
Extending GridSim with an Architecture for Failure Detection

Agustı́n Caminero1, Anthony Sulistio2, Blanca Caminero1,
Carmen Carrión1, Rajkumar Buyya2

1Department of Computing Systems,
The University of Castilla La Mancha, Spain

{agustin, blanca, carmen}@dsi.uclm.es
2GRIDS Laboratory,

Dept. of Computer Science and Software Engineering,
The University of Melbourne, Australia.
{anthony, raj}@csse.unimelb.edu.au

Abstract

Grid technologies are emerging as the next generation
of distributed computing, allowing the aggregation of re-
sources that are geographically distributed across different
locations. However, these resources are independent and
managed separately by different organizations with differ-
ent policies. This will have a major impact to users who
submit their jobs to the Grid, as they have to deal with
issues such as policy heterogeneity, security and fault tol-
erance. Moreover, the changes of Grid conditions, such
as resources that may become unavailable for a period of
time due to maintenance and/or suffer failures, would sig-
nificantly affect the Quality of Service (QoS) requirements
of users. Therefore, it is essential for users to take into ac-
count the effects of resource failures during jobs execution.

In this paper, we present our work on introducing re-
source failures and failure detection into the GridSim sim-
ulation toolkit. As we need to conduct repeatable and con-
trolled experiments, it is easier to use simulation as a means
of studying complex scenarios. We also give a detailed
description of the overall design and a use case scenario
demonstrating the conditions of resources varied over time.

1 Introduction

Grid systems are the next generation of distributed com-
puting systems. They are highly heterogeneous environ-
ments and made of a series of independent organizations
sharing their resources, creating what is known asVirtual
Organization(VO) [7]. In Grid systems, each organization
or administrative domain keeps its own independence and

autonomy, since it is an essential issue for the creation of a
real Grid. Therefore, each organization can decide its own
policy and whether to join/leave a VO at any time. Such
decisions will certainly affect users in submitting and exe-
cuting their jobs.

Another important issue affecting users is that the num-
ber of resources can fluctuate significantly over time. The
availability of resources may vary due to changes in their
working conditions, such as network congestion, partial
failures or even the connection or disconnection of comput-
ing resources. With many resources in a Grid, the resource
or network failures are the rule rather than the exception.
Hence, they should be taken into account in order to pro-
vide a reliable service [10].

Supporting fault tolerance is one of the main technical
challenges in designing Grid environments. This is because
production Grid systems must be able to tolerate resource
failures, while at the same time effectively exploiting the
resources in a scalable and transparent manner. Therefore,
in order to cope with these challenges, from the fault toler-
ance point of view, the system must have failure detection
and recovery schemes. Such a scenario can be described
in Figure 1. A failure detector monitors the components of
the system (step 1), and notifies to a local Grid Information
Service (GIS) entity when a failure occurs in any of them
(step 2). Then, a recovery scheme is being applied in order
to restart a failed job to another computational resource dy-
namically. An example of such a scheme is the failure mon-
itor notifies users that resourceRes2 is out of order (step
3). Hence, users can resubmit their jobs to other resources .
As demonstrated in this example, both detection and recov-
ery schemes must be an integral part of the Grid computing
infrastructure [15][11]. Therefore, it is important to conduct

Figure 1. An example of resource failure sce-
nario.

thorough study and evaluation of new reliability models, er-
ror detection and recovery techniques before they can be
deployed in production Grid environments.

To test new detection and recovery schemes in a Grid en-
vironment like the above scenario, a lot of work is required
to set up the testbeds on many distributed sites. Even if au-
tomated tools exist to do this work, it would still be very
difficult to produce performance evaluation in arepeatable
andcontrolledmanner, due to the inherent heterogeneity of
the Grid. In addition, Grid testbeds are limited and creating
an adequately-sized testbed is expensive and time consum-
ing. Therefore, it is easier to use simulation as a means of
studying complex scenarios.

