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Abstract 

 
This paper presents the design, implementation and evaluation of a dataflow system, 

including a macro-dataflow programming model, runtime system and an online scheduling 

algorithm, to simplify the development and deployment of distributed applications. The model 

provides users a simple interface for programming applications with complex parallel patterns. 

The associated runtime system dispatches tasks onto distributed resources through an online 

algorithm, called L-HEFT (Localized Heterogeneous Earliest-Finish-Time) proposed in this paper, 

and manages failures and load balancing in a transparent manner. The system has been 

implemented over a .NET-based enterprise Grid software platform, called Aneka. This paper 

evaluates the scalability and fault tolerance properties of the system. The results demonstrate 

that our L-HEFT scheduling algorithm is efficient compared to existing techniques as it 

introduces low overhead while making mapping decisions.

1. Introduction 

Recent years, parallel and distributed computing techniques have been applied to execute 

e-Science [30] and e-Business [25] applications over P2P [8] and Grid computing [13] platforms. 

The complex nature of these distributed applications has lead to research into simplifying 

development and deployment over large scale distributed environments. Large scale distributed 

system within an organization, also called Enterprise Grids or Desktop Grids, have been 

pioneered by systems, such as Condor [19], XtremWeb [10], and SETI@Home [8] etc. However, 

the focus of these systems has been on executing embarrassingly parallel applications. With the 

increasing deployment of such systems, there is a need for simplifying and enabling the 

execution of complex parallel applications on enterprise Grids. In this context, the well-known 

dataflow programming model [31] shows a significant promise. We have proposed a 

macro-dataflow programming model [4] that (a) exploits the coarse-grained dataflow 

relationship in (enterprise Grid) computing processes and converts the dataflow graph into a 

DAG (Directed Acyclic Graph) for executing and (b) supports namespace for data generated 

during the dataflow execution. 

To efficiently execute the macro-dataflow computation in distributed environments, we need 

an efficient mapping algorithm that assigns tasks in the DAG graph of dataflow to distributed 
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resources. Furthermore, it should be robust enough to handle the heterogeneity and frequent 

failures common in the target execution environment (shared enterprise Grids) containing 

autonomous resources/contributors. Meeting these requirements is a challenge [34] and has been 

extensively studied as DAG-based scheduling models/techniques, which are either static or 

dynamic in nature. Popular static scheduling algorithms, such as heuristic-based HEFT 

(Heterogeneous Earliest-Finish-Time) [11] and genetic search [1], map DAG tasks to distributed 

resources prior to the execution. Such static methods do not work effectively for dynamic 

distributed environments where the availability of resources and their capability varies 

dynamically at runtime. 

On the other hand, dynamic scheduling methods can make the mapping decision for ready 

tasks during the execution. One simple solution applied in Condor-G [17], called just-in-time 

scheduling, normally puts little weight on the overall optimized mapping and therefore it is not 

good at efficiently utilizing global resources. Another method is to start with a static scheduling 

plan, and then iterative rescheduling is performed for adaptation to resource changes [33]. 

However, they need to have the detailed knowledge of the whole graph and their scheduling cost 

could be high for large scale graphs with thousands of tasks [24]. Furthermore, most 

heterogeneous scheduling algorithms give little weights on efficient failure handling. 

We propose a macro-dataflow system with a Localized Heterogeneous Earliest-Finish-Time 

(L-HEFT) scheduling algorithm especially for heterogeneous environment with frequent failures. 

In contrast with previous methods, our adaptive scheduling algorithm focuses on optimizing the 

scheduling efficiency based on the available partial part of the graph which is gradually 

generated during the execution and works in an online manner. Compared with iterative static 

mapping-based rescheduling methods, our algorithm introduces low overhead in managing 

schedules and execution in distributed environment with dynamic resources. Furthermore, it 

delivers nearly the same performance result as the static mapping-based rescheduling methods 

and even outperforms rescheduling methods for dataflow applications of a large size of 

symmetric graph with balanced tasks distribution. In addition, our macro-dataflow system 

naturally supports replication-based fault tolerance mechanism for intermediate data generated 

during dataflow execution, which simplifies the failure handling of our adaptive scheduling 

algorithm. 

