parameter names and their values, and the list of
available resources. The ranking of the given resources is returned by Prophesy after the query is received.

For ease of use, Pegasus is able to generate a workflow from a metadata description of the desired data
product with the aid of artificial intelligence planning techniques. Although, the workflow execution of
Pegasus is based on static planning and its executable workflow is transformed into Condor jobs for

 20

execution management by Condor DAGMan, it has been recently extended to support just in-time
scheduling [42] and pluggable task scheduling strategies.

3.3 Triana

Triana [122][123] is a visual workflow-oriented data analysis environment developed at Cardiff University.
In 2002, Triana was extended to implement a consumer Grid [122] by using a peer-to-peer approach.
Recently, Triana has been redesigned and integrated with Grids via GridLab GAT (Grid Application
Toolkit) interface [10]. GAT defines a high level API for core Grid service access through JXTA [70],
Web services [133], and OGSA [54][126].

Triana provides a visual programming interface with functionality represented by units. Applications are
written by dragging the required units onto the workplace and connecting them to construct a workflow.
Apart from many implemented tool units, Triana also provides a custom user interface to allow users to
build their own units. Several control units (e.g. loop) and logic units (e.g. if) are also provided for users to
control the logic of workflow execution. Since control and logic units are implemented as a standard Triana
unit, it is easy to introduce new flow patterns. Interconnected units can also be grouped into a group unit,
which has the same properties as normal unit.

Triana clients such as Triana GUI can log into a Triana Controlling Service (TCS), remotely build and run
a workflow and then visualize the result on their device (e.g. PC, PDA, etc). Each TCS interacts with the
Triana engine and every engine provides a service and is capable of executing complete or partial task-
graphs locally, or by distributing the code to other servers based on the specified distribution policy for the
supplied task-graph. The distribution policy is based on the concept of group units and two distribution
policies have been implemented, namely parallel and peer-to-peer. Both policies distribute every unit in the
group to separated hosts, however while the peer-to-peer mechanism relies on intermediate data being
passed between hosts, there is no such host-based communication with the parallel policy. Since a
distributed task-graph is not fixed to a specific set of resources, it can be dynamically allocated to available
services in the most effective way.

3.4 Workflow Management in ICENI

The ICENI (Imperial College e-Science Network Infrastructure) [93][94] developed at London e-Science
Centre provides component-based Grid middleware. Within ICENI, users construct an abstract workflow,
which is a collection of components, and then submit this to ICENI environment for execution.

Each ICENI component is described in terms of meaning, control flow and implementation. The workflow
components are primarily composed based on a spatial view, in which all units are represented concurrently,
with details of how they relate and interact with each other. Then a temporal view is derived from the
spatial view by the system. In the temporal view, workflow information is attached to each component that
consists of a graph in which the directed arcs contain the partnership according to the temporal dependence.
Within ICENI, the workflow model is similar to that of the YAWL (Yet Another Workflow Language) [4],
although simplified in certain respects. The workflow language includes all basic workflow structure such
as sequence, parallelism, choice and iteration.

The scheduling service [93][142][143] within ICENI is responsible for concretizing the abstract workflow.
The scheduling task includes matching component meaning with component implementation and mapping
these qualified components onto a suitable subset of the available resources. Several scheduling algorithms
used to determine resource mapping have been implemented. They include random, best of n random,
simulated annealing and game theory. Most schedulers implemented within ICENI aim to provide
approximate optimal solutions to map the abstract workflow to a combination of component
implementations and resources in terms of execution time and cost. The schedulers take into account all
components in applications rather than standalone components. The scheduling framework also allows
third-party scheduling algorithms to be plugged in.

 21

ICENI has developed a performance repository system [91] which is able to monitor running applications
and obtain and store performance data for the components within the applications. This data is stored
within a repository with meta-data about the resource the component was executed on, the implementation
of the component used, and the number of other components concurrently running on the same resource.
This data can be used by schedulers for future runs of applications to estimate the execution times of each
component within the workflow.

Two scheduling schemes [93] are considered within ICENI, namely lazy scheduling and advanced
reservation. The metadata of the component implementation indicates which scheme the component can
benefit from. Non-reservation component is scheduled to a resource just before it is required, while
reservation component has been allocated to a resource and has made a reservation in advance. The
schedulers can interrogate the performance repository to predict execution in order to produce accurate
reservation. The reservation negotiation protocol is based on WS-Agreement [60].

3.5 Taverna in myGrid

Taverna [100] is the workflow management system of the myGrid [118] project, which aims to exploit Grid
technology to develop high-level middleware for supporting personalized in silico experiments in biology.
Taverna is a collaboration between several European universities, institutes and industries. The purpose of
Taverna is used to assist scientists with the development and execution of bioinformatics workflows on the
Grid. Taverna provides data models, enactor task extensions, and graphical user interfaces. FreeFluo [55] is
also integrated into Taverna as a workflow enactment engine to transfer intermediate data and invoke
services.

In Taverna, data models can be represented in either a graphical format or in an XML based language
called Simple Conceptual Unified Flow Language (SCUFL). The data model consists of inputs, outputs,
processors, data flow and control flow. In addition to specifying execution order, the control flow can also
be trigged by state transitions during the execution of parent processors. Compared to other workflow
languages, such as the Business Process Execution Language for Web Services (BPEL4WS) [14] , SCUFL
allows implicit iteration over incoming data sets based on a specified strategy. At the execution level, the
workflow enactor also provides a multithreading mechanism to speed up the iteration process. Users are
allowed to set the Thread property to specify how many concurrent instances will send parallel requests to
the iteration processor. It is especially suitable for services that are capable of handling significant
simultaneous processing, for example, a service that is backed by a cluster. It also can reduce service
waiting time since workflow engine can send the next input data at the same time as the service is working
on the current input.

Taverna also provides a user-friendly multi-window environment for users to manipulate workflows,
validate and select available resources, and then execute and monitor these workflows. The enactment
status panel [121] of Taverna shows the current progress of a workflow invocation. It also allows the users
to browse the intermediate and final results. Through the enactment panel, users can handle storage of those
results on local or remote data stores in a variety of formats.

Fault tolerance [121] in the workflow management of myGrid is achieved by setting configuration for each
processor in the workflow, for example, the number of retries, time delay and alternate processors. It also
allows users to specify the critical level for faults on each processor. If the processor is set as Critical, after
all retries and alternates have failed, entire workflow execution will be terminated, otherwise, the workflow
will continue but children nodes of the failed processor will never be invoked.

 myGrid follows service-oriented grid architecture and supports several different types of services within the
workflow management system, including WSDL-based [138] single operation web services, soaplab bio-
services [111] and local services such as programs coded as java classes. In addition, information services
such as UDDI (the Universal Description, Discovery and Integration) [127] and ontology directory [139]
are adopted for service discovery.

 22

3.6 GridAnt

The GridAnt [13][75] is an extensible client-side workflow management system developed by Argonne
National Laboratory. It has been designed for Grid end-users as a convenient tool to express and control the
execution sequence without having any expertise in sophisticated workflow systems. GridAnt focuses on
distributed process management rather than the aggregation of services which is the concern of most other
Grid-enabled workflow frameworks.