To address the above issues, we have incorporated fail-
ure detection and recovery scheme into GridSim [2]. We
opted to work on GridSim because it has a complete set
of features for simulating realistic Grid testbeds. Such fea-
tures are modeling heterogeneous computational resources
of variable performance, scheduling jobs based on time- or
spaced-shared policy, differentiated network service, and
workload trace-based simulation from real supercomput-
ers [21]. More importantly, GridSim allows the flexibility
and extensibility to incorporate new components into its ex-
isting infrastructure.

The main contribution of this work is the implementation
of an extension to GridSim. This extension allows GridSim
to simulate the failure of computing resources, and includes
a failure detection mechanism, essential to provide a com-
plete simulation environment. Most of the parameters of
this extension are configurable, allowing researchers to sim-
ulate a wide variety of failure patterns. To evaluate our de-
sign, we simulate a failure scenario by constructing an EU
DataGRID testbed into the experiment [5].

The rest of this paper is organized as follows: Section 2
briefly mentions existing methods for failure detections and
several Grid simulation tools. Section 3 explains the Grid-
Sim toolkit, which is a simulation tool that has been ex-
tended to provide the failure functionality. Section 4 de-
scribes the failure functionality, including the actual imple-
mentation using GridSim. Section 5 shows a use case sce-
nario, where we demonstrate the usefulness of our work.

Finally, Section 6 concludes the paper and suggests some
guidelines for future work.

2 Related Work

2.1 Existing Resource Failure Detections

In general, computing resource failure refer to hardware,
operating systems, and Grid middleware components, as
well as network connections. On the failure of a resource,
rescheduling and migration of jobs submitted to the failed
resource should be done [10]. According to the work in [8],
there are two methods for detecting resource failures, i.e.
pushandpull.

The pushmethod uses some form of “heartbeat” mes-
sages to renew a soft-state availability registration [6].Each
monitored resource periodically sends a message to a cen-
tral server indicating its availability. Missing a heartbeat
after a certain time interval (timeout)T indicates that this
resource has failed. Although this method is robust when
the central server is running on a highly available system, it
is inextricably convolving network failure and host failure.
That is, a missing heartbeat or set of heartbeats can either
be interpreted as the failure in the monitored resource or the
loss of network connection. A real implementation using
the heartbeat method can be found at [20].

Thepull method works by sending a message or a polling
request to the monitored resources. On the reception of
these messages, the resources will send the message back.
When the sender receives the messages back, it will under-
stand that the resource is alive. However, ifT expires before
the reply message comes back, it will understand that this
resource is not available at this moment. Hence, the sender
will keep an up-to-date list of available resources. Thepull
method has been implemented in the Gridbus Grid Service
Broker [23] and the GridWay [10] metascheduler.

2.2 Simulation Tools

As we mentioned previously, simulations are essential
for carrying out research experiments in Grid systems. A
number of simulation tools for Grids exist, such as Grid-
Sim [2], OptorSim [1], SimGrid [13] and MicroGrid [14].
These tools will be briefly mentioned next, except for Grid-
Sim that will be discussed in Section 3.

OptorSim has been developed as part of the EU Data-
Grid project [5], and it aims to study the effectiveness of
data replication strategies. SimGrid is an event driven sim-
ulator, which provides functionality to simulate infrastruc-
tures and applications based on their features. Finally, Mi-
croGrid provides on-line emulation of large-scale network
and Grid resources. However, MicroGrid is actually an em-

Figure 2. Architecture of GridSim.

ulator, meaning that actual application code is executed on
the virtual Grid modeled after Globus.

To the best of our knowledge the above tools do not pro-
vide mechanisms to simulate computing resources failure.

3 The GridSim Toolkit

The GridSim toolkit [2][22] is one of the most widely
used Grid simulation tools. It has been used for simulat-
ing and evaluating VO-based resource allocation [4], work-
flow scheduling [18], and dynamic resource provisioning
techniques[19] in Global Grids.