The main contributions of this work are: (1) an architecture and runtime machinery of a 

dataflow system with a simple and powerful macro-dataflow programming model, which 

supports the composition of parallel applications for transparent deployment in a heterogeneous 

distributed environment; (2) a L-HEFT heuristic online scheduling algorithm; (3) evaluating the 

scalability of our system and the performance of the scheduling policy with real applications in 

an enterprise Grid environment. As our experiments illustrate, our system is effective in 

addressing parallelism of data dependency in real applications and our scheduling policy can 

achieve same performance target as existing dynamic policy with scheduling cost that is 30% to 

50% of existing static mapping-based rescheduling policy. 

The remainder of this paper is organized as follows. Section 2 provides a discussion on the 

related work. Section 3 presents the architecture and design with an implementation of the 

macro-dataflow system. Section 4 presents L-HEFT scheduling algorithm for heterogeneous and 

un-reliable distributed environment. Section 5 discusses the experimental evaluation of the 

system. Section 6 concludes the paper with pointers to future work. 
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2. Related work 

The dataflow concept was first presented by Dennis et al. [16] [31] and has led to a lot of 

research, such as the dynamic dataflow model [3] and the synchronous dataflow model [9]. 

Currently, the dataflow concept still attracts a great interest because it is a natural way to express 

parallel applications and plays an important role in applications such as digital signal processing 

for coarse-grained parallel applications [22]. 

Grid computing platforms such as Condor [17][6], Entropia [2], Pegasus [7], ASKALON [29], 

provide mechanisms for workflow scheduling. Condor works at the granularity of a single job. 

Existing tools, such as DAGMan, can schedule jobs with data dependencies and address the 

parallelism between tasks. Condor does not focus on the programming difficulties associated 

with the data communication between tasks, but emphasizes on the high level problem of 

matching the available computing power with the requirements of jobs. For example, within each 

job, users mainly depend on message passing interface for programming, such as MPI. Therefore 

users must take extra care with data sharing conflicts, deadlock avoidance, and fault tolerance. 

Pegasus [7] works on a higher level than DAGMan, and deploys heuristic scheduling policy for 

scheduling the DAG graph of jobs rather than the just-in-time scheduling policy in DAGMan. 

Grid Superscalar [26] aims to simplify the development of Grid applications with a different 

method, wherein users can write sequential program within small tasks and parallelism between 

tasks is discovered through analyzing the dependency of input and output files for tasks. 

However scheduling and fault tolerance are not the focus of Superscalar. Kepler [27] is a 

scientific workflow system that allows composition of both data and control flows. It also 

provides a graph interface for programming. Compared with Kepler, our macro-dataflow model 

(with a language interface) is more suitable for programming applications with a large number of 

repetitive tasks. Furthermore, we adopt a different fault tolerance mechanism, and the scheduling 

algorithm in heterogeneous distributed environment is not emphasized by Kepler. 

To effectively schedule tasks of DAG graph to Grid environments with dynamic features, 

many dynamic scheduling strategies have been proposed to map tasks to resources during 

execution. One simple choice is called just-in-time scheduling, for example, Condor-G [17] and 

Virtual Grid [24] deploy a greedy matching algorithm to decide the mapping of each task during 

the execution. This category of policies is difficult to achieve overall optimized mapping and 

efficiently utilizes global resources. 

To improve the efficiency, the adaptive rescheduling method starts with a static scheduling 

plan, and then depends on iterative rescheduling for adaptation to resource changes [33]. 

Although these policies can potentially achieve optimized overall efficiency, they need to know 

the detail knowledge of whole graph and their scheduling cost could be high for large scale 

graphs with thousands of tasks [24]. The plan switching method [12] can construct a family of 

activity graphs beforehand and investigate the means of switching from one member to anther 

when the execution of one activity fails. However, all of the plans are limited within the most 

updated information of resources, which does not take the future changes into consideration.  

We propose a localized heuristic policy, which does not requires the knowledge of global 

graph, and therefore, has no extra cost of rescheduling. At the same time, we can achieve nearly 

the same performance target and even outperform the rescheduling methods for large scale 

dataflow applications with a balanced symmetric DAG graph. 
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3. Architecture and Design 

This section describes the dataflow system which supports the execution of our macro-dataflow 

graph. Please refer to the Appendix on our macro-dataflow APIs for composing a 

macro-dataflow graph. The target environment of our dataflow system is a shared enterprise Grid 

consisting of commodity PCs, where PCs can drop out of the system as soon as being dominated, 

turned off or restarted by interactive users. Such nodes can rejoin the system when they are idle 

again. The design goal aims to make our system adapt to the resource heterogeneity, including 

transient or static, easily incorporate new resources and handle failures. For adaptation to 

heterogeneity, we deploy online heuristic scheduling algorithm with assistance of a performance 

prediction algorithm [Section 4.2] based on historical data. To handle failures, we organize the 

large scale of free disks over PCs as a virtual storage pool and hold intermediate data generated 

during dataflow execution as the resuming point in handling failures. This section first presents 

the architecture of our dataflow system, and next section describes our scheduling algorithms in 

detail. 

