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Abstract 
 

As sensor network deployments begin to grow there emerges 

an increasing need to overcome the obstacles of connecting 

and sharing heterogeneous sensor resources. Common data 

operations and transformations exist in deployment scenarios 

which can be encapsulated into a layer of software services 

that hide the complexity of the underlying infrastructure from 

the application developer. NOSA is a built upon the Sensor 

Web Enablement (SWE) standard defined by the Open GIS 

Consortium (OGC), which is composed of a set of 

specifications, including SensorML, Observation & 

Measurement, Sensor Collection Service, Sensor Planning 

Service and Web Notification Service. It presents a reusable, 

scalable, extensible, and interoperable service oriented 

Sensor Web architecture that (i) conforms to the SWE 

standard; (ii) integrates Sensor Web with Grid Computing 

and (iii) provides middleware support for Sensor Webs. 
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1. INTRODUCTION 
 

Sensor networks are persistent computing systems composed 

of large numbers of sensor nodes. Sensor nodes communicate 

with one another over wireless low-bandwidth links and have 

limited processing capacity. Sensor nodes work together to 

collect information about their surrounding environment, this 

may include things like temperature, light intensity or GPS 

location. As sensor networks grow and rapidly improve in 

their ability to measure real-time information in an accurate 

and reliable fashion, a new research challenge, on how to 

collect and analyze this generated information presents itself. 

Deployment scenarios for sensor networks are countless and 

diverse, sensors may be used for military applications, 

weather forecasting, tsunami detection, pollution detection, 

for power management in schools and office buildings. In 

many of these cases the software management tools for data 

aggregation, archiving and decision making are tightly 

coupled with the application scenario. However, as sensor 

systems begin to grow and mature a set of common data 

operations and transformations begin to emerge. For example, 

all application scenarios will need to send queries to a sensor 

network and retrieve some resulting data. Some scenarios 

may require information from historic queries be stored in a 

repository for further analysis. Others may require regular 

queries to be scheduled and automatically dispatched without 

external operator intervention. There is a growing need to 

share resources among diverse network deployments to aid in 

tasks like decision making. For example, a tsunami warning 

system may rely on water level information from two 

geographically distributed sets of sensors developed by 

competing hardware vendors. This presents significant 

challenges in resource interoperability, fault tolerance and 

software reliability.  

In NICTA Open Sensor Web Architecture (NOSA), we aim 

to implement a set of uniform operations and a standard 

representation for sensor data which will fulfill the software 

needs of a sensor network regardless of the deployment 

scenario. We adopt a Service Orientated Architecture (SOA) 

approach to describe, discover and invoke services from a 

heterogeneous platform using XML and SOAP standards. 

Services are defined for common operations including data 

aggregation, scheduling, resource allocation and resource 

discovery. Combing sensors and sensor networks with a SOA 

is an important step forward in presenting sensors as 

important resources which can be discovered, accessed and 

where applicable, controlled via the World Wide Web. We 

refer to this combination of technologies as the Sensor Web. 

It opens up the opportunity for linking geographically 

distributed sensor and computational resources into a sensor-

grid. 
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Fig. 1: Vision of the Sensor Web. 

Fig. 1 demonstrates an abstract vision of the Sensor Web, 

various sensors and sensor nodes form a web view and are 

treated as available services to all the users who access the 

Web. A researcher may wish to predict if a tsunami is going 

to occur, they may query the entire Sensor Web and retrieve 



the response either from real-time sensors that have been 

registered on the Web or from historic sensor data available in 

a remote database. The clients are not aware of where the real 

sensors are and what operations they may have, although they 

are required to set parameters for their plan and invoke the 

service.  

In Section 2 we describe the OGC Sensor Web Enablement 

(SWE) method, Section 3 introduces the Service-Orientated 

Architecture, and Section 4 details the Design and 

Implementation behind NOSA, including detailed sections on 

the core implemented services including the Sensor 

Collection Service (SCS), Sensor Planning Service (SPS) and 

Web Notification Service (WNS). Section 5 provides a 

detailed performance evaluation of NOSA. 

