Extending GridSim with an Architecture for Failure Detection

Agustin Caminerd, Anthony Sulistic?, Blanca Caminerd,
Carmen Carrion, Rajkumar Buyy#

!Department of Computing Systems,
The University of Castilla La Mancha, Spain
{agustin, blanca, carmé@dsi.uclm.es

2GRIDS Laboratory,
Dept. of Computer Science and Software Engineering,
The University of Melbourne, Australia.
{anthony, raj @csse.unimelb.edu.au

Abstract autonomy, since it is an essential issue for the creation of a
real Grid. Therefore, each organization can decide its own
Grid technologies are emerging as the next generation policy and whether to join/leave a VO at any time. Such
of distributed computing, allowing the aggregation of re- decisions will certainly affect users in submitting and-exe
sources that are geographically distributed across déffer cuting their jobs.

locations. However, these resources are independent and - Another important issue affecting users is that the num-

managed separately by different organizations with differ e of resources can fluctuate significantly over time. The
ent policies. This will have a major impact to users who \qiapility of resources may vary due to changes in their

submit their jobs to the Grid, as they have to deal with \,ing conditions, such as network congestion, partial

issues such as policy heterogeneity, security and fault 10l ¢4y res or even the connection or disconnection of comput-
erance. Moreover, the changes of Grid conditions, such g resources. With many resources in a Grid, the resource
as resources that may become unavailable for a period of 5 "etyork failures are the rule rather than the exception.
time due to maintenance and/or suffer failures, would sig- fyance they should be taken into account in order to pro-
nificantly affect the Qu_ahty of S_erwce (QoS) requirements e 4 reliable service [10].

of users. Therefore, it is essential for users to take into ac

count the effects of resource failures during jobs exeautio Supporting fault tolerance is one of the main technical
In this paper, we present our work on introducing re- challenges in designing Grid environments. This is because

source failures and failure detection into the GridSim sim- Production Grid systems must be able to tolerate resource
ulation toolkit. As we need to conduct repeatable and con- failures, while at the same time effectively exploiting the
trolled experiments, it is easier to use simulation as a rsean "€S0Urces in a scalable and transparent manner. Therefore,
of studying complex scenarios. We also give a detailed” order to cope with these challenges, from the fault toler-
description of the overall design and a use case scenario@1C€ Point of view, the system must have failure detection
demonstrating the conditions of resources varied over.time @1d recovery schemes. Such a scenario can be described

in Figure 1. A failure detector monitors the components of
the system (step 1), and notifies to a local Grid Information
) Service (GIS) entity when a failure occurs in any of them
1 Introduction (step 2). Then, a recovery scheme is being applied in order
to restart a failed job to another computational resource dy
Grid systems are the next generation of distributed com-namically. An example of such a scheme is the failure mon-
puting systems. They are highly heterogeneous environ-itor notifies users that resour&es?2 is out of order (step
ments and made of a series of independent organization8). Hence, users can resubmit their jobs to other resources .
sharing their resources, creating what is known/asial As demonstrated in this example, both detection and recov-
Organization(VO) [7]. In Grid systems, each organization ery schemes must be an integral part of the Grid computing
or administrative domain keeps its own independence andinfrastructure [15][11]. Therefore, itis important to chrct

Res 2 is

_ out of ider

Poll response

Finally, Section 6 concludes the paper and suggests some
guidelines for future work.

fotector 2 Reated Work

2.1 Existing Resource Failure Detections

Figure 1. An example of resource failure sce- In general, computing resource failure refer to hardware,

nario. operating systems, and Grid middleware components, as
well as network connections. On the failure of a resource,
rescheduling and migration of jobs submitted to the failed

thorough study and evaluation of new reliability models, er resource should be done [10]. Acc_ordlng tothe wqu n [8.]’
there are two methods for detecting resource failures, i.e.

ror detection and recovery techniques before they can be handoull
deployed in production Grid environments. pushandpufl.