It supports modeling and simulation of heterogeneous
Grid resources (both time- and space-shared), users, appli-
cations, brokers and schedulers in a Grid computing envi-
ronment. It provides primitives for creation of application
tasks, mapping of tasks to resources, and their management
so that resource schedulers can be simulated to study the
involved scheduling algorithms. GridSim adopts a multi-
layered design architecture, as shown in Figure 2 [21].

GridSim is based on SimJava [9], a general purpose
discrete-event simulation package implemented in Java.
Therefore, the first layer at the bottom of Figure 2 is man-
aged by SimJava for handling the interaction or events
among GridSim components. All components in GridSim
communicate with each other through message passing op-
erations defined by SimJava. The second layer models
the core elements of the distributed infrastructure, namely
Grid resources such as clusters, storage repositories and
network links. These core components are absolutely es-
sential to create simulations in GridSim. The third and
fourth layers are concerned with modeling and simulation
of services specific to Computational and Data Grids re-
spectively. Some of the services provide functions common
to both types of Grids, such as information about avail-
able resources and managing job submission. In case of
Data Grids, job management also incorporates managing

Figure 3. Interactions among entities.

data transfers between computational and storage resources.
Replica catalogues are information services specifically im-
plemented for Data Grids. The fifth layer contains compo-
nents that aid users in implementing their own schedulers
and resource brokers so that they can test their own algo-
rithms and strategies. The layer above this helps users de-
fine their own scenarios and configurations for validating
their algorithms.

In this paper, we only concentrate on incorporating fail-
ure detections to all layers of the GridSim architecture, ex-
cept for the first layer (SimJava kernel) and the third layer
(Data Grids). Work on introducing resource failures for
Data Grids components will be considered as a future work.
The discussion related to the failure architecture will be pre-
sented next.

4 Designing and Implementing Resource
Failures into GridSim

4.1 Designing Resource Failures

In our model, we use thepull method, and the interac-
tions among entities are depicted in Figure 3. These entities
are briefly described as follows:

Algorithm 1 Resource Failure Detection Algorithm used
by the Users.

repeat
poll the resources which are running my jobs
if a resource does not respondthen

ask the GIS for a list of resources
choose one of them, based on its features and my
job specification
resubmit the jobs originally submitted to the failed
resource

end if
wait for T

user
polling seconds

until all my jobs have been successfully executed

• Computing resources: they are responsible for execut-
ing users’ jobs.

Algorithm 2 Resource Failure Detection Algorithm used
by GIS.

repeat
poll the resources which are available at this moment
if a resource does not respondthen

remove it from the list of available resources
inform other GIS entities about the failure

end if
wait for T

GIS
polling seconds

until simulation is over

Figure 4. A sequence diagram showing a sce-
nario of a failure detection.

• Users: in order to know where to run jobs, users have
to contact a GIS entity (explained next) for a list of
available resources. The functionality of this entity can
be summarized in Algorithm 1.

• GIS: is responsible for maintaining an up-to-date list
of available resources. GIS entities of the same VO
domain can interact each other for exchanging the in-
formation of available resources. This process can be
summarized in Algorithm 2.

For enabling an efficient polling mechanism, User Data-
gram Protocol (UDP) is used by these entities. This is due

to the fact that UDP requires a less significant network la-
tency in comparison with a Transmission Control Protocol
(TCP).

Figure 4 shows a scenario of a user that has a job in ex-
ecution prior to a resource failure. The sequential steps are
shown in a box with a number inside. In the initial stage,Re-
source1 andResource2 register toGIS(step 1). Then,GIS
creates a list of available resources. In order to keep that list
up-to-date,GISpolls the resources periodically (step 2).

WhenUser wants to run a job, he/she contactsGIS in
order to get a list of available resources (step 3). Upon
receiving the user’s request,GIS returns its list. In that
moment,User will chooseResource1 for example, based
on the features of the resource and the job specification.
WhenUserhas chosen the resource, he/she submits the job
to Resource1 and starts a regular polling mechanism.