3.1  System Overview 

Components of dataflow system 

include coordinator and contributor, 

as illustrated in Figure 1. The 

coordinator is responsible for 

accepting jobs from users, organizing 

contributors to work cooperatively. For 

example, it monitors availability of 

resources, send executing requests to 

contributors, and handle failures of 

contributors, etc. Each contributor 

joins the dataflow system through 

contributing CPU, memory and disk 

resources, and then passively waits for 

requests from coordinator. Both 

coordinator and contributor are implemented as a pluggable service component in Aneka [32], 

which is a .NET-based enterprise Grid software platform and can support the creation of 

enterprise Grid environment. We also utilize existing Grid services in Aneka to simply our 

implementation, such as Resource Monitor Service. 

3.2 Structure of Coordinator 

Coordinator consists of a set of key sub-components, including job monitor, and scheduler, 

database of performance history, performance predicator, and index of intermediate data. A 

scheduler is instantiated for each job and adopts an online scheduling policy to map ready tasks 

to suitable contributors for executing. The historical information of execution is recorded in the 

database of performance history component, which can be used by a predicator component to 

predict the performance of tasks. The job monitor maintains the dataflow graph for each job, 

keeps track of the intermediate data generated during the execution, and explores ready tasks for 

scheduling. The index component maintains the location for available intermediate data. 

Figure 1 Architecture of Dataflow System 
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Normally each intermediate data stays in memory on the contributor where it is generated. In 

order to improve the reliability of execution, however, the index can choose when and where to 

make the intermediate data persistent on disk or replicated to other contributors. 

3.3 Structure of Contributor 

Each contributor contributes local resources for dataflow computing with a task queue to buffer 

commands of coordinator. Due to the large disk drive in current popular desktops, contributors in 

a dataflow system actually have a significant amount of free disk space. The free disk space 

available at the contributors is organized by the coordinator as a virtual storage pool, which can 

hold the intermediate data generated during dataflow execution to improve the availability of 

computation and handle transient or permanent departure of contributors as well. Furthermore, 

there are the following important sub-components on each contributor: executor, data pool and 

storage. 

• Executor: fetch executing commands from the task queue, execute the tasks and put the output 

data into local data pool. Executor requests input data for tasks from data pool. 

• Data pool: maintains the intermediate data generated by dataflow in memory, and meet the 

request of input data from the executor. If the request is missed locally, the data pool will 

notify the storage component to fetch the requested data from other contributors according to 

the location in command. When the data pool finds that allocated memory is nearly full, it can 

swap data in memory to disks through the storage component. Another matter is, in order to 

efficiently handle failures, the data pool may also swap those data not needed by the 

remainder dataflow execution to the storage component for persistent maintenance until the 

whole job is finished, rather than simply removing them. 

• Storage component: works as a backup cache for data pool, and at the same time is 

responsible for managing persistent intermediate data, which may be generated for reliability 

purposes. The local storage component can communicate with the storage component on 

remote contributors to transfer data, which is transparent from the point view of the executor. 

Actually storage components across contributors constitute a virtual storage that is especially 

designed for holding persistent intermediate data for dataflow with a flat name space. To 

handle failures, upon request from coordinator, the storage component can replicate requested 

intermediate data on the remote side to improve reliability and availability. 

