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Abstract

The use of High Performance Computing (HPC) in commercial and consumer IT
applications is becoming popular. They need the ability to gain rapid and scalable
access to high-end computing capabilities. Cloud computing promises to deliver
such a computing infrastructure using data centers so that HPC users can access
applications and data from a Cloud anywhere in the world on demand and pay
based on what they use. However, the growing demand drastically increases the
energy consumption of data centers, which has become a critical issue. High en-
ergy consumption not only translates to high energy cost, which will reduce the
profit margin of Cloud providers, but also high carbon emissions which is not en-
vironmentally sustainable. Hence, energy-efficient solutions are required that can
address the high increase in the energy consumption from the perspective of not
only Cloud provider but also from the environment. To address this issue we pro-
pose near-optimal scheduling policies that exploits heterogeneity across multiple
data centers for a Cloud provider. We consider a number of energy efficiency fac-
tors such as energy cost, carbon emission rate, workload, and CPU power efficiency
which changes across different data center depending on their location, architectural
design, and management system. Our carbon/energy based scheduling policies are
able to achieve on average up to 30% of energy savings in comparison to profit based
scheduling policies leading to higher profit and less carbon emissions.
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1 Introduction

During the last few years, the use of High Performance Computing (HPC) in-
frastructure to run business and consumer based IT applications has increased
rapidly. This is evident from the recent Top500 supercomputer applications
where many supercomputers are now used for industrial HPC applications,
such as 9.2% of them are used for Finance and 6.2% for Logistic services [1].
Thus, it is desirable for IT industries to have access to a flexible HPC infras-
tructure which is available on demand with minimum investment. Cloud com-
puting [2] promises to deliver such reliable services through next-generation
data centers 1 built on virtualized compute and storage technologies. Users are
able to access applications and data from a “Cloud” anywhere in the world on
demand and pay based on what they use. Hence, Cloud computing is a highly
scalable and cost-effective infrastructure for running HPC applications which
requires ever-increasing computational resources [3].

However, Clouds are essentially data centers which require high energy 2 usage
to maintain operation [4]. Today, a typical data center with 1000 racks need
10 Megawatt of power to operate [5]. High energy usage is undesirable since it
results in high energy cost. For a data center, the energy cost is a significant
component of its operating and up-front costs [5]. Therefore, Cloud providers
want to increase their profit or Return on Investment (ROI) by reducing their
energy cost. Many Cloud providers are thus building different data centers
and deploying them in many geographical location not only to expose their
cloud services to business and consumer applications, e.g. Amazon [6] but also
to reduce energy cost, e.g. Google [7].

In April 2007, Gartner estimated that the Information and Communication
Technologies (ICT) industry generates about 2% of the total global CO2
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emissions, which is equal to the aviation industry [8]. As governments impose
carbon emissions limits on the ICT industry like in the automobile industry
[9][10], Cloud providers must reduce energy usage to meet the permissible
restrictions [11]. Thus, Cloud providers must ensure that data centers are
utilized in a CO2-efficient manner to meet scaling demand. Otherwise, building
more data centers without any carbon consideration is not viable since it is not
environmentally sustainable and will ultimately violate the imposed carbon
emissions limits. This will in turn affect the future widespread adoption of
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Cloud computing, especially for the HPC community which demands scalable
infrastructure to be delivered by Cloud providers. Companies like Alpiron[12]
already offer software for cost-efficient server management and promise to
reduce energy cost by analyzing, via advanced algorithms, which server to
shutdown or turn on during the runtime.

Motivated by this practice, this paper enhances the idea of cost-effective man-
agement by taking both the aspects of economic (profit) and environmental
(carbon emissions) sustainability into account. In particular, we aim to exam-
ine how a Cloud provider can achieve optimal energy sustainability of run-
ning HPC workloads across its entire Cloud infrastructure by harnessing the
heterogeneity of multiple data centers geographically distributed in different
locations worldwide. Computer Power Consumption Index
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Fig. 1. Computer Power Consumption Index (Source: [13])