In the event of a failure affectingResource1, GIS is
able to detect this problem due to the polling mechanism
in place (step 4). Hence,GIS removes the failed resource
from the list. During a routine poll,User discovers that
Resource1 has failed. As a result,UseraskGISfor a list of
resources (step 5). WhenResource1 recovers, it registers
itself again toGIS(step 6). With this approach,GIS is able
to maintain an up-to-date list of available resources.

If the failure only affects some of the machines in a re-
source, what happens next depends on the allocation pol-
icy of this resource. If the resource runs aspace-shared
(first come first serve) allocation policy, the jobs that are
currently running on the failed machines will be terminated
and sent back to users. However, when the resource runs
a time-shared(round-robin) allocation policy, no jobs will
be failed, as their execution will continue in the remain-
ing machines of the resource. For both allocation policies,
the remaining machines are responsible for responding to
polling requests from users and GIS. Moreover, they are re-
quired to inform the GIS about such failure. This way, the
GIS can have accurate information on the current status of
the resource.

4.2 Implementing Resource Failures into
GridSim

We have implemented the computing resource failure
functionality on GridSim 4.0, available to download at
http://www.gridbus.org/gridsim/. In order to
provide GridSim with this new functionality, several new
classes have been developed. The new classes are depicted
in Figure 5 in italic-bold font. We will explain them next:

• GridUserFailure: as its name suggests, this class
implements the behavior of the users of our grid envi-
ronment. Its functionality can be summarized as fol-

Figure 5. Classes created for the failure functionality.

lows: (1) creation of jobs; (2) submission of jobs to re-
sources; (3) poll the resources used to run its jobs; (4)
on the failure of a job, choose another resource and re-
submit the failed job to it; (5) receive succeeded jobs.

• GridResourceWithFailure: based on
GridResource GridSim class, this class interacts
with RegionalGISWithFailure to set machines
as failed/ working. Also it interacts with classes
implementingAllocPolicyWithFailure to set
jobs as failed.

• AllocPolicyWithFailure: it is an interface,
which provides some functions to deal with resource
failures. Each allocation pollicy implementing this in-
terface will have a different behavior with regard to the
failures.

• SpaceSharedWithFailure: this class is based
on SpaceShared GridSim class, one of the
allocation policies already implemented in Grid-
Sim. It extendsAllocPolicy and implements
AllocPolicyWithFailure. It behaves exactly
like First Come First Serve (FCFS). This is a basic and
simple scheduler that runs each job to one Processing
Element (PE). On the event of a failure, if there are
still working machines in this resource, only the jobs
which are being executed in this moment in the failing
machines will be failed, and sent back to the user. If
there arenoworking machines in this resource, then all
the jobs in this resource will be failed and sent back to
the user, but with an special code, so that the user can
make out that this resource is out of order. The most
realistic behavior, in a real grid, would be not send-
ing the jobs back to the user when all the machines of
the resource are out of order. But the simulator does
not deal well with entities (in this case, users) waiting
for an event (in this case, a job) that never arrives. So
we decided to simulate the real behavior by using that
special code.

• TimeSharedWithFailure: this class is
based on TimeShared GridSim class, other
allocation policy already implemented in Grid-
Sim. It extendsAllocPolicy and implements

AllocPolicyWithFailure. It behaves similar
to a round robin algorithm, except that all jobs are
executed at the same time. This is a basic and
simple scheduler that runs each job to one Processing
Element (PE). On the event of a failure, if there are
still working machines in this resource, no job will be
failed, as jobs are not tightly allocated to a machine.
If there areno working machines in this resource,
then its behavior will be the same as explained for the
previous class.

• RegionalGISWithFailure: this class
is based on RegionalGIS GridSim class.
The difference between these classes is that
RegionalGISWithFailure provides sup-
port for resource failures. To do that, several functions
and parameters have been added.