GridAnt consists of four major components, namely workflow engine, run-time environment, workflow
vocabulary and workflow monitoring. The workflow engine is the central controller that handles task
dependencies, failure recoveries, performance analysis, and process synchronization. GridAnt workflow
engine extends Ant [15], an existing commodity tool for controlling build process in Java, by adding
additional components to support workflow orchestration and composition. GridAnt also provides an
environment for inter-task communication, so that individual GridAnt tasks can read and write intermediate
data by using a globally accessible whiteboard-style communication model. Several important constructs
such as constants, arithmetic expressions, global variables, array references, and literals are supported by
the run-time environment. GridAnt extends Ant’s vocabulary in the Grid domain with the addition of the
tags such as grid-copy, grid-authenticate and grid-query. These new tags are used by users to predefine the
Grid tasks and construct complex workflows at compile time. It uses a control construct provided by Ant
container for expressing parallel and sequential tasks. Furthermore, users are allowed to monitor the
progress of the execution by means of graphical visualization tool.

In addition to mapping complex client-side workflows, GridAnt can be used for testing the functionality of
different Grid services. It has been developed to support version 2 and version 3 of the Globus toolkit [59]
by using the Java CoG kit [74]. It has been applied for Position-Resolved Diffraction [13], which is a new
experimental technique for the study of nanoscale structures as part of the Argonne National Laboratory’s
advanced analytical electron microscope.

3.7 Workflow management in GrADS

The Grid Application Development Software (GrADS) project [18] aims to provide programming tools and
execution environments for ordinary scientific users to develop, execute, and tune applications on the Grid.
GrADS is a collaboration between several American Universities. GrADS supports application
development either by assembling domain-specific components from a high-level toolkit or by creating a
module by relatively low-level (e.g., MPI) code [32].

GrADS provides application-level scheduling to map workflow application tasks to a set of resources. New
Grid scheduling and rescheduling methods [32] are introduced in GrADS. These scheduling methods are
guided by an objective function to minimize the overall job completion time (makespan) of the workflow
application. The scheduler obtains resource information by using services such as MDS [109] and NWS
[136] and locates necessary software on the scheduled node by query GrADS Information Service (GIS).
The workflow scheduler ranks each qualified resource for each application component. A rank value is
calculated by using “a weighted sum of the expected execution time on the resource and the expected cost
of data movement for the component.” After ranking, a performance matrix is constructed and used by the
scheduling heuristics to obtain a mapping of components onto resources. Three heuristics have been
applied in GrADS; those are Min-Min, Max-Min, and Sufferage heuristics [87].

GrADS has built up an architecture-independent model of the workflow component from individual
component models. It employs analytical models that are constructed semi-automatically from empirical
models (historical data/sample execution data), in order to estimate the performance of a workflow
component on a single Grid node. It uses hardware performance counters to collect operation counts from
several executions of the workflow components with different, small-size input problems, and then it
performs a least-squares fit to the data to construct computational models. In addition, GrADS reuses
distance data on small inputs to predict the faction of cache hits and misses on the given data and cache
configuration by its memory-hierarchy performance models.

 23

GrADS utilizes Autopilot [107] to monitor performance of the agreement between the application demands
and resource capabilities. Once the contract is violated, the rescheduler [32] of the GrADS takes corrective
actions. It has been implemented using two rescheduling approaches for MPI applications, the stop/restart
approach and process swapping. In the former approach, an executing application component is suspended
and migrated to a new resource if better resources are found for improving the execution performance [129].
As a migration event can involve large data transfers, expensive startup costs and significant application
code modifications, process swapping provides a lightweight, but less flexible, alternative approach. In
process swapping more machines than will actually be used for the computation are launched for an MPI
application component, and slower machines in the active set are swapped with faster machines in the
inactive set periodically, according to the performance of machines.

3.8 GridFlow

GridFlow [25] is a Grid workflow management system developed at the University of Warwick. This work
is built on the top of an agent-based resource management system for Grid computing (ARMS) [24]. Rather
than focusing on workflow specification and the communication protocol, GridFlow is more concerned
about service-level scheduling and workflow management.

There are three layers of Grid resource management within the GridFlow system: the Grid resource, the
local Grid and the global Grid. A Grid resource is simply just a particular grid resource; local Grid consists
of multiple Grid resources that belong to one organization; and a global Grid consists of all local Grids.
Global Grid also provides a portal for compose the workflow.

A workflow in GridFlow is represented as a flow of several different activities, each activity represented by
a sub-workflow. Each sub-workflow is a flow of closely related tasks that is to be executed in a local grid.
A portal has been developed by GridFlow as graphical user interface for users to compose workflow
elements.

The workflow management within GridFlow is conducted by a hierarchical scheduling system including
global Grid workflow manager and local Grid sub-workflow scheduling. Global grid workflow manager
receives requests from the GridFlow portal with the workflow description in the format of XML, and then
simulates workflow execution to find a near-optimal schedule. After the users accept the simulated result,
GridFlow schedules the workflow onto different local Grids through ARMS. Within ARMS, each agent
represents a local Grid at a global level of Grid resource management, and conducts local Grid sub-
workflow scheduling. In contrast to the global Grid workflow management, the local Grid schedulers
handle conflicts since scheduled sub-workflows may belong to different workflows.

ARMS has integrated Titan [116], which utilizes performance data obtained from PACE [98], a toolset for
resource performance and usage analysis, with iterative heuristic algorithms to minimize the makespan and
idle time of a grid resource. PACE can exact control flow, and use an analytical model approach based on
queuing theory, to predict application performance on a given set of resources such as time, scalability and
system resource usage. Titan also provides Grid resource information.

3.9 Workflow Management in Unicore Plus

Unicore plus [128] provides seamless and secure access to distributed resources of the German high
performance computing centers. Unicore plus is a follow-on project of Unicore (Uniform Interface to
Computing Resources) [11], started in 1997 to improve uniform interfaces to distributed High Performance
Computing and data resources using the mechanisms of the World Wide Web. Unicore plus provides a
programming environment for users to design and execute job flow.

Within Unicore, one job or job group that can be executed on any Unicore site may contains other jobs
and/or job groups. The original Unicore job model supports jobs that are constructed as a set of directed
acyclic graphs with temporal dependencies. Since Unicore version 4, advanced flow controls have been
added, which include conditional execution (e.g. if-then-else), repeated execution (e.g. do-n), conditional
repeated execution (e.g. do-repeat), and conditional suspend action (e.g. hold-job). In addition, three types

 24

of run-time conditions are implemented for supporting conditional checking; these are based on the return
code of a previous executed task, existence or properties of a file and whether a given time and date have
passed.

Unicore plus provides graphical tools that allow users to create a job flow and convert it into an Abstract
Job Object (AJO) which is a serialized java object. The AJO is submitted from a user client to a Unicore
server. The server translates the job specification into a number of batch jobs and dispatches them to the
target resource. The server also makes sure that a successor is executed if its predecessors are finished and
all necessary data is available at the executing site.

Unicore allows users to specify jobs and different parts of job group onto multiple resources. The output of
individual jobs may be needed by its successors. Therefore, a temporary Unicore space is created for each
job group for transferring data sets. Unicore also allows users to explicitly specify the transfer function as a
task through GUI; it is also able to perform the necessary data movement function without user intervention.

3.10 Workflow Management in Gridbus

The Gridbus Toolkit [23] developed by the University of Melbourne provides Grid technologies for
service-oriented utility computing. Its architecture is driven by the requirements of Grid economy [22]. A
Grid economy mechanism has been proposed as a technique for efficient management of distributed
resources. It helps in efficient allocation of resources to different users and applications based on their QoS
requirements in addition to regulation of the supply and demand for Grid resources.

The workflow management in Gridbus [144] provides a simple XML-based workflow language for users to
define their tasks and dependencies. The workflow description language of Gridbus is aimed towards
enabling the expression of parameter sweep tasks [8] and users’ QoS requirements [146].

