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Abstract 

 
Traditionally, the development of computing systems has been focused on performance 

improvements driven by the demand of applications from consumer, scientific and business 

domains. However, the ever increasing energy consumption of computing systems has started to 

limit further performance growth due to overwhelming electricity bills and carbon dioxide 

footprints. Therefore, the goal of the computer system design has been shifted to power and energy 

efficiency.  To identify open challenges in the area and facilitate future advancements it is essential 

to synthesize and classify the research on power and energy-efficient design conducted to date. In 

this work we discuss causes and problems of high power / energy consumption, and present a 

taxonomy of energy-efficient design of computing systems covering the hardware, operating 

system, virtualization and data center levels. We survey various key works in the area and map 

them to our taxonomy to guide future design and development efforts. This chapter is concluded 

with a discussion of advancements identified in energy-efficient computing and our vision on future 

research directions. 
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1 Introduction  
 

The primary focus of designers of computing systems and the industry has been on the 

improvement of the system performance. According to this objective the performance has been 

steadily growing driven by more efficient system design and increasing density of the components 

described by Moore's law [1]. Although the performance per watt ratio has been constantly rising, 

the total power draw by computing systems is hardly decreasing. Oppositely, it has been increasing 

every year that can be illustrated by the estimated average power use across three classes of servers 

presented in Table 1 [2]. If this trend continues, the cost of the energy consumed by a server during 

its lifetime will exceed the hardware cost [3]. The problem is even worse for large-scale compute 

infrastructures, such as clusters and data centers. It was estimated that in 2006 IT infrastructures in 

the US consumed about 61 billion kWh for the total electricity cost about 4.5 billion dollars [4]. The 

estimated energy consumption is more than double from what was consumed by IT in 2000. 

Moreover, under current efficiency trends the energy consumption tends to double again by 2011, 

resulting in 7.4 billion dollars annually.  

 

Table 1. Estimated average power consumption per server class (W/Unit) from 2000 to 2006 [2]. 

 

Server class 2000 2001 2002 2003 2004 2005 2006 

Volume 186 193 200 207 213 219 225 

Mid-range 424 457 491 524 574 625 675 

High-end 5,534 5,832 6,130 6,428 6,973 7,651 8,163 

 

The energy consumption is not only determined by the efficiency of the physical resources, 

but it is also dependent on the resource management system deployed in the infrastructure and 

efficiency of applications running in the system. This interconnection of the energy consumption 

and different levels of computing systems can be seen from Figure 1. Energy efficiency impacts end 

users in terms of resource usage costs, which are typically determined by the Total Cost of 

Ownership (TCO) incurred by a resource provider. Higher power consumption results not only in 

boosted electricity bills, but also in additional requirements to a cooling system and power delivery 

infrastructure, i.e. Uninterruptible Power Supplies (UPS), Power Distribution Units (PDU), etc. 

With the growth of computer components density, the cooling problem becomes crucial, as more 

heat has to be dissipated for a square meter. The problem is especially important for 1U and blade 

servers. These form factors are the most difficult to cool because of high density of the components, 

and thus lack of space for the air flow. Blade servers give the advantage of more computational 

power in less rack space. For example, 60 blade servers can be installed into a standard 42U rack 

[5]. However, such system requires more than 4,000 W to supply the resources and cooling system 

compared to the same rack filled by 1U servers consuming 2,500 W. Moreover, the peak power 

consumption tends to limit further performance improvements due to constraints of power 

distribution facilities. For example, to power a server rack in a typical data center, it is necessary to 

provide about 60 Amps [6]. Even if the cooling problem can be addressed for the future systems, it 

is likely that delivering current in such data centers will reach the power delivery limits.   

Apart from the overwhelming operating costs and the Total Cost of Acquisition (TCA), 

another rising concern is the environmental impact in terms of carbon dioxide (CO2) 

emissions caused by high energy consumption. Therefore, the reduction of power and energy 

consumption has become a first-order objective in the design of modern computing systems. The 

roots of energy-efficient computing, or Green IT, practices can be traced back to 1992, when the 

U.S. environmental protection Agency launched Energy Star, a voluntary labelling program which 

is designed to identify and promote energy-efficient products in order to reduce the greenhouse gas 

emissions. Computers and monitors were the first labelled products. This has led to the widespread 
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adoption of the sleep mode in electronic devices. At that time the term "green computing" was 

introduced to refer to energy-efficient personal computers [7]. At the same time, the Swedish 

confederation of professional employees has developed the TCO certification program – a series of 

end user and environmental requirements for IT equipment including video adapters, monitors, 

keyboards, computers, peripherals, IT systems and even mobile phones. Later, this program has 

been extended to include requirements on ergonomics, magnetic and electrical field emission levels, 

energy consumption, noise level and use of hazardous compounds in hardware. The Energy Star 

program was revised in October 2006 to include stricter efficiency requirements for computer 

equipment, along with a tiered ranking system for approved products. 
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Figure 1. Energy consumption at different levels in computing systems.  

 

There are a number of industry initiatives aiming at the development of standardized 

methods and techniques for reduction of the energy consumption in computer environments. They 

include Climate Savers Computing Initiative (CSCI), Green Computing Impact Organization, Inc. 

(GCIO), Green Electronics Council, The Green Grid, International Professional Practice Partnership 

(IP3), with membership of companies such as AMD, Dell, HP, IBM, Intel, Microsoft, Sun 

Microsystems and VMware. 

Energy-efficient resource management has been first introduced in the context of battery 

feed mobile devices, where energy consumption has to be reduced in order to improve the battery 

lifetime. Although techniques developed for mobile devices can be applied or adapted for servers 

and data centers, this kind of systems requires specific methods. In this chapter we will discuss 

ways to reduce power and energy consumption in computing systems, as well as recent research 

works that deal with power and energy efficiency at the hardware and firmware, Operating System 

(OS), virtualization, and data center levels. The main objective of this work is to give an overview 

of the recent research advancements in energy-efficient computing, identify common characteristics 

and classify the approaches. On the other hand, the aim is to show the level of development in the 
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area and discuss open research challenges and direction for future work. The reminder of this 

chapter is organized as follows: in the next Section power and energy models are introduced; in 

Section 3 we discuss problems caused by high power and energy consumption; in Sections 4-8 we 

present the taxonomy and survey of the research in energy-efficient design of computing systems, 

followed by a conclusion and future work directions in Section 9. 

 

2 Power and Energy Models 
 

To understand power and energy management mechanisms it is essential to clearly 

distinguish the background terms. Electric current is the flow of electric charge measured in 

Amperes (Amps). Amperes define the amount of electric charge transferred by a circuit per second. 

Power and energy can be defined in terms of work that a system performs. Power is the rate at 

which the system performs the work, while energy is the total amount of work performed over a 

period of time. Power and energy are measured in watts (W) and watt-hour (Wh) respectively. 

Work is done at the rate of one watt when one Ampere is transferred through a potential difference 

of one volt. A kilowatt-hour (kWh) is the amount of energy equivalent to a power of 1 kilowatt 

(1000 watts) running for 1 hour. Formally, power and energy can be defined as in (1) and (2). 

 

W
P

T
, (1) 

E P T , (2) 

 

where P  is power, T  is a period of time, W  is the total work performed in that period of time, and 

E  is energy. The difference between power and energy is very important, because reduction of the 

power consumption does not always reduce the consumed energy. For example, the power 

consumption can be decreased by lowering the CPU performance. However, in this case a program 

may require longer time to complete its execution consuming the same amount of energy. On one 

hand, reduction of the peak power consumption will result in decreased costs of the infrastructure 

provisioning, such as costs associated with capacities of UPS, PDU, power generators, cooling 

system, and power distribution equipment. On the other hand, decreased energy consumption will 

lead to reduction of the electricity bills. The energy consumption can be reduced temporarily using 

Dynamic Power Management (DPM) techniques or permanently applying Static Power 

Management (SPM). DPM utilizes knowledge of the real-time resource usage and application 

workloads to optimize the energy consumption. However, it does not necessarily decrease the peak 

power consumption. In contrast, SPM includes the usage of highly efficient hardware equipment, 

such as CPUs, disk storage, network devices, UPS and power supplies. These structural changes 

usually reduce both the energy and peak power consumption. 

2.1 Static and Dynamic Power Consumption 
 

The main power consumption in Complementary Metal-Oxide-Semiconductor (CMOS) 

circuits comprises static and dynamic power. The static power consumption, or leakage power, is 

caused by leakage currents that are present in any active circuit, independently of clock rates and 

usage scenarios. This static power is mainly determined by the type of transistors and process 

technology. Reduction of the static power requires improvement of the low-level system design; 

therefore, it is not in the focus of this chapter. More details about possible ways to improve the 

energy efficiency at this level can be found in the survey by Venkatachalam and Franz [8]. 

Dynamic power consumption is created by circuit activity (i.e. transistor switches, changes 

of values in registers, etc.) and depends mainly on a specific usage scenario, clock rates, and I/O 
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activity. The sources of the dynamic power consumption are short-circuit current and switched 

capacitance. Short-circuit current causes only 10-15% of the total power consumption and so far no 

way has been found to reduce this value without compromising the performance. Switched 

capacitance is the primary source of the dynamic power consumption; therefore, the dynamic power 

consumption can be defined as in (3). 

 
2

dynamicP a C V f , (3) 

 

where a  is the switching activity, C  is the physical capacitance, V  is the supply voltage, and f  is 

the clock frequency. The values of switching activity and capacitance are determined by the low-

level system design. Whereas combined reduction of the supply voltage and clock frequency lies in 

the roots of the widely adopted DPM technique called Dynamic Voltage and Frequency Scaling 

(DVFS). The main idea of this technique is to intentionally down-scale CPU performance, when it 

is not fully utilized, by decreasing the voltage and frequency of the CPU that in ideal case should 

result in cubic reduction of the dynamic power consumption. DVFS is supported by most modern 

CPUs including mobile, desktop and server systems. We will discuss this technique in detail in 

Section 5.2.1. 

2.2 Sources of Power Consumption 
 

According to data provided by Intel Labs [5] the main part of power consumed by a server is 

drawn by the CPU, followed by the memory and losses due to the power supply inefficiency 

(Figure 2). The data show that the CPU no longer dominates power consumption by a server. This 

resulted from continuous improvement of the CPU power efficiency and application of power 

saving techniques (e.g. DVFS) that enable active low-power modes. In these modes a CPU 

consumes a fraction of the total power, while preserving the ability to execute programs. As a 

result, current desktop and server CPUs can consume less than 30% of their peak power at low-

activity modes leading to dynamic power range of more than 70% of the peak power [9]. In 

contrast, dynamic power ranges of all other server's components are much narrower: less than 50% 

for DRAM, 25% for disk drives, 15% for network switches, and negligible for other components 

[10]. The reason is that only the CPU supports active low-power modes, whereas other components 

can only be completely or partially switched off. However, the performance overhead of transition 

between active and inactive modes is substantial. For example, a disk drive in a spun-down, deep-

sleep mode consumes almost no power, but a transition to active mode incurs a latency that is 1,000 

times higher than regular access latency. Power inefficiency of the server's components in the idle 

state leads to a narrow overall dynamic power range of 30%. This means that even if a server is 

completely idle, it will still consume more than 70% of its peak power. 

Another reason for reduction of the fraction of power consumed by the CPU relatively to the 

whole system is adoption of multi-core architectures. Multi-core processors are much more efficient 

than conventional. For example, servers built with recent Quad-core Intel Xeon processor can 

deliver 1.8 teraflops at peak performance, using less than 10 kW of power. To compare with, 

Pentium processors in 1998 would consume about 800 kW to achieve the same performance [5]. 

Adoption of multi-core CPUs along with the increasing use of virtualization technologies 

and data-intensive applications resulted in growing amount of memory in servers. In contrast to the 

CPU, DRAM has narrower dynamic power range and power consumption by memory chips is 

increasing. Memory is packaged in dual in-line memory modules (DIMMs), and power 

consumption by these modules varies from 5 W to 21 W per DIMM, for DDR3 and Fully Buffered 

DIMM (FB-DIMM) memory technologies [5]. Power consumption by a server with eight 1 GB 

DIMMs is about 80 W. Modern large servers currently use 32 or 64 DIMMs that leads to power 

consumption by memory higher than by CPUs. Most of the power management techniques are 

focused on the CPU; however, constantly increasing frequency and capacity of memory chips raise 
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the cooling requirements apart from the problem of high energy consumption. These facts make 

memory one of the most important server components that have to be efficiently managed. New 

techniques and approaches to the reduction of the memory power consumption have to be 

developed in order to address this problem. 

 
Figure 2. Power consumption by server's components [5]. 

 

Power supplies transform alternating current (AC) into direct current (DC) to feed server's 

components. This transformation leads to significant power losses due to the inefficiency of the 

current technology. The efficiency of power supplies depends on their load. They achieve the 

highest efficiency at loads within the range of 50-75%. However, most data centers create a load of 

10-15% wasting the majority of the consumed electricity and leading to average power losses of 60-

80% [5]. As a result, power supplies consume at least 2% of all U.S. electricity production. More 

efficient power supply design can save more than a half of the energy consumption. 

The problem of low average utilization applies to disk storages, especially when disks are 

attached to servers in a data center. However, this can be addressed by moving the disks to an 

external centralized storage array. Nevertheless, intelligent policies have to be used to efficiently 

manage a storage system containing thousands of disks. This creates another direction for the 

research work aimed at optimization of resource, power and energy usage in server farms and data 

centers. 

2.3 Modeling Power Consumption 
 

To develop new policies for DPM and understand their impact, it is necessary to create a 

model of dynamic power consumption. Such a model has to be able to predict the actual value of 

the power consumption based on some run-time system characteristics. One of the ways to 

accomplish this is to utilize power monitoring capabilities that are built-in modern computer 

servers. This instrument provides the ability to monitor power usage of a server in real time and 

collect accurate statistics about the power usage. Based on this data it is possible to derive a power 

consumption model for a particular system. However, this approach is complex and requires 

collection of the statistical data for each target system.  

Fan et al. [10] have found a strong relationship between the CPU utilization and total power 

consumption by a server. The idea behind the proposed model is that the power consumption by a 

server grows linearly with the growth of CPU utilization from the value of power consumption in 

the idle state up to the power consumed when the server is fully utilized. This relationship can be 

expressed as in (4). 

 

( ) ( )idle busy idleP u P P P u , (4) 
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where P  is the estimated power consumption, 
idleP  is the power consumption by an idle server, 

busyP  is the power consumed by the server when it is fully utilized, and u  is current CPU utilization. 

The authors have also proposed an empirical non-linear model given in (5). 

 

( ) ( ) (2 )r

idle busy idleP u P P P u u , (5) 

 

where r  is a calibration parameter that minimizes the square error and has to be obtained 

experimentally. For each class of machines of interest a set of calibration experiments must be 

performed to fine tune the model. 

Extensive experiments on several thousands of nodes under different types of workloads 

(Figure 3) have shown that the derived models accurately predict the power consumption by server 

systems with the error below 5% for the linear model and 1% for the empirical model. The 

calibration parameter r  has been set to 1.4 for the presented results. These precise results can be 

explained by the fact that CPU is the main power consumer in servers and, in contrast to CPU, other 

system components have narrow dynamic power ranges or their activities correlate with the CPU 

activity (e.g. I/O, memory). For example, current server processors can reduce power consumption 

up to 70% by switching to low power-performance modes [9]. However, dynamic power ranges of 

other components are much narrower: less than 50% for DRAM, 25% for disk drives, and 15% for 

network switches. 