The analysis of previous work shows that little investigation has been done for
both economic and environmental sustainability to achieve energy efficiency
on a global scale as in Cloud computing. First, previous work has generally
studied how to reduce energy usage from perspective of reducing cost, but not
how to improve the profit while reducing the carbon emissions which is also
significantly impacting the cloud providers [14]. Second, most previous work
has focused on achieving energy efficiency at a single data center location,
but not across multiple data center locations. However, Cloud providers such
as Amazon EC2 [15] typically has multiple data centers distributed world-
wide. As shown in Figure 1, the energy efficiency of an individual data center
in different locations changes dynamically at various times depending on the
number of factors such as energy cost, carbon emission rate, workload, CPU
power efficiency, cooling system, and environmental temperature. Thus, these
different contributing factors can be considered to exploit the heterogene-
ity across multiple data centers for improving the overall energy efficiency of
the Cloud provider. Third, previous work has mainly proposed energy-saving
policies that are application-specific [16][17], processor-specific [18][19], and/or
server-specific [20][21]. But, these policies are only applicable or most effective
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for the specific models that they are specially designed for. Hence, we pro-
pose some simple, yet effective generic energy-efficient scheduling policies that
can be extended to any other application model, processor and server models
so that they can be readily deployed in existing data centers with minimum
changes. Our generic scheduling policies within a data center can also eas-
ily complement any of these application-specific, processor-specific, and/or
server-specific energy-saving policies that are already in place within existing
data centers or servers.

The key contributions of this paper are:

(1) A novel mathematical model for energy efficiency based on various con-
tributing factors such as energy cost, CO2 emission rate, HPC workload,
and CPU power efficiency.

(2) The near-optimal energy-efficient scheduling policies which not only min-
imizes the CO2 emissions and maximizes the profit of the Cloud provider,
but also can be readily implemented without much infrastructure changes
such as the relocation of existing data centers.

(3) Energy efficiency analysis of our proposed policies (in terms of CO2 emis-
sions and profit) through extensive simulations using real HPC workload
traces and data center CO2 emission rates and energy costs to demon-
strate the importance of considering various contributing factors.

(4) The analysis of lower/upper bounds of the optimization problem
(5) A novel Dynamic Voltage Scaling (DVS) based approach for scheduling

HPC applications within a data center which can reduce energy consump-
tion by about 30%.

The paper is organized as follows. Wection 2 the related work focusing on
energy efficiency or cost- and market-based schedulers are briefly described.
Section 3 defines the Cloud Computing scenario and the problem description.
In Section 4 different kind of policies for allocating efficiently applications
on machines are scrutinized. Section 5 explains the evaluation methodology
and simulation setup for the energy sustainability analysis of various policies
followed by the analysis of the results in Section 6. Section 7 presents the
conclusion and future work.

2 Related Work

Many research work address energy-efficient computing for servers [4]. The
most relevant to the context of Cloud computing are the following:

• Cluster Servers: Bradley et al. [22] proposed algorithms to minimize the
power utilization by using workload history and predicting future workload
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within acceptable reliability. Chen et al. [23] simulated a cluster using both
predictive queuing models and feedback controllers to derive frequency ad-
justments for web serving clusters over control intervals lasting several min-
utes. Lawson and Smirni [24] proposed an energy saving scheme that dynam-
ically adjusts the number of CPUs in a cluster to operate in “sleep” mode
when the utilization is low. Kim et al. [21] proposed power-aware schedul-
ing algorithms for bag-of-tasks applications with deadline constraints on
DVS-enabled cluster systems. Wang and Lu [20] presented a threshold-based
approach for efficient power management of a single heterogeneous soft real-
time cluster. Tesauro et al. [25] presented an application of batch reinforce-
ment learning combined with nonlinear function approximation to optimize
multiple aspects of data center behavior such as performance, power, and
availability.
• Virtualized Servers: Nathuji and Schwan [26] integrated power manage-

ment mechanisms and policies with virtualization technologies to reduce
power consumption for web workloads. Verma et al. [27] proposed the place-
ment of applications on heterogeneous virtualized servers based on power
and migration cost. Cardosa et al. [28] exploited the minimum-maximum
resource partitions and shares features in Virtual Machine (VM) technology
to manage power in a data center.

These solutions target to save energy within a single server or a single data
center (with many servers) in a single location. Since our generic scheduling
policy improves the energy efficiency across data centers in multiple locations
with different carbon emission rates, it can be used in conjunction with these
solutions to utilize any energy efficiency already implemented in a single loca-
tion.