3.4 Replication Support 

With the cooperation between the index component on coordinator and the storage component 

on contributors, our dataflow system can replicate intermediate data generated during the 

dataflow execution to multiple contributors. The replication works in a lazy manner, which just 

replicates the copy of intermediate data if there are contributors found not to be busy. Rather 

than replicating intermediate data for tasks in every level [4.3], we replicate data associated with 

tasks in every n levels. The replication step size, n, can be specified by users during job 

submission. In order to achieve execution in the face of failures, some of the intermediate data 

may have to be re-generated. This requires identifying the finished tasks to be re-executed to 

regain the lost data. Therefore, we need to explore tasks which should be re-executed to generate 

the intermediate data necessary to resume the execution. This exploration stops until we find 

replicated copies of lost intermediate data or we reach the initial tasks. 
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4. Scheduling Policy 

This section describes in detail our dynamic scheduling algorithms on mapping ready tasks of the 

dataflow graph to heterogeneous resources in a shared enterprise Grid environment. 

Our macro-dataflow programming model aims at scientific applications, which consist of 

many repetitive tasks. To support adaptation, repetitive tasks are partitioned into fine granularity, 

and as a result, the number of tasks is much larger than the number of resources. Taking the large 

number of tasks into consideration, our dynamic policy aims to efficiently map dataflow tasks 

onto heterogeneous resources with frequent changes. Our policy optimizes the scheduling 

efficiency based on available partial part of the graph which contains ready tasks gradually 

generated during the execution. Our policy works in two phases. In the first phase, it partitions 

the tasks in the graph into clusters and to make tasks within same cluster as independent. This 

partition phase can be deployed prior to the execution time or during execution. In the second 

phase, our policy achieves a local optimization on scheduling of ready tasks with priority on 

reducing data migration using our L-HEFT heuristic algorithm.  

Compared with just-in-time dynamic policies, our method aims to decrease the unnecessary 

data movement between resources through online analysis, which is especially important for 

data-intensive application [15]; and at the same time, it does not require the phase of complex 

rank assignment, which is the prerequisite for global optimization policies, and is always based 

on inaccurate estimation of data transfer and computing cost. To cope with the repetition 

property of tasks in application, we adopt a performance prediction algorithm to improve the 

efficiency of L-HEFT scheduling, which is based on the historical performance information. 

4.1 Scheduling Model 

With our macro-dataflow programming model, the dataflow graph is converted into a directed 

acyclic graph (DAG). Given a DAG, G=(V, E), the set of vertices V = {v1, v2, .., vn} represents 

the set of tasks to be executed, and the set of directed edges E represents communication 
between tasks, where eij = (vi, vj) ∈E indicates communication from task vi to vj. We call each 

communication data as a stream and user can specify a unique name for each stream. Initial 

streams, which are not generated by any tasks, are actually mapped to external files, e.g. the 

input for dataflow execution. Result streams, which have no receiver tasks, are the results of 

dataflow execution. With the name of each stream, user can edit execution tasks and configure 

its input and output streams. We also call each execution task as a token. For each token, if all of 

its input streams are available it is ready to execute. 

4.2 Performance predication 

In dataflow execution, different tasks may share the same execution instructions. To predict 

execution time of token.Execute on contributor r, we use Equation 1. Ei(r) is the time of i-th 

execution of vi.Exec on contributor r and In is the size of corresponding input stream. α  is a 

value selected between 0 and 1. A larger value of α  gives more weights to recent executions 

and Equation 1 also considers the weight of input size as illustrated. 
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If vi.Exec has not executed on contributor r, to predict the execution time of task vi on 

contributor r, we use the average of prediction on all other contributors who have executed 



 7 

 

Level 2 

Stream 

Level 0 

Level 1 
Token 

Figure 2 Dataflow graph of FFT with 4 points 

vi.Exec, as Equation 2, where S(vi.Exec) is the set of contributors who have executed vi.Exec and 

E(ri) is the execution time of vi.Exec per byte. 
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If it is the first time to execute vi.Exec in all of the available contributors, we use the 

prediction value provided by user. 

4.3 Level-based Clustering 

The algorithm used in the first phase is a 

technique for ordering the nodes based upon 

their precedence constraints, called level sorting, 

which have been adopted by many priori works 

[21][29]. We can define the level sorting in a 

recursive way. Given a directed acyclic graph 

G=(V, E), level 0 contains all vertices vj such 

that there is no vertex vi with eij∈E(i.e. vj does 

not has any incident edges). Level k consists of 

all vertices vj such that, for all eij∈E, every vertex vi is in a level less than k and at least one 

vertex is in level k-1. 