  

Figure 3. Power consumption to CPU utilization relationship [10]. 

 

This accurate and simple power model enables easy prediction of the power consumption by 

a server supplied with CPU utilization data and power consumption values at idle and maximum 

CPU utilization states. Therefore, it is especially important that the increasing number of server 

manufactures publish actual power consumption figures for their systems at different utilization 

levels [11]. This is driven by the adoption of the ASHRAE Thermal Guideline [12] that 

recommends providing power ratings for minimum, typical and full utilization. 
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Dhiman et al. [13] have found that although regression models based on just CPU utilization 

are able to provide reasonable prediction accuracy for CPU-intensive workloads, they tend to be 

considerably inaccurate for prediction of power consumption caused by I/O- and memory-intensive 

applications. The authors have proposed a power modeling methodology based on Gaussian 

Mixture Models that predicts power consumption by a physical machine running multiple VM 

instances. To perform predictions, in addition to CPU utilization the model relies on run-time 

workload characteristics, such as the number of Instructions Per Cycle (IPC) and the number of 

Memory accesses Per Cycle (MPC). The proposed approach requires a training phase to perceive 

the relationship between the metrics of the workload and the power consumption. The authors have 

evaluated the proposed model via experimental studies involving different types of the workload. 

The obtained experimental results have shown that the model predicts the power consumption with 

high accuracy (<10% prediction error), which is consistent over all the tested workloads. The 

proposed model outperforms regression models by a factor of 5 for particular types of the workload, 

which proves the importance of architectural metrics like IPC and MPC as compliments to CPU 

utilization for prediction of the power consumption.   

 

3 Problems of High Power and Energy 

Consumption 
 

The energy consumption by computing facilities rises various monetary, environmental and 

system performance concerns. A recent study on the power consumption of server farms [2] shows 

that in 2005 the electricity use by servers worldwide – including their associated cooling and 

auxiliary equipment – costed US$7.2bn. The study also indicates that the electricity consumption in 

that year had doubled as compared with consumption in 2000. Clearly, there are environmental 

issues with the generation of electricity. The number of transistors integrated into today’s Intel 

Itanium 2 processor reaches to nearly 1 billion. If this rate continues, the heat (per square 

centimetre) produced by future processors would exceed that of the surface of the Sun [14], 

resulting in poor system performance. The scope of energy-efficient design is not limited to main 

computing components (e.g., processors, storage devices and visualization facilities), but it can 

expand into a much larger range of resources associated with computing facilities including 

auxiliary equipments, water used for cooling and even physical/floor space that these resources 

occupy. 

While recent advances in hardware technologies including low-power processors, solid state 

drives and energy-efficient monitors have alleviated the energy consumption issue to a certain 

degree, a series of software approaches have significantly contributed to the improvement of energy 

efficiency. These two approaches (hardware and software) should be seen as complementary rather 

than competitive. User awareness is another non-negligible factor that should be taken into account 

when discussing Green IT. User awareness and behavior in general considerably affect computing 

workload and resource usage patterns; this in turn has a direct relationship with the energy 

consumption of not only core computing resources, but also auxiliary equipment, such as 

cooling/air conditioning systems. For example, a computer program developed without paying 

much attention to its energy efficiency may lead to excessive energy consumption and it may 

contribute to more heat emission resulting in increases in the energy consumption for cooling. 

Traditionally, power and energy-efficient resource management techniques have been 

applied to mobile devices. It was dictated by the fact that such devices are usually battery-powered 

and it is essential to consider power and energy management to improve their lifetime. However, 

due to continuous growth of power and energy consumption by servers and data centers, the focus 

of power and energy management techniques has been switched to these systems. Even though the 

problems caused by high power and energy consumption are interconnected, they have their 
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specifics and have to be considered separately. The difference is that the peak power consumption 

determines the cost of the infrastructure required to maintain the system's operation, whereas the 

energy consumption accounts for electricity bills. Let us discuss each of these problems in detail. 

3.1 High Power Consumption 
 

The main reason of the power inefficiency in data centers is low average utilization of the 

resources. We have used data provided as a part of the CoMon project
1
, a monitoring infrastructure 

for PlanetLab
2
. We have used the data of the CPU utilization by more than a thousand servers 

located at more than 500 places around the world. The data have been collected each five minutes 

during the period from the 10th to 19th of May 2010. The distribution of the data over the 

mentioned 10 days along with the characteristics of the distribution are presented in Figure 4. The 

data confirm the observation made by Barroso and Holzle [9]: the average CPU utilization is below 

50%. The mean value of the CPU utilization is 36.44% with 95% confidence interval: (36.40%, 

36.47%). The main run-time reasons of underutilization in data centers are variability of the 

workload and statistical effects. Modern service applications cannot be kept on fully utilized 

servers, as even non-significant workload fluctuation will lead to performance degradation and 

failing to provide the expected QoS. On the other hand, servers in a non-virtualized data center are 

unlikely to be completely idle because of background tasks (e.g. incremental backups), or 

distributed data bases or file systems. Data distribution helps to tackle load-balancing problem and 

improves fault-tolerance. Furthermore, despite the fact that the resources have to be provisioned to 

handle theoretical peak loads, it is very unlikely that all the servers of a large-scale data centers will 

be fully utilized simultaneously.  

988470564228140

CPU utilization

Median

Mean

35.032.530.027.525.022.520.0
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Figure 4. The CPU utilization of more than 1000 PlanetLab nodes over a period of 10 days. 

 

Systems where average utilization of resources less than 50% represent huge inefficiency, as 

most of the time only a half of the resources are actually in use. Although the resources on average 

                                                 
1
 http://comon.cs.princeton.edu/  

2
 http://www.planet-lab.org/ 

http://comon.cs.princeton.edu/
http://www.planet-lab.org/
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are utilized by less than 50%, the infrastructure has to be built to handle the peak load, which rarely 

occurs in practice. In such systems the cost of over-provisioned capacity is very significant and 

includes expenses on additional capacity of the cooling system, PDU, generators, power delivery 

facilities, UPS, etc. The less average resource utilization in a data center, the more expensive it 

becomes as a part of the Total Cost of Ownership (TCO), as it has to support peak loads and meet 

the requirements to the peak power consumption. For example, if a data center operates at 85% of 

its peak capacity on average, the cost of building the data center (in terms of the building cost per 

Watt of the average power consumption) will still exceed the electricity cost for ten years of 

operation [10]. Moreover, peak power consumption can constrain further growth of power density, 

as power requirements already reach 60 Amps for a server rack [6]. If this tendency continues, 

further performance improvements can be bounded by the power delivery capabilities. 

Another problem of high power consumption and increasing density of server's components 

(i.e. 1U, blade servers) is the heat dissipation. Much of the electrical power consumed by the 

computing resources gets turned into heat. The amount of heat produced by an integrated circuit 

depends on how efficient the component's design is, and the voltage and frequency at which the 

component operates. The heat generated by the resources has to be dissipated to keep them within 

their safe thermal state. Overheating of the components can lead to decreased lifetime and high 

error-proneness. Moreover, power is required to feed the cooling system operation. For each watt of 

power consumed by computing resources an additional 0.5 to 1 W is required for the cooling 

system [6]. For example, to dissipate 1 W consumed by a High-Performance Computing (HPC) 

system at the Lawrence Livermore National Laboratoy (LLNL), 0.7 W of additional power is 

needed for the cooling system [15]. This fact justifies the significant concern about efficiency and 

real-time adaptation of cooling system operation. Moreover, modern high density servers, such as 

1U and blade servers, further complicate cooling because of the lack of space for airflow within the 

packages. 

3.2 High Energy Consumption 
 

Considering the power consumption, the main problem is the minimization of the peak 

power required to feed a completely utilized system. In contrast, the energy consumption is defined 

by the average power consumption over a period of time. Therefore, the actual energy consumption 

by a data center does not affect the cost of the infrastructure. On the other hand, it is reflected in the 

electricity cost consumed by the system during the period of operation, which is the main 

component of a data center's operating costs. Furthermore, in most data centers 50% of consumed 

energy never reaches the computing resources: it is consumed by the cooling facilities or dissipated 

in conversions within the UPS and PDU systems. With the current tendency of continuously 

growing energy consumption and costs associated with it, the point when operating costs exceed the 

cost of computing resources themselves in few years can be reached soon. Therefore, it is crucial to 

develop and apply energy-efficient resource management strategies in data centers. 

Except for high operating costs, another problem caused by growing energy consumption is 

high carbon dioxide (CO2) emissions, which contribute to the global warming. According to 

Gartner [16] in 2007 the Information and Communications Technology (ICT) industry was 

responsible for about 2% of global CO2 emissions that is equivalent to the aviation. According to 

the estimation by the U.S. Environmental Protection Agency (EPA), current efficiency trends lead 

to the increase of annual CO2 emissions from 42.8 million metric tons (MMTCO2) in 2007 to 67.9 

MMTCO2 in 2011. Intense media coverage has raised the awareness of people around the climate 

change and greenhouse effect. More and more customers start to consider the "green" aspect in 

selecting products and services. Besides the environmental concern, businesses have begun to face 

risks caused by being non-environmentally friendly. Reduction of CO2 footprints is an important 

problem that has to be addressed in order to facilitate further advancements in computing systems. 
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4 Taxonomy of Power / Energy Management in 

Computing Systems 

 

Large volume of research work has been done in the area of power and energy-efficient 

resource management in computing systems. As power and energy management techniques are 

closely connected, from this point we will refer to them as power management. As shown in Figure 

5, from the high level power management techniques can be divided into static and dynamic. From 

the hardware point of view, Static Power Management (SPM) contains all the optimization methods 

that are applied at the design time at the circuit, logic, architectural and system levels [17]. Circuit 

level optimizations are focused on the reduction of switching activity power of individual logic-

gates and transistor level combinational circuits by the application of a complex gate design and 

transistor sizing. Optimizations at the logic level are aimed at the switching activity power of logic-

level combinational and sequential circuits. Architecture level methods include the analysis of the 

system design and subsequent incorporation of power optimization techniques in it. In other words, 

this kind of optimization refers to the process of efficient mapping of a high-level problem 

specification onto a register-transfer level design. Apart from the optimization of the hardware-level 

system design, it is extremely important carefully consider the implementation of programs that are 

supposed to run in the system. Even with perfectly designed hardware, poor software design can 

lead to dramatic performance and power losses. However, it is impractical or impossible to analyse 

power consumption caused by large programs at the operator level, as not only the process of 

compilation or code-generation but also the order of instructions can have an impact on power 

consumption. Therefore, indirect estimation methods can be applied. For example, it has been 

shown that faster code almost always implies lower energy consumption [18]. Nevertheless, 

methods for guaranteed synthesizing of optimal algorithms are not available, and this is a very 

difficult problem. 

 

Power Management Techniques

Static Power Management (SPM) Dynamic  Power Management (DPM)

Hardware Level Software Level

Circuit Level Logic Level Architectural Level

Hardware Level Software Level

Single Server Multiple Servers, Data 

Centers and Clouds

OS Level Virtualization Level
 

Figure 5. High level taxonomy of power and energy management. 

 

This chapter focuses on DPM techniques that include methods and strategies for run-time 

adaptation of a system's behavior according to current resource requirements or any other dynamic 

characteristic of the system's state. The major assumption enabling DPM is that systems experience 

variable workloads during the operation time allowing the dynamic adjustment of power states 

according to current performance requirements. The second assumption is that the workload can be 

predicted to a certain degree. As shown on Figure 5, DPM techniques can be distinguished by the 

level at which they are applied: hardware or software. Hardware DPM varies for different hardware 

components, but usually can be classified as Dynamic Performance Scaling (DPS), such as DVFS, 

and partial or complete Dynamic Component Deactivation (DCD) during periods of inactivity. In 

contrast, software DPM techniques utilize interface to the system's power management and 

according to their policies apply hardware DPM. The introduction of the Advanced Power 
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Management (APM)
3
 and its successor, the Advanced Configuration and Power Interface (ACPI)

4
, 

have drastically simplified the software power management and resulted in broad research studies 

in this area. The problem of power efficient resource management has been investigated in different 

contexts of device specific management, OS level management of virtualized and non-virtualized 

servers, followed by multiple-node system, such as homogeneous and heterogeneous clusters, data 

centers and Clouds. 

DVFS creates a broad dynamic power range for the CPU enabling extremely low-power 

active modes. This flexibility has lead to the wide adoption of this technique and appearance of 

many policies that scale CPU performance according to current requirements, while trying to 

minimize performance degradation [19]. Subsequently, these techniques have been extrapolated on 

multiple-server systems providing coordinated performance scaling across them [20]. However, due 

to narrow overall dynamic power range of servers in a data center, it has been found beneficial to 

consolidate workload to a limited number of servers and switch off or put to sleep / hibernate state 

idle nodes [21]. 

Another technology that can improve the utilization of resources, and thus reduce the power 

consumption is virtualization of computer resources. Virtualization technology allows one to create 

several Virtual Machines (VMs) on a physical server and, therefore, reduce the amount of hardware 

in use and improve the utilization of resources. The concept originated with the IBM mainframe 

operating systems of the 1960s, but was commercialized for x86-compatible computers only in the 

1990s. Several commercial companies and open-source projects now offer software packages to 

enable a transition to virtual computing. Intel Corporation and AMD have also built proprietary 

virtualization enhancements to the x86 instruction set into each of their CPU product lines, in order 

to facilitate virtualized computing. Among the benefits of virtualization are improved fault and 

performance isolation between applications sharing the same computer node (a VM is viewed as a 

dedicated resource to the customer); the ability to relatively easily move VMs from one physical 

host to another using live or off-line migration; and support for hardware and software 

heterogeneity. The ability to reallocate VMs in run-time enables dynamic consolidation of the 

workload, as VMs can be moved to a minimal number of physical nodes, while idle nodes can be 

switched to power saving modes.  

Terminal servers have also been used in Green IT practices. When using terminal servers, 

users connect to a central server; all of the computing is done at the server level but the end user 

experiences a dedicated computing resource. It is usually combined with thin clients, which use up 

to 1/8 the amount of energy of a normal workstation, resulting in a decrease of the energy 

consumption and costs. There has been an increase in the usage of terminal services with thin 

clients to create virtual laboratories. Examples of terminal server software include Terminal 

Services for Windows, the Aqua Connect Terminal Server for Mac, and the Linux Terminal Server 

Project (LTSP) for the Linux operating system. Thin clients possibly are going to gain a new wave 

of popularity with the adoption of the Software as a Service (SaaS) model, which is one of the kinds 

of Cloud computing [22], or Virtual Desktop Infrastructures (VDI) heavily promoted by 

virtualization software vendors
5
.  

Traditionally, an organization purchases its own computing resources and deals with the 

maintenance and upgrades of the outdated hardware and software, resulting in additional expenses. 