The workflow engine of Gridbus provides a hierarchical scheduling architecture to adapt to heterogeneous
and dynamic Grid environments. Within the workflow execution engine, the schedules of the workflow
tasks are driven by the events by using the tuple-space model [56]. An event-driven mechanism with
subscription-notification approach makes the workflow execution loosely-coupled and flexible. The system
also supports just in-time scheduling, allowing scheduling decision to be made at the time of task execution.
The scheduler can also reschedule failed tasks to an alternative resource. In addition, Grid Market Directory
(GMD) [145] is utilized by the workflow schedulers for run-time resource discovery.

In contrast to other workflow management systems, the Gridbus workflow system emphasizes on the use of
market-based principles and algorithms for resource allocation and scheduling applications in global Grid
environments. It has been targeted to support applications in both scientific and business domains such as
natural language processing and molecular modeling for drug discovery.

3.11 Askalon

Askalon [49] is a Grid application development and computing environment developed by the University
of Innsbruck, Austria. The main objective of Askalon is to simplify the development and optimization of
mostly Grid workflow applications that can harness the power of Grid computing.

Askalon comes with two separate composition systems, AGWL (Abstract Grid Workflow Language) [47]
and Teuta [48], that support the development of Grid workflow applications. AGWL is an XML-based
language. It provides a rich set of constructs to express sequence, parallelism, choice, and iteration
workflow structure. In addition, programmers can specify high-level constraints and properties defined
over functional and non-functional parameters for tasks and their dependencies which can be useful for a
runtime system to optimize the workflow execution. Teuta supports the graphical specification of Grid
workflow applications based on the UML activity diagram which is a graphical interface to AGWL.

Askalon provides a new hybrid approach for scheduling workflow applications on the Grid through
dynamic monitoring and steering combined with a static optimization. Static scheduling maps entire

 25

workflows onto the Grid using genetic algorithms. A problem-independent objective function design allows
to plug-in a variety of optimization metrics such as the execution time, efficiency, economical cost, or any
user-defined QoS parameter. A dynamic scheduling algorithm takes into consideration the dynamic nature
of the Grid resources such as machine crashes or external CPU and network load. Performance contracts
are defined for every task and monitor whether tasks execute properly or whether they should be migrated.
Askalon develops a fault tolerant execution engine that supports reliable workflow execution in the
presence of resource failures through checkpointing and migration techniques.

In order to provide automatic workflow orchestration, Askalon Grid Resource Management (GridARM)
provides a distributed GT4-based registry to map generic or domain specific tasks to their implementations.
Askalon also includes automatic search for performance problems and faults in Grid infrastructures and
applications. The monitoring and performance analysis component provides static information of Grid
infrastructure and dynamic information of computational resources, networks, and applications. Dynamic
information of workflow-based applications is provided for the entire workflow as well as for invoked
applications called within tasks. The performance of workflow components is estimated based on a training
phase which measures the actual execution time of tasks for different loads and problem sizes on a variety
of Grid sites. The performance estimation of the workflow is conducted based on a combination of
historical data obtained from a training phase and analytical modeling.

3.12 Karajan

Karajan [76][77], developed by Argonne National Laboratory, aims to provide an integrated approach of
exposing workflow to the Grid community. It is an extensible workflow framework and can be easily
utilized by third parties to provide workflow solutions for a variety of users. It is derived from GridAnt and
provides additional capabilities such as scalability, workflow structure and error handling.

Karajan is part of Java CoG Kit. Java CoG Kit is based on modular design and provides mechanisms for
fast application development and easy integration of the variety of Grid middleware. It provides a number
of programming abstractions for job executions and file transfers. The concept of Grid providers is
introduced to facilitate different middleware to be used as part of an instantiation of Grid abstractions. As a
result, it is easy to integrate Karajan to any middleware. To date, it has been integrated into various
versions of Globus, Condor, runtime exec, ssh, and some data transfer techniques such as WebDAV [31]
and scp. Karajan leverages lower-level programming abstractions in Java CoG Kit to access the Grid, and
at the same time it provides programming interfaces for higher level applications such as workflow
schedulers and application portlets to develop users’ strategies.

In addition to sequence and parallelism, Karajan supports choices and loops of workflow structures. It also
provides a user friendly XML-based workflow language. Elements used for the description of workflow
tasks are user-definable. Thus, the user can define names and parameters along with annotations and
descriptions for a new element. A number of standard operators including mathematical and Boolean
operators are defined for integration within execution control statements. It also provides advanced data
structures such as list, range, and map (or hash tables) for repetitive tasks (e.g. parameter studies) as part of
the workflow.

A number of fault handling methods are supported in Karajan. Error handling allows users to integrate
strategies for errors and exceptions into the workflow. Checkpointing enables users to store intermediate
states of the workflow execution for later roll back when a problem occurs.

3.13 Kepler

Kepler [12][85] is one of the popular workflow systems with advanced features for composing scientific
applications. It is derived from Ptolemy II system [82] and currently under development across a number of
scientific data management projects. In addition to a user-friendly graphical user-interface and an
extendable open source platform, Kepler also inherits the actor-oriented feature from Ptolemy II. It models
a workflow system as a composition of independent components (actors) that communicate through well-
defined interfaces. An actor is an encapsulation of parameterized operations performed on input to produce

 26

output data. An execution model of a workflow, which can be defined in a director object, imposes an
execution order and communication mechanisms on the usable actors of the workflow. This modular design
approach allows different execution models or machineries to be implemented and easily plugged into
workflows without changing any of the components of workflows.

Kepler has been extended to support seamless access to remote resources and services. A web service
HARVESTER component can retrieve all service description files in a web page or service repository to
create instantiations of web services actors in the user’s local actor library. Each web services actor can be
instantiated for any particular operation specified in its service description. A number of fault-tolerant
methods have been developed to make workflows with web services more reliable. Instead of associating a
service operation with a fixed URL, a list of services is allowed to provide the alternative invocation during
service failure. It is also able to produce partial results even when the entire workflow fails. Advanced
failure handling can also be supported through extensions of exception-catching actors. In addition, Kepler
has defined a set of Grid actors for access authentication, file copy, job execution, job monitoring,
execution reporting, storage access, data discovery, and service discovery.

4. SUMMARY AND DISCUSSION

We have presented a taxonomy for Grid workflow management systems. The taxonomy focuses on
workflow design, workflow scheduling, fault management and data movement. We also surveyed some
workflow management systems for Grid computing and classify them into different categories using the
taxonomy. This paper thus helps to understand key workflow management approaches and identify
possible future enhancements.

Many Grid workflow-enabled systems have developed graph-based editing environments. They allow users
to compose the workflow by dragging and dropping components on a composition panel. A workflow
abstract specification or concrete specification is then generated by these visual tools and passed to the
workflow enactment engine. These processes are transparent to users for better usability. Currently, only
Pegasus supports automatic workflow composition. In order to support the automatic composition, catalogs
with rich information about application components and services need to be addressed. Besides GriPhyN
Chimera system and UDDI (Universal Description, Discovery and Integration) directory service for web
services discovery, many efforts from semantic Web such as DAML+OIL ontology [67] can be used for
providing accurate description and flexible discovery of application components and services.

Most of the Grid workflow projects discussed in this paper have their own graphical workflow modeling
and language. Obviously, the lack of standardized syntax and semantic description for workflow modeling
and language results in many replicated works. More effort is thus needed towards workflow modeling
standardization. Even though there are some proposed workflow languages for web services such as
BPEL4WS, they are still not sufficient due to lack of implementation, levels of abstraction and limited
supported services [9].