The result of clustering is to partition G into L blocks numbered consecutively from 0 to L-1, 

and execution tokens within each block are independent, i.e. there is no data precedence 

constraint between them. All tasks that send data to a task in block k must be in any blocks 0 to 

k-1; for each task vj in block k, there exists at least one stream from task vi in block k-1. Block 0 

contains all initial tasks whose input streams are initial streams. Figure 2 shows the result of 

clustering for a FFT dataflow graph. 

This partition phase can be done during the execution of the dataflow graph. 

4.4 A Localized HEFT algorithm 

Our aim is to minimize the execution time of tasks within each block, and as a consequence, the 

overall execution of whole dataflow graph could be potentially optimized. We propose a 

scheduling algorithm which is called as L-HEFT (Localized Heterogeneous Earliest Finished 

Time) algorithm. The HEFT (Heterogeneous Earliest Finished Time) algorithm [11] is a static 

scheduling algorithm which can potentially achieve an overall optimized mapping with a relative 

low cost. HEFT first assign a rank to each task through recursively traversing its successor tasks 

and computing the weight based on predicted performance and network traffic until result task is 

reached. After that, HEFT dispatches each task to resources which can finish it fastest according 

to the rank order. Therefore it needs global knowledge of whole graph and execution 

environment. On the contrary, L-HEFT algorithm does not require the global knowledge of 

whole graph for the complex ranking phase as HEFT and aims to optimize the mapping of local 

ready tasks in currently available tasks of partial graph. 

Since we cannot optimize the scheduling in the 

manner of global mapping, this may lead to some 

unnecessary data traffic and may not give more weights 

to tasks on the critical path. So our policy puts more 

priority on data location as compensation and use the Figure 3 Rank ID 
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increasing order of level number to ensure the priority from dependency constraints. Our 

algorithm is focusing to decrease the data migration between resource nodes as much as possible 

while distributing work load across resources according to their ability. Given task t, we do not 

schedule it immediately when it is just ready. On the contrary, we put it in a schedule queue. 

When the queue buffers enough tasks or there are contributors found soon to be idle, the 

L-HEFT will be invoked. 
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We first assign the priority of each ready task according to its level number. A task in a lower 

level has higher priority than a task in a higher level. Within the same level, however, we give 

high priority to the task which can be mapped to a contributor where its execution does not need 

data traffic over network. For those tasks, whose execution definitely needs data communication 

whatever node it will be assigned to, we deploy an EFT (Earliest Finished Time) heuristic 

algorithm to assign its execution owner. As a result, each contributor in the resource pool has a 

schedule queue, which holds the assigned tasks waiting for execution. 

Each task is assigned with a rank ID, 

which consists of prefix and postfix 

parts as illustrated in Figure 3. The 

prefix part is the level number. The 

postfix part actually means the 

possible minimal traffic size if the 

corresponding task is executed. 

Equation 3 illustrates the ranking 

function used by L-HEFT. Given a 

task vj and its predecessor task vi, its 

input stream is noted as eij. OS(vj) is 

the set of contributors which holds eij. 

Figure 4 shows the algorithm of 

L-HEFT heuristic. We assign a rank 

for each ready task using equation (3), 

and then we sort the ready tasks by 

increasing order. For tasks which have 

same rank priority, we sort them 

through predicated execution time by 

non-increasing order. This phase of 

assigning rank and sorting tasks is 

totally different from HEFT algorithm, 

and we do not require the phase of 

recursively traversing to calculate 

successor’s network traffic and their 

estimated average computation costs. 

In the mapping phase, we first assign 

tasks which may not need network 

traffic for execution to the contributor which holds all of requested input streams, and then assign 

I
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produce Level-HEFT-Schedule(T, R, F, C) 

/* T ←  The list of ready tasks to schedule 

R ←  The list of currently available contributors 

F ←  The set of priority task appending Queue of 
currently available contributors 

C ←  Current time point 

*/ 

foreach ti in T 

Compute ti.rank with the algorithm of Equation (3) 

  endfor 

  Sort each ready task, ti, in T by increasing order of ti.rank  

  while there are unscheduled tasks in T do 

    Choose the first task t0 in T 

    if(t0.rank.postfix is zero) 

      foreach rj in R  

        Compute its traffic size sj, if t0 is assigned to rj 

      Endfor 

    Append t0 to fm , where sm=max{sj} (fm∈F) 

else 

      foreach rj in R 

        eft[rj] =EFT (t0, rj, C, fj, R) 

      endfor 

      Append t0 to fm , where eft[rm]= min{eft[rj]} 

    endif 

  endwhile 

return F 

Figure 5 Level-based HEFT Algorithm 
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other tasks to the contributor who can finish them earliest, based on calculate EFT(Earliest 

Finish Time). 