There are some studies on energy efficiency in Grids, which comprise resource
sites in multiple locations similar to our scope. Orgerie et al. [29] proposed
a prediction algorithm to reduce power consumption in large-scale compu-
tational grids such as Grid5000 by aggregating the workload and turning off
unused CPUs. Hence, they do not consider using DVS to save power for CPUs.
Patel et al. [30] proposed allocating Grid workload on a global scale based on
the energy efficiency at different data centers. But, their focus is on reduc-
ing temperature, and thus do not examine how energy consumption can be
reduced by exploiting different power efficiency of CPUs, energy costs, and
carbon emission rates across data centers. In addition, they do not focus on
any particular workload characteristics, whereas we focus on HPC workload.

Most previous work focuses on reducing energy consumption in data centers
for web workloads [20][23]. Thus, they assume that energy is an increasing
function of CPU frequency since web workloads have the same execution time
per request. However, HPC workloads have different execution time depend-
ing on specific application requirements. Hence, the energy-CPU frequency
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relationship of a HPC workload is significantly different from that of a web
workload as discussed in Section 4.2. Therefore, in this paper, we define a
generalized power model and adopt a more general strategy to scale up or
down the CPU frequency.

Not many research work studies the energy sustainability issue from an eco-
nomic cost perspective. To address energy usage, Chase et al. [31] adopted an
economic approach to manage shared server resources in which services “bid”
for resources as a function of delivered performance. Burge et al. [32] scheduled
tasks to heterogeneous machines and made admission decisions based on the
energy costs of each machine to maximize the profit in a single data center.
None of these research work studies the critical relationship between CO2
emissions (environmental sustainability) and profit (economic sustainability)
for the energy sustainability issue, and how they can affect each other. On
the other hand, we examine how the carbon emissions can be reduced for
executing HPC applications with negligible effect on the profit of the Cloud
provider.

Market-oriented meta-schedulers [33] have been proposed to consider cost con-
straints. Kumar et al. [34] optimizes the assignment of applications by maxi-
mizing the business value with respect to the time and cost of users. Garg et
al. [35] examines how parallel applications can be executed most economically
in the minimum time by managing the trade-off between time and cost con-
straints. However, none of these meta-schedulers aims to reduce CO2 emissions
for environmental sustainability, in addition to meeting cost objectives.

3 Meta-scheduling Model

3.1 System Model

Our system model is based on the Cloud computing environment, whereby
Cloud users are able to tap the computational power offered by the Cloud
providers to execute their HPC applications. The Cloud meta-scheduler acts
as an interface to the Cloud infrastructure and schedules applications on the
behalf of users as shown in Figure 2. It interprets and analyzes the service re-
quirements of a submitted application and decides whether to accept or reject
the application based on the availability of CPUs. Its objective is to schedule
applications such that the CO2 emissions can be reduced and the profit can
be increased, while the Quality of Service (QoS) requirements of the applica-
tions are met. As data centers are located in different geographical regions,
they have different CO2 emission rates and energy costs depending on regional
constraints. Each data center is responsible for updating this information to
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Fig. 2. Cloud meta-scheduling protocol

the meta-scheduler for energy-efficient scheduling. The two participating par-
ties, Cloud users and Cloud providers, are discussed below along with their
objectives and constraints:

(1) Cloud Users: The Cloud users need to run HPC applications/workloads
which is compute-intensive and thus require parallel and distributed pro-
cessing to significantly reduce the processing time. The users submit par-
allel applications with QoS requirements to the Cloud meta-scheduler.
Each application must be executed in an individual data center and does
not have preemptive priority. The reason for this requirement is that the
synchronization among various tasks of parallel applications can be af-
fected by communication delays when applications are executed across
multiple data centers. The user’s objective is to have their application
completed by a deadline. Deadlines are hard, i.e., the user will bene-
fit from the HPC resources only if the application completes before its
deadline [36]. To facilitate the comparison between the policies described
in this work, the estimated execution time of an application provided by
the user is considered to be accurate [37]. Several models, such as those
proposed by Sanjay and Vadhiyar [38], can be applied to estimate the
runtime of parallel applications. In this work, an application execution
time is inversely proportional to the CPU operating frequency.
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(2) Cloud Providers: A Cloud provider has multiple data centers dis-
tributed across the world. For example, Amazon [6] has data centers
in many cities across Asia, Europe, and United States. Each data center
has a local scheduler that manages the execution of incoming applica-
tions. The Cloud meta-scheduler interacts with these local schedulers for
application execution. Each local scheduler periodically supplies informa-
tion about available time slots (ts, te, n) to the meta-scheduler, where ts
and te are the start time and end time of the slot respectively and n is
the number of CPUs available for the slot. To facilitate energy-efficient
computing, each local scheduler also supplies information about the CO2
emission rate, Coefficient of Performance (COP), CPU power-frequency
relationship, Million Instructions Per Second (MIPS) rating of CPUs at
the maximum frequency, and CPU operating frequency range of the data
center. The MIPS rating is used to indicate the overall performance of
CPU. All CPUs within a data center are homogeneous, but CPUs can be
heterogeneous across data centers.