 

2. OGC SENSOR WEB ENABLEMENT 

 

Sensor network applications have been successfully 

developed and deployed around the world. Concrete examples 

include deployments on Great Duck Island [3], Cane-toad 

monitoring [4] and for Soil Moisture Monitoring [5].  

However, lack of software interoperability prevents users 

from accessing resources generated by these applications 

without specialized tools. Moreover, lack of semantics to 

describe the sensors makes it impossible to build a uniform 

registry to discover and access these sensors. In addition, 

internal information is often tightly coupled with the specific 

deployment application rather than making use of standard 

data representations, this restricts the ability for mining and 

analyzing the data for decision making. 

Imagine hundreds of in-site or remote weather sensors 

providing real-time measurements of current wind and 

temperature conditions for multiple metropolitan regions. A 

weather forecast application may request and present the 

information directly to end-users or other data acquisition 

components. A collection of Web-based services may be 

involved in order to maintain a registry of available sensors 

and their features. Also consider that the same Web 

technology standard for describing the sensors, outputs, 

platforms, locations and control parameters is in use beyond 

the boundaries of regions or countries. This enables the 

interoperability necessary for cross-organization activities, 

and it provides a big opportunity in the market for customers 

to receive a higher quality of service. These needs drive the 

Open Geospatial Consortium (OGC) [1] to develop the 

geospatial standards that will make the "open sensor web" 

vision a reality [2]. 

In general, SWE is the standard developed by OGC that 

encompasses specifications for interfaces, protocols and 

encodings that enable discovering, accessing, obtaining 

sensor data as well as sensor-processing services. The 

following are the five primary specifications for SWE: 

1. Sensor Model Language (SensorML) [7] – Information 

model and XML encodings that describe either a single 

sensor or sensor platform in regard to discovery, query 

and control of sensors. 

2. Observation and Measurement (O&M) [14] – 

Information model and XML encodings for observations 

and measurement. 

3. Sensor Collection Service (SCS) [17] – Service to fetch 

observations, which conform to the O&M information 

model, from a single sensor or a collection of sensors. It 

is also used to describe the sensors and sensor platforms 

by utilizing SensorML 

4. Sensor Planning Service (SPS) [18] – Service to help 

users build a feasible sensor collection plan and to 

schedule requests for sensors and sensor platforms. 

5. Web Notification Service (WNS) [19] – Service to 

manage client sessions and notify the client about the 

outcome of the requested service using various 

communication protocols. 

 
Fig. 2: A typical collaboration within Sensor Web Enablement 

Framework. 

As [6] stated, the purpose of SWE is to make all types of 

web-resident sensors, instruments and imaging devices, as 

well as repositories of sensor data, discoverable, accessible 

and, where applicable, controllable via the World Wide Web. 

In other words, the goal is to enable the creation of Web-

based sensor networks. Fig. 2 demonstrates a typical 

collaboration between services and data encodings of SWE. 

 

3. SERVICE-ORIENTED SENSOR WEB 
 

NICTA Open Sensor Web Architecture (NOSA) is an OGC 

SWE standard compliant software infrastructure for providing 

service based access to and management of sensors. NOSA is 

a platform for integration of sensor networks and emerging 

distributed computing platforms such as SOA and Grid 

Computing. The integration brings several benefits to the 

community. First, the heavy load of information processing 

can be moved from sensor networks to the backend 

distributed systems such as Grids. This separation is 

beneficial because it reduces the energy and power needed by 

the sensors, allowing them to concentrate on sensing and 

sending information. The information processing and fusing 

is performed on a separate distributed system. Moreover, 

individual sensor networks can be linked together as services, 

which can be registered, discovered and accessed by different 



clients using a uniform protocol. As [8] stated, Grid-based 

sensor applications are capable of providing advanced 

services for smart-sensing by developing scenario-specific 

operators at runtime. 