The recently emerged Cloud computing paradigm [22] leverages virtualization technology and 

provides the ability to provision resources on-demand on a pay-as-you-go basis. Organizations can 

outsource their computation needs to the Cloud, thereby eliminating the necessity to maintain own 

computing infrastructure. Cloud computing naturally leads to power-efficiency by providing the 

following characteristics:  

                                                 
3
 Advanced power management. http://en.wikipedia.org/wiki/Advanced_power_management  

4
 Advanced Configuration & Power Interface. http://www.acpi.info/  

5
 VMware View (VMware VDI) Enterprise Virtual Desktop Management. http://www.vmware.com/products/view/ 

   Citrix XenDesktop Desktop Virtualization. http://www.citrix.com/virtualization/desktop/xendesktop.html  

   Sun Virtual Desktop Infrastructure Software. http://www.sun.com/software/vdi/ 

http://en.wikipedia.org/wiki/Advanced_power_management
http://www.acpi.info/
http://www.vmware.com/products/view/
http://www.citrix.com/virtualization/desktop/xendesktop.html
http://www.sun.com/software/vdi/
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 Economy of scale due to elimination of redundancies. 

 Improved utilization of the resources. 

 Location independence – VMs can be moved to a place where energy is cheaper.  

 Scaling up and down – resource usage can be adjusted to current requirements.  

 Efficient resource management by the Cloud provider. 

 

One of the important requirements for a Cloud computing environment is providing reliable 

QoS. It can be defined in terms of Service Level Agreements (SLA) that describe such 

characteristics as minimal throughput, maximal response time or latency delivered by the deployed 

system. Although modern virtualization technologies can ensure performance isolation between 

VMs sharing the same physical computing node, due to aggressive consolidation and variability of 

the workload some VMs may not get the required amount of resource when requested. This leads to 

performance losses in terms of increased response time, time outs or failures in the worst case. 

Therefore, Cloud providers have to deal with the power-performance trade-off – minimization of 

the power consumption, while meeting the QoS requirements. 

The following sections detail different levels of the presented taxonomy: in Section 5 we 

will discuss power optimization techniques that can be applied at the hardware level. We will 

consider the approaches proposed for power management at the operating system level in Section 6, 

followed by the discussion of modern virtualization technologies and their impact on power-aware 

resource management in Section 7 and the recent approaches applied at the data center level in 

Section 8. 

5 Hardware and Firmware Level 
 

As shown in Figure 5, DPM techniques applied at the hardware and firmware level can be 

broadly divided into two categories: Dynamic Component Deactivation (DCD) and Dynamic 

Performance Scaling (DPS). DCD techniques are built upon the idea of the clock gating of parts of 

an electronic component or complete disabling during periods of inactivity.  

 

Hardware DPM

Dynamic Component Deactivation (DCD) Dynamic Performance Scaling (DPS)

Predictive Stochastic

Static Adaptive

DVFS

Interval-Based Intertask

Fixed Timeout Predictive Shutdown

Static Adaptive

Predictive Wakeup

Intratask

Resource throttling

 
Figure 5. DPM techniques applied at the hardware and firmware levels. 

 

The problem could be easily solved if transitions between power states would cause 

negligible power and performance overhead. However, transitions to low-power states usually lead 

to additional power consumption and delays caused by the re-initialization of the components. For 

example, if entering a low-power state requires shut-down of the power supply, returning to the 

active state will cause a delay consisting of: turning on and stabilizing the power supply and clock; 

re-initialization of the system; and restoring the context [23]. In the case of non-negligible 

transitions, efficient power management turns into a difficult on-line optimization problem. A 

transition to low-power state is worthwhile only if the period of inactivity is longer than the 



 16 

aggregated delay of transitions from and into the active state, and saved power is higher than 

required to reinitialize the component. 

5.1 Dynamic Component Deactivation (DCD) 
 

Computer components that do not support performance scaling and can only be deactivated 

require techniques that will leverage the workload variability and disable the component when it is 

idle. The problem is trivial in the case of a negligible transition overhead. However, in reality such 

transitions lead not only to delays, which can degrade performance of the system, but to additional 

power draw. Therefore, to achieve efficiency a transition has to be done only if the idle period is 

long enough to cover the transition overhead. In most real-world systems there is a limited or no 

knowledge about the future workload. Therefore, a prediction of an effective transition has to be 

done according to historical data or some system model. A large volume of research has been done 

to develop efficient methods to solve this problem [23] [24]. As shown in Figure 5, the proposed 

DCD techniques can be divided into predictive and stochastic.  

Predictive techniques are based on the correlation between the past history of the system 

behavior and its near future. The efficiency of such techniques is highly dependent on the actual 

correlation between past and future events and quality of tuning for a particular type of the 

workload. A non-ideal prediction can result in an over-prediction or under-prediction. An over-

prediction means that the actual idle period is shorter than the predicted leading to a performance 

penalty. On the other hand, an under-prediction means that the actual idle period is longer the 

predicted. This case does not have any influence on the performance; however, it results in reduced 

energy savings. Predictive techniques can be further split into static and adaptive, which are 

discussed below. 

Static techniques utilize some threshold for a real-time execution parameter to make 

predictions of idle periods. The simplest policy is called fixed timeout. The idea is to define the 

length of time after which a period of inactivity can be treated as long enough to do a transition to a 

low-power state. Activation of the component is initiated once the first request to a component is 

received. The policy has two advantages: it can be applied to any workload type, and over- and 

under-predictions can be controlled by adjusting the value of the timeout threshold. However, 

disadvantages are obvious: the policy requires adjustment of the threshold value for each workload, 

it always leads to a performance loss on the activation, and the energy consumed from the 

beginning of an idle period to the timeout is wasted. Two ways to overcome the drawbacks of the 

fixed timeout policy have been proposed: predictive shutdown and predictive wakeup. Predictive 

shutdown policies address the problem of the missed opportunity to save energy within the timeout. 

These policies utilize the assumption that previous periods of inactivity are highly correlated with 

the nearest future. According to the analysis of the historical information they predict the length of 

the next idle period before it actually starts. These policies are highly dependent on the actual 

workload and strength of the correlation between past and future events. History-based predictors 

have been shown to be more efficient and less safe than timeouts [25]. Predictive wakeup 

techniques aim to eliminate the performance penalty on the activation. The transition to the active 

state is predicted based on the past history and performed before an actual user request [26]. This 

technique increases the energy consumption, but reduces performance losses on wakeups.  

All the static techniques are inefficient in cases when the system workload is unknown or 

can vary over time. To address this problem adaptive predictive techniques have been introduced. 

The basic idea is to dynamically adjust the parameters, which are fixed for the static techniques, 

according to the quality of prediction that they have provided in the past. For example, the timeout 

value can be increased if for the last several intervals the value has lead to over-prediction. Another 

way to provide the adaptation is to maintain a list of possible values of the parameter of interest and 

assign weights to the values according to their efficiency at previous intervals. The actual value is 

obtained as a weighted average over all the values in the list. In general, adaptive techniques are 
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more efficient than static when the type of the workload is unknown a priori. Several adaptive 

techniques are discussed in the paper by Douglis et al. [27]. 

Another way to deal with non-deterministic system behavior is to formulate the problem as a 

stochastic optimization, which requires building of an appropriate probabilistic model of the system. 

For instance, in such a model system requests and power state transitions are represented as 

stochastic processes and can be modelled as Markov processes. At any moment, a request arrives 

with some probability and a device power state transition occurs with another probability obtained 

by solving the stochastic optimization problem. It is important to note, that the results, obtained 

using the stochastic approach, are expected values, and there is no guarantee that the solution will 

be optimal for a particular case. Moreover, constructing a stochastic model of the system in practice 

may not be straightforward. If the model is not accurate, the policies using this model may not 

provide an efficient system control. 

5.2 Dynamic Performance Scaling (DPS)  

Dynamic Performance Scaling (DPS) includes different techniques that can be applied to 

computer components supporting dynamic adjustment of their performance proportionally to the 

power consumption. Instead of complete deactivations, some components, such as CPU, allow 

gradual reductions or increases of the clock frequency along with the adjustment of the supply 

voltage in cases when the resource is not utilized for the full capacity. This idea lies in the roots of 

the widely adopted Dynamic Voltage and Frequency Scaling (DVFS) technique.  

5.2.1 Dynamic Voltage and Frequency Scaling (DVFS)  

Although the CPU frequency can be adjusted separately, frequency scaling by itself is rarely 

worthwhile as a way to conserve switching power. Saving the most power requires dynamic voltage 

scaling too, because of the V
2
 component and the fact that modern CPUs are strongly optimized for 

low voltage states. Dynamic voltage scaling is usually used in conjunction with frequency scaling, 

as the frequency that a chip may run at is related to the operating voltage. The efficiency of some 

electrical components, such as voltage regulators, decreases with a temperature increase, so the 

power used may increase with temperature. Since increasing power use may raise the temperature, 

increases in voltage or frequency may raise the system power demand even faster than the CMOS 

formula indicates, and vice-versa. DVFS reduces the number of instructions a processor can issue in 

a given amount of time, thus reducing the performance. This, in turn, increases run time for 

program segments which are sufficiently CPU-bound. Hence, it creates challenges of providing 

optimal energy / performance control, which have been extensively investigated by scientists in 

recent years. Some of the research works will be reviewed in the following sections. 

Although the application of DVFS may seem to be straightforward, real-world systems raise 

many complexities that have to be considered. First of all, due to complex architectures of modern 

CPUs (i.e. pipelining, multi-level cache, etc.), the prediction of the required CPU clock frequency 

that will meet application’s performance requirements is not trivial. Another problem is that in 

contrast to the theory, power consumption by a CPU may not be quadratic to its supply voltage. For 

example, in [8] it is shown that some architectures may include several supply voltages that power 

different parts of the chip, and even if one of them can be reduced, overall power consumption will 

be dominated by the larger supply voltage. Moreover, execution time of the program running on the 

CPU may not be inversely proportional to the clock frequency, and DVFS may result in non-

linearities in the execution time [28]. For example, if the program is memory or I/O bounded, CPU 

speed will not have a dramatic effect on the execution time. Furthermore, slowing down the CPU 

may lead to changes in the order in which tasks are scheduled [8]. In summary, DVFS can provide 

substantial energy savings; however, it has to be applied carefully, as the result may significantly 

vary for different hardware and software system architectures. 
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Approaches that apply DVFS to reduce energy consumption by a system can be divided into 

interval-based, intertask and intratask [28]. Interval-based algorithms are similar to adaptive 

predictive DCD approaches in that they also utilize knowledge of the past periods of the CPU 

activity [29] [30]. Depending on the utilization of the CPU during previous intervals, they predict 

the utilization in the near future and appropriately adjust the voltage and clock frequency. Wierman 

et al. [31] and Andrew et al. [32] have conducted analytical studies of speed scaling algorithms in 

processor sharing systems. They have proved that no online energy-proportional speed scaling 

algorithm can be better than 2-competitive comparing to the offline optimal algorithm. Moreover, 

they have found that sophistication in the design of speed scaling algorithms does not provide 

significant performance improvements; however, it dramatically improves robustness to errors in 

estimation of workload parameters. Intertask approaches instead of relying on coarse grained 

information on the CPU utilization, distinguish different tasks running in the system and assign 

them different speeds [33] [34]. The problem is easy to solve if the workload is known a priori or 

constant over all the period of a task execution. However, the problem becomes non-trivial when 

the workload is irregular. In contrast to intertask, intratask approaches leverage fine grained 

information about the structure of programs and adjust the processor frequency and voltage within 

the tasks [35] [36]. Such policies can be implemented by splitting a program execution into 

timeslots and assigning different CPU speeds to each of them. Another way is to implement them at 

the compiler level. This kind of approaches utilizes compiler’s knowledge of a program’s structure 

to make inferences about possible periods for the clock frequency reduction. 

5.3 Advanced Configuration and Power Interface  
 

Many DPM algorithms, such as timeout-based as well as other predictive and stochastic 

policies, can be implemented in the hardware as a part of an electronic circuit. However, a hardware 

implementation highly complicates the modification and reconfiguration of the policies. Therefore, 

there are strong reasons to shift the implementation to the software level. In 1996 to address this 

problem Intel, Microsoft and Toshiba have published the first version of the Advanced 

Configuration and Power Interface (ACPI) specification – an open standard defining a unified 

operating system-centric device configuration and power management interface. In contrast to 

previous BIOS central, firmware-based and platform specific power management systems, ACPI 

describes platform-independent interfaces for hardware discovery, configuration, power 

management and monitoring. 

ACPI is an attempt to unify and improve the existing power and configuration standards for 

hardware devices. The standard brings DPM into the operating system control and requires an 

ACPI-compatible operating system to take over the system and have the exclusive control of all 

aspects of the power management and device configuration responsibilities. The main goals of 

ACPI are to enable all computing systems to implement dynamic power management capabilities, 

and simplify and accelerate the development of power-managed systems. It is important to note that 

ACPI does not put any constraints on particular power management policies, but provides the 

interface that can be used by software developers to leverage flexibility in adjustment of the 

system’s power states. 

ACPI defines a number of power states that can be applied in the system in run-time. The 

most important states in the context of DPM are C-states and P-states. C-states are the CPU power 

states C0-C3 that denote the operating state, halt, stop-clock and sleep mode accordingly. While the 

processor operates, it can be in one of several power-performance states (P-state). Each of these 

states designates a particular combination of DVFS settings. P-states are implementation-dependent, 

but P0 is always the highest-performance state, with P1 to Pn being successively lower-performance 

states, up to an implementation-specific limit of n no greater than 16. P-states have become known 

as SpeedStep in Intel processors, PowerNow! or Cool'n'Quiet in AMD processors, and PowerSaver 

in VIA processors. ACPI is widely used by operating systems, middleware and software on top of 

them to manage power consumption according to their specific policies. 
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6 Operating System Level  
 

In this section, we will discuss research works that deal with power efficient resource 

management at the operating system level. The taxonomy of the characteristics used to classify the 

works is presented in Figure 6. To highlight the most important characteristics of the works, they 

are summarized in Table 2 (full table is given in Appendix A). 

Operating system level

Application adaptation

System resources

Target systems

Goal

Power saving techniques

Workload

No

Adapted applications

Multiple resources

Single resource

Arbitrary

Mobile systems

Servers

Minimize power / energy 

consumption

Minimize performance 

loss

DVFS

Meet power budget

Resource throttling

DCD

Arbitrary

Real-time applications

HPC-applications
 

Figure 6. Operating system level taxonomy 

 

Table 2. Operating system level research works. 

Project name 
System 

resources 

Target 

systems 
Goal 

Power-saving 

techniques 

The Ondemand 

Governor, Pallipadi 

and Starikovskiy [19] 

CPU Arbitrary  Minimize power 

consumption, minimize 

performance loss  

DVFS 

ECOsystem, Zeng et 

al. [37] [38] 

CPU, memory, 

disk storage, 

network 

interface  

Mobile 

systems 

Achieve target battery 

lifetime 

Resource 

throttling 
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Project name 
System 

resources 

Target 

systems 
Goal 

Power-saving 

techniques 

Nemesis OS, 

Neugebauer and 

McAuley [39] 

CPU, memory, 

disk storage, 

network 

interface 

Mobile 

systems  

Achieve target battery 

lifetime 

Resource 

throttling  

GRACE, Sachs et al. 