To test new detection and recovery schemes in a Grid en- Thetpushmethodﬂustest somgl fS_TT of -h?arttbeat r;:es-
vironment like the above scenario, a lot of work is required sages to renew a soft-state availability registrationfjc

to set up the testbeds on many distributed sites. Even if au_:nolnltored r_ezqurge pirIOd'C?”%.ﬁtendiF ”.‘essa%e tcr;i:\ cen-
tomated tools exist to do this work, it would still be very ral server indicating 1ts availabiiity. Missing a hearabe

difficult to produce performance evaluation imepeatable after a ceLtamftl_rlnz m;\eltrr:/ al (tmﬁ_mﬂ) w:ﬁm;t_es tgat :h'sh
andcontrolledmanner, due to the inherent heterogeneity of resource has failed. oug IS MEINOd 1S TODUST When

the Grid. In addition, Grid testbeds are limited and cregtin .th? cent_ral SEIVeris running on a hlg.hly available sys.tem, !
is inextricably convolving network failure and host faiur

an adequately-sized testbed is expensive and time consu . 2 .
ing Thcérefor)e/z it is easier to use gimulation as a means g]}rhat is, a missing heartbeat or set of heartbeats can either
) X be interpreted as the failure in the monitored resourceer th

studying complex scenarios. ; .) .
. , . loss of network connection. A real implementation using
To address the above issues, we have incorporated fail-

. : o the heartbeat method can be found at [20].
ure detection and recovery scheme into GridSim [2]. We Theoull method ksb di li
opted to work on GridSim because it has a complete set epull method works by sending amessage or a poiiing

of features for simulating realistic Grid testbeds. Such fe request to the monitored resources. On the reception of

tures are modeling heterogeneous computational resource\g/ﬁse?] Ezsisr?g; :der.ezgl::;e;\géisegg tt)g?:km'? SSﬁgeng:er.
of variable performance, scheduling jobs based on time- or v 9 [twiitu

spaced-shared policy, differentiated network servicel an ts;and tr:atthe resourceis aIB/e.kH(?twe}ﬁeT%xplrfs Zi]:rfth_
workload trace-based simulation from real supercomput- € reply message comes back, it will understand that this

ers [21]. More importantly, GridSim allows the flexibility resource is not available at this moment. Hence, the sender

and extensibility to incorporate new components into its ex will keep an up-to-_date list of a""?‘"ab'e resources. Ppoé .

isting infrastructure. method has been |mpllemented in the Gridbus Grid Service
The main contribution of this work is the implementation Broker [23] and the GridWay [10] metascheduler.

of an extension to GridSim. This extension allows GridSim

to simulate the failure of computing resources, and incdude 2-2 Simulation Tools

a failure detection mechanism, essential to provide a com-

plete simulation environment. Most of the parameters of As we mentioned previously, simulations are essential

this extension are configurable, allowing researchersito si for carrying out research experiments in Grid systems. A

ulate a wide variety of failure patterns. To evaluate our de- number of simulation tools for Grids exist, such as Grid-

sign, we simulate a failure scenario by constructing an EU Sim [2], OptorSim [1], SimGrid [13] and MicroGrid [14].

DataGRID testbed into the experiment [5]. These tools will be briefly mentioned next, except for Grid-
The rest of this paper is organized as follows: Section 2 Sim that will be discussed in Section 3.

briefly mentions existing methods for failure detectiond an OptorSim has been developed as part of the EU Data-

several Grid simulation tools. Section 3 explains the Grid- Grid project [5], and it aims to study the effectiveness of

Sim toolkit, which is a simulation tool that has been ex- data replication strategies. SimGrid is an event driven sim

tended to provide the failure functionality. Section 4 de- ulator, which provides functionality to simulate infrastr

scribes the failure functionality, including the actuajiler tures and applications based on their features. Finally, Mi

mentation using GridSim. Section 5 shows a use case sceeroGrid provides on-line emulation of large-scale network

nario, where we demonstrate the usefulness of our work.and Grid resources. However, MicroGrid is actually an em-

Grid Scenario | |User Requirements B Application Configuration

User
Code

Grid Resource Brokers or Schedulers

Data
N Data Sets Replica Catalogue Replica Manager
Sl Grid

Job

Res 0 Res 1 Res 2

Poll

Information| Description

Compu- Service
tational || Reservation Resource Allocation Workload Traces

Grid

Core

Eoments| [esource (Custers, swpsl] | Traic Generator | .. Figure 3. Interactions among entities.

affill

Simlava Simulation Kernel

data transfers between computational and storage resource
Figure 2. Architecture of GridSim. Replica catalogues are information services specificaly i
plemented for Data Grids. The fifth layer contains compo-
nents that aid users in implementing their own schedulers
and resource brokers so that they can test their own algo-
rithms and strategies. The layer above this helps users de-
fine their own scenarios and configurations for validating
their algorithms.