The various components defined for NOSA are showed in 

Fig. 3. Four layers have been defined, namely Fabric, 

Services, Development and Application. Fundamental 

services are provided by low-level components whereas 

higher-level components provide tools for creating 

applications and management of the lifecycle of data captured 

through sensor networks. NOSA provides the following 

sensor services: 

1. Sensor notification, collection and observation; 

2. Data collection, aggregation and archival; 

3. Sensor co-ordination and data processing; 

4. Faulty sensor data correction and management, and; 

5. Sensor configuration and directory service 
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Fig. 3: High-level view of NICTA Open Sensor Web Architecture. 
Besides the core services derived from the SWE, such as the 

SCS, SPS and WNS, there are several other important 

services in the service layer. The Sensor Directory Service 

provides the capability of searching for and registering remote 

services and resources. The Sensor Coordination Service 

enables the interaction between groups of sensors, which 

monitor different kinds of events. The Sensor Data Grid 

Service publishes and maintains replicas of sensor data 

collected from sensor deployments. The Sensor Grid 

Processing Service collects the sensor data and processes it 

utilizing grid services. The development layer focuses on 

providing useful tools in order to ease and accelerate the 

development of sensor applications.  

NOSA mainly focuses on providing an interactive 

development environment, an open and standards-compliant 

Sensor Web services middleware and a coordination language 

to support the development of various sensor applications. 

SWE only provides the principle standard of how the Sensor 

Web looks, and does not have any reference implementation 

or working system available to the community; therefore, 

there are many design issues to consider, including all of the 

common issues faced by other distributed systems such as 

security, multithreading, transactions, maintainability, 

performance, scalability and reusability, and the technical 

decisions that need to be made about which alternative 

technologies are best suitable to the system. Fig. 4 depicts a 

prototype instance of NOSA, the implementation concentrates 

on the Service Layer and Sensor Layer as well as the XML 

encoding and the communication between the sensors and 

sensor networks. The following section will describe the key 

technologies that are relevant to different layers of NOSA. In 

addition, the design and implementation of the core services 

are presented in this section. 
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Fig. 4: A prototype instance of NOSA 

 

 

4. DESIGN AND IMPLEMENTATION 
 

Currently, the primary design and implementation of NOSA 

focuses on the core services including SCS, WNS, and SPS 

(which extend from the SWE) as well as the Sensor 

Repository Service (SRS) that provides a persistent data 

storage mechanism for the sensor and the observation data. 
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Fig. 5: A typical invocation for Sensor Web client.  

Fig. 5 illustrates an example of a client collection request and 

the invocations between relating services. As soon as the end 

user forwards an observation plan to the SPS, the service 

checks the feasibility of the plan and submits it if feasible. 

The user will be registered in the WNS during this process 

and the user id will return to the SPS. The SPS is responsible 

for creating the observation request according to user’s plan 

and retrieving the O&M encoded data from the SCS. Once 

the O&M data is ready, the SPS will send an operation 



complete message to the WNS along with the user id and task 

id. The WNS will then notify the end user to collect the data 

via email or other protocols it supports. 

The following sections describe in detail the core set of 

implemented services implemented in NOSA, namely the 

SCS, SPS and WNS. 
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Fig. 6: Sensor Collection Service Architecture. 

A. Sensor Collection Service 

Within the core services of NOSA, the SCS is one of the most 

important components residing in the service layer. The SCS 

is the fundamental and unique component that communicates 

directly with sensor networks, it is responsible for collecting 

real time sensing data and then translating the resulting raw 

information into a XML based O&M encoding for other 

services to utilize and process. The SCS is the gateway for 

entering into the sensor networks from outside clients. The 

design of the SCS provides an interface to both streaming 

data and query based sensor applications that are built on top 

of TinyOS [9] and TinyDB [10] respectively. Fig. 6 illustrates 

the architecture of the SCS. The service conforms to the 

interface definition that is described by the OGC SCS 

Specification and has been designed as a Web Service which 

works by connecting via a proxy to either real sensors or a 

remote repository database. Clients need to query the Sensor 

Registry Service to retrieve an available SCS WSDL address 

a data query request is then sent via SOAP to the SCS in 

order to obtain the resulting encoded observation data 

conforming to the O&M specification.  

The proxy acts as an agent working with various connectors 

that connect to the resources holding the information and 

which encode the raw observation into O&M compatible 

data. Different types of connectors have been designed to fit 

into different types of resources including sensor networks 

running on top of TinyOS or TinyDB and remote observation 

data archives. The proxy needs to process the incoming 

messages from the client in order to determine what kind of 

connectors, either real-time based or archive based, to use. 