[40] [41] 

CPU, network 

interface 

Mobile 

systems 

Minimize energy 

consumption, satisfy 

performance requirements 

DVFS, 

resource 

throttling 

Linux/RK, Rajkumar 

et al. [42] 

CPU Real-

time 

systems  

Minimize energy 

consumption, satisfy 

performance requirements 

DVFS  

Coda and Odyssey, 

Flinn and 

Satyanarayanan  [43] 

CPU, network 

interface 

Mobile 

systems  

Minimize energy 

consumption by 

application degradation  

Resource 

throttling  

PowerNap, Meisner et 

al. [44] 

System-wide Server 

systems 

Minimize power 

consumption, minimize 

performance loss 

DCD 

6.1 The Ondemand Governor (Linux Kernel)  
 

Pallipadi and Starikovskiy [19] have developed an in-kernel real-time power manager for 

Linux OS called the ondemand governor. The manager continuously monitors the CPU utilization 

multiple times per second and sets a clock frequency and supply voltage pair that corresponds to 

current performance requirements keeping the CPU approximately 80% busy to handle fast changes 

in the workload. The goal of the ondemand governor is to keep the performance loss due to reduced 

frequency to the minimum. Modern CPU frequency scaling technologies provides extremely low 

latency allowing dynamic adjustment of the power consumption matching the variable workload 

with almost negligible performance overhead. For example, Enhanced Intel Speedstep Technology 

enables frequency switching with the latency as low as 10 ms. To accommodate to different 

requirements of diverse systems, the ondemand governor can be tuned via specification of the rate 

at which the CPU utilization is checked and upper utilization threshold, which is set to 80% by 

default. 

The ondemand governor effectively handles multiprocessor SMP systems, as well as multi-

core and multi-threading CPU architectures. The governor manages each CPU individually and can 

manage different cores in the CPU separately if this is supported by the hardware. In cases if 

different processor cores in a CPU are dependent on each other in terms of frequency, they are 

managed together as a single entity. In order to support this design, the ondemand governor will set 

the frequency to all of the cores based on the highest utilization among the cores in the group. 

There are a number of improvements that are currently under investigation, including 

parallel calculation of the utilization and a dedicated work queue. The original governor samples the 

utilization of all of the processors in the system in a centralized way that can become a significant 

overhead with increase of the number of CPUs. To overcome this problem the authors have 

proposed a parallel sampling independently for each CPU. Another improvement that can increase 

performance for multiprocessor systems is to have dedicated kernel threads for the governor and do 

sampling and changing of frequencies in the context of a particular kernel thread. 
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6.2 ECOsystem  
 

Zeng et al. [37] [38] have proposed and developed ECOsystem – a framework for managing 

energy as a first-class OS resource aimed at battery powered devices. The authors’ fundamental 

assumption is that applications play an important role in energy distribution opportunities that can 

be leveraged only at the application level. ECOsystem provides an interface to define a target 

battery lifetime and applications’ priorities used to determine the amount of energy that will be 

allocated to applications at each time frame. 

The authors split OS-level energy management into two dimensions. Along the first 

dimension, there are a variety of the system devices (e.g. CPU, memory, disk storage, network 

interface) that can consume energy concurrently. The other dimension spans applications that share 

the system devices and cause the energy consumption. To address the problem of accounting the 

energy usage by both devices and applications, the authors have introduced a new measurement unit 

called currentcy. One unit of currentcy represents the right to consume a certain amount of energy 

during a fixed period of time. When the user sets the target battery lifetime and prioritises the 

applications, ECOsystem transforms these data into an appropriate amount of currentcy and 

determines how much currentcy should be allocated to each application at each time frame. The 

length of the timeframe has been empirically determined as 1 second that is sufficient to achieve 

smooth energy allocation. An application expends the allocated amount of currentcy by utilizing the 

CPU, performing disk and memory accesses and consuming other system resources. An application 

can accumulate currentcy up to a specified limit. When an expenditure of an application exceeds the 

allocated amount of currentcy, none of the associated processes are scheduled or otherwise 

serviced. 

The system has been implemented as a modified Linux kernel and has been experimentally 

evaluated. The obtained results show that the proposed model can be effectively used to meet 

different energy goals, such as achieving a target battery lifetime and proportional energy 

distribution among competing applications.  

6.3 Nemesis OS  
 

Neugebauer and McAuley [39] have developed the resource-centric Nemesis OS – an 

operating system for battery powered devices that strive to provide a consistent QoS for time-

sensitive application, such as multimedia applications. Nemesis provides fine grained control and 

accounting for energy usage over all system resources: CPU, memory, disk and network bandwidth.  

To implement per-process resource usage accounting, the OS has been vertically structured: 

most of the system’s functions, protocol stacks and device drivers are implemented in user-level 

shared libraries that execute in the applications’ processes. This design allows accurate and easy 

accounting for the energy consumption caused by individual applications. 

The goal of Nemesis is to address the problem of battery lifetime management. To achieve 

the target battery lifetime specified by the user, the system relies on the cooperation with 

applications. If the current energy consumption rate exceeds the threshold that can lead to failing to 

meet the user’s expectations, the system charges the applications according to their current energy 

usage. The applications should interpret the charges as feedback signals and adapt their behavior. 

The applications are supposed to limit their resource usage according to the data provided by the 

OS. However, not all application may support the adaptation. In this case the user can prioritise the 

applications leading to shut down of the low-priority tasks. Nemesis currently supports a number of 

platforms including Intel 486, Pentium, Pentium Pro and Pentium II based PCs, DEC Alpha 

workstations and evaluation boards, and StrongARM SA-110 based network computers. 
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6.4 The Illinois GRACE project  
 

Sachs et al. [40] [41] have developed the Illinois GRACE project (Global Resource 

Adaptation through CoopEration). They have proposed saving energy through coordinated 

adaptation at multiple system layers according to changes in the applications’ demand for system 

resources. The authors have proposed three levels of adaptation: global, per-application and internal 

adaptation. The global adaptation takes into account all the applications running in the system and 

all the system layers. This level of adaptation responses to significant changes in the system, such as 

application entry or exit. The per-application adaptation considers each application in isolation and 

is invoked every time frame adapting all the system resources to the application’s demands. The 

internal adaptation focuses on different system resources separately that are possibly shared by 

multiple applications and adapts the states of the resources. All the adaptation levels are coordinated 

in order to ensure adaptation decisions that are effective across all levels. 

The framework supports adaptations of the CPU performance (DVSF), applications (frame 

rate and dithering), and soft CPU scaling (CPU time allocation). The second generation of the 

framework (GRACE-2) focuses on a hierarchical adaptation for mobile multimedia systems. 

Moreover, it leverages the adaptation of the application behavior depending on the resource 

constraints. GRACE-2 apart from the CPU adaptation enforces network bandwidth constraints and 

minimizes network transmission energy. The approach has been implemented as a part of the Linux 

kernel and requires applications to be able to limit their resource usage in run-time on order to 

leverage the per-application adaptation technique. There is only a limited support for legacy 

applications. 

The experimental results show that the application adaptation provides significant benefits 

over the global adaptation when the network bandwidth is constrained. Energy savings in a system 

with the CPU and network adaptations when adding the application adaptation reach 32% (22% on 

average). When both the CPU and application adaptations are added to a system with the global 

adaptation, the energy savings have been found to be more than additive. 

6.5 Linux/RK  
 

Rajkumar et al. [42] have proposed several algorithms for application of DVFS in real-time 

systems and have implemented a prototype as a modified Linux kernel – Linux/Resource Kernel 

(Linux/RK). The objective is to minimize the energy consumption, while maintaining the 

performance isolation between applications. The authors have proposed four alternative DVFS 

algorithms that are automatically selected by the system when appropriate. 

SystemClock Frequency Assignment (Sys-Clock) is suitable for systems where the overhead 

of voltage and frequency scaling is too high to perform at every context switch. A single clock 

frequency is selected at the admission of an application and kept constant until a set of applications 

running in the system changes. Priority-Monotonic Clock Frequency Assignment (PM-Clock) is 

suitable for systems with a low voltage and frequency scaling overhead allowing adjustment of the 

voltage and frequency settings at each context switch. Each application is assigned its own constant 

clock frequency which is enabled when the application is allocated a CPU time frame. Optimal 

Clock Frequency Assignment (Opt-Clock) uses a non-linear optimisation model to determine an 

optimal frequency for each application that minimizes the energy consumption. Due to high 

computational complexity this technique is suitable only for offline usage. Dynamic PM-Clock 

(DPM-Clock) suits systems where the average execution time of an application is significantly less 

than the worst case. The authors have conducted experimental studies to evaluate the proposed 

algorithms. The results show that SysClock, PM-Clock and DPM-Clock provide up to 50% energy 

savings. 
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6.6 Coda and Odyssey  
 

Flinn and Satyanarayanan [43] have explored the problem of managing limited computing 

resources and battery lifetime in mobile systems, as well as addressing the variability of the network 

connectivity. They have developed two systems, Coda and Odyssey that implement adaptation 

across multiple system levels. Coda implements application-transparent adaptation in the context of 

a distributed file system, which does not require any modification of legacy applications to run in 

the system.  

Odyssey is responsible for initiation and managing of application adaptations. This kind of 

adaptation allows adjustment of the resource consumption by the cost of the output data quality, 

which is mostly suitable for multimedia applications. For example, video data can be processed or 

transferred over network in lower resolution or sound quality can be reduced in cases of constrained 

resources.  

Odyssey introduces a term fidelity that defines the degree to which the output data 

corresponds to the original quality. Each application can specify acceptable levels of fidelity that 

can be requested by Odyssey when the resource usage has to be limited. When Odyssey notifies an 

application about a change of the resource availability, the application has to adjust its fidelity to 

match the requested level. For energy-aware adaptation it is essential that reductions in fidelity lead 

to energy savings that are both significant and predictable. The evaluation results show that this 

approach allows the extension of the battery lifetime up to 30%. A limitation of such a system is 

that all the necessary applications have to be modified in order to support the proposed approach. 

6.7 PowerNap  
 

Meisner et al. [44] have proposed an approach for power conservation in server systems 

based on fast transitions between active and low power states. The goal is to minimize power 

consumption by a server while it is in an idle state. Instead of addressing the problem of achieving 

energy-proportional computing as proposed by Barroso and Holzle [9], the authors require only two 

power states (sleep and fully active) for each system component. The other requirements are fast 

transitions between the power states and very low power consumption in the sleep mode. 

To investigate the problem, the authors have collected fine grained utilization traces of 

several servers serving different workloads. According to the data, the majority of idle periods are 

shorter than 1 second with the mean length in the order of hundreds of milliseconds. Whereas, busy 

periods are even shorter falling bellow 100 ms for some workloads. The main idea of the proposed 

approach is to leverage short idle periods that occur due to the workload variability. To estimate the 

characteristics of the hardware able to implement the technique, the authors have constructed a 

queueing model based on characteristics of the collected utilization traces. They have found that if 

the transition time is less than 1 ms, it becomes negligible and power savings vary linearly with the 

utilization for all workloads. However, with the growth of the transition time, power savings 

decrease and the performance penalty becomes higher. When the transition time reaches 100 ms, 

the relative response time for low utilization can grow up to 3.5 times relatively to a system without 

power management, which is clearly unacceptable for real-world systems.  

The authors have concluded that if the transition time is less than 10 ms, power savings are 

approximately linear to the utilization and significantly outperform the effect from DVFS for low 

utilization (less than 40%). However, the problem is that the requirement for the transition time 

being less than 10 ms cannot be satisfied by the current level of technology. According to the data 

provided by the authors, modern servers can ensure the transition time of 300 ms, which is anyway 

far from the requested 10 ms. The proposed approach is similar to the fixed time-out DCD 

technique, but adapted to fine grained management. Therefore, all the disadvantages of the fixed 

time-out technique are inherited by the proposed approach, i.e. constant performance penalty on 

wake ups and the overhead in cases when an idle period is shorter then the transition time to and 
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from a low power state. The authors have reported that if the stated requirements are satisfied, the 

average server power consumption can be reduced by 74%.  

7 Virtualization Level  
 

The virtualization level enables the abstraction of an OS and applications running on it from 

the hardware. Physical resources can be split into a number of logical slices called Virtual Machines 

(VMs). Each VM can accommodate an individual OS creating for the user a view of a dedicated 

physical resource and ensuring performance and failure isolation between VMs sharing a single 

physical machine. The virtualization layer lies between the hardware and OS and; therefore, a 

Virtual Machine Monitor (VMM) takes control over resource multiplexing and has to be involved 

in the system’s power management in order to provide efficient operation. There are two ways of 

how a VMM can participate in the power management: 

1. A VMM can act as a power-aware OS without distinction between VMs: monitor the overall 

system’s performance and appropriately apply DVFS or any DCD techniques to the system 

components. 

2. Another way is to leverage OS’s specific power management policies and application-level 

knowledge, and map power management calls from different VMs on actual changes in the 

hardware’s power state or enforce system-wide power limits in a coordinated manner. 

We will discuss these techniques in detail in the following sections. 

7.1 Virtualization Technology Vendors  
 

In Section 7.1 we will discuss three of the most popular virtualization technology solutions: 

the Xen hypervisor
6
, VMware solutions

7
 and KVM

8
. Both of these systems support the first 

described way to perform power management, however, neither allows coordination of VMs’ 

specific calls for power state changes. Section 7.2 discusses an approach proposed by Stoess et al. 

[45] that utilizes both system-wide power control and fine grained application-specific power 

management performed by guest operating systems. 

Other important capabilities supported by the mentioned virtualization solutions are offline 

and live migrations of VMs. They enable transferring VMs from one physical host to another, and 

thus have facilitated the development of different techniques for virtual machines consolidation and 

load balancing that will be discussed in Section 8.  

7.1.1 Xen  

The Xen hypervisor is an open source virtualization technology developed collaboratively 

by the Xen community and engineers from over 20 innovative data center solution vendors [46]. 

Xen is licensed under the GNU General Public License (GPL2) and available at no charge in both 

source and object formats. Xen’s support for power management is similar to what is provided by 

the Linux’s ondemand governor described in Section 6.1. Xen supports ACPI’s P-states 

implemented in the cpufreq driver [47]. The system periodically measures the CPU utilization, 

determines an appropriate P-state and issue a platform-dependent command to make a change in the 

hardware’s power state. Similarly to the Linux’s power management subsystem, Xen provides four 

governors: 

                                                 
6
 http://www.xen.org/  

7
 http://www.vmware.com/ 

8
 http://www.linux-kvm.org/ 

http://www.xen.org/
http://www.vmware.com/
http://www.linux-kvm.org/
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 Ondemand – chooses the best P-state according to current resource requirements.  

 Userspace – sets the CPU frequency specified by the user. 

 Performance – sets the highest available clock frequency.  

 Powersave – sets the lowest clock frequency.  

 

Apart from P-states, Xen also incorporates the support for C-states (CPU sleeping states) 

[47]. When a physical CPU does not have any task assigned, it is switched to a C-state. When a new 

request comes, the CPU is switched back to the active state. An issue is to determine which C-state 

to enter: deeper C-states provide higher energy saving by the cost of higher transition latency. At 

this moment, by default Xen puts the CPU into the first C-state, which provides the least transition 

delay. However, the user can specify a C-state to enter. As the CPU wakes up upon receiving a 

load, it always gets an inevitable performance penalty. The policy is a fixed timeout DCD implying 

all its disadvantages described in Section 5.1. 