In this paper, we only concentrate on incorporating fail-
ure detections to all layers of the GridSim architecture, ex
3 TheGridSim Toolkit cept for the first layer (SimJava kernel) and the third layer

(Data Grids). Work on introducing resource failures for

The GridSim toolkit [2][22] is one of the most widely Data Grids components will be considered as a future work.
used Grid simulation tools. It has been used for simulat- The discussion related to the failure architecture will e p
ing and evaluating VO-based resource allocation [4], work- sented next.
flow scheduling [18], and dynamic resource provisioning
techniques[19] in Global Grids. _ 4 Designing and Implementing Resource

It supports modellng and simulation of heterogeneous Failuresinto GridSim
Grid resources (both time- and space-shared), users; appli
cations, brokers and schedulers in a Grid computing envi-
ronment. It provides primitives for creation of applicatio
tasks, mapping of tasks to resources, and their management |, qur model, we use thpull method, and the interac-

so that resource schedulers can be simulated to study th¢ons among entities are depicted in Figure 3. These entitie
involved scheduling algorithms. GridSim adopts a multi- .4 briefly described as follows:

layered design architecture, as shown in Figure 2 [21].

GridSim is based on SimJava [9], a general purposeA|gorithm 1 Resource Failure Detection Algorithm used
discrete-event simulation package implemented in Java.py the Users.
Therefore, the first layer at the bottom of Figure 2 is man- ~repeat

ulator, meaning that actual application code is executed on
the virtual Grid modeled after Globus.

To the best of our knowledge the above tools do not pro-
vide mechanisms to simulate computing resources failure.

4.1 Designing Resource Failures

aged by SimJava for handling the interaction or events poll the resources which are running my jobs

among GridSim components. All components in GridSim if a resource does not respatiin

communicate with each other through message passing op- ask the GIS for a list of resources

erations defined by SimJava. The second layer models choose one of them, based on its features and my
the core elements of the distributed infrastructure, ngmel job specification

Grid resources such as clusters, storage repositories and resubmit the jobs originally submitted to the failed
network links. These core components are absolutely es- resource

sential to create simulations in GridSim. The third and end if

fourth layers are concerned with modeling and simulation wait for T¢7 seconds

of services specific to Computational and Data Grids re- yntj| all my jobs have been successfully executed
spectively. Some of the services provide functions common

to both types of Grids, such as information about avail-
able resources and managing job submission. In case of e Computing resources: they are responsible for execut-
Data Grids, job management also incorporates managing ing users’ jobs.

Resource_2

Algorithm 2 Resource Failure Detection Algorithm used
by GIS.
repeat
poll the resources which are available at this moment
if a resource does not respatinen
remove it from the list of available resources
inform other GIS entities about the failure
end if
wait for 7SS seconds

. polling
until simulation is over

Resource_1 User

REGISTER_RESOURCE

GIS m

REGISTER_RESOURCE

E POLLING

POLLING -

&
Y >
I'M ALIVE

I'M ALIVE GET LIST OF

3 &
Ll D) AVAILABLE RESOURCES

LIST OF AVAILABLE RESOURCES

JOB SUBMISSION

A

) POLLING POLLING -

>

<
I'MALIVE 3| & IMAUVE] POLLING

7| €

M ALIVE 3
Time out expires.

So resubmit this

job to other
resource

Time out expires.

So remove Resource_1
from the list of
available resources

The resource is a
out of order!

POLLING

Pl POLLING

\ POLLING

\|E

I'M ALIVE

GET LIST OF E

AVAILABLE RESOURCES

LIST OF AVAILABLE RESOURCES -

>
JOB SUBMISSION

A

The resource is

/ working again

POLLING

POLLING

REGISTER_RESOURCE

I'M ALIVE

Al A

I'M ALIVE

JOB RETURN

\4

Figure 4. A sequence diagram showing a sce-
nario of a failure detection.