During the execution, to compute EFT for task t on contributor r, we need to know the 

execution time of waiting tasks on r, which are waiting for execution. As indicated in Section 3, 

each contributor has a priority tasks queue which contains all assigned tasks. On the side of 

coordinator, there is also a queue, fr, for each contributor recording sent tasks and their estimated 

execution time. When a task is finished on contributor r, fr will be updated correspondingly to 

correct the estimated execution time of tasks on r. The time point of correction is recorded as 

p(fr). We use fr to compute the EST (Earliest Start Time) for t on contributor r, so that EST(t, r) 

=left_time(fr)-(C- p(fr)), where C is the current time. Therefore, EFT(t, r) = EST(t, r) + Predict(t, 

r), where Predict(t, r) is our algorithm to predict the execution time of task t on contributor r, 

which is based on the history execution information as indicated in Section 4.2. 

To trigger the starting of our scheduling model, we deploy a greedy policy on initial tasks in 

block 0. During the scheduling, to prevent an the worst case where some nodes hold a schedule 

queue with an estimated time much longer than other queue, there is a thread running  in the 

background which frequently checks the length of scheduling queue of each contributor. It will 

re-assign some tasks from the tail of the longest scheduling queue to other contributors having 

light load. 

4.5 Handling New Resources and Failed Resources 

When new resources are found in the system, the list of available resources will be updated to 

include them after they are ready to join the dataflow execution. Then L-HEFT scheduling 

algorithm will be invoked to map ready tasks in the queue to resources, including the new 

resources. 

When there are contributors found to depart the system, it is possible that a number of 

intermediate data is lost due to the departed contributors. If these lost intermediate streams are 

necessary for continuing the execution, Job monitor component on the coordinator will explore 

to re-execute corresponding tokens in order to re-generate the lost intermediate streams. The 

tasks to re-execute will be put into the task buffer and wait for scheduling of L-HEFT algorithm. 

5. Performance Evaluation 

We have implemented our dataflow programming model, system and scheduling algorithm over 

the Aneka [32] platform and deployed it in an environment consisting of desktop machines from 

different laboratories in Melbourne University, and shared with students and researchers. In this 

section, we evaluate the performance of our dataflow system and L-HEFT online scheduling 

algorithm through three applications. The first simple one is matrix multiplication; the other two 

complex ones are FFT (Fast Fourier Translation) computation and Jacob iteration [20]. 

5.1 Environment Configuration 

The experiments are executed in a enterprise Grid consisting of 33 nodes drawn from 3 student 

laboratories. During testing, one machine works as coordinator and the others work as 

contributors. Each machine has a single Pentium 4 processor, 500MB of memory, 160GB IDE 

disk (10GB is contributed for dataflow storage), 1 Gbps Ethernet network and ran Windows XP. 
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5.2 Sample Applications 

We implemented three same applications using our macro-dataflow APIs indicated in Appendix. 

1) Matrix Multiplication: Each matrix consists of 4000 by 4000 randomly generated integers. 

Each matrix needs about 64M bytes. Each matrix is partitioned into 250 by 250 square blocks, 

and therefore there is a total of 16*16 blocks with 128KB per block. There are 1,024 initial 

streams in dataflow graph for the two matrix and 512 result streams as the result matrix. 

2) FFT (Fast Fourier Transform): This algorithm is widely used in digital signal processing 

and can also be used to solve Discrete Poisson Equation for physical simulation. Figure 2 is a 

typical dataflow graph of FFT computing in a small scale. The input of FFT example used in the 

experiment is 16M complex number, and is uniformly divided into 64 pieces. Therefore, there is 

a total of 1,664 tokens to execute. 

3) Jacob Iteration: Jacob method is a simple way to solve PDE (Partial Differential 

Equations). Its iteration pattern of parallelization is shared by a large number of numerical 

programs and more complicated PDEs. The working space of Jacob iteration in our experiment 

is a 16,384 by 16,384 matrix. The matrix is partitioned by rows into 64 pieces. During the 

experiment, we varied the ratio of computation vs. communication and iteration times. 