Besides P- and C-states, Xen also supports regular and live migration of VMs, which can be 

leveraged by power-aware dynamic VM consolidation algorithms. Migration is used to transfer a 

VM between physical hosts. Regular migration moves a VM from one host to another by 

suspending, copying the VM’s memory contents, and then resuming the VM on the destination 

host. Live migration allows transferring a VM without suspension and from the user side the 

migration should be inconspicuous. To perform a live migration, both hosts must be running Xen 

and the destination host must have sufficient resources (e.g. memory capacity) to accommodate the 

VM after the transmission. Xen starts a new VM instance that forms a container for the VM to be 

migrated. Xen cyclically copies memory pages to the destination host, continuously refreshing the 

pages that have been updated on the source. When it notices that the number of modified pages is 

not shrinking anymore, it stops the source instance and copies the remaining memory pages. Once it 

is completed, the new VM instance is started. To minimize the migration overhead, the hosts are 

usually connected to a Network Attached Storage (NAS) or similar storage solution, which 

eliminates the necessity to copy disk contents. The developers argue that the final phase of a live 

migration, when both instances are suspended, typically takes approximately 50 ms. Given such a 

low overhead, the live migration technology has facilitated the development of various energy 

conservation dynamic VM consolidation approaches proposed by researchers around the world. 

7.1.2 VMware  

VMware ESX Server and VMWare ESXi are enterprise-level virtualization solutions 

offered by VMware, Inc. Similarly to Xen, VMware supports host-level power management via 

DVFS. The system monitors the CPU utilization and continuously applies appropriate ACPI’s P-

states [48]. VMware VMotion and VMware Distributed Resource Scheduler (DRS) are two other 

services that operate in conjunction with ESX Server and ESXi [49]. VMware VMotion enables 

live migration if VMs between physical nodes. A migration can be initiated manually by system 

administrators or programmatically. VMware DRS monitors the resource usage in a pool of servers 

and uses VMotion to continuously rebalance VMs according to the current workload and load 

balancing policy. 

VMware DRS contains a subsystem called VMware Distributed Power Management (DPM) 

to reduce power consumption by a pool of servers by dynamically switching off spare servers [49] 

[50]. Servers are powered back when there is a rising demand for the resource capacity. VMware 

DPM utilizes live migration to reallocate VMs keeping the minimal number of servers powered on. 

VMware ESX Server and VMware ESXi are free for use, whereas other components of VMware 

Infrastructure have a commercial license. 
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7.1.3 KVM  

KVM is a virtualization platform, which is implemented as a module of the Linux kernel 

[51]. Under this model Linux works as a hypervisor, and all the VMs are regular processes 

scheduled by the Linux scheduler. This approach reduces the complexity of the hypervisor 

implementation, as scheduling and memory management are handled by the Linux kernel. 

KVM supports the S4 (hibernate) and S3 (sleep / stand by) power states
9
. S4 does not 

require any specific support from KVM: on hibernation the guest OS dumps memory state to a hard 

disk and initiates powering off the computer. The hypervisor translates this signal into termination 

of the appropriate process. On the next boot, the OS reads the saved memory state from the disk, 

resumes from the hibernation and reinitializes all the devices. During the S3 state memory is kept 

powered, and thus the content does need to be saved to a disk. However, the guest OS must save 

states of the devices, as they should be restored on resume. During the next boot, the BIOS should 

recognize the S3 state and not initialize the devices, but jump directly to the restoration of the saved 

device states. Therefore, the BIOS is modified in order to support such behaviour.  

7.2 Energy Management for Hypervisor-Based Virtual 

Machines  
 

Stoess et al. [45] have proposed a framework for energy management in virtualized servers. 

Typically, energy-aware OSes assume full knowledge and full control over the underlying 

hardware, implying device- or application level accounting for the energy usage. However, in 

virtualized systems, a hardware resource is shared among multiple VMs. In such an environment, 

device control and accounting information are distributed across the whole system, making it 

infeasible for an OS to take a full control over the hardware. This results in inability of energy-

aware OSes to invoke their policies in the system. The authors have proposed mechanisms for fine 

grained guest OS-level energy accounting and allocation. To encompass the diverse demands on 

energy management, the authors have proposes to use the notion of energy as the base abstraction in 

the system, an approach similar to the currentcy model in ECOsystem described in Section 6.2. 

The prototypical implementation comprises two sub-systems: a host-level resource manager 

and an energy-aware OS. The host-level manager enforces system-wide power limits across VM 

instances. The power limits can be dictated by a battery or power generator, or by thermal 

constraints imposed by reliability requirements and the cooling system capacity. The manager 

determines power limits for each VM and device type, which cannot be exceeded to meet the 

defined power constraints. The complementary energy-aware OS is capable of fine grained 

application-specific energy management. To enable application-specific energy management, the 

framework supports accounting and control not only for physical but also of virtual devices. This 

enables guest resource management subsystems to leverage their application-specific knowledge. 

Experimental results presented by the authors show that the prototype is capable of 

enforcing power limits for energy-aware and energy-unaware guest OSes. Three areas are 

considered to be prevalent for future work: devices with multiple power states, processors with 

support for hardware-assisted virtualization, and multi-core architectures. 

8 Data Center Level  
 

In this chapter recently proposed approaches that deal with power management at the data 

center level are discussed. The characteristics used to classify the approaches are presented in 

Figure 7.   

                                                 
9
 http://www.linux-kvm.org/page/PowerManagement  

http://www.linux-kvm.org/page/PowerManagement
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Usually an approach is based on consolidation of the workload across physical nodes in data 

centers. The workload can be represented by incoming requests for online services or web 

applications, or virtual machines. The goal is to allocate requests / virtual machines to the minimal 

amount of physical resources and turn off or put in sleep / hibernate state the idle resources. The 

problem of the allocation is twofold: firstly, it is necessary to allocate new requests; secondly, the 

performance of existing applications / VMs should be continuously monitored and if required the 

allocation should be adapted to achieve the best possible power-performance trade-off regarding to 

specified QoS.  

Table 3 illustrates the most significant characteristics of the reviewed research works (full 

table is given in Appendix B). 

Data center level

Virtualization

System resources

Target systems

Goal

Power saving techniques

Workload

Yes

No

Multiple resources

Single resource

Homogeneous

Heterogeneous

Minimize power / energy 

consumption

Minimize performance 

loss

DVFS

Meet power budget

Resource throttling

DCD

Arbitrary

Real-time applications

HPC-applications

Workload consolidation

 
Figure 7. Data center level taxonomy 

 

Table 3. Data center level research works. 

Project name 
Virtua- 

lization 

System 

resources 
Goal 

Power-saving 

techniques 

Load Balancing and 

Unbalancing for Power 

and Performance in 

Cluster-Based System, 

Pinheiro et al. [21] 

No CPU, disk 

storage, 

network 

interface 

Minimize power 

consumption, minimize 

performance loss 

Server power 

switching 

Managing Energy and 

Server Resources in 

Hosting Centers, Chase et 

No CPU Minimize power 

consumption, minimize 

performance loss 

Workload 

consolidation, 

server power 
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Project name 
Virtua- 

lization 

System 

resources 
Goal 

Power-saving 

techniques 

al. [52] switching 

Energy-Efficient Server 

Clusters, Elnozahy et al. 

[20] 

No CPU Minimize energy 

consumption, satisfy 

performance 

requirements 

DVFS, server 

power switching 

Energy-Aware 

Consolidation for Cloud 

Computing, Srikantaiah et 

al. [53] 

No CPU, disk 

storage 

Minimize energy 

consumption, satisfy 

performance 

requirements 

Workload 

consolidation, 

server power 

switching 

Optimal Power Allocation 

in Server Farms, Gandhi et 

al. [54] 

No  CPU  Allocate the available 

power budget to 

minimize mean 

response time  

DVFS 

Environment-Conscious 

Scheduling of HPC 

Applications, Garg et al. 

[55] 

No CPU Minimize energy 

consumption and CO2 

emissions, maximize 

profit 

DVFS, leveraging 

geographical 

distribution of data 

centers 

VirtualPower: 

Coordinated Power 

Management in 

Virtualized Enterprise 

Systems, Nathuji and 

Schwan [56] 

Yes CPU  Minimize energy 

consumption, satisfy 

performance 

requirements 

DFVS, soft scaling, 

VM consolidation, 

server power 

switching 

Coordinated Multi-level 

Power Management for 

the Data Center, 

Raghavendra et al. [57] 

Yes CPU Minimize power 

consumption, minimize 

performance loss, while 

meeting power budget  

DVFS, VM 

consolidation, 

server power 

switching 

Power and Performance 

Management of 

Virtualized Computing 

Environments via 

Lookahead Control, Kusic 

et al. [58] 

Yes CPU Minimize power 

consumption, minimize 

performance loss  

DVFS, VM 

consolidation, 

server power 

switching 

Resource Allocation using 

Virtual Clusters, Stillwell 

et al. [59] 

Yes CPU Maximize resource 

utilization, satisfy 

performance 

requirements 

Resource throttling 

Multi-Tiered On-Demand 

Resource Scheduling for 

VM-Based Data Center, 

Song et al. [60] 

Yes CPU, 

memory 

Maximize resource 

utilization, satisfy 

performance 

requirements 

Resource throttling 

Shares and Utilities based 

Power Consolidation in 

Virtualized Server 

Environments, Cardosa et 

Yes CPU Minimize power 

consumption, minimize 

performance loss 

DFVS, soft scaling 
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Project name 
Virtua- 

lization 

System 

resources 
Goal 

Power-saving 

techniques 

al. [61] 

pMapper: Power and 

Migration Cost Aware 

Application Placement in 

Virtualized Systems, 

Verma et al. [62] 

Yes CPU Minimize power 

consumption, minimize 

performance loss 

DVFS, VM 

consolidation, 

server power 

switching 

Resource pool 

management: Reactive 

versus proactive, Gmach 

et al. [63] 

Yes CPU, 

memory 

Maximize resource 

utilization, satisfy 

performance 

requirements 

VM consolidation, 

server power 

switching 

GreenCloud: Energy-

Efficient and SLA-based 

Management of Cloud 

Resources, Buyya et al. 

[64] [65] 

Yes CPU Minimize energy 

consumption, satisfy 

performance 

requirements 

Leveraging 

heterogeneity of 

Cloud data centers, 

DVFS  

8.1 Implications of Cloud Computing  
 

Cloud computing has become a very promising paradigm for both consumers and providers 

in various areas including science, engineering and not to mention business. A Cloud typically 

consists of multiple resources possibly distributed and heterogeneous. Although the notion of a 

Cloud has existed in one form or another for some time now (its roots can be traced back to the 

mainframe era [66]),  recent advances in virtualization technologies and the business trend of 

reducing the TCO in particular have made it much more appealing compared to when it was first 

introduced. There are many benefits from the adoption and deployment of Clouds, such as 

scalability and reliability; however, Clouds in essence aim to deliver more economical solutions to 

both parties (consumers and providers). By economical we mean that consumers only need to pay 

per their use and providers can capitalize poorly utilized resources. From the provider’s perspective, 

the maximization of their profit is a high priority. In this regard, the minimization of energy 

consumption plays a crucial role. Recursively, energy consumption can be much reduced by 

increasing the resource utilization. Moreover, Cloud applications require movement of large data 

sets between the infrastructure and consumers, thus it is essential to consider both compute and 

network aspects of energy efficiency [67]. Energy usage in large-scale computing systems like 

Clouds also yields many other concerns including carbon emissions and system reliability. 

Reduction in energy consumption by more effectively dealing with resource provisioning 

(avoidance of resource under/over provisioning) may be obtained [68]. Large profit-driven Cloud 

service providers typically develop and implement better power management, since they are 

interested in taking all necessary means to reduce energy costs to maximize their profit. 

8.2 Non-Virtualized Systems 

8.2.1 Load Management for Power and Performance in Clusters 

Pinheiro et al. [21] have proposed a technique for managing a cluster of physical machines 

with the objective of minimizing the power consumption, while providing the required QoS. The 

authors claim that they present a new direction of research as all previous works deal with power 

efficiency in mobile systems or load balancing in clusters. The main technique to minimize power 
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consumption is the load concentration, or unbalancing, while switching idle computing nodes off. 

The approach requires dealing with the power-performance trade-off, as performance of 

applications can be degraded due to the workload consolidation. The authors use the throughput and 

execution time of applications as constraints for ensuring the QoS. The nodes are assumed to be 

homogeneous. The algorithm periodically monitors the load and decides which nodes should be 

turned on or off to minimize the power consumption by the system, while providing expected 

performance. To estimate the performance the authors apply a notion of demand for resources, 

where resources include CPU, disk and network interface. This notion is used to predict 

performance degradation and throughput due to workload migration based on historical data. 

However, the demand estimation is static – the prediction does not consider possible demand 

changes over time. Moreover, due to sharing of the resource by several applications, the estimation 

of the resource demand for each application can be complex when the total demand exceeds 100% 

of the available resource capacity. For this reason, throughput degradation is not estimated in the 

experimental study. To determine the time to add or remove a node the authors introduce a total 

demand threshold that is set statically for each resource. This threshold is also supposed to solve the 

problem of the latency caused by a node addition, but may lead to performance degradation in the 

case of fast demand growth.  

The actual load balancing is not handled by the system and has to be managed by the 

applications. The algorithm is executed on a master node that creates a single point of failure and 

might become a performance bottleneck in a large system. In addition, it is claimed that 

reconfiguration operations are time-consuming and the implementation of the algorithm adds or 

removes only one node at a time that may also be a reason for slow reaction in large-scale 

environments. 

The authors have also investigated the cooperation between applications and OS in terms of 

power management decisions. They found that it can help to achieve more efficient control. 

However, the requirement for such cooperation leads to loss of the approach generality. Generality 

is also reduced as the system has to be configured for each application. This problem can be 

eliminated by application of virtualization technology. To evaluate the approach, the authors have 

conducted several experimental studies with different types of workloads: web-applications and 

compute intensive applications. The approach can be applied to multi-service mixed-workload 

environments with fixed SLA.  

8.2.2 Managing Energy and Server Resources in Hosting Centers 

Chase et al. [52] have studied the problem of managing resources in Internet hosting centers. 

Resources are shared among multiple service applications with specified SLA – the throughput and 

latency. The authors have developed an OS for an Internet hosting center (Muse) that is a 

supplement for operating systems of individual servers and supposed to manage and coordinate 

interactions between the data center's components. The main distinction from previous work is that 

the objective is not just to schedule resources efficiently, but also minimize the consumption of 

electrical power by the system components. In this work this approach is applied to data centers in 

order to reduce: operating costs (power consumption by computing resources and cooling system); 

carbon dioxide emissions, and thus the impact on the environment; thermal vulnerability of the 

system due to cooling failures or high service load; and over-provisioning in capacity planning. 

Muse addresses these problems by automatically scaling back the power demand (and therefore 

waste heat) when appropriate. Such a control over resource usage optimizes the trade-off between 

service quality and price, allowing the support of flexible SLA negotiated between consumers and a 

resource provider.  

The main challenge is to determine resource demand of each application at its current 

request load level, and to allocate resources in the most efficient way. To deal with this problem the 

authors apply an economic framework: the system allocates resources in a way that maximizes the 

"profit" by balancing the cost of each resource unit against the estimated utility, or the "revenue" 
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that is gained from allocating that resource unit to a service. Services "bid" for the resources in 

terms of volume and quality. This enables negotiation of the SLA according to the available budget 

and current QoS requirements, i.e. balancing cost of resource usage (energy cost) and benefit gained 

due to usage of this resource. This enables a data center to improve the energy efficiency under 

fluctuating workload, dynamically match load and power consumption, and respond gracefully to 

resource shortages. 

The system maintains an active set of servers selected to serve requests for each service. 

Network switches are dynamically reconfigured to change the active set when necessary. Energy 

consumption is reduces by switching idle servers to power saving states (e.g. sleep, hibernation). 