Users: in order to know where to run jobs, users have
to contact a GIS entity (explained next) for a list of
available resources. The functionality of this entity can
be summarized in Algorithm 1.

GIS: is responsible for maintaining an up-to-date list

of available resources. GIS entities of the same VO
domain can interact each other for exchanging the in-
formation of available resources. This process can be
summarized in Algorithm 2.

For enabling an efficient polling mechanism, User Data-
gram Protocol (UDP) is used by these entities. This is due

to the fact that UDP requires a less significant network la-
tency in comparison with a Transmission Control Protocol
(TCP).

Figure 4 shows a scenario of a user that has a job in ex-
ecution prior to a resource failure. The sequential steps ar
shown in a box with a number inside. In the initial stalge;
sourcel andResource? register taGIS(step 1). ThenGIS
creates a list of available resources. In order to keepittat |
up-to-dateGISpolls the resources periodically (step 2).

When User wants to run a job, he/she conta@sS in
order to get a list of available resources (step 3). Upon
receiving the user’s requesgIS returns its list. In that
moment,User will chooseResourcel for example, based
on the features of the resource and the job specification.
WhenUserhas chosen the resource, he/she submits the job
to Resourcel and starts a regular polling mechanism.

In the event of a failure affectinResourcel, GIS is
able to detect this problem due to the polling mechanism
in place (step 4). Henc&IS removes the failed resource
from the list. During a routine pollUser discovers that
Resourcel has failed. As a resulyseraskGISfor a list of
resources (step 5). WhdResourcel recovers, it registers
itself again toGIS(step 6). With this approackglSis able
to maintain an up-to-date list of available resources.

If the failure only affects some of the machines in a re-
source, what happens next depends on the allocation pol-
icy of this resource. If the resource runspace-shared
(first come first serve) allocation policy, the jobs that are
currently running on the failed machines will be terminated
and sent back to users. However, when the resource runs
a time-sharedround-robin) allocation policy, no jobs will
be failed, as their execution will continue in the remain-
ing machines of the resource. For both allocation policies,
the remaining machines are responsible for responding to
polling requests from users and GIS. Moreover, they are re-
quired to inform the GIS about such failure. This way, the
GIS can have accurate information on the current status of
the resource.

4.2 Implementing Resource Failures into
GridSim

We have implemented the computing resource failure
functionality on GridSim 4.0, available to download at
http://ww. gridbus. org/gridsin. Inorderto
provide GridSim with this new functionality, several new
classes have been developed. The new classes are depicted
in Figure 5 in italic-bold font. We will explain them next:

e GridUser Fai | ur e: as its name suggests, this class
implements the behavior of the users of our grid envi-
ronment. Its functionality can be summarized as fol-

Variate

GridUser

GridSimCore
TAN

AbstractGIS

lHyperExponentiall lWEibU11]lSpaceSharedWithFailurel lTim;SharedWithFailure

RegionalGISWithFailure

FailurelMsg

GridUserFailure

lLC'" d l lGridletSubmissionl lAvailabilityInfo

[GridResourceWithFailure

Figure 5. Classes created for the failure functionality.

lows: (1) creation of jobs; (2) submission of jobs to re-
sources; (3) poll the resources used to run its jobs; (4)
on the failure of a job, choose another resource and re-
submit the failed job to it; (5) receive succeeded jobs.

G i dResourceW t hFai | ure: based on
G i dResour ce GridSim class, this class interacts
with Regi onal G SW t hFai | ur e to set machines
as failed/ working. Also it interacts with classes
implementingAl | ocPol i cyW t hFai | ur e to set
jobs as failed.

Al l ocPol i cyW t hFai |l ure: it is an interface,
which provides some functions to deal with resource
failures. Each allocation pollicy implementing this in-
terface will have a different behavior with regard to the
failures.