The main new parameters areNumResPattern ,
ResPattern , TimePattern and
LengthPattern , all of them in discrete, con-
tinuous and variate versions. This parameters allow
random number generators based on continuous
distributions (like Uniform distribution), discrete
distributions (like Poisson distribution) and variate
distributions (like HyperExponential distribution).
These parameters are used to choose the number of
resources that will fail in a simulation, which resource
will fail, when and how long the failure will be. The
NumResPattern is reused to choose the number
of machines failing at each resource. This parameters
allow a flexible configuration of the simulation tool, so
that a wide variety of failure patterns can be studied.

• AvailabilityInfo: This class is used to imple-
ment the polling mechanism. The user and GIS send
objects of this class to the resources, which in turn send
it back, as was explained before. When the resource
still has some working machines, it will send this ob-
ject back with no delay, but when all the machines of
the resource are out of order, it does it with some de-
lay and an special code. This is done to simulate a real
situation, in which a time out defines when a resource
is not available if it has not replied to the poll. We do it

Imperial College

RAL

Lyon

 NorduGrid

NIKHEF

CERN

 Milano

 Torino

Rome

Padova
Bologna

45Mb/s

45Mb/s

100Mb/s

100Mb/s

155Mb/s

10Gb/s

10Gb/s

10Gb/s
10Gb/s

10Gb/s

155Mb/s

10Gb/s

155Mb/s

2.5Gb/s

2.5Gb/s 2.5Gb/s

622Mb/s

155Mb/s

2.5Gb/s

2.5Gb/s

1Gb/s

1Gb/s

2.5Gb/s

Figure 6. EU DataGRID Testbed 1.

this way because the simulator does not deal well with
entities waiting for an event that never arrives. Hence,
if an entity keeps waiting for an event that never ar-
rives, it makes simulations run with no end.

• GridletSubmission: This class is used to keep
track of each job, so that we know whether a job has
already been submitted or not.

• FailureMsg: This class implements the way that the
RegionalGISWithFailure communicates with
the GridResourcesWithFailure to simulate a
resource failure. Recall that in this implementation,
it is the GIS the entity which tells the resource when,
how and for how long they should fail. So, this class is
used for that communication.

• Variate and LCGRandom: These classes are
for random number generation, and belong to the
JSIM [16] simulation tool.

• HyperExponential andWeibull: As the previ-
ous classes, these ones belong to the JSIM simulation
tool. They generate random number based on hyper-
exponential and Weibull distributions, respectively.

5 Use Case Scenario

In this section, we provide a scenario of the new resource
failure functionality. We have created an experiment based
on the EU DataGRID Testbed 1, as shown in Figure 6 [5],
which has been used to evaluate data replication strategies
in [1].

Table 1 summarizes the characteristics of simulated re-
sources, which were obtained from a real LCG testbed [12].
The parameters regarding to a CPU rating is defined in
the form of MIPS (Million Instructions Per Second) as
per SPEC (Standard Performance Evaluation Corporation)

Resource Name (Location) # Nodes CPU Rating Policy VO

RAL (UK) 41 49,000 Space-Shared 2

Imp. College (UK) 52 62,000 Space-Shared 2

NorduGrid (Norway) 17 20,000 Space-Shared 3

NIKHEF (Netherlands) 18 21,000 Space-Shared 3

Lyon (France) 12 14,000 Space-Shared 0

CERN (Switzerland) 59 70,000 Space-Shared 0

Milano (Italy) 5 70,000 Space-Shared 1

Torino (Italy) 2 3,000 Time-Shared 1

Rome (Italy) 5 6,000 Space-Shared 1

Padova (Italy) 1 1,000 Time-Shared 4

Bologna (Italy) 67 80,000 Space-Shared 4

Table 1. Resource specifications.