5.3 Scalability of System 

The performance scalability evaluation does 

not include the time consumed for sending 

initial data and collecting result data as these 

two actions need to transfer data across 

single coordinator which is sequential 

behavior. 

Figure 5 illustrates the speedup of 

performance with an increasing number of 

coordinators. There are 2 main factors that 

determine the execution time of the matrix 

multiplication: the distribution of blocks 

between the contributors and the overhead 

introduced by the transmission of blocks 

between the contributors. The network 

overhead is measured here as the ratio of the time taken for communication to the time taken for 

computation. As can be seen from Figure 5, for larger number of contributors, while the speedup 

improves, the network overhead is also substantially increased. The speedup line starts diverging 

from the ideal when the network overhead increases to more than 10 % of the execution time. 

5.4 Scheduling Policy 

This section evaluates our L-HEFT scheduling policy. We compare it with a dynamic scheduling 

model [33] through rescheduling on static HEFT mapping, that we term here as D-HEFT. We 

have implemented D-HEFT as mentioned in prior work [33], and rescheduling is triggered when 

the performance of resource is changing. In our implementation, the rescheduling is overlapped 

with the executing of tasks. This means that until the remapping of tasks is completely finished, 

they are still submitted to contributors to which they were mapped in the prior iteration of 

Figure 6  Scalability of Performance 

 



 11 

rescheduling. In this section we compare these two scheduling models with varying the ratio of 

computation vs. communication and the size of dataflow graph through Jacob iteration and FFT 

benchmarks. For Jacob iteration, every token executes same set of instructions. So we 

chooseα in equation 1 as 0.9. If the real execution time is different from the predicted value by a 

factor of 2, we take it as a performance variation and correspondingly trigger rescheduling in 

D-HEFT. 

First, we look at the result of these two polices on dataflow graph with different size. We use 

a Jacob iteration benchmark with 10 iterations and 100 iterations. Therefore the corresponding 

dataflow graph respectively holds 640 and 6400 tasks. As illustrated in Figure 7, L-HEFT 

scheduling policy does not compete with D-HEFT policy, while in Figure 8, L-HEFT marginally 

outperforms D-HEFT. The reason is the scheduling cost of D-HEFT is larger than that of 

L-HEFT, due to frequent variations in the performance availability of resources across 

contributors. For a large dataflow graph, rescheduling cost of D-HEFT is even higher. Figure 9 

illustrates the total execution time of L-HEFT during the scheduling, while Figure 10 shows the 

total rescheduling cost of D-HEFT. 

 
Figure 7 Scheduling on Jacob DAG with 640 tasks 

 
Figure 8 Scheduling on Jacob DAG with 6400 tasks 

 
Figure 9 Scheduling cost of Jacob DAG with 640 tasks 

 
Figure 10 Scheduling cost of Jacob DAG with 6400 tasks 

We use a simple model to explain why the rescheduling cost is higher. According to [11], the 

scheduling cost of HEFT algorithm is )( qeOCH ×= , where e is the average number of edges and 

q is the number of contributors. For rescheduling, the cost depends on the size of partial graph. 

We assume the size of partial graph for each time of rescheduling is half the whole graph on 

average. Therefore, each time of rescheduling cost is 2/Hr CC = . Given nr as the number of 

rescheduling, total cost of rescheduling is )( rr Cn × . However, for L-HEFT algorithm, we can 

know its cost HL CC < . From Table 1, we can see that the number of rescheduling is pretty high 
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and in each time of rescheduling, the D-HEFT algorithm needs to assign ranks for left over tasks 

and then sort the tasks for re-mapping. A large number of repeated rescheduling introduces high 

scheduling cost. As a result, L-HEFT can outperform D-HEFT for large scale dataflow graph. 

Contributors# 16  20  24  28 32 

640 tasks 82 102 62 58 63 

6400 tasks 913 987 659 752 732 

Table 1 The number of rescheduling operations in D-HEFT 

Next, we compare two scheduling polices with varied computation-to-communication ratio 

for a Jacob dataflow of 10 iterations. During the experiment, we adjust the ratio of computation 

to communication from 2 to 12 as illustrated in Figure 11. We can see that for application with a 

larger ratio of computation to communication, D-HEFT performs better than L-HEFT. The 

reason is the rescheduling cost is gradually compensated by the large execution time of tasks. 