Quality of Service (QoS) issues have not been addressed very well in most Grid workflow management
systems due to their focus on the use of system centric policies in resource allocation. However, when
workflow management systems are used in commercial or production environments, supporting QoS at
both specification and execution level becomes increasingly critical. At the specification level, workflow
languages need to allow users to express their QoS requirements. At the execution level, the workflow
scheduling must be able to map the workflow onto Grid resources to meet users’ QoS requirements.
Therefore, the role of market-driven strategies will become increasingly important, currently being ignored
in most Grid workflow management systems. Trust-based scheduling is another approach to improve QoS
in open distributed systems such as Grid and peer-to-peer; however, it has not been addressed very well in
the context of workflow management.

It is impossible to make an optimal scheduler without knowledge of estimated time of task execution.
Several performance information services are utilized in Grid workflow projects to predict performance
prediction. One example is PACE employed in GridFlow project. It uses analytical model to predict

 27

application performance, but the current implementation is only adapted to MPI program. Prophesy used
by Pegasus uses historical performance database to gain insight into the relationship between applications
and resources in order to predict the performance of the applications on a given set of resources. Similarly,
ICENI developed a performance repository system which is able to collect performance data for application
components. GrADS have developed two analytical models for their GrADS programs.

Given the dynamic nature of Grid environments, fault tolerance should be fully supported by Grid
workflow management systems. However, most fault handling techniques have not been developed or
implemented in many Grid workflow systems, especially at the workflow execution level. It is hard for a
workflow management system to survive in real Grid environments without robust fault handling
techniques.

ACKNOWLEDGEMENTS

We would like to acknowledge all developers of the workflow management systems described in the paper.
We thank Chee Shin Yeo, Hussein Gibbins, Anthony Sulistio, Srikumar Venugopal, Tianchi Ma, Sushant
Goel, Krishna Nadiminti, and Baden Hughes (Melbourne University, Australia), Rob Gray (Monash
University, Australia), Wolfram Schiffmann (FernUniversitaet in Hagen, Germany), Ivona Brandic
(University of Vienna, Austria), Soonwook Hwang (National Institute of Informatics, Japan), Ewa
Deelman (University of Southern California, USA), Chris Mattmann (NASA Jet Propulsion Laboratory,
USA), Henan Zhao (University of Manchester, UK), Bertram Ludaescher (University of California, Davis),
Thomas Fahringer (University of Innsbruck, Austria), Gregor von Laszewski (Argonne National
Laboratory, USA), Ken Kennedy, Anirban Mandal, and Chuck Koelbel (Rice University, USA) for their
comments on this paper. We thank anonymous reviewers for their constructive comments. This work is
partially supported through the Australian Research Council (ARC) Discovery Project grant and Storage
Technology Corporation sponsorship of Grid Fellowship.

REFERENCES

[1] W.M.P. van der Aalst, K. M. van Hee, and G. J. Houben. Modelling and Analysing Workflow using a Petri-net

based approach. In 2nd Workshop on Computer-supported Cooperative Work, Petri nets related formalisms,
1994; 31-50. http://citeseer.ist.psu.edu/vanderaalst94modelling.html [December 2004]

[2] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow Patterns. Technical
Report, Eindhoven University of Technology, 2000.

[3] W.M.P. van der Aalst, A.H.M ter Hofstede, B. Kiepuszewski, and A. P. Barros. Advanced Workflow Patterns.
In CoopIS 2000, Lecture Notes in Computer Science (LNCS) 1901, Springer-Verlag, Heidelberg, Germany,
2000; 18-29.

[4] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language. Technical Report,
Queensland University of Technology, Brisbane, 2002.

[5] W.M.P. van der Aalst and K.M. van Hee, Workflow Management: models, methods, and Systems. MIT Press,
Cambridge, Mass., USA, 2002.

[6] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski and A.P. Barros, Workflow Patterns. URL
http://tmitwww.tm.tue.nl/research/patterns/ [December 2004].

[7] J. H. Abawajy. Fault-Tolerant Scheduling Policy for Grid Computing Systems. In 18th International Parallel
and Distributed Processing Symposium (IPDPS’04), Santa Fe, New Mexico, IEEE Computer Society (CS)
Press, Los Alamitos, CA, USA, April 26-30, 2004; 238-244.

[8] D. Abramson, J. Giddy, and L. Kotler. High Performance Parametric Modeling with Nimrod/G: Killer
Application for the Global Grid? In 14th International Parallel and Distributed Processing Symposium (IPDPS
2000), Cancun, Mexico, IEEE CS Press, Los Alamitos, CA, USA, May 1-5, 2000.

[9] M. Addis, J. Ferris, M. Greenwood, P. Li, D. Marvin, T. Oinn, and A, Wipat. Experiences with e-Science
Workflow Specification and Enactment in Bioinformatics, In UK e-Science All Hands Meeting 2003, IOP
Publishing Ltd, Bristol, UK, 2003; 459-467.

[10] G. Allen, K. Davis, K. N. Dolkas, N. D. Doulamis, T. Goodale, T. Kielmann, A. Merzky, J. Nabrzyski, J.
Pukacki, T. Radke, M. Russell, E. Seidel, J. Shalf, and I. Taylor. Enabling Applications on the Grid – A
GridLab Overview. International Journal of High Performance Computing Applications (JHPCA), Special
Issue on Grid Computing: Infrastructure and Applications, SAGE Publications Inc., London, UK, August 2003.

 28

[11] J. Almond and D. Snelling. Unicore: Secure and Uniform Access to Distributed Resources via the World Wide
Web. White Paper, October 1998, http://www.fz-juelich.de/zam/RD/coop/unicore/whitepaper.ps [December
2004].

[12] I. Altintas, A. Birnbaum, K. Baldridge, W. Sudholt, M. Miller, C. Amoreira, Y. Potier, and B. Ludaescher. A
Framework for the Design and Reuse of Grid Workflows, International Workshop on Scientific Applications on
Grid Computing (SAG'04), LNCS 3458, Springer, 2005.

[13] K. Amin and G. von Laszewski. GridAnt: A Grid Workflow System. Manual, February 2003, http://www-
unix.globus.org/cog/projects/gridant/gridant-manual.pdf [December 2004].

[14] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith, S.
Thatte, I. Trickovic, S. Weerawarana. Business Process Execution Language for Web Services Version 1.1, 05
May 2003, http://www-128.ibm.com/developerworks/library/ws-bpel/ [Feb 2005]

[15] The Apache Ant Project. http://ant.apache.org/ [December 2004].
[16] D. A. Bacigalupo, S. A. Jarvis, L. He, and G. R. Nudd. An Investigation into the application of different

performance techniques to e-Commerce applications. In Workshop on Performance Modelling, Evaluation and
Optimization of Parallel and Distributed Systems, 18th IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Santa Fe, New Mexico, IEEE CS Press, Los Alamitos, CA, USA, April 26-30, 2004.

[17] R. Bastos, D. Dubugras, and A. Ruiz. Extending UML Activity Diagram for Workflow Modeling in Production
Systems. In 35th Annual Hawaii International Conference on System Sciences (HICSS’02), Big Island, Hawaii,
IEEE CS Press, Los Alamitos, CA, USA, January 07 -10, 2002.