SpaceShar edW t hFai | ur e: this class is based
on SpaceShared GridSim class, one of the
allocation policies already implemented in Grid-
Sim. It extendsAl | ocPol i cy and implements

Al | ocPol i cyW t hFai | ure. It behaves exactly
like First Come First Serve (FCFS). This is a basic and
simple scheduler that runs each job to one Processing
Element (PE). On the event of a failure, if there are
still working machines in this resource, only the jobs
which are being executed in this moment in the failing
machines will be failed, and sent back to the user. If
there arenoworking machines in this resource, then all
the jobs in this resource will be failed and sent back to
the user, but with an special code, so that the user can
make out that this resource is out of order. The most
realistic behavior, in a real grid, would be not send-
ing the jobs back to the user when all the machines of
the resource are out of order. But the simulator does
not deal well with entities (in this case, users) waiting
for an event (in this case, a job) that never arrives. So
we decided to simulate the real behavior by using that
special code.

Ti meShar edW t hFai | ure: this class s
based on Ti meShared GridSim class, other
allocation policy already implemented in Grid-
Sim. It extendsAl | ocPol i cy and implements

Al'l ocPol i cyW t hFai | ure. It behaves similar

to a round robin algorithm, except that all jobs are
executed at the same time. This is a basic and
simple scheduler that runs each job to one Processing
Element (PE). On the event of a failure, if there are
still working machines in this resource, no job will be
failed, as jobs are not tightly allocated to a machine.
If there areno working machines in this resource,
then its behavior will be the same as explained for the
previous class.

Regi onal G SWt hFai | ure: this class
is based on Regional @S GridSim class.
The difference between these classes is that
Regi onal G SWt hFai l ure provides sup-

port for resource failures. To do that, several functions
and parameters have been added.

The main new parameters aMunmResPattern_
ResPattern. Ti mePattern_ and
Lengt hPatt ern_, all of them in discrete, con-
tinuous and variate versions. This parameters allow
random number generators based on continuous
distributions (like Uniform distribution), discrete
distributions (like Poisson distribution) and variate
distributions (like HyperExponential distribution).
These parameters are used to choose the number of
resources that will fail in a simulation, which resource
will fail, when and how long the failure will be. The
NunResPat t er n_ is reused to choose the number
of machines failing at each resource. This parameters
allow a flexible configuration of the simulation tool, so
that a wide variety of failure patterns can be studied.

Avai | abi l'i tyl nfo: This class is used to imple-
ment the polling mechanism. The user and GIS send
objects of this class to the resources, which in turn send
it back, as was explained before. When the resource
still has some working machines, it will send this ob-
ject back with no delay, but when all the machines of
the resource are out of order, it does it with some de-
lay and an special code. This is done to simulate a real
situation, in which a time out defines when a resource
is not available if it has not replied to the poll. We do it

Resour ce Name (L ocation) | # Nodes | CPU Rating Policy | VO |

RAL (UK) 41 49,000 Space-Shared 2
Imp. College (UK) 52 62,000 Space-Shared 2
NorduGrid (Norway) 17 20,000 Space-Shared 3
NIKHEF (Netherlands) 18 21,000 Space-Shared 3
Lyon (France) 12 14,000 Space-Shared 0
CERN (Switzerland) 59 70,000 Space-Shared 0
Milano (Italy) 5 70,000 Space-Shared 1
Torino (ltaly) 2 3,000 Time-Shared 1
Rome (ltaly) 5 6,000 Space-Shared 1
Padova (ltaly) 1 1,000 Time-Shared 4
Figure 6. EU DataGRID Testbed 1. Bologna (Italy) 67 80,000 Space-Shared 4
Table 1. Resource specifications.
this way because the simulator does not deal well with
entities waiting for an event that never arrives. Hence, [usrLocation | #Users | Primary VO | Secondary VO
if an entity keeps waiting for an event that never ar- RAL (UK) 12 5 2
rives, it makes simulations run with no end. Imperial College (UK) 16 2 0
e Gridl et Subni ssi on: This class is used to keep NorduGrid (Norway) 3 2
track of each job, so that we know whether a job has | NIKHEF (Netherlands) 3 4
already been submitted or not. Lyon (France) 12 0 1
CERN (Switzerland) 24 0 1
e Fai | ur eMsg: This class implements the way that the Milano (Italy) 1 2
Regi onal G SWt hFai | ur e communicates with Torino (Italy) 1 3
the G i dResour cesW t hFai | ur e to simulate a Rome (ltaly) 1 P
resource failure. Recall that in this implementation, Padova (Italy) 7 3
it is the GIS the entity which tells the resource when, Bologna (Italy) 7 2 o
how and for how long they should fail. So, this class is
used for that communication.
. Table 2. The allocation of VO domains to
e Variate and LCGRandom These classes are users.
for random number generation, and belong to the
JSIM [16] simulation tool.
e Hyper Exponenti al andWei bul | : As the previ- penchmark. Moreover, the number of nodes for each re-