3.2 Data Center Energy Model

The major contributors for the total energy usage in a data center are com-
puting devices (CPUs) and cooling system which constitute about 80% of the
total energy consumption. Other systems such as lighting are not considered
due to their negligible contribution to the total energy cost [39].

Power consumption can be reduced by lowering the supply voltage of CPUs
using DVS. DVS is an efficient way to manage dynamic power dissipation
during computation. The power consumption Pi of a CPU in a data center at
cloud site i is composed of dynamic and static power [23][20]. The static power
includes the base power consumption of the CPU and the power consumption
of all other components. Thus, the CPU power Pi is approximated by the
following function (similar to previous work [23][20]): Pi = βi +αif

3, where βi
is the static power consumed by the CPU, αi is the proportionality constant,
and f is the frequency at which the CPU is operating. We consider that a
CPU of a data center can adjust its frequency from a minimum of fi,min to a
maximum of fi,max discretely.

The energy cost of the cooling system depends on the Coefficient Of Perfor-
mance (COP) factor [40]. COP is an indication for the efficiency of cooling
system, which is defined as the ratio of the amount of energy consumed by
CPUs to the energy consumed by the cooling system. The COP is, however,
not constant and varies with cooling air temperature. We assume that COP
will remain constant during scheduling cycle and resource sites will update
meta-scheduler whenever COP changes. Thus, the total energy consumed by
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cooling system is given by:

Eh,i =
Ec,i
COPi

(1)

where Ec,i is the total energy consumed in computing devices and Eh,i is the
total energy consumed by cooling devices.

3.3 Relation between Execution Time and CPU frequency

Since, we have considered DVS mechanism to scale up and down CPU fre-
quency, the execution time of user application will significantly vary according
to the CPU frequency. The decrease in execution time due to increase in CPU
frequency depends on whether application is CPU bound or not. For example,
if an application’s performance is completely dependent on the CPU frequency,
then its execution time will be inversely proportional to the change in CPU
frequency. Thus, the execution time of an application is modeled according to
the definition proposed by Hsu et al. [41]:

T (f) = T (fmax)× (γcpu(
fmax
f
− 1) + 1) (2)

where T (f) is the execution time of application at CPU frequency f , and
T (fmax) is the execution time of running at the top frequency fmax.

The parameter γcpu reflects CPU boundness of an application. If the value
of γcpu decreases, the CPU-boundness of the application will also decrease,
which results in potentially more energy reduction by using DVS. The worst
case value for γcpu, i.e. γcpu = 1, is assumed to analyze the performance of our
heuristics.

3.4 Problem Description

Let a Cloud provider have N data centers distributed in different sites. All the
parameters associated with a data center i are given in table 1. A user submit
his/her requirements for an application j in the form of a tuple (dj, nj, ej1.., ejN , γcpu,j),
where dj is the deadline to complete application j, and nj is the number of
CPUs required for application execution, eji is the application execution time
on the data center i when operating at the maximum CPU frequency, and
γcpu,j is CPU boundness. In addition, let fij be the initial frequency at which
CPUs of a data center i operate while executing application j. Executing
application j on data center i will result in the following:
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(1) Energy consumption by CPU

Ec
ij = (βi + αif

3
ij)× njeji × (γcpu,j(

fi,max
fij

− 1) + 1) (3)

(2) Total energy which consist of cooling system and CPU

Eij = (1 +
1

COPi
)Ec

ij (4)

(3) Energy cost

Ce
ij = Eij × cei (5)

(4) CO2 emission

(CO2E)ij = r
CO2
i × Eij (6)

(5) Profit

(Prof)ij = ejinjpi − Ce
ij (7)

Thus the meta-scheduling problem can be formulated as

Minimize CO2E =
N∑
i

J∑
j

xijr
CO2
i Eij (8)

Maximize Profit =
N∑
i

J∑
j

(Prof)ijxij (9)

Subject to:

(1) Response time of application j < dj
(2) fmini < fij < fmaxi

(3)
∑N
i xij ≤ 1

(4) xij =

 1 if application j allocated to data center i

0 otherwise

The dual objective functions (8) and (9) of the meta-scheduling problem are
to minimize the CO2 emission and maximize revenue of a resource provider.
The constraint (1) forces to meet the deadline requirement of an application.
It is difficult to calculate the exact response time of an application in the
environment where applications have different sizes and require multiple CPUs
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and has very dynamical arrival rate [23]. Moreover, this problem maps to 2-
dimensional bin packing problem which is NP-hard in nature [42]. Thus, we
propose various scheduling policies to heuristically approximate the optimum.