The design of the SCS is flexible and makes it simple to 

extend for further development if alternative sensor operating 

systems are adopted by the sensor networks, these may 

include MANTIS [11] or Contiki [12]. Besides a sensor 

operating system specific connector no modifications need to 

be made in the current system. The design of the proxy also 

encourages the implementation of a cache mechanism to 

improve the scalability and performance of the SCS. Load 

balancing mechanisms can be added to the system easily as 

well, by simply deploying the web service to different 

servers.  
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Fig. 7: Sensor Planning Service Architecture. 

B. Sensor Planning Service 

The design of the SPS considers both the short-term and long-

term requirements of the user’s plan, which means that the 

SPS must provide response to the user immediately, rather 

than blocking to wait for the collection results. Shown in the 

Fig. 7, the SPS utilizes a rule engine which reads a specific 

set of predefined rules in order to clarify the feasibility of the 

plan made by the user. The implementation of the rule engine 

can be quite complicated, expecting the system to accept rules 

within a configuration file as plain text, XML-based or other 

types of rule-based languages. Currently, the rule engine is 

implemented as an abstract class that can be extended by the 

application developers to specify a set of boundary conditions 

that define the feasibility of the applications. For example, in 

a simple temperature application, a boundary condition for 

the temperature may be a range from 0 to 100. The most 

important component that makes the SPS suitable for short or 

long term plan execution is the Scheduler which is 

implemented as a separate thread running in the background. 

The execution sequence of the Scheduler is as following; (i) 

the scheduler composes a collection request according to 

user’s plan and then invokes the getObservation call on the 

SCS, (ii) it  asks the DataCollector to store the resulting 

observation data for users to collect afterward, and (iii) sends 

notification to the WNS indicating the outcome of the 

collection request. The time of the execution in the scheduler 

varies based on the requirements of the user’s plan. The client 

receives a response indicating that ther plan will be processed 

right after the plan is submitted to the SPS. The scheduler 

deals with the remaining time consuming activities. The client 

may get the notification from the WNS as soon as the WNS 

receives a message from the scheduler, the client can then 

collect results from the DataCollector. 

C. Web Notification Service 

The current design of WNS is displayed in Fig. 8, it contains 

two basic components: AccountManager and Notification. 



The SPS may request to register users via WNS, which asks 

the AccountManager to manage the user account in the 

DBMS in order to retrieve user information in the subsequent 

operations. The Notification is used to create a specific 

communication protocol and send the messages via the 

protocol to the user that has been registered in the DBMS. 

Currently, an EmailCommunicationProtocol has been 

implemented to send messages via email. Further 

implementations can be easily plugged into the existing 

architecture by implementing the CommunicationProtocol 

interface with a send method. 
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Fig. 8: Web Notification Service Architecture. 

 

5. PERFORMANCE EVALUATION 

 

 The experiment platform for the services was built on 

TOSSIM (described by [15] as a discrete event simulator that 

can simulate thousands of motes running complete sensor 

applications and allow a wide range of experimentation) and 

Crossbow’s MOTE-KIT4x0 MICA2 Basic Kit [16] which 

consists of 3 Mica2 Radio boards, 2 MTS300 Sensor Boards, 

a MIB510 programming and serial interface board. The 

experiment concentrated on the SCS, due to the fact that it is 

the gateway for other services to sensors, which would be the 

most heavily loaded service and possible bottleneck for the 

entire system.  

 
Fig. 9: Deployment of Experiment 

Fig. 9 illustrates the SCS as deployed on Apache Tomcat 5.0 

server running on two different machines, one of which is 

hosting the TinyDB application under TOSSIM and the other 

the Temperature Monitoring application under Crossbow’s 

motes. A Sensor Registry Service is also configured on a 

separate machine that provides the functionality to access the 

sensor registry and data repository. 