ous classes, these ones belong to the JSIM simulatiorggrce have been scaled down by 10, because of mem-
tool. They generate random number based on hyper-gry |imitation on the computer we ran the experiments on.
exponential and Weibull distributions, respectively. The complete experiments would require more than 2GB of
memory. Finally, each resource node has four CPUs.
5 UseCase Scenario For this experiment, we have five VO domains and each
resource belongs to one of them as shown in Table 1. The
In this section, we provide a scenario of the new resource VO mapping is done by taking into account a geographical
failure functionality. We have created an experiment basedproximity between the resources.
on the EU DataGRID Testbed 1, as shown in Figure 6 [5], For this experiment, we created 100 users and distributed
which has been used to evaluate data replication strategiethem among the VO domains, as shown in Table 2. Each
in [1]. user has 10 jobs and each job takes about 10 minutes if it is
Table 1 summarizes the characteristics of simulated re-run on the CERN resource. Each user belongs to two dif-
sources, which were obtained from a real LCG testbed [12]. ferent VOs and submits jobs to resources from the primary
The parameters regarding to a CPU rating is defined inVO. The secondary VO is chosen at random and it is used
the form of MIPS (Million Instructions Per Second) as only when all of resources from the primary VO have failed.
per SPEC (Standard Performance Evaluation Corporation) To simplify the experiment set-up, some parameters are

| vo | #CPUs | #Failed CPUs | #Jobs | #Failed Jobs | MeanFailureTime | of failed jobs compared to the number of failed machines.

V0.0 71 25 360 219 2.76 h. This is due to a failure of the whole resource that belongs to
VO_1 12 5 100 20 103.36 h. this VO. More precisely, all the machines in Padova failed,
VO_2 93 24 280 % 5.95h. hence all the jobs waiting or being executed in Padova failed
VO3 35 35 120 120 1582 h. also. Similarly, we can see that on an exact period of time,
VO_4 68 5 140 % 95h. all NorduGrid and NIKHEF machines failed MO_3 (also

shown in Figure 7(a)). Hence, usersui.3 have to submit
all of their affected jobs to their secondary VO. At the end,
Table 3. Resource failure statistics. all jobs were successfully executed.

identical for all network elements, such as the maximum 6 Conclusion and Future Work
transfer unit (MTU) of links is 1,500 bytes and the latency
is 10 milliseconds. Grid systems is a hot topic in distributed systems re-
As mentioned previously, the GIS uses a probabilistic search at this moment. In order to carry out this research
distribution on deciding how many resources fail. There- €fficiently, simulations are absolutely essential. Hesze;
fore, we use a hyperexponential distribution for generat- ulation tools should cover the main features of real Grid sys
ing a failure model, because it is suitable for represent- tems, but up to now it is not easy to find a simulation tool
ing availability of resources in different computing erorir covering resource failures and detection mecha_nisms. _
ments [17]. We chose the mean of this distribution to be a !N this paper, we have presented an extension to Grid-
half of the total CPUs of each VO domain. We assume that Sim, which is one of the most widely used simulation tools.
each VO contains only one GIS entity. Failure models are created by means of probabilistic dis-