[18] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnsson, K. Kennedy, C. Kesselman, J.
Mellor-Crummey, D. Reed, L. Torczon, and R. Wolski. The GrADS Project: Software Support for High-Level
Grid Application Development. International Journal of High Performance Computing Applications(JHPCA),
15(4):327-344, SAGE Publications Inc., London, UK, Winter 2001.

[19] I. Brandic, S. Benkner, G. Engelbrecht, and R. Schmidt, Towards Quality of Service Support for Grid
Workflows, First European Grid Conference (EGC 2005), Amsterdam, The Netherlands, Feb 2005.

[20] T.D.Braun, H. J. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, and
B. Yao. A Taxonomy for Describing Matching and Scheduling Heuristics for Mixed-Machine Heterogeneous
Computing Systems. In 17th Symposium on Reliable Distributed Systems. West Lafayette, IN. IEEE CS Press,
Los Alamitos, CA, October 1998: 330-335.

[21] R. Buyya, D, Abramson, and J. Giddy. Nimrod/G: An Architecture of a Resource Management and Scheduling
System in a Global Computational Grid, HPC Asia 2000, Beijing, China, IEEE CS Press, Los Alamitos, CA,
USA, May 14-17, 2000; 283-289.

[22] R. Buyya, D. Abramson, and J. Giddy. A Case for Economy Grid Architecture for Service-Oriented Grid
Computing. In 10th IEEE International Heterogeneous Computing Workshop (HCW 2001), San Francisco,
California, USA , IEEE CS Press, Los Alamitos, CA, USA, April 2001.

[23] R. Buyya and S. Venugopal. The Gridbus Toolkit for Service Oriented Grid and Utility Computing: An
Overview and Status Report. In 1st IEEE International Workshop on Grid Economics and Business Models,
GECON 2004, Seoul, Korea, IEEE CS Press, Los Alamitos, CA, USA, April 23, 2004; 19-36.

[24] J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson and G. R. Nudd. ARMS: An Agent-based Resource Management
System for Grid Computing. Scientific Programming. Special Issue on Grid Computing, 10(2):135-148, IOS
Press, Amsterdam, Netherlands, 2002.

[25] J. Cao, S. A. Jarvis, S. Saini, G. R. Nudd. GridFlow:Workflow Management for Grid Computing. In 3rd
International Symposium on Cluster Computing and the Grid (CCGrid), Tokyo, Japan, IEEE CS Press, Los
Alamitos, May 12-15, 2003.

[26] J. Cardoso. Stochastic Workflow Reduction Algorithm. Technical Report, LSDIS Lab, Department of
Computer Science University of Georgia, 2002.

[27] J. Cardoso, and A. Sheth. Semantic E-Workflow Composition. Journal of Intelligent Information Systems,
21(3):191-225, Kluwer Academic Publishers, Netherlands, 2003.

[28] J. Cardoso, J. Miller, A. Sheth and J. Arnold. Modeling Quality of Service for Workflows and Web Service
Processes. Web Semantics Journal: Science, Services and Agents on the World Wide Web, 1(3):281-308,
Elsevier Inc, MA, USA, 2004.

[29] T. L. Casavant and J. G. Kuhl. A Taxonomy of Scheduling in General-purpose Distributed Computing Systems,
IEEE Transactins on Software Engineering, 14(2):141-154, IEEE CS Press, Los Alamitos, Feb. 1988.

[30] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Lamnitchi, C. Kesselman, P. Kunst, M. Ripeanu,
B. Schwartzkopf, H. Stockinger, K. Stockinger, and B. Tierney. Giggle : A Framework for Constructing
Scalable Replica Location Services. In Supercomputing (SC2002), Baltimore, USA: IEEE Computer Society,
Washington, DC, USA, November 16-22, 2002.

 29

[31] G. Clemm, J.F. Reschke, E. Sedlar, J. Whitehead. Web Distributed Authoring and Versioning (WebDAV)
Access Control Protocol, the Internet Society, May 2004.

[32] K. Cooper, A. Dasgupata, K. Kennedy, C. Koelbel, A. Mandal, G. Marin, M. Mazina, J. Mellor-Crummey, F.
Berman, H. Casanova, A. Chien, H. Dail, X. Liu, A. Olugbile, O. Sievert, H. Xia, L. Johnsson, B. Liu, M. Patel,
D. Reed, W. Deng, C. Mendes, Z. Shi, A. YarKhan, J. Dongarra. New Grid Scheduling and Rescheduling
Methods in the GrADS Project. NSF Next Generation Software Workshop, International Parallel and
Distributed Processing Symposium, Santa Fe, IEEE CS Press, Los Alamitos, CA, USA, April 2004.

[33] D. Crichton, J. S. Hughes and S. Kelly. A Science Data System Architecture for Information Retrieval. In
Clustering and Information Retrieval, Kluwer Academic Publishers, December 2003.

[34] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Services for Distributed Resource
Sharing. In 10th IEEE International Symposium on High Performance Distributed Computing, San Francisco,
CA, USA: IEEE CS Press, Los Alamitos, CA, USA, 7-9 August 2001.

[35] D. Hollinsworth. The Workflow Reference Model, Workflow Management Coalition, TC00-1003, 1994.
[36] DAGMan Application. http://www.cs.wisc.edu/condor/manual/v6.4/2_11DAGman_Applicaitons.html

[December 2004]
[37] H. J. Dail. A Modular Framework for Adaptive Scheduling in Grid Application Development Environments.

Master’s Thesis, UCSD Technical Report CS2002-0698, University of California at San Diego, March 2002.
[38] H. Dail, H. Casanova, and F. Berman. A Decoupled Scheduling Approach for the GrADS Program

Development Environment. Journal of Parallel Distributed Computing, 63(5):505-524, Elsevier Inc., MA, USA,
2003.

[39] E. Deelman, C. Kesselman, and G. Mehta. Transformation Catalog Design for GriPhyN. Technical Report
GriPhN-2001-17, 2001.

[40] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman. Workflow Management in GriPhyN. The Grid Resource
Management, Kluwer, Netherlands, 2003.

[41] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi. Mapping Abstract Complex Workflows onto
Grid Environments. Journal of Grid Computing, 1:25-39, Kluwer Academic Publishers, Netherlands, 2003.

[42] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M. H. Su, K. Vahi, M. Livny. Pegasus:
Mapping Scientific Workflow onto the Grid. Across Grids Conference 2004, Nicosia, Cyprus, 2004.

[43] P. A. Dinda. Online Prediction of the Running Time of Tasks. Cluster Computing, 5(3):225-236, Kluwer
Academic Publishers, Netherlands, 2002.

[44] dom4j. http://www.dom4j.org [December 2004]
[45] M. Dumas and A. H.M. ter Hofstede. UML Activity Diagrams as a Workflow Specification Language. In

UML’2001 Conference, Toronto, Ontario, Canada, Lecture Notes in Computer Science (LNCS), Springer-
Verlag, Heidelberg, Germany, October 1-5, 2001.

[46] R. Eshuis and R. Wieringa. Comparing Petri Net and Activity Diagram Variants for Workflow Modelling – A
Quest for Reactive Petri Nets. Advances in Petri Nets: Petri Net Technology for Communication Based Systems;
Lecture Notes in Computer Science (LNCS), 2472:321-351, Springer- Verlag, Heidelberg, Germany, 2003.

[47] T. Fahringer, S. Pllana, and A. Villazon. AGWL: Abstract Grid Workflow Language, In International
Conference on Computational Science, Programming Paradigms for Grids and Meta-computing Systems.
Krakow, Poland, Springer-Verlag, Heidelberg, Germany, June 2004.