Furthermore, we compared the amount of stream data migration between contributors under 

the scheduling of L-HEFT and D-HEFT, as in Figure 12. The result shows that for the Jacob 

iteration application, both L-HEFT and D-HEFT generate nearly same amount of data migration. 

 

Figure 11 Scheduling with varied ratio of 

Computation-to-Communication  

 

Figure 12 Average amount of data migration between 

contributors 

Finally we run the FFT benchmark, whose communication pattern is more complex than that 

of Jacob. The result is showed in Figure 12. For this FFT benchmark, the ratio of 

Computation-to-Communication is about 3. The result shows L-HEFT can compete with 

D-HEFT. This result is consistent with the scheduling 

result of Jacob dataflow, because the task number in 

FFT dataflow is not large enough, only 1664. 

5.5 Handling Joining Contributors 

This section compares the two dynamic models during 

handling new resources. We use a Jacob dataflow with 

10 iterations and FFT dataflow. In the experiments, we 

first start with 16 contributors and after 3 minutes, we 

gradually add 2 new contributors every minute. We 

measured the finished task number on the side of 

coordinator. The slope of measure curves will increase 

during continuous joining of new resources, because more contributors can accelerate to execute 

Figure 13 Scheduling of FFT dataflow 
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ready tokens, as illustrated in Figure 14 and Figure 15. These two figures show the response time 

of L-HEFT algorithm to handle new joining resources are a bit faster than D-HEFT. The reason 

is the low cost of L-HEFT algorithm. 

 

Figure 14 Handling new resources for Jacob dataflow 

 

Figure 15 Handling new resource for FFT dataflow 

5.6 Handling Failures of Contributors 

This section evaluates the mechanisms dealing with 

failures of contributors in the dataflow system. We 

use the Jacob iteration example with 40 iterations 

across 20 contributors. On the coordinators side, we 

measure the number of finished tokens. If lost 

intermediate data need be re-generated by 

re-executing those tokens due to the failure of 

contributors, we just reset those tokens as un-finished. 

L-HEFT algorithm evaluated in this section is 

assisted by the replication support with the size of 

replication step as 5, while D-HEFT does not support 

failures through replication methods. After the 

system run for 12 minutes, we manually turn off one 

contributor to simulate one node failure. Without 

replication support, D-HEFT has to re-execute all tasks to re-generate lost intermediate data to 

continue the execution. However, the number of tasks who have to be re-generated by L-HEFT 

is pretty smaller. As Figure 15 shows, with failure support from the replication mechanism of 

macro-dataflow system, L-HEFT outperforms D-HEFT. Therefore, the final performance of 

L-HEFT is better. 

6. Conclusion and Future Work 

This paper presents a dataflow computing platform within a shared enterprise Grid environment. 

Through a macro-dataflow interface, users can freely express their parallel applications through 

specifying the dataflow relationship and easily deploy applications in a heterogeneous distributed 

environment with failures. The L-HEFT scheduling algorithm proposed for our dataflow system 

achieves effective mapping with fairly low cost due to heavily decreased rescheduling cost, 

compared with static mapping-based rescheduling techniques. At the same time, it supports 

Figure 16 Fault tolerant scheduling. 
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scalable performance and transparent fault tolerance based on the evaluation of example 

applications. 

Our future work focuses on extending dynamic scheduling policy to support advanced user 

QoS (quality of service) requirements by building on Aneka’s advanced resource reservation and 

service level agreement capabilities. 
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Appendix: Macro-dataflow programming model 
In macro-dataflow programming model, user can implicitly specify the dependent relationship between the data 

generated during the execution for application and easily edit the executing logic for each execution token in the 

coarse-grained dataflow. The main APIs for composing dataflow graph are as follows: 

• Execute.Compute(InStream[] inputs, OutStream[] outputs), which is heritaged by users to add instructions 

to execute the token. 

• Token.SetExecute(Execute) is used to specify the set of instructions of token 

• Token.AddInput(Stream) is used to specify input streams for each token. 

• Token.AddOutput(Stream) is used to specify output streams for each token. 

• SetInitialStream(Stream, file) is used to set the input files for the whole dataflow graph. 

• SetResultStream(Stream, file) is used to set the output files to contain the result of dataflow execution. 

When the APIs are used, the user need not specify the complex dependent relationship between data generated 

during the execution. Our system internally composes the dataflow graph through the implicit data relationship, and 

provides APIs to allow users to check correctness of the graph. 