Once we have explained the experiment setups used irffibutions with fully configurable parameters, so that re-
our simulations, we will show the simulation results. These Searchers will be able to decide the way how these failures

results depict that we have been able to efficiently simulate @ke place. To support the usefulness of our work, we have
the failure of computing resources in Grids. presented simulation results based on a real Grid testbed.
We have modeled the dynamic behavior of the Grid sys- By means of this new functionality, researchers will be
tem, as shown in Figure 7(a). This figure depicts the to- able to create more realistic Grid models. In turn, this
tal availability for each VO domain varied throughout the Will help them exploring their research projects to differ-
simulation time due to resource failure¥0.0 andVO.1 ent fields of Grid computing, such as Grid scheduling, fault

suffered a big drop compared to others due to a fact thattolerance, and resource discovery. _
powerful CPUs suffered a failure. As for future work, we are planning to use the improved

In Figure 7, we can see a time-line of one resource from simulation t.ooI to_ carry put r_esearch aimed_at provi.ding qet
each VO, and another time-line bker .0. These time- work QoS in Grid. This will be done by integrating this
lines display more interesting views on both resources andfunctionality into the network broker outlined in [3]. Also
the user. Figure 7(a) shows the period of a resource failurell Order to make our research more realistic, new exten-
on each VO. For simplicity, we assume that failed machines SI°NS regardlng ne_twork link failures and finite bufferslwil
in the same resource have the same start and finish period?€ added to GridSim.

In addition, each resource has given a failure notice only

once. Acknowledgement
Figure 7(b) shows an event frouser 0 of VO.O. Ini-
tially, the user submits 10 jobs to resources fro/@.0. This work has been jointly supported by the Span-

Around 100 seconds of simulation time, a failure is hap- ish MEC and European Comission FEDER funds un-
pening at CERN and the user detects this problem. Unfor-der grants “Consolider Ingenio-2010 CSD2006-00046" and
tunately, one of the failed machinesis running the usebsjo “TIN2006-15516-C04-02"; by JCCM under grants PBC-
Hence, this job is being migrated to another machine. The05-007-01, PBC-05-005-01 and José Castillejo.
same scenario applies to other four jobs. Inthe end, all jobs This research is also partially funded by the Australian
are completed successfully, where some of them finished aRResearch Council (ARC) and the Department of Education,
time 600 second and the rests at time 1200 seconds. Thé&cience and Training (DEST).
time difference is because the last four jobs were resubmit-
ted to a busy resource, hence they were enqueued. References

Table 3 presents statistics regarding to the number of
failed machines, mean failure time, and how many jobs [1] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar,
have failed because of that. PFdD.4, there is a big amount K. Stockinger, and F. Zini. Simulation of dynamic grid repli

Total Availability (1e+06 MIPS)

(2]

(3]

(4]

(5]
(6]

(7]

(8]

9]

(10]

(11]

(12]

(13]

[
o
o
H
o

Number of Failed Machines
-
@

§
3

S8

RN - st PR ol

100 1000 10000 100) 1000

Simulation Time (seconds)

100000

(a) Total availability of each VO domain

Figure 7. Time-lines showing the progress of resources and

cation strategies in OptorSim. ®BRID '02: Proceedings of
the Third Intl. Workshop on Grid Computingages 46-57,
London, UK, 2002. Springer-Verlag.

R. Buyya and M. Murshed. GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource Manage-
ment and Scheduling for Grid ComputingConcurrency
and Computation: Practice and Experiendg:1175-1220,
Nov-Dec 2002.

A. Caminero, C. Carrion, and B. Caminero. On the improve-
ment of the network QoS in a grid environment. Pno-
ceedings of the 4th Intl. Workshop on Middleware for Grid
Computing - MGC 2006ACM, 2006.

E. Elmroth and P. Gardfjall. Design and evaluation ofea d
centralized system for grid-wide fairshare scheduling.
eSciencepages 221-229. IEEE Computer Society, 2005.
European DataGrid Project. http://eu-
datagrid.web.cern.ch/eu-datagrid.

I. Foster, C. Kesselman, J. Nick, and S. Tuec&eid Com-
puting: Making the Global Infrastructure a Realjtyhapter
The Physiology of the Grid. Wiley InterScience, 2003.

I. T. Foster. The anatomy of the Grid: Enabling scalabite v
tual organizations. I€CGRID, pages 6—7. IEEE Computer
Society, 2001.