[48] T. Fahringer, S. Pllana, and J. Testori. Teuta: Tool Support for Performance Modeling of Distributed and
Parallel Applications, International Conference on Computational Science, Tools for Program Development
and Analysis in Computational Science, Krakow, Poland, Springer-Verlag, Heidelberg, Germany, June 2004.

[49] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. S. Jr, and H. L. Truong. ASKALON: a tool set for cluster and
Grid computing. Concurrency and Computation: Practice and Experience, 17:143-169, Wiley InterScience,
2005.

[50] D. Fernández-Baca. Allocating Modules to Processors in a Distributed System. IEEE Transactions on Software
Engineering, 15(11): 1427-1436, November 1989.

[51] I. Foster and C. Kesselman (editors). The Grid: Blueprint for a Future Computing Infrastructure, Morgan
Kaufmann Publishers, USA, 1999.

[52] I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual Organizations.
International Journal of Supercomputing Applications, 15 (3), 2001.

[53] I. Foster, J. Vöckler, M. Wilde, Y. Zhao. Chimera: A Virtural Data System for Representing, Querying, and
Automating Data Derivation. In 14th International Conference on Scientific and Statistical Database
Management (SSDBM), Edinburgh, Scotland, UK: IEEE CS Press, Los Alamitos, CA, USA, July 24-26, 2002.

[54] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The Physiology of the Grid, Technical Report, Globus
Project, http://www.globus.org/research/papers/ogsa.pdf [December 2004]

 30

[55] Freefluo Overview. http://freefluo.sourceforge.net/ [December 2004].
[56] D. Gelernter. Generative Communication in Linda, ACM Computing Surveys, 7(1):80-112, 1985.
[57] A. Galstyan, K. Czajkowski, and K. Lerman. Resource Allocation in the Grid Using Reinforcement Learning,

In 3rd International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’03), New York
City, New York, USA, IEEE CS Press, Los Alamitos, CA, USA, July 19-23, 2004.

[58] A. Geppert, M. Kradolfer, and D. Tombros. Market-based Workflow Management. International Journal of
Cooperative Information Systems, World Scientific Publishing Co., NJ, USA, 1998.

[59] Globus Project. http://www.globus.org [December 2004].
[60] Grid Resource Allocation Agreement Protocol. https://forge.gridforum.org/projects/graap-wg [December 2004].
[61] GriPhyN. http://www.griphyn.org [December 2004].
[62] Z. Guan, F. Hernandez, P. Bangalore, J. Gray, A. Skjellum, V. Velusamy, Y. Liu. Grid-Flow: A Grid-Enabled

Scientific Workflow System with a Petri Net-based Interface. Technical Report, http://
http://www.cis.uab.edu/gray/Pubs/grid-flow.pdf [December 2004].

[63] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. Evaluation of Job-Scheduling Strategies for
Grid Computing. In 1st IEEE/ACM International Workshop on Grid Computing (Grid 2000), Berlin, Lecture
Notes in Computer Science (LNCS), Springer-Verlag, Heidelberg, Germany, 2000; 191-202.

[64] F. Hernández, P. Bangalore, J. Gray, and K. Reilly. A Graphical Modeling Environment for the Generation of
Workflows for the Globus Toolkit. In Workshop on Component Models and Systems for Grid Applications, 18th
Annual ACM International Conference on Supercomputing (ICS 2004), Saint-Malo, France, ACM Press, New
York, NY, USA, June 2004.

[65] A. Hoheisel. User Tools and Languages for Graph-based Grid Workflows. Grid Workflow Workshop, GGF10,
Berlin, Germany, March 9, 2004.

[66] S. Hwang and C. Kesselman. Grid Workflow: A Flexible Failure Handling Framework for the Grid. In 12th
IEEE International Symposium on High Performance Distributed Computing (HPDC’03), Seattle, Washington,
USA., IEEE CS Press, Los Alamitos, CA, USA, June 22 - 24, 2003.

[67] I. Horrocks. DAML+OIL: A Reason-able Web Ontology Language. In International Conference on Extending
Database Technology (EDBT 2002), Lecture Notes in Computer Science (LNCS), 1091:11-28, Springer-
Verlag, Heidelberg, Germany, March 24-28, 2002; 2-13.

[68] S. Jang, X. Wu, V. Taylor, G. Mehta, K. Vahi, E. Deelman. Using Performance Prediction to Allocate Grid
Resources. Technical Report 2004-25, GriPhyN Project, USA.

[69] JDOM. http://www.jdom.org [December 2004]
[70] JXTA Project. http://www.jxta.org [Feb 2005]
[71] P. Kacsuk, G. Dózsa, J. Kovács, R. Lovas, N. Podhorszki, Z. Balaton, G. Gombás. P-GRADE: a Grid

Programming Environment. Journal of Grid Computing, 1(2):171-197, Kluwer Academic Publisher,
Netherlands, 2003.

[72] B. Kao and H. Garcia-Molina. Deadline Assignment in a Distributed Soft Real-Time System. IEEE
Transactions on Parallel and Distributed Systems, 8(12):1268-1274, IEEE CS Press, Los Alamitos, CA, USA
1997.

[73] K. Krauter, R. Buyya, and M. Maheswaran. A Taxonomy and Survey of Grid Resource Management Systems
for Distributed Computing. Software: Practice and Experience, 32(2):135-164, John Wiley & Sons, Inc, NJ,
USA, February 2002.

[74] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java Commodity Grid Kit, Concurrency and
Computation: Practice and Experience, 13(8-9): 643-662, John Wiley & Sons, Ltd, Chichester, UK, 2001.

[75] G. von Laszewski, K. Amin, M. Hategan, N. J. Zaluzec, S. Hampton, and A. Rossi. GridAnt: A Client-
Controllable Grid Workflow System. In 37th Annual Hawaii International Conference on System Sciences
(HICSS'04), Big Island, Hawaii: IEEE CS Press, Los Alamitos, CA, USA, January 5-8, 2004.

[76] G. Von Laszewski. Java CoG Kit Workflow Concepts for Scientific Experiments. Technical Report, Argonne
National Laboratory, Argonne, IL, USA, 2005.

[77] G. von Laszewski, M. Hategan. Java CoG Kit Karajan/GridAnt Workflow Guide. Technical Report, Argonne
National Laboratory, Argonne, IL, USA, 2005.

[78] A. Lerina, C. Aniello, G. Pierpaolo, and V. M. Luisa. FlowManager: A Workflow Management System Based
on Petri Nets. In 26th Annual International Computer Software and Applications Conference, Oxford, England,
IEEE CS Press, Los Alamitos, CA, USA, August 2002;1054-1059.

[79] F. Leymann. Web Services Flow Language (WSFL 1.0), May 2001, http://www-
306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf [December 2004]

[80] D. C. Li and N. Ishii. Scheduling Task Graphs onto Heterogeneous Multiprocessors. TENCON’94, IEEE

 31

Region 10’s Ninth Annual International Conference, Theme: Frontiers of Computer Technology, IEEE CS
Press, Los Alamitos, CA, USA, 1994.

[81] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of Idle Workstations. In 8th International Conference
of Distributed Computing Systems (ICDCS), IEEE CS Press, Los Alamitos, CA, USA, June 1988; 104-111.

[82] X. Liu, J. Liu, J. Eker, and E. A. Lee. Heterogeneous Modeling and Design of Control Systems, Software-
Enabled Control: Information Technology for Dynamical Systems, Tariq Samad and Gary Balas (eds.), Wiley-
IEEE Press, April 2003.