User Location # Users Primary VO Secondary VO

RAL (UK) 12 2 4

Imperial College (UK) 16 2 0

NorduGrid (Norway) 4 3 2

NIKHEF (Netherlands) 8 3 4

Lyon (France) 12 0 1

CERN (Switzerland) 24 0 1

Milano (Italy) 4 1 2

Torino (Italy) 2 1 3

Rome (Italy) 4 1 4

Padova (Italy) 2 4 3

Bologna (Italy) 12 4 0

Table 2. The allocation of VO domains to
users.

benchmark. Moreover, the number of nodes for each re-
source have been scaled down by 10, because of mem-
ory limitation on the computer we ran the experiments on.
The complete experiments would require more than 2GB of
memory. Finally, each resource node has four CPUs.

For this experiment, we have five VO domains and each
resource belongs to one of them as shown in Table 1. The
VO mapping is done by taking into account a geographical
proximity between the resources.

For this experiment, we created 100 users and distributed
them among the VO domains, as shown in Table 2. Each
user has 10 jobs and each job takes about 10 minutes if it is
run on the CERN resource. Each user belongs to two dif-
ferent VOs and submits jobs to resources from the primary
VO. The secondary VO is chosen at random and it is used
only when all of resources from the primary VO have failed.

To simplify the experiment set-up, some parameters are

VO # CPUs # Failed CPUs # Jobs # Failed Jobs Mean Failure Time

VO 0 71 25 360 219 2.76 h.

VO 1 12 5 100 20 103.36 h.

VO 2 93 24 280 96 5.25 h.

VO 3 35 35 120 120 15.82 h.

VO 4 68 6 140 96 9.5 h.

Table 3. Resource failure statistics.

identical for all network elements, such as the maximum
transfer unit (MTU) of links is 1,500 bytes and the latency
is 10 milliseconds.

As mentioned previously, the GIS uses a probabilistic
distribution on deciding how many resources fail. There-
fore, we use a hyperexponential distribution for generat-
ing a failure model, because it is suitable for represent-
ing availability of resources in different computing environ-
ments [17]. We chose the mean of this distribution to be a
half of the total CPUs of each VO domain. We assume that
each VO contains only one GIS entity.

Once we have explained the experiment setups used in
our simulations, we will show the simulation results. These
results depict that we have been able to efficiently simulate
the failure of computing resources in Grids.

We have modeled the dynamic behavior of the Grid sys-
tem, as shown in Figure 7(a). This figure depicts the to-
tal availability for each VO domain varied throughout the
simulation time due to resource failures.VO 0 andVO 1
suffered a big drop compared to others due to a fact that
powerful CPUs suffered a failure.

In Figure 7, we can see a time-line of one resource from
each VO, and another time-line ofUser 0. These time-
lines display more interesting views on both resources and
the user. Figure 7(a) shows the period of a resource failure
on each VO. For simplicity, we assume that failed machines
in the same resource have the same start and finish period.
In addition, each resource has given a failure notice only
once.

Figure 7(b) shows an event fromUser 0 of VO 0. Ini-
tially, the user submits 10 jobs to resources fromVO 0.
Around 100 seconds of simulation time, a failure is hap-
pening at CERN and the user detects this problem. Unfor-
tunately, one of the failed machines is running the user’s job.
Hence, this job is being migrated to another machine. The
same scenario applies to other four jobs. In the end, all jobs
are completed successfully, where some of them finished at
time 600 second and the rests at time 1200 seconds. The
time difference is because the last four jobs were resubmit-
ted to a busy resource, hence they were enqueued.

Table 3 presents statistics regarding to the number of
failed machines, mean failure time, and how many jobs
have failed because of that. ForVO 4, there is a big amount

of failed jobs compared to the number of failed machines.
This is due to a failure of the whole resource that belongs to
this VO. More precisely, all the machines in Padova failed,
hence all the jobs waiting or being executed in Padova failed
also. Similarly, we can see that on an exact period of time,
all NorduGrid and NIKHEF machines failed inVO 3 (also
shown in Figure 7(a)). Hence, users ofVO 3 have to submit
all of their affected jobs to their secondary VO. At the end,
all jobs were successfully executed.