The system is targeted at the web workload, which leads to "noise" in the load data. The authors 

address this problem by applying of the statistical "flip-flop" filter, which reduces the number of 

unproductive reallocations and leads to more stable and efficient control. 

This work has created a foundation for the numereous studies in power efficient resource 

allocation at the data center level, however, the proposed approach has several weaknesses. The 

system deals only with CPU management, but does not take into account other system resources, 

such as memory, disk storage and network interface. It utilizes Advanced Power Management 

(APM), which is an outdated standard for Intel-based systems, while currently adopted by industry 

standard is ACPI. The thermal factor is not considered as well as the latency due to switching 

physical nodes on  / off. The authors have pointed out that the management algorithm is stable, but 

it turns out to be relatively expensive during significant changes in th e workload. Moreover, 

heterogeneity of the software configuration requirements is not handled, which can be addressed by 

applying the virtualization technology. 

8.2.3 Energy-Efficient Server Clusters 

Elnozahy et al. [20] have explored the problem of power-efficient resource management in a 

single-service environment for web-applications with fixed SLA (response time) and auto load-

balancing running on a homogeneous cluster. The motivation for the work is the reduction of 

operating costs and improvement of the error-proneness due to overheating. Two power 

management mechanisms are applied: switching physical nodes on and off (vary on vary off, 

VOVO) and DVFS of the CPU, whereas other system resources are not considered as they 

"consume a smaller fraction of the total system power consumption".  

The authors have proposed five policies for resource management: Independent Voltage 

Scaling (IVS), Coordinated Voltage Scaling (CVS), Vary-On Vary-Off (VOVO), Combined Policy 

(VOVO-IVS) and Coordinated Combined Policy (VOVO-CVS). The last mentioned policy is stated 

to be the most advanced and is provided with a detailed description and mathematical model for 

determining CPU frequency thresholds. The thresholds define when it is appropriate to turn on an 

additional physical node or turn off an idle node. The main idea of the policy is to estimate total 

CPU frequency required to provide expected response time, determine the optimal number of 

physical nodes and set the proportional frequency on all the nodes.  

The experimental results show that the proposed IVS policy can provide up to 29% energy 

savings and is competitive with more complex schemes for some workloads. VOVO policy can 

produce saving up to 42%, whereas coordinated voltage scaling policy in conjunction with VOVO 

(VOVO-CVS) results in 18% higher savings that are obtained using VOVO separately. However, 

the proposed approach is limited in the following factors. The transition time for starting up an 

additional node is not considered. Only a single application is assumed to be run on the cluster and 

the load-balancing is supposed to be done by an external system. Moreover, the algorithm is 

centralized that creates a single point of failure and reduces the system scalability. The workload 

data is not approximated, which can lead to inefficient decisions due to fluctuations in the demand. 

No other system resources except for CPU are considered in resource management decisions.  
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8.2.4 Energy-Aware Consolidation for Cloud Computing  

Srikantaiah et al. [53] have investigated the problem of dynamic consolidation of 

applications serving small stateless requests in data centers to minimize the energy consumption. 

First of all, the authors have explored the impact of the workload consolidation on the energy-per-

transaction metric depending on both CPU and disk utilizations. The obtained experimental results 

show that the consolidation influences the relationship between energy consumption and utilization 

of resources in a non-trivial manner. The authors have found that the energy consumption per 

transaction results in "U"-shaped curve. When the utilization is low, due to high fraction of the idle 

state, the resource is not efficiently used leading to a more expensive in terms of the energy-

performance metric. On the other hand, high resource utilization results in increased cache miss 

rate, context switches and scheduling conflicts. Therefore, the energy consumption becomes high 

due to the performance degradation and consequently longer execution time. For the described 

experimental setup the optimal points of utilization are at 70% and 50% for CPU and disk 

utilizations respectively. 

According to the obtained results, the authors stated that the goal of the energy-aware 

consolidation is to keep servers well utilized, while avoiding the performance degradation due to 

high utilization. They modeled the problem as a multi-dimensional bin packing problem, in which 

servers are represented by bins with each resource (CPU, disk, memory and network) considered as 

a dimension of the bin. The bin size along each dimension is defined by the determined optimal 

utilization level. The applications with known resource utilizations are represented by objects with 

an appropriate size in each dimension. The minimization of the number of bins is stated as leading 

to the minimization of the energy consumption due to switching off idle nodes. However, the model 

does not describe performance of applications that can be degraded due to the consolidation. 

Moreover, the energy consumption may depend on a particular set of application combined on a 

computer node. 

The authors have proposed a heuristic for the defined bin packing problem. The heuristic is 

based on idea of minimization of the sum of the Euclidean distances of the current allocations to the 

optimal point at each server. As a request to execute a new application is received, the application is 

allocated to a server using the proposed heuristic. If the capacity of active servers is fulfilled, a new 

server is switched on, and all the applications are reallocated using the same heuristic in an arbitrary 

order. According to the experimental results, the energy used by the proposed heuristic is about 

5.4% higher than optimal. The proposed approached is suitable for heterogeneous environments, 

however, it has several shortcomings. First of all, resource requirements of applications are assumed 

to be known a priory and constant. Moreover, migration of state-full applications between nodes 

incurs performance and energy overhead, which are not considered by the authors. Switching 

servers on / off also leads to significant costs that must be considered for a real-world system. 

Another problem with the approach is the requirement of an experimental study to obtain optimal 

points of the resource utilizations for each server. Furthermore, the decision about keeping the 

upper threshold of the resource utilization at the optimal point is not justified as the utilization 

above the threshold can symmetrically provide the same energy-per-transaction level. 

8.2.5 Optimal Power Allocation in Server Farms  

Gandhi et al. [54] have studied the problem of allocating an available power budget among 

servers in a virtualized heterogeneous server farm to minimize mean response time for HPC 

applications. The authors have investigated how server’s CPU frequency scaling techniques affect 

the server’s power consumption. They have conducted experiments applying DFS (T-states), DVFS 

(P-states) and DVFS+DFS (coarse grained P-states combined with fine grained T-states) for CPU 

intensive workloads. The results show linear power-to-frequency relationship for DFS and DVFS 

techniques and cubic square relationship for DVFS+DFS.  
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Given the power-to-frequency relationship, the authors consider the problem of finding the 

optimal power allocation as a problem of determining the optimal frequencies of the server’s CPUs 

with ensuring minimization of the mean response time. To investigate the effect of different factors 

on the mean response time the authors have introduces a queuing theoretic model that allows 

prediction of the mean response time as a function of the power-to-frequency relationship, arrival 

rate, peak power budget, etc. The model also allows determining the optimal power allocation for 

every possible configuration of the above factors.  

The approach has been experimentally evaluated against different types of workloads. The 

results show that an efficient power allocation can significantly vary for different workloads. To 

gain the best performance constrained by a power budget, it is not always optimal to run a small 

number of servers at their maximum speed. Oppositely, depending on the workload it can be more 

efficient to run more servers but at lower performance levels. The experimental results show that 

efficient power allocation can substantially improve server farm performance – up to a factor of 5 

and by a factor of 1.4 on average. 

8.2.6 Environment-Conscious Scheduling of HPC Applications 

 Garg et al. [55] have investigated the problem of energy and CO2 efficient scheduling of 

HPC applications in geographically distributed Cloud data centers. The aim is to provide HPC users 

with the ability to leverage high-end computing resources supplied by Cloud computing 

environments on demand and in a pay-as-you-go basis. The authors have addressed the problem in 

the context of a Cloud resource provider and presented heuristics for energy-efficient meta-

scheduling of applications across heterogeneous resource sites. Apart from reducing the 

maintenance costs, which results in higher profit for a resource provider, the proposed approach 

decreases carbon dioxide footprints. The proposed scheduling algorithms take into account energy 

cost, carbon emission rate, workload and CPU power efficiency, which change across different data 

centers depending on their location, design and resource management system. 

The authors have proposed five scheduling policies, two of which minimize carbon dioxide 

emissions, two maximize the profit of resource providers, and the last one is a multi-objective 

policy that minimizes CO2 emissions and maximizes the profit. The multi-objective policy finds for 

each application a data center, which provides the least carbon dioxide emissions, among data 

centers able to complete an application by its deadline. Then among all the application-data center 

pairs, the policy chooses one, which results in the maximal profit. These steps are repeated until all 

the applications are scheduled. The energy consumption is also reduced by applying DVFS for all 

the CPUs in data centers. 

The proposed heuristics have been evaluated using simulations of different scenarios. The 

experimental results have shown that the energy-centric policies allow the reduction of energy costs 

by 33% on average. The proposed multi-objective algorithm can be effectively applied when 

limitations of carbon dioxide emissions are desirable by resource providers or forced by 

governments. This algorithm leads to reduced carbon emission rate, while maintains a high level of 

the profit. 

8.3 Virtualized Systems 

8.3.1 VirtualPower: Coordinated Power Management 

Nathuji and Schwan [56] have investigated the problem of power efficient resource 

management in large-scale virtualized data centers. This is the first time when power management 

techniques have been explored in the context of virtualized systems. The authors have pointed out 

the following benefits of virtualization: improved fault and performance isolation between 

applications sharing the same resource; ability to relatively easy move VMs between physical hosts 

applying live or offline migration; support for hardware and software heterogeneity, which they 
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investigated in their previous work [69]. Besides the hardware scaling and VMs consolidation, the 

authors apply a new power management technique in the context of virtualized systems called "soft 

resource scaling". The idea is to emulate hardware scaling by providing a VM less time for utilizing 

the resource using the VMM's scheduling capability. ―Soft‖ scaling is useful when hardware scaling 

is not supported or provides a very small power benefit. The authors have found that combination of 

"hard" and "soft" scaling may provide higher power savings due to usually limited number of 

hardware scaling states.  

The goals of the proposed approach are support for isolated and independent operation of 

guest VMs, and control and coordination of diverse power management policies applied by the 

VMs to resources. The system intercepts guest VMs' ACPI calls to perform changes in power states, 

map them on 'soft' states and uses as hints for actual changes in the hardware’s power state. In this 

way the system supports guest VM's system level or application level specific power management 

policies, while maintaining isolation between multiple VMs sharing the same physical node. 

The authors propose to split resource management into local and global policies. At the local 

level the system coordinates and leverages power management policies of guest VMs at each 

physical machine. An example of such a policy is the on-demand governor integrated into the Linux 

kernel. At this level the QoS is maintained as decisions about changes in power states are issued 

externally, by guest OS specific policies. However, the drawback of such a solution is that the 

power management may be inefficient due to a legacy or non power-aware guest OS. Moreover, 

power management decisions are usually done with some slack and the aggregated slack will grow 

with the number of VMs leading to under-optimal management. The authors have described several 

local policies aimed at the minimization of power consumption under QoS constraints, and at power 

capping. The global policies are responsible for managing multiple physical machines and use 

knowledge of rack- or blade-level characteristics and requirements. These policies consolidate VMs 

using migration in order to offload resources and place them into power saving states. The 

experiments conducted by the authors show that usage of the proposed system leads to efficient 

coordination of VM- and application-specific power management policies, and reduces the power 

consumption up to 34% with little or no performance penalties. However, the authors do not 

provide a detailed description of the global policies used limiting the analysis of the approach. 

8.3.2 Coordinated Multi-level Power Management 

Raghavendra et al. [57] have investigated the problem of power management for a data 

center environment by combining and coordinating five diverse power management policies. The 

authors argue that although a centralized solution can be implemented to handle all aspects of 

power management, it is more likely for a business environment that different solutions from 

multiple vendors will be applied. In this case it is necessary to solve the problem of coordination 

between individual controllers to provide correct, stable and efficient control. The authors classify 

existing solutions by a number of characteristics including the objective function, performance 

constraints, hardware / software and local / global types of policies. The range of solutions that fall 

into this taxonomy can be very wide. Therefore, instead of trying to address the wholes space, the 

authors focus on five individual solutions and propose five appropriate power management 

controllers. They have explored the problem in terms of control theory and apply feedback control 

loop to coordinate the controllers' actions.  

The efficiency controller optimizes average power consumption by individual servers. The 

controller monitors the utilization of resources, based on the past history predicts future demand and 

appropriately adjusts the P-state of the CPU. The server manager implements power capping at the 

server level. It monitors power consumption by a server and reduces the P-state if the power budget 

is violated. The enclosure manager and the group manager implement power capping at the 

enclosure and data center level respectively. They monitor individual power consumptions across a 

collection of machines and dynamically re-provision power across systems to maintain the group 

power budget. The power budgets can be provided by system designers based on thermal or power 
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delivery constraints, or by high level power managers. The VM controller reduces power 

consumption across multiple physical nodes by dynamically consolidating VMs and switching idle 

servers off. The authors provide integer programming model for the problem of optimization of VM 

allocation. However, the proposed model does not provide a protection from unproductive 

migrations due to workload fluctuations and does not show how SLA can be guaranteed in cases of 

fast changes in the workload. Furthermore, the transition time for reactivating servers as well as the 

ability to handle multiple system resources apart from the CPU are not considered. 

The authors have provided experimental results, which show the ability of the system to 

reduce the power consumption under different workloads. The authors have pointed out an 

interesting outcome of the experiment: the actual power savings can vary depending on the 

workload, but "the benefits from coordination are qualitatively similar for all classes of workloads". 

In summary, the authors have presented the system for coordination of different power management 

policies. However, the proposed system is not able to ensure meeting QoS requirements as well as 

variable SLA from different applications. Therefore, the solution is suitable for enterprise 

environments, but not for Cloud computing providers, where more reliable QoS and a 

comprehensive support for SLA are essential. 

8.3.3 Power and Performance Management via Lookahead Control  

Kusic et al. [58] have explored the problem of power and performance efficient resource 

management in virtualized computing systems. The problem is narrowed to dynamic provisioning 

of VMs for multi-tiered web-applications according to current workload (number of incoming 

requests). SLA for each application are defined as the request processing rate. The clients pay for 

the provided service and receive refund in case of violated SLA as a penalty to the resource 

provider. The objective is to maximize resource provider's profit by minimizing both power 

consumption and SLA violation. The problem is stated as a sequential optimization and addressed 

using Limited Lookahead Control (LLC). Decision variables to be optimized are the following: the 

number of VMs to provision to each service; the CPU share allocated to each VM; the number of 

servers to switch on or off; and a fraction of incoming workload to distribute across the servers 

hosting the service. 

The workload is assumed to be quickly changing, which means that resource allocations 

must be adapted over short time periods – "in order of tens seconds to a few minutes". Such 

requirement makes essential high performance of the optimization controller. The authors also 

incorporated in the model time delays and incurred costs for switching hosts and VMs on / off. 

Switching hosts on / off as well as resizing and dynamic consolidation of VMs via offline migration 

are applied as power saving mechanisms. However, DVFS is not performed due to low power 

reduction effect as argued by the authors.  

The authors have applied Kalman filter to estimate the number of future requests, which is 

used to predict future system state and perform necessary reallocations. The authors have provided 

a mathematical model for the optimization problem. The utility function is risk-aware and includes 

risks of "excessive switching caused by workload variability" as well as transient power-

consumption and opportunity costs. However, the proposed model requires simulation-based 

learning for the application specific adjustments: processing rate of VMs with different CPU shares 

must be known a priori for each application. This fact limits generality of the approach. Moreover, 

due to complexity of the model the optimization controller execution time reaches 30 minutes even 

for a small experimental setup (15 hosts), which is not suitable for large-scale real-world systems. 