[83] R. Lovas, G. Dózsa, P. Kacsuk, N. Podhorszki, D. Drótos. Workflow Support for Complex Grid Applications:
Integrated and Portal Solutions. In 2nd European Across Grids Conference, Nicosia, Cyprus, 2004.

[84] B. Ludäscher, I. Altintas, and A. Gupta. Compiling Abstract Scientific Workflows into Web Service Workflows.
In 15th International Conference on Scientific and Statistical Database Management, Cambridge, Massachusetts,
USA., IEEE CS Press, Los Alamitos, CA, USA., July 09-11, 2003;241-244

[85] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific
Workflow Management and the KEPLER System. Concurrency and Computation: Practice & Experience,
Special Issue on Scientific Workflows, to appear, 2005

[86] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal. Peer-to-Peer Grid Computing and a .NET-based Alchemi
Framework, High Performance Computing: Paradigm and Infrastructure, Laurence Yang and Minyi Guo
(editors), ISBN: 0-471-65471-X, Wiley Press, New Jersey, USA, June 2005.

[87] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. Freund. Dynamic Matching and Scheduling of a Class
of Independent Tasks onto Heterogeneous Computing Systems. In 8th Heterogeneous Computing Workshop
(HCW’99), Juan, Puerto Rico, IEEE Computer Society, Los Alamitos, April 12, 1999.

[88] A. Mani and A. Nagarajan. Understanding Quality of Service for Web Services. http://www-
106.ibm.com/developerworks/library/ws-quality.html [December 2004]

[89] D.C. Marinescu. A Grid Workflow Management Architecture. GGF White Paper, 2002.
[90] G. Mateescu. Quality of Service on the Grid via Metascheduling with Resource Co-scheduling and Co-

reservation. International Journal of High Performance Computing Applications, 17(3):209-218, SAGE
Publications Inc, London, UK, August 2003.

[91] A. Mayer, S. McGough, N. Furmento, W. Lee, S. Newhouse, and J. Darlington. ICENI Dataflow and Workflow:
Composition and Scheduling in Space and Time. In UK e-Science All Hands Meeting, Nottingham, UK, IOP
Publishing Ltd, Bristol, UK, September 2003; 627-634.

[92] A. Mayer, S. McGough, N. Furmento, W. Lee, M. Gulamali, S. Newhouse, and J. Darlington. Workflow
Expression: Comparison of Spatial and Temporal Approaches. In Workflow in Grid Systems Workshop, GGF-
10, Berlin, March 9, 2004.

[93] S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Darlington. Workflow Enactment in ICENI. In UK e-
Science All Hands Meeting, Nottingham, UK, IOP Publishing Ltd, Bristol, UK, Sep. 2004; 894-900.

[94] S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Darlington. Performance Architecture within ICENI. In
UK e-Science All Hands Meeting, Nottingham, UK, IOP Publishing Ltd, Bristol, UK, Sep. 2004; 906-911.

[95] Message Passing Interface Forum, http://www.mpi-forum.org/ [Feb 2005]
[96] R. A. Moreno. Job Scheduling and Resource Management Techniques in Dynamic Grid Environment. In 1st

European Across Grids Conference, Spain, Lecture Notes in Computer Science (LNCS), Springer-Verlag,
Heidelberg, Germany, February 2003.

[97] T. Murata, Temporal Uncertainty and Fuzzy-Timing High-Level Petri Nets. In Application and Theory of Petri
Nets, Lecture Notes in Computer Science (LNCS), 1091:11-28, Springer-Verlag, Heidelberg, Germany, 1996.

[98] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S.C. Perry, J.S. Harper, and D. V. Wilcox. PACE- A Toolset for
the performance Prediction of Parallel and Distributed Systems. International Journal of High Performance
Computing Applications (JHPCA), Special Issues on Performance Modelling- Part I, 14(3): 228-251, SAGE
Publications Inc., London, UK, 2000.

[99] Object Management Group. Unified Modeling Language (UML), http://www.uml.org/ [Feb 2005]
[100] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver and K. Glover, M.R. Pocock,

A. Wipat, and P. Li. Taverna: a tool for the composition and enactment of bioinformatics workflows.
Bioinformatics, 20(17):3045-3054, Oxford University Press, London, UK, 2004.

[101] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Greenwood, T. Carver, A. Wipat, and P. Li. Taverna, Lessons in
Creating a Workflow Environment for the Life Sciences. GGF10, Berlin, Germany, 2004.

[102] OMG. Unified Modeling Language Version 1.3., July 1999.
[103] C. Patel, K. Supekar, and Y. Lee. A QoS Oriented Framework for Adaptive Management of Web Service based

Workflows. Lecture Notes in Computer Science, 2736:826-835, Springer-Verlag, Heidelberg, Germany, 2003.
[104] C.A. Petri. Kommunikation mit Automaten. PhD Thesis, Institut für instrumentelle Mathematik, Bonn, 1962

 32

[105] S. Pllana, T. Fahringer, J. Testori, S. Benkner, and I. Brandic, Towards an UML Based Graphical
Representation of Grid Workflow Applications. In 2nd European AcrossGrids Conference (AxGrids 2004),
Nicosia, Cyprus, LNCS, Springer-Verlag, Heidelberg, Germany, January 28-30, 2004.

[106] R. Prodan and T. Fahringer. Dynamic Scheduling of Scientific Workflow Applications on the Grid: A Case
Study. In 20th Annual ACM Symposium on Applied Computing (SAC 2005), New Mexico USA, ACM Press,
New York, NY, USA, March 2005.

[107] R. L. Ribler, H. Simitci, and D. A. Reed. The Autopilot Performance-directed Adaptive Control System. Future
Generation Computer Systems, 18(1): 175-187, Elsevier Inc, MA, USA, 2001.

[108] H. G. Rotithor, Taxonomy of Dynamic Task Scheduling Schemes in Distributed Computing Systems, IEE
Proceedings of Computers and Digital Techniques, 141(1):1-10, London, UK, January 1994.

[109] S. Fitzgerald, I. Foster, C. Kesselman, G. Von Laszewski, W. Smith and S. Tuecke. A Directory Service for
Configuring High-Performance Distributed Computations. In 6th IEEE Symposium on High-Performance
Distributed Computing, Portland, OR, IEEE CS Press, Los Alamitos, August 1997; 365-375.

[110] R. Sakellariou and H. Zhao. A Low-Cost Rescheduling Policy for Efficient Mapping of Workflows on Grid
Systems. Scientific Programming, 12(4):253-262, IOS Press, Netherlands, December 2004.

[111] M. Senger, P. Rice, and T. Oinn. Soaplab-a Unified Sesame Door to Analysis Tools. In UK e-Science All Hands
Meeting, September 2003; 509-513.

[112] A. Slominski, D. Gannon, and G. Fox. Introduction to Workflows and Use of Workflows in Grids and Grid
Portals. GGF 9, Chicago, USA, 7 Oct, 2004.

[113] W. Smith, I. Foster, and V. Taylor. Predicting Application Run Times Using Historical Information. In
Workshop on Job Scheduling Strategies for Parallel Processing, 12th International Parallel Processing
Symposium & 9th Symposium on Parallel and Distributed Processing (IPPS/SPDP '98), IEEE CS Press, Los
Alamitos, CA, USA., 1998.

[114] S. S. Song and K. Hwang. Security Binding for Trusted Job Outsourcing in Open Computational Grids. IEEE
Transactions on Parallel and Distributed Systems (TPDS), submitted May 2004, revised Dec. 2004.