N. Hayashibara, A. Cherif, and T. Katayama. Failure dete
tors for large-scale distributed systems. Tlhe 21th IEEE
Symposium on Reliable Distributed Systems, (SRDS '02)
pages 404-409, Washington - Brussels - Tokyo, Oct. 2002.
IEEE.

F. Howell and R. McNab. SimJava: A discrete event simu-
lation library for Java. Innternational Conference on Web-
Based Modeling and Simulatio8ociety for Computer Sim-
ulation Intl. (SCS), 1998.

E. Huedo, R. S. Montero, and |. M. Llorente. A frame-
work for adaptive execution in gridsSoftw. Pract. Exper.
34(7):631-651, 2004.

G. Kola, T. Kosar, and M. Livny. Phoenix: Making data-
intensive grid applications fault-tolerant. In R. Buyyadlj-e
tor, GRID, pages 251-258. IEEE Computer Society, 2004.
LCG Computing Fabric Area. http://lcg-computing-
fabric.web.cern.ch.

A. Legrand, L. Marchal, and H. Casanova. Scheduling dis
tributed applications: The SimGrid simulation framework.
In Proc. of the Third IEEE/ACM International Symposium

In

Simulation Time (seconds)

(b) Period of a resmufailure in each VO

CERN (VO_0) —&— + 10 Max. number of jobs
Milano (VO_1) 1
RAL (VO_2) - 9r X
N id (Ve K
l’égﬁgﬁg EVS*?& 8 r Re-submission of failed job —e&— X
- 8 Succedeed job reception ------- i
E s 7 CEEERERIEEEEIO TR 3 X
T
5 6L o
g st
37 X
2t X
N X
10000 - 100000 0 200 400 600 800 1000 1200 1400
Simulation Time (seconds)
(c) Time-line dfiser _0
User 0.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

on Cluster Computing and the Grid (CCGrid’Q3)okyo,
Japan, May 12-15 2003.

X. Liu. Scalable Online Simulation for Modeling Grid Dy-
namics PhD thesis, Univ. of California at San Diego, 2004.
R. Medeiros, W. Cirne, F. V. Brasileiro, and J. P. Sauvé
Faults in grids: Why are they so bad and what can be done
about it? In H. Stockinger, editagRID, pages 18-24. IEEE
Computer Society, 2003.

J. A. Miller, R. S. Nair, Z. Zhang, and H. Zhao. JSIM: A
JAVA-based simulation and animation environment3Qth
Annual Simulation Symposium (SS '97ages 31-42. IEEE
Computer Society, 1997.

D. Nurmi, J. Brevik, and R. Wolski. Modeling machine
availability in enterprise and wide-area distributed catap
ing environments. IrProceedings of 11th Intl. Euro-Par
Conferencevolume 3648 of.ecture Notes in Computer Sci-
ence pages 432—-441. Springer, 2005.

A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman,
R. Sakellariou, K. Vahi, K. Blackburn, D. Meyers, and
M. Samidi. Scheduling data-intensiveworkflows onto
storage-constrained distributed resourc@8GRID 0:401—
409, 2007.

G. Singh, C. Kesselman, and E. Deelman. A provisioning
model and its comparison with best-effort for performance-
cost optimization in grids.IEEE Intl. Symposium on High
Performance Distributed Computing (HPDQ007.

P. Stelling, C. DeMatteis, I. T. Foster, C. KesselmanAC
Lee, and G. von Laszewski. A fault detection service for
wide area distributed computationsCluster Computing
2(2):117-128, 1999.

A. Sulistio, U. Cibej, R. Buyya, and B. Robic. A tool
for modelling and simulation of data grids with integration
of data storage, replication and analysis. Technical Repor
GRIDS-TR-2005-13, GRIDS Laboratory, The University of
Melbourne, Australia, 2005.

A. Sulistio, G. Poduval, R. Buyya, and C.-K. Tham. On
incorporating differentiated levels of network serviceéoin
GridSim. Future Generation Computer Syster23(4):606—
615, May 2007.

S. Venugopal, R. Buyya, and L. J. Winton. A Grid service
broker for scheduling e-Science applications on globa dat
Grids. Concurrency and Computation: Practice and Expe-
rience 18(6):685-699, May 2006.