The authors have applied neural networks to improve the performance; however, the provided 

experimental results are only for 10 hosts, and thus are not enough to prove the applicability of such 

a technique. The experimental results show that a server cluster managed using LLC saves 26% in 

the power consumption costs over a 24 hour period when compared to an uncontrolled system. 

Power savings are achieved with 1.6% SLA violations of the total number of requests. 
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8.3.4 Resource Allocation using Virtual Clusters 

Stillwell et al. [59] have studied the problem of resource allocation for HPC applications in 

virtualized homogeneous clusters. The objective is to maximize resource utilization, while 

optimizing user-centric metric that encompasses both performance and fairness, which is referred to 

as the yield. The idea is to design a scheduler focusing on a user-centric metric. The yield of a job is 

―a fraction of its maximum achievable compute rate that is achieved‖. A yield of 1 means that the 

job consumes computational resources at its peak rate.  

To formally define the basic resource allocation problem, the authors have assumed that an 

application requires only one VM instance; the application’s computational power and memory 

requirements are static and known a priori. The authors have defined a Mixed Integer Programming 

Model that describes the problem. However, the solution of the model requires an exponential time, 

and thus can be obtained only for small instances of the problem. The authors have proposed 

several heuristics to solve the problem and evaluated them experimentally across different 

workloads. The results show that that the multi-capacity bin packing algorithm that sorts tasks in 

descending order by their largest resource requirement outperforms or equals to all the other 

evaluated algorithms in terms of minimum and average yield, as well as failure rate. 

Subsequently, the authors have relaxed the stated assumptions and considered the cases of 

parallel applications and dynamic workloads. The researchers have defined a Mixed Integer 

Programming Model for the first case and adapted the previously designed heuristics to fit into the 

model. The second case allows migration of applications to address the variability of the workload, 

but the cost of migration is simplified and considered as a number of bytes required to transfer over 

network. To limit the overhead due to VM migration, the authors fix the amount of bytes that can be 

reallocated at one time. The authors have provided a Mixed Integer Programming Model for the 

defined problem; however, no heuristics have been proposed to solve large-scale problem instances. 

Limitations of the proposed approach are that no other system resources except for CPU are 

considered in the optimization and that the applications’ resource needs are assumed to be known a 

priori, which is not typical in practice. 

8.3.5 Multi-Tiered On-Demand Resource Scheduling 

Song et al. [60] have studied the problem of efficient resource allocation in multi-application 

virtualized data centers. The objective is to improve the utilization of resource leading to reduced 

energy consumption. To ensure the QoS, the resources are allocated to applications proportionally 

according to the applications’ priorities. Each application can be deployed using several VMs 

instantiated on different physical nodes. In resource management decisions only CPU and RAM 

utilizations are taken into account. In cases of limited resources, the performance of a low-priority 

application is intentionally degraded and the resources are allocated to critical applications. The 

authors have proposed scheduling at three levels: the application-level scheduler dispatches requests 

among application's VMs; the local-level scheduler allocates resources to VMs running on a 

physical node according to their priorities; the global-level scheduler controls the resource "flow" 

among applications. Rather than apply VM migration to implement global resource ―flow‖, the 

authors pre-instantiate VMs on a group of physical nodes and allocate fractions of total amount of 

resources assigned to an application to different VMs. 

The authors have presented a linear programming model for the resource allocation problem 

and heuristic for this model. They have provided the experimental results for three different 

applications running on a cluster: a web-application, a database and a virtualized office application 

showing that the approach allows satisfaction of the defined SLA. One of the limitations of the 

proposed approach is that it requires machine-learning to obtain the utility functions for 

applications. Moreover, it does not utilize VM migration to adapt the allocation in run-time. The 

approach is suitable for enterprise environments, where application can have explicitly defined 

priorities. 
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8.3.6 Shares and Utilities based Power Consolidation  

Cardosa et al. [61] have investigated the problem of power-efficient VM allocation in 

virtualized enterprise computing environments. They leverage min, max and shares parameters, 

which are supported by the most modern VM managers. Min and max allow the user to specify 

minimum and maximum of CPU time that can be allocated to a VM. Shares parameter determines 

proportions, in which CPU time will be allocated to VMs sharing the same resource. Such approach 

suits only enterprise environments, as it does not support strict SLA and requires the knowledge of 

the applications’ priorities.  

The authors provide a mathematical formulation of the optimization problem. The objective 

function to be optimized includes the power consumption and utility gained from execution of a 

VM, which is assumed to be known a priori. The authors provide several heuristics for the defined 

model and experimental results. A basic strategy is to pack all the VMs at their maximum resource 

requirements in a first-fit manner and leave 10% of a spare capacity to handle the future growth of 

the resource usage. The algorithm leverages heterogeneity of the infrastructure by sorting physical 

machines in increasing order of the power cost per unit of capacity. The limitations of the basic 

strategy are that it does not leverage relative values of different VMs, it always allocates a VM at its 

maximum resource requirements and uses only 90% of each server’s capacity. This algorithm has 

been used as the benchmark policy and improved throughout the paper eventually culminating in 

the recommended PowerExpandMinMax algorithm. In comparison to the basic policy, this 

algorithm uses the value of profit that can be gained by allocating an amount of resource to a 

particular VM. It leverages the ability to shrink a VM to min resource requirements when necessary 

and expand it when it is allowed by the spare capacity and can bring additional profit. The power 

consumption cost incurred by each physical server is deducted from the profit to limit the number of 

servers in use. 

The authors have evaluated the proposed algorithms on a range of large scale simulations 

and a small real data center testbed. The experimental results show that the PowerExpandMinMax 

algorithm consistently outperforms the other policies across a broad spectrum of inputs – varying 

VM sizes and utilities, varying server capacities and varying power costs. One of the experiments 

on a real testbed showed that the overall utility of the data center can be improved by 47%. A 

limitation of this work is that migration of VMs is not applied in order to adapt the allocation of 

VMs in run-time – the allocation is static. Another problem is that no other system resources except 

for CPU are handled by the model. Moreover, the approach requires static definition of the 

applications’ priorities that limits generality and applicability in real-world environments. 

8.3.7 pMapper: Power and Migration Cost Aware Application Placement 

Verma et al. [62] have investigated the problem of dynamic placement of applications in 

virtualized systems, while minimizing the power consumption and maintaining the SLA. To address 

the problem the authors have proposed the pMapper application placement framework. It consists of 

three managers and an arbitrator, which coordinates their actions and makes allocation decisions. 

Performance Manager monitors the applications’ behavior and resizes VMs according to current 

resource requirements and the SLA. Power Manager is in charge of adjusting hardware power states 

and applying DVFS. Migration Manager issues instructions for live migration of VMs in order to 

consolidate the workload. Arbitrator has a global view of the system and makes decisions about 

new placements of VMs and determines which VMs and on which nodes should be migrated to 

achieve this placement. The authors claim that the proposed framework is general enough to be able 

to incorporate different power and performance management strategies under SLA constraints. 

The authors have formulated the problem as a continuous optimization: at each time frame 

the VM placement should be optimized to minimize the power consumption and maximize the 

performance. They make several assumptions to solve the problem, which are justified by 

experimental studies. The first of them is the performance isolation, which means that a VM can be 
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seen by an application running on that VM as a dedicated physical server with the characteristics 

equal to the VM parameters. The second assumption is that the duration of a VM live migration 

does not depend on the background load, and the cost of migration can be estimated a priori based 

on the VM size and profit decrease caused by an SLA violation. Moreover, the solution does not 

focus on specific applications and can be applied to any kind of the workload. Another assumption 

is that the power minimization algorithm can minimize the power consumption without knowing 

the actual amount of power consumed by the application. 

The authors have presented several algorithms to solve the defined problem. They consider 

it as a bin packing problem with variable bin sizes and costs. The bins, items to pack and bin costs 

represent servers, VMs and power consumption of servers respectively. To solve the bin packing 

problem First-Fit Decreasing algorithm (FFD) has been adapted to work for differently sized bins 

with item-dependent cost functions. The problem has been divided into two sub-problems: in the 

first part, new utilization values are determined for each server based on the cost functions and 

required performance; in the second part, the applications are packed into servers to fill the target 

utilization. This algorithm is called min Power Packing (mPP). The first phase of mPP solves the 

cost minimization problem, whereas the second phase solves the application placement problem. 

mPP is also adapted to reduce the migration cost by keeping track of the previous placement while 

solving the second phase. This variant is termed mPPH. Finally, the placement algorithm has been 

designed that optimizes the power and migration cost trade-off (pMaP). A VM is chosen to be 

migrated only if the revenue due to the new placement exceeds the migration cost. pMap searches 

the space between the old and new placements and finds a placement that minimizes the overall cost 

(sum of the power and migration costs). The authors have implemented the pMapper architecture 

with the proposed algorithms and performed extensive experiments to validate the efficiency of the 

approach. The experimental results show that the approach allows saving about 25% of power 

relatively to the Static and Load Balanced Placement algorithms. The researchers suggest several 

directions for future work, such as consideration of memory bandwidth, more advanced application 

of idle states and extension of the theoretical prove of the problem. 

8.3.8 Resource Pool Management: Reactive Versus Proactive 

Gmach et al. [63] have studied the problem of energy-efficient dynamic consolidation of 

VMs in enterprise environments. The authors have proposed a combination of a trace-based 

workload placement controller and a reactive migration controller. The trace-based workload 

placement controller collects data on resource usage by VMs instantiated in the data center and uses 

this historical information to optimize the allocation, while meeting the specified quality of service 

requirements. This controller performs multi-objective optimization by trying to find a new 

placement of VMs that will minimize the number of server needed to serve the workload, while 

limiting the number of VM migrations required to achieve the new placement. The bound on the 

number of migrations is supposed to be set by the system administrator depending on the acceptable 

VM migration overhead. The controller places VMs according to their peak resource usage over the 

period since the previous reallocation, which is set to 4 hours in the experimental study. 

The reactive migration controller continuously monitors the resource utilization of physical 

nodes and detects when the servers are overloaded or underloaded.  In contrast to the trace-based 

workload placement controller, it acts based on the real-time data on resource usage and adapts the 

allocation in a small scale (every minute). The objective of this controller is to rapidly respond to 

fluctuations in the workload. The controller is parameterized by two utilization thresholds that 

determine overload and underload conditions. An overloading occurs when the utilization of CPU 

or memory of a server exceeds a given threshold. On the other hand, an underloading occurs when 

the CPU or memory usage averaged over all the physical nodes falls below a specified threshold. 

The threshold values are statically set depending on the performance analysis and quality of service 

requirements. 
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The authors have proposed several policies based on different combinations of the described 

optimization controllers with different utilization thresholds. The simulation-driven evaluation 

using three-months of real-world workload traces for 138 SAP applications has shown that the best 

results can be achieved by applying both optimization controllers simultaneously rather than 

separately. The best policy invokes the workload placement controller every 4 hours and when the 

servers are detected to be lightly utilized. The migration controller is executed in parallel to tackle 

overloading and underloading of servers when they occur. This policy provides minimal CPU 

violation penalties and requires 10-20% more CPU capacity than the ideal case. 

8.3.9 GreenCloud: Energy-Efficient and SLA-based Management Cloud Resources 

 Buyya et al. [64] have proposed the GreenCloud project aimed at development of energy-

efficient provisioning of Cloud resources, while meeting QoS requirements defined in SLA 

established through a negotiation between providers and consumers. The project has explored the 

problem of power-aware allocation of VMs in Cloud data centers for application services based on 

user QoS requirements such as the deadline and budget constraints [65]. The authors have 

introduced a real-time virtual machine model. Under this model, a Cloud provider provisions VMs 

for requested real-time applications and ensures meeting the specified deadline constraints.  

The problem is addressed at several levels. At the first level, a user submits a request to a 

resource broker for provisioning resources for an application consisting of a set of sub-tasks with 

specified CPU and deadline requirements. The broker translates the specified resource requirements 

into a request for provisioning VMs and submits the request to a number of Cloud data centers. The 

data centers return the price of provisioning VMs for the broker’s request if the deadline 

requirement can be fulfilled. The broker chooses the data center that provides the lowest price of 

resource provisioning. The selected data center’s VM provisioner allocates the requested VMs to 

the physical resources, followed by launching the user’s applications. The authors have proposed 

three policies for scheduling real-time VMs in a data center using DVFS to reduce the energy 

consumption, while meeting deadline constraints and maximizing the acceptance rate of 

provisioning requests. The Lowest-DVS policy adjusts the CPU’s P-state to the lowest level, 

ensuring that all the real-time VMs meet their deadlines. The δ-Advanced-DVS policy over-scales 

the CPU speed up to δ% to increase the acceptance rate. The Adaptive-DVS policy uses the M/M/1 

queueing model to calculate the optimal CPU speed if the arrival rate and service time of real-time 

VMs can be estimated in advance. 

The proposed approach has been evaluated via simulations using the CloudSim toolkit [70]. 

The simulations results have shown that δ -Advanced-DVS shows the best performance in terms of 

profit per unit of the consumed power, as the CPU performance is automatically adjusted according 

to the system load. The performance of Adaptive-DVS is limited by the simplified queueing model. 

9 Conclusions and Future Directions 
 

In recent years, energy efficiency has emerged as one of the most important design 

requirements for modern computing systems, such as data centers and Clouds, as they continue to 

consume enormous amounts of electrical power. Apart from high operating costs incurred by 

computing resources, this leads to significant emissions of carbon dioxide into the environment. For 

example, currently IT infrastructures contribute about 2% of total CO2 footprints. Unless energy-

efficient techniques and algorithms to manage computing resources are developed, IT’s contribution 

in the world’s energy consumption and CO2 emissions is expected to rapidly grow. This is 

obviously unacceptable in the age of climate change and global warming. In this chapter, we have 

studied and classified different ways to achieve power and energy efficiency in computing systems. 

The recent developments have been discussed and categorized over the hardware, operating system, 

virtualization and data center levels. 
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Efficient power management in computing systems is a well-known and extensively studied 

in the past problem. Intelligent management of resources may lead to significant reduction of the 

energy consumption by a system, while meeting the performance requirements. Relaxation of the 

performance constraints usually results in further decreased energy consumption. Efficient resource 

management is extremely important for servers and data centers comprising multiple computer 

nodes. In large-scale data centers the cost of energy consumed by computing nodes and supporting 

infrastructure (e.g. cooling systems, power supplies, PDU) can exceed the cost of the infrastructure 

itself in a few years. One of the most significant advancements that has facilitated further 

development in the area is the implementation of the DVFS capability by hardware vendors and 

subsequent introduction of ACPI. These technologies have enabled software control over the CPU’s 

power consumption traded for the performance. Managing power from this level is straightforward: 

the utilization of CPU is monitored, and its clock frequency and supply voltage pair is continuously 

adjusted to match current performance requirements. The maturity of this technique can be 

illustrated by the fact that widely spread Linux OS includes it as a kernel module. In this work we 

have classified and surveyed various approaches to control power consumption by the system from 

the OS level applying different power saving techniques and abstractions. The virtualization 

technology has advanced the area by introduction of a very effective power saving technique: 

consolidation of the workload in VMs to the minimal number of physical nodes and subsequent 

switching idle nodes off. Besides the consolidation, leading virtualization vendors (i.e. Xen, 

VMware) similarly to Linux OS implement continuous DVFS. 