[115] S. S. Song, Y. K. Kwok, and K. Hwang. Trusted Job Scheduling in Open computational Grids: Security-Driven
heuristics and A Fast Genetic Algorithm. In 19th IEEE International Parallel & Distributed Processing
Symposium (IPDPS-2005), Denver, CO, USA., IEEE Computer Society Press, Los Alamitos, CA, USA., April
4-8, 2005.

[116] D.P. Spooner, J. Cao, J. D. Turner, H. N. Lin Chio Keung, S. A. Jarvis, and G.R. Nudd. Localized Workload
Management Using Performance Prediction and QoS Contracts. In 18th Annual UK Performance Engineering
Workshop, Glasgow, UK, 2002; 69-80.

[117] D.P. Spooner, J. Cao, S. A. Jarvis, L. He, and G. R. Nudd. Performance-aware Workflow Management for Grid
Computing. The Computer Journal, Oxford University Press, London, UK, 2004.

[118] R. D. Stevens, A. J. Robinson, and C. A. Goble. myGrid:Personalized Bioinformatics on the Information Grid.
Bioinformatics, 19(Suppl. 1):i302-i304, Oxford University Press, London, UK, 2003.

[119] A. Sulistio and R. Buyya. A Grid Simulation Infrastructure Supporting Advance Reservation, In 16th
International Conference on Parallel and Distributed Computing and Systems (PDCS 2004), MIT Cambridge,
Boston, USA, ACTA Press, CA, USA, November 9-11, 2004.

[120] T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor - A Distributed Job Scheduler. Beowulf Cluster
Computing with Linux, The MIT Press, MA, USA, 2002.

[121] Taverna User Manual. http://taverna.sourceforge.net/manual/docs.word.html [December 2004].
[122] I. Taylor, R. Philp, M.Shields and O.Rana, and B. Schutz. The Consumer Grid. Global Grid Forum (2002).

Toronto, Ontario, Canada, February 17-20, 2002.
[123] I. Taylor, M. Shields, and I. Wang. Resource Management of Triana P2P Services. Grid Resource Management,

Kluwer, Netherlands, June 2003.
[124] D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. Grid Computing: Making the Global

Infrastructure a Reality, John Wiley & Sons, NJ, USA, 2003.
[125] S. Thatte. XLANG-Web Services for Business Process Design, Microsoft Corporation, 2001,

http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm [Feb 2005]
[126] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire, T. Sandholm, P. Vanderbilt,

and D. Snelling. Open Grid Services Infrastructure (OGSI) Version 1.0. Global Grid Forum Draft
Recommendation, June 27, 2003.

[127] UDDI Technical White Paper, September 2000, http://www.uddi.org [December 2004].
[128] Unicore Forum. Unicore Plus Final Report: Uniform Interface to Computing Resource. 2003,

http://www.unicore.org/documents/UNICOREPlus-Final-Report.pdf [December 2004].

 33

[129] S. Vadhiyar and J. Dongarra. A Performance Oriented Migration Framework for the Grid. In IEEE Computing
Clusters and the Grid (CCGrid), Tokyo, Japan, IEEE CS Press, Los Alamitos, May 12-15, 2003.

[130] S. Venugopal, R. Buyya, and L. Winton. A Grid Service Broker for Scheduling Distributed Data-Oriented
Applications on Global Grids. In 2nd International Workshop on Middleware for Grid Computing, Middleware
2004, Toronto, Ontario - Canada, ACM Press, New York, NY, USA, October 18, 2004.

[131] H.M.W. Verbeek, A. Hirnschall, and W.M.P. van der Aalst. XRL/Flower: Supporting Inter-Organizational
Workflows Using XML/Petri-nets Technology. In Workshop on Web Services, e-Business, and the Semantic
Web (WES): Foundations, Models, Architecture, Engineering and Applications, The Fourteenth International
Conference on Advanced Information Systems Engineering (CAiSE 2002), Toronto, Ontario, Canada, Lecture
Notes in Computer Science (LNCS), Springer-Verlag, Heidelberg, Germany, May 27-28, 2002; 535-552.

[132] W3C. Extensible Markup Language (XML) 1.0 (Third Edition), http://www.w3.org/TR/REC-xml/ [Feb 2005]
[133] W3C. Web Services, 2002, http://www.w3.org/2002/ws/ [Feb 2005]
[134] W3C. XML Schema, http://www.w3.org/XML/Schema [Feb 2005]
[135] W3C. XML Pipeline Definition Language Version 1.0, http://www.w3.org/TR/2002/NOTE-xml-pipeline-

20020228/ [Feb 2005]
[136] R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: A Distributed Resource Performance

Forecasting Service for Metacomputing. Future Generation Computer Systems, 15(5-6):757-768, 1999.
[137] Workflow Management Coalition. http://www.wfmc.org/ [December 2004]
[138] World Wide Web Consortium. Web Services Description Language (WSDL) Version 1.2,

http://www.w3.org/TR/wsdl12 [December 2004]
[139] C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Greenwood. A Suite of DAML+OIL Ontologies to Describe

Bioinformatics Web Services and Data. International Journal of Cooperative Information Systems, 12(2):197-
224, World Scientific Publishing Co., NJ, USA, 2003.

[140] X. F. Wu, V. Taylor, and R. Stevens. Design and Implementation of Prophesy Automatic Instrumentation and
Data Entry System. In 13th IASTED International Conference on Parallel and Distributed Computing and
Systems (PDCS2001), Anaheim, CA, IASTED Press, Philadelphia, PA, USA, August 2001.

[141] R. Yahyapour, P. Wieder, A. Pugliese, D. Talia, and J. Hahm. Grid Scheduling Use Cases. White Paper, Global
Grid Forum, 19 July, 2004.

[142] L. Young and J. Darlington. Scheduling Componentized Applications on a Computational Grid. MPhil/PhD
Transfer Report, Imperial College London, University of London, UK, 2004.

[143] L. Young, S. McGough, S. Newhouse, and J. Darlington. Scheduling Architecture and Algorithms within the
ICENI Grid Middleware. In UK e-Science All Hands Meeting, IOP Publishing Ltd, Bristol, UK, Nottingham,
UK, Sep. 2003; 5-12.

[144] J. Yu and R. Buyya. A Novel Architecture for Realizing Grid Workflow using Tuple Spaces. In 5th IEEE/ACM
International Workshop on Grid Computing (Grid 2004), Pittsburgh, USA, IEEE CS Press, Los Alamitos, CA,
USA, Nov. 8, 2004.

[145] J. Yu, S. Venugopal, and R. Buyya. A Market-Oriented Grid Directory Service for Publication and Discovery of
Grid Service Providers and their Services. Technical Report, GRIDS-TR-2003-0, Grid Computing and
Distributed Systems (GRIDS) Laboratory, The University of Melbourne, Australia, January 2003.

[146] J. Yu, R. Buyya, and C. K. Tham. QoS-based Scheduling of Workflow Applications on Service Grids.
Technical Report, GRIDS-TR-2005-8, Grid Computing and Distributed Systems Laboratory, University of
Melbourne, Australia, June 9, 2005.

[147] S. Y. Zhao and V. Lo. Result Verification and Trust-based Scheduling in Open Peer-to-Peer Cycle Sharing
Systems. Technical Report, University of Oregon, USA, 2005.

[148] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. V. Kalé. Simulation-based Performance Prediction for Large
Parallel Machines. International Journal of Parallel Programming, Kluwer Academic Publishers, The
Netherlands, 2005, accepted.