6 Conclusion and Future Work

Grid systems is a hot topic in distributed systems re-
search at this moment. In order to carry out this research
efficiently, simulations are absolutely essential. Hence,sim-
ulation tools should cover the main features of real Grid sys-
tems, but up to now it is not easy to find a simulation tool
covering resource failures and detection mechanisms.

In this paper, we have presented an extension to Grid-
Sim, which is one of the most widely used simulation tools.
Failure models are created by means of probabilistic dis-
tributions with fully configurable parameters, so that re-
searchers will be able to decide the way how these failures
take place. To support the usefulness of our work, we have
presented simulation results based on a real Grid testbed.

By means of this new functionality, researchers will be
able to create more realistic Grid models. In turn, this
will help them exploring their research projects to differ-
ent fields of Grid computing, such as Grid scheduling, fault
tolerance, and resource discovery.

As for future work, we are planning to use the improved
simulation tool to carry out research aimed at providing net-
work QoS in Grid. This will be done by integrating this
functionality into the network broker outlined in [3]. Also,
in order to make our research more realistic, new exten-
sions regarding network link failures and finite buffers will
be added to GridSim.

Acknowledgement

This work has been jointly supported by the Span-
ish MEC and European Comission FEDER funds un-
der grants “Consolider Ingenio-2010 CSD2006-00046” and
“TIN2006-15516-C04-02”; by JCCM under grants PBC-
05-007-01, PBC-05-005-01 and José Castillejo.

This research is also partially funded by the Australian
Research Council (ARC) and the Department of Education,
Science and Training (DEST).

References

[1] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar,
K. Stockinger, and F. Zini. Simulation of dynamic grid repli-

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 1 10 100 1000 10000 100000

T
ot

al
 A

va
ila

bi
lit

y
(1

e+
06

 M
IP

S
)

Simulation Time (seconds)

VO_0
VO_1
VO_2
VO_3
VO_4

 1
 3
 5
 7
 9

 11
 13
 15
 17
 19
 21
 23
 25

 100 1000 10000 100000

N
um

be
r

of
 F

ai
le

d
M

ac
hi

ne
s

Simulation Time (seconds)

CERN (VO_0)
Milano (VO_1)

RAL (VO_2)
NorduGrid (VO_3)

Bologna (VO_4)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400

N
um

be
r

of
 J

ob
s

Simulation Time (seconds)

Max. number of jobs

Re−submission of failed job
Succedeed job reception

(a) Total availability of each VO domain (b) Period of a resource failure in each VO (c) Time-line ofUser 0

Figure 7. Time-lines showing the progress of resources and User 0.

cation strategies in OptorSim. InGRID ’02: Proceedings of
the Third Intl. Workshop on Grid Computing, pages 46–57,
London, UK, 2002. Springer-Verlag.

[2] R. Buyya and M. Murshed. GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource Manage-
ment and Scheduling for Grid Computing.Concurrency
and Computation: Practice and Experience, 14:1175–1220,
Nov-Dec 2002.

[3] A. Caminero, C. Carrion, and B. Caminero. On the improve-
ment of the network QoS in a grid environment. InPro-
ceedings of the 4th Intl. Workshop on Middleware for Grid
Computing - MGC 2006. ACM, 2006.

[4] E. Elmroth and P. Gardfjäll. Design and evaluation of a de-
centralized system for grid-wide fairshare scheduling. In
eScience, pages 221–229. IEEE Computer Society, 2005.

[5] European DataGrid Project. http://eu-
datagrid.web.cern.ch/eu-datagrid.

[6] I. Foster, C. Kesselman, J. Nick, and S. Tuecke.Grid Com-
puting: Making the Global Infrastructure a Reality, chapter
The Physiology of the Grid. Wiley InterScience, 2003.