A simple temperature monitoring application has been 

developed. The application is programmed using nesC [13] 

and uses simple logic, which broadcasts the sensing 

temperature, light and node address to the sensor network at 

regular intervals. The simple application does not consider 

any multi-hop routing or energy saving mechanisms. Before 

installing the application on the Crossbow motes, the 

functionality is verified under the TOSSIM simulator. Once 

the application has been successfully installed onto each mote 

via the programming board, a wireless sensor network is 

setup using the two nodes and one base station connecting to 

the host machine via the serial cable. Besides installing the 

application itself, the SerialForwarder program also needs to 

run on the host machine in order to forward the data from the 

sensor network to the server. Fig. 10 displays the results 

retrieved by a client from the SCS interfaced with the 

temperature monitoring application. The light intensity level 

is illustrated by the graph plot; two individual sensors each 

take recordings at 100ms intervals. Recordings from sensor 

one are illustrated in the top half of the window and sensor 

two on the bottom half. A change in the graph plot indicates a 

variance in the incoming light intensity for each sensor. The 

left-hand-side column contains SensorML descriptions of the 

sensors retrieved by the client from the SCS. 

 
Fig. 10: Client showing visualization of results received from 

temperature monitoring application called from SCS 



Regarding scalability, a simulation program that can stimulate 

a varying number of clients running simultaneously has been 

used exclusively for the SCS. The performance measured by 

time variable (per second) for both auto-sending and query-

based applications running on top of TinyOS is displayed in 

the following figures. Fig. 11 displays the result of the auto-

sending mode application; the response time is moderate 

when the number of clients who request the observation 

simultaneously is small. Even when the number of clients 

reaches 500; the response time for a small number of records 

is also acceptable. In contrast, the result show in Fig. 12 is 

fairly unacceptable as even just one client requesting a single 

observation takes 34 seconds. The response time increases 

near linearly when the number of clients and the number of 

records increase. The reason why the query-based approach 

has very poor performance is due to the execution mechanism 

of TinyDB. A lot of time is spent on initializing each mote, 

and the application can only execute one query at one time, 

which means another query needs to wait until the current 

query has completed or is terminated. A solution to this 

problem may require the TinyDB application to run a generic 

query for all clients, and the more specific query can be 

executed in-memory according to the observation data 

collected from the generic query. There are several possible 

ways to enhance the performance. A caching mechanism may 

be one of the possible approaches, recently collected 

observation data can be cached in a proxy for a limited time 

period, such that clients requesting the same set of 

observation data can simply read it from the cache. Response Time for collecting real-time data0100200300400
Number of ClientsSecond 1 record10 records20 records1 record 2.047 2.097 3.569 22.90410 records 12.14 16.29 27.032 173.4820 records 24.52 32.904 54.602 354.861 5 50 500

 
Fig. 11: Performance for collecting auto-sending data. Response Time for collecting TinyDB query data0200400600

Number of ClientsSecond 1 record10 records20 records1 record 34.2635 164.3177510 records 76.5 395.27252520 records 96.05 492.211 5
 

Fig. 12: Performance for collecting TinyDB query data. 

However, as the data should be kept as close to real time as 

possible, it is rather difficult to accurately determine the 

period of time for the cache to be valid. An approximate 

decision can be made according to the dynamic features of the 

information the application is targeting. For example, the 

temperature for a specific area may not change dynamically 

by minutes or by hours. Consequently, the time period for 

setting the cache for each sensor application can vary based 

on the information the sensor is targeting. Enhancement of 

query performance may be achieved by utilizing the XQuery 

of the XML data directly as opposed to querying the real 

sensor itself and executing the query in a similar fashion to 

TinyDB. 

 

6. CONCLUSION 
 

NOSA is an implementation of OGC SWE standard which 

standardizes the vision of Sensor Web. SensorML, O&M, 

SCS, SPS and WNS are coupled together, to create an 

integrated platform for registering, discovering and accessing 

heterogeneous distributed sensors using Web Services. We 

have introduced the design and implementation of the core 

services in NOSA. In future work we aim to extend NOSA 

beyond the SWE and provide additional services for 

processing information collected from sensor resources 

accompanied by computational grids. We have detailed the 

scalability and performance of the prototype SCS which 

forms the backbone of the core services. The development of 

NOSA is still in its early stages. Future works include 

implementing all methods described in the specifications of 

SWE services but which are not available currently, a caching 

mechanism for the SCS and extension of notification 

protocols for the WNS. 
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