The power management problem becomes more complicated when considered from the data 

center level. In this case the system is represented by a set of interconnected computing nodes that 

need to be managed as a single resource in order to minimize the energy consumption. Live and 

offline migrations of VMs offered by the virtualization technology have enabled the technique of 

dynamic consolidation of VMs according to current performance requirements. However, VM 

migration leads to time delays and performance overhead, requiring careful analysis and intelligent 

techniques to eliminate non-productive migrations that can occur due to the workload variation. We 

have classified and discussed a number of the proposed approaches to deal with the problem of 

energy-efficient resource management in virtualized and non-virtualized data centers. Common 

limitations of the most of the works are that no other system resource except for CPU are 

considered in the optimization; transition time for switching power states of the resource and VM 

migration overhead are not handled leading to performance degradation; VM migration is not 

applied to optimize the allocation in run-time. More generic solution suitable for a modern Cloud 

computing environment should comply with the following requirements: 

 

 Virtualization of the infrastructure to support hardware and software heterogeneity and 

simplify the resource provisioning. 

 Application of VM migration to continuously adapt the allocation and quickly respond 

to changes in the workload. 

 Ability to handle multiple applications with different SLA owned by multiple users. 

 Guaranteed meeting of the QoS requirements for each application. 

 Support for different kind of applications, mixed workloads. 

 Decentralization and high performance of the optimization algorithm to provide 

scalability and fault tolerance. 

 Optimization considering multiple system resources, such as CPU, memory, disk storage 

and network interface. 

 

For the future research work we propose the investigation of the following directions. First 

of all, due to the wide adoption of multi-core CPUs, it is important to develop energy-efficient 

resource management approaches that will leverage such architectures. Apart from the CPU and 

memory, another significant energy consumer in data center is the network interconnect 

infrastructure. Therefore, it is crucial to develop intelligent techniques to manage network resources 
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efficiently. One of the ways to achieve this for virtualized data centers is to continuously optimize 

network topologies established between VMs, and thus reduce network communication overhead 

and load of network devices.  Another direction for future work, which deals with low-level system 

design, is improvement of the power supplies efficiency, as well as development of hardware 

components that support performance scaling proportionally to power consumption. Reduction of 

the transition overhead caused by switching between different power states and VM migration 

overhead can greatly advance energy-efficient resource management and has to be also addressed 

by future research. Cloud federations comprising geographically distributed data centers have to be 

leveraged to improve the energy efficiency. Efficient workload distribution across geographically 

distributed data centers can enable the reallocation of the workload to a place where energy or 

cooling is cheaper (e.g. solar energy during daytime across different time zones, efficient cooling 

due to climate conditions). Other important directions are providing fine grained user’s control over 

power consumption / CO2 emissions in Cloud environments and support for flexible SLA 

negotiated between resource providers and users. Building on the strong foundation of prior works, 

new projects are starting to investigate advanced resource management and power saving 

techniques. Nevertheless, there are many open challenges that become even more prominent in the 

age of Cloud computing. 
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Appendix A. Operating system level research works. 

Project name Approach / algorithm 
Application 

adaptation 

System 

resources 

Target 

systems 
Goal 

Power 

saving 

techniques 

Workload Implementation 

The Ondemand 

Governor, Pallipadi 

and Starikovskiy [19] 

The OS continuously monitors 

the CPU utilization and sets the 

frequency and voltage according 

to performance requirements  

No  CPU Arbitrary  Minimize power 

consumption, 

minimize 

performance loss  

DVFS Arbitrary Part of Linux kernel 

ECOsystem, Zeng et 

al. [37] [38]  

The system determines overall 

amount of currentcy and 

distributes it between 

applications according to their 

priorities. Applications expend 

currentcy by utilizing the 

resources 

Applications must 

cooperate with the 

OS using power-

based API  

CPU, 

memory, 

disk 

storage, 

network 

interface  

Mobile 

systems 

Achieve target 

battery lifetime 

Resource 

throttling 

Arbitrary  Modified Linux 

kernel (introduced a 

new kernel thread 

kenrgd) 

Nemesis OS, 

Neugebauer and 

McAuley [39] 

Nemesis notifies applications if 

their energy consumption 

exceeds the threshold. The 

applications must adapt their 

behaviour according to the 

signals from the OS  

Applications must 

be able to adapt 

their behavior 

according to the 

signals from the 

OS 

CPU, 

memory, 

disk 

storage, 

network 

interface 

Mobile 

systems  

Achieve target 

battery lifetime 

Resource 

throttling  

Real-time 

applications 

New operating 

system, source 

codes are available 

to download 

GRACE, Sachs et al. 

[40] [41] 

Three levels of adaptation: 

global, per-application and 

internal. All the adaptation levels 

are coordinated to ensure 

adaptation effective across all 

levels 

Applications must 

be able to adapt 

their behavior 

according to the 

signals from the 

OS 

CPU, 

network 

interface 

Mobile 

systems 

Minimize energy 

consumption, 

satisfy 

performance 

requirements 

DVFS, 

resource 

throttling 

Real-time 

multimedia 

applications  

Extension of Linux 

OS  

Linux/RK, Rajkumar 

et al. [42] 

Proposed four alternative DVFS 

algorithms. Each is suitable for 

different system characteristics 

and is selected automatically by 

the system  

No CPU Real-

time 

systems  

Minimize energy 

consumption, 

satisfy 

performance 

requirements 

DVFS  Arbitrary  Real-time 

extensions to the 

Linux kernel  

Coda and Odyssey, 

Flinn and 

Satyanarayanan  [43] 

Coda implements application-

transparent adaptation in the 

context of a distributed file 

system. Odyssey implements 

application adaptation allowing 

adjustment of the resource 

Applications must 

be able to adapt 

their behavior 

according to the 

signals from the 

OS 

CPU, 

network 

interface 

Mobile 

systems  

Minimize energy 

consumption 

allowing 

application data 

degradation  

Resource 

throttling  

Multimedia 

applications 

Coda is 

implemented as a 

package for Linux, 

Odyssey is 

integrated into 

Linux 
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Project name Approach / algorithm 
Application 

adaptation 

System 

resources 

Target 

systems 
Goal 

Power 

saving 

techniques 

Workload Implementation 

consumption by the cost of 

output data quality 

PowerNap, Meisner et 

al. [44] 

Leveraging short idle periods in 

the resource utilization using fast 

transitions to system-wide low 

power states 

No System-

wide 

Server 

systems 

Minimize power 

consumption, 

minimize 

performance loss 

DCD Arbitrary Extension to Linux 

OS 

 

Appendix B. Data center level research works. 

Project name 
Virtua- 

lization 
Approach / algorithm 

System 

resources 

Target 

systems 
Goal 

Power 

saving 

techniques 

Workload Implementation 

Load Balancing 

and Unbalancing 

for Power and 

Performance in 

Cluster-Based 

System, Pinheiro 

et al. [21] 

No The system periodically monitors the load and 

decides which nodes should be turned on or off to 

minimize power consumption by the system, while 

providing expected performance. 

CPU, 

disk 

storage, 

network 

interface 

Homogeneous Minimize 

power 

consumption, 

minimize 

performance 

loss 

Server power 

switching 

Arbitrary Extension of 

Linux 

Managing energy 

and server 

resources in 

hosting centers, 

Chase et al. [52] 

No Economical framework: the system allocate 

resources in a way to maximize "profit" by 

balancing the cost of each resource unit against the 

estimated utility or "revenue" that is gained from 

allocating that resource unit to a service. Services 

"bid" for the resources in terms of volume and 

quality. The system maintains an active set of 

servers selected to serve requests for each service. 

Energy consumption is reduces by switching idle 

servers to power saving states. 

CPU Homogeneous  Minimize 

power 

consumption, 

minimize 

performance 

loss 

Workload 

consolidation, 

server power 

switching 

Web-

applications 

Extension of 

FreeBSD OS 

Energy-Efficient 

Server Clusters, 

Elnozahy et al. 

[20] 

No The system estimates total CPU frequency required 

to provide expected response time, determine the 

optimal number of physical nodes and set the 

proportional frequency on all the nodes. The 

thresholds define when it is appropriate to turn on 

an additional physical node or turn off an idle node. 

CPU Homogeneous Minimize 

energy 

consumption, 

satisfy 

performance 

requirements 

DVFS, server 

power 

switching 

Web-

applications  

Simulation 

Energy-aware No Applications are allocated to servers using a CPU, Heterogeneous Minimize Workload Online Simulation 
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Project name 
Virtua- 

lization 
Approach / algorithm 

System 

resources 

Target 

systems 
Goal 

Power 

saving 

techniques 

Workload Implementation 

Consolidation for 

Cloud 

Computing, 

Srikantaiah et al. 

[53] 

heuristic for multi-dimensional bin packing, 

resulting in the desired workload distribution across 

servers. If the request cannot be allocated, a new 

server is turned on and all requests are re-allocated 

using the same heuristic, in an arbitrary order.  

disk 

storage 

energy 

consumption, 

satisfy 

performance 

requirements 

consolidation, 

server power 

switching 

services 

Optimal Power 

Allocation in 

Server Farms, 

Gandhi et al. [54] 

No  Queueing theoretical model is used to predict the 

mean response time as a function of power-to-

frequency relationship, arrival rate, peak power 

budget, etc. The model also allows determining the 

optimal power allocation for every possible 

configuration of the above factors. 

CPU  Heterogeneous  Allocate the 

available power 

budget to 

minimize mean 

response time  

DVFS Web-

applications  

Simulation 

Environment-

Conscious 

Scheduling of 

HPC 

Applications, 

Garg et al. [55] 

No Five heuristics for scheduling HPC applications 

across geographically distributed Cloud data centers 

with the objective of minimization of energy 

consumption and carbon emissions, and 

maximization of the resource provider’s profit. 

CPU Heterogeneous Minimize 

energy 

consumption 

and CO2 

emissions, 

maximize profit 

DVFS, 

leveraging 

geographical 

distribution 

of data 

centers 

HPC 

applications 

Simulation 

VirtualPower: 

Coordinated 

Power 

Management in 

Virtualized 

Enterprise 

Systems, Nathuji 

and Schwan [56] 

Yes Hierarchical power management: at the local level 

the system coordinates and leverages power 

management policies of guest VMs at each physical 

machine; global policies are responsible for 

managing multiple physical machines and have 

knowledge about rack- or blade-level characteristics 

and requirements. 

CPU  Heterogeneous  Minimize 

energy 

consumption, 

satisfy 

performance 

requirements 

DFVS, soft 

scaling, VM 

consolidation, 

server power 

switching 

Arbitrary Extension of 

Xen 

Coordinated 

Multi-level 

Power 

Management for 

the Data Center, 

Raghavendra et 

al. [57] 

Yes A combination of five individual power 

management solutions that are coordinatively act 

across a collection of machines and dynamically re-

provision power across them  to meet the power 

budget. 

CPU Heterogeneous  Minimize 

power 

consumption, 

minimize 

performance 

loss, meet 

power budget  

DVFS, VM 

consolidation, 

server power 

switching 

Arbitrary  Combining and 

cooperation of 

five independent 

commercial 

solutions 

Power and 

Performance 

Management of 

Virtualized 

Computing 

Environments via 

Yes The behavior of each application is captured using 

simulation-based learning. A limited look-ahead 

control (LLC) is applied to estimate future system 

states over a prediction horizon using Kalman filter.  

CPU Heterogeneous  Minimize 

power 

consumption, 

minimize 

performance 

loss  

DVFS, VM 

consolidation, 

server power 

switching 

Online 

services  

VMware API, 

Linux shell 

commands and 

IPMI  
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Project name 
Virtua- 

lization 
Approach / algorithm 

System 

resources 

Target 

systems 
Goal 

Power 

saving 

techniques 

Workload Implementation 

Lookahead 

Control, Kusic et 

al. [58] 

Resource 

Allocation using 

Virtual Clusters, 

Stillwell et al. 

[59] 

Yes The authors have proposed several heuristics to 

solve the resource allocation problem and evaluated 

them experimentally across different workloads. 

The results show that that the multi-capacity bin 

packing algorithm that sorts tasks in descending 

order by their largest resource requirement 

outperforms or equals to all the other evaluated 

algorithms in terms of minimum and average yield, 

as well as failure rate. 

CPU Homogeneous Maximize 

resource 

utilization, 

satisfy 

performance 

requirements 

Resource 

throttling 

HPC 

applications 

Extension of 

Xen 

Multi-Tiered On-

Demand 

Resource 

Scheduling for 

VM-Based Data 

Cente, Song et al. 

[60] 

Yes Three scheduling levels: the application-level 

scheduler dispatches requests among application's 

VMs; the local-level scheduler allocates resources 

to VMs running on a physical node according to 

their priorities; the global-level scheduler controls 

the resource "flow" among applications. 

CPU, 

memory 

Heterogeneous Maximize 

resource 

utilization, 

satisfy 

performance 

requirements 

Resource 

throttling 

Arbitrary Extension of 

Xen 

Shares and 

Utilities based 

Power 

Consolidation in 

Virtualized 

Server 

Environments, 

Cardosa et al. 

[61] 

Yes The hypervisor distributes resources among VMs 

according to a sharing based mechanism, assuming 

that the minimum and maximum amounts of 

resources that can be allocated to a VM are 

specified. 

CPU Heterogeneous Minimize 

power 

consumption, 

minimize 

performance 

loss 

DFVS, soft 

scaling 

Arbitrary  Extension of 

VMware ESX 

pMapper: Power 

and Migration 

Cost Aware 

Application 

Placement in 

Virtualized 

Systems , Verma 

et al. [62] 

Yes The authors consider the problem as continuous 

optimization and address it using heuristics for the 

bin packing problem. Performance Manager 

monitors applications behavior and resize VMs 

according to current resource requirements and the 

SLA. Power Manager adjusts hardware power 

states and applies DVFS. Migration Manager issues 

instructions for live migration of VMs. Arbitrator 

makes decisions about new placements of VMs and 

determines VMs to migrate. 

CPU Heterogeneous Minimize 

power 

consumption, 

minimize 

performance 

loss 

DVFS, VM 

consolidation, 

server power 

switching 

Arbitrary  Extension of 

VMware ESX  
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Project name 
Virtua- 

lization 
Approach / algorithm 

System 

resources 

Target 

systems 
Goal 

Power 

saving 

techniques 

Workload Implementation 

Resource pool 

management: 

Reactive versus 

proactive, Gmach 

et al. [63] 

Yes The authors apply a combination of two 

optimization controllers: proactive global 

optimization using the workload placement 

controller and reactive adaptation using the 

migration controller. 

CPU, 

memory 

Heterogeneous Maximize 

resource 

utilization, 

satisfy 

performance 

requirements 

VM 

consolidation, 

server power 

switching 

Arbitrary Simulation 

GreenCloud: 

Energy-Efficient 

and SLA-based 

Management of 

Cloud Resources, 

Buyya et al. [64], 

[65] 

Yes The project has proposed energy-efficient 

provisioning of Cloud resources along with meeting 

users’ QoS requirements as defined in SLAs. The 

authors have developed heuristics for scheduling 

real-time VMs in Cloud data centers applying 

DVFS in order to minimize the energy consumption 

and deadline constraints of the applications. 

CPU Heterogeneous Minimize 

energy 

consumption, 

satisfy 

performance 

requirements 

Leveraging 

heterogeneity 

of Cloud data 

centers, 

DVFS 

HPC 

applications 

Simulation 
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