[7] I. T. Foster. The anatomy of the Grid: Enabling scalable vir-
tual organizations. InCCGRID, pages 6–7. IEEE Computer
Society, 2001.

[8] N. Hayashibara, A. Cherif, and T. Katayama. Failure detec-
tors for large-scale distributed systems. InThe 21th IEEE
Symposium on Reliable Distributed Systems, (SRDS ’02),
pages 404–409, Washington - Brussels - Tokyo, Oct. 2002.
IEEE.

[9] F. Howell and R. McNab. SimJava: A discrete event simu-
lation library for Java. InInternational Conference on Web-
Based Modeling and Simulation.Society for Computer Sim-
ulation Intl. (SCS), 1998.

[10] E. Huedo, R. S. Montero, and I. M. Llorente. A frame-
work for adaptive execution in grids.Softw. Pract. Exper.,
34(7):631–651, 2004.

[11] G. Kola, T. Kosar, and M. Livny. Phoenix: Making data-
intensive grid applications fault-tolerant. In R. Buyya, edi-
tor, GRID, pages 251–258. IEEE Computer Society, 2004.

[12] LCG Computing Fabric Area. http://lcg-computing-
fabric.web.cern.ch.

[13] A. Legrand, L. Marchal, and H. Casanova. Scheduling dis-
tributed applications: The SimGrid simulation framework.
In Proc. of the Third IEEE/ACM International Symposium

on Cluster Computing and the Grid (CCGrid’03), Tokyo,
Japan, May 12–15 2003.

[14] X. Liu. Scalable Online Simulation for Modeling Grid Dy-
namics. PhD thesis, Univ. of California at San Diego, 2004.

[15] R. Medeiros, W. Cirne, F. V. Brasileiro, and J. P. Sauvé.
Faults in grids: Why are they so bad and what can be done
about it? In H. Stockinger, editor,GRID, pages 18–24. IEEE
Computer Society, 2003.

[16] J. A. Miller, R. S. Nair, Z. Zhang, and H. Zhao. JSIM: A
JAVA-based simulation and animation environment. In30th
Annual Simulation Symposium (SS ’97), pages 31–42. IEEE
Computer Society, 1997.

[17] D. Nurmi, J. Brevik, and R. Wolski. Modeling machine
availability in enterprise and wide-area distributed comput-
ing environments. InProceedings of 11th Intl. Euro-Par
Conference, volume 3648 ofLecture Notes in Computer Sci-
ence, pages 432–441. Springer, 2005.

[18] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman,
R. Sakellariou, K. Vahi, K. Blackburn, D. Meyers, and
M. Samidi. Scheduling data-intensiveworkflows onto
storage-constrained distributed resources.CCGRID, 0:401–
409, 2007.

[19] G. Singh, C. Kesselman, and E. Deelman. A provisioning
model and its comparison with best-effort for performance-
cost optimization in grids.IEEE Intl. Symposium on High
Performance Distributed Computing (HPDC), 2007.

[20] P. Stelling, C. DeMatteis, I. T. Foster, C. Kesselman, C. A.
Lee, and G. von Laszewski. A fault detection service for
wide area distributed computations.Cluster Computing,
2(2):117–128, 1999.

[21] A. Sulistio, U. Cibej, R. Buyya, and B. Robic. A tool
for modelling and simulation of data grids with integration
of data storage, replication and analysis. Technical Report
GRIDS-TR-2005-13, GRIDS Laboratory, The University of
Melbourne, Australia, 2005.

[22] A. Sulistio, G. Poduval, R. Buyya, and C.-K. Tham. On
incorporating differentiated levels of network service into
GridSim.Future Generation Computer Systems, 23(4):606–
615, May 2007.

[23] S. Venugopal, R. Buyya, and L. J. Winton. A Grid service
broker for scheduling e-Science applications on global data
Grids. Concurrency and Computation: Practice and Expe-
rience, 18(6):685–699, May 2006.