4 Meta-Scheduling Policies

The meta-scheduler periodically assigns applications to cloud sites. The time
period between two scheduling cycles is called the scheduling cycle. In each
scheduling cycle, the meta-scheduler collects the information from both cloud
sites and users. All parameters associated with each resource site i are given
in Table 1.

Table 1
Parameters of a Cloud Site i

Parameter Notation

CO2 emission rate
(kg/kWh)

rco2i

Average COP COPi

Electricity cost
($/kWh)

cei

Execution Price
($/sec)

pi

CPU power Pi = βi + αif
3

CPU frequency
range

[fi,min, fi,max]

Time slots (start
time, end time,
number of CPUs)

(ts, te, n)

In general, a meta-scheduling policy consists of two phases: 1) mapping phase,
in which the meta-scheduler first maps an application to a cloud site; and 2)
scheduling phase, in which the scheduling of applications is done within the
data center of selected cloud site, where the required time slots is chosen
to complete the application. Depending on the objective of cloud provider,
whether he want to minimize carbon emission or maximize profit, we have
designed various mapping policies which are discussed in the subsequent sec-
tion. To further reduce the energy consumption within the data center, we
have designed a DVS based scheduling for local scheduler of the data center
at each cloud site.
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4.1 Polices for Mapping Jobs to Resource

We have designed the following meta-scheduling mapping/allocation policies
depending on the objective of the cloud provider:

4.1.1 Minimizing Carbon Emission

The following policies optimize the global carbon emission by all cloud sites
while keeping number of missed deadlines low.

• Greedy Minimum Carbon Emission (GMCE): In this greedy based
policy, all user applications are ordered by their deadline (earliest first),
while the data centers at different cloud sites are sorted in decreasing order

of their Carbon efficiency i.e. r
CO2
i × ((βi/fi,max) + αi(fi,max)

2)(1+COPi
COPi

).
Then, the meta-scheduler assigns applications to a cloud site according to
this ordering.
• Minimum Carbon Emission Minimum Carbon Emission (MCE-

MCE): MCE-MCE is based on the general concept of the Min-Min idea [43].
The Min-Min type heuristic performed very well in previous studies of dif-
ferent environments (e.g., [44]). In, MCE-MCE, the meta-scheduler finds
the best data center or cloud sites for all applications that are considered,
and then among these applications/sites pairs, the meta-scheduler selects
the best pair to map first. To determine which application/cloud site pair is
the best, we have used the carbon emission resulted due to execution of the
application j on the cloud site i i.e. (CO2E)ij as the fitness value. Thus,
MCE-MCE includes the following steps:
Step 1: For each application that is present in the meta-scheduler to sched-

ule, find the cloud site for which carbon emission is the minimum, i.e.
minimum fitness value (the first MCE) among all cloud sites which can
complete the application by its deadline. If there is no cloud site where
the application can be completed by its deadline, then the application is
dropped or removed from the list of applications which are to be mapped.

Step 2: Among all the application/cloud site pairs found in Step 1, find
the pair that resulted in minimum carbon emission, i.e. minimum fitness
value (the second MCE). Then, map the application to the resource site,
and remove the application from the list of applications which are to be
mapped.

Step 3: Update the available slots from the resource sites.
Step 4: Do steps 1 to 3 until all applications are mapped.
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4.1.2 Maximizing Profit

Following policies optimize the global profit gained by cloud provider while
keeping the number of deadlines miss low.

• Greedy Maximum Profit (GMP): This policy maps the incoming appli-
cations to most profitable cloud site for maximum profit. Thus, all user ap-
plications are ordered by their deadline (earliest first), while cloud sites are
ordered by their electricity cost i.e. cei × ((βi/fi,max) + αi(fi,max)

2)(1+COPi
COPi

).
Then, meta-scheduler assigns applications to cloud sites according to this
ordering.
• Maximum Profit Maximum Profit(MP-MP): MP-MP is very similar

to the general concept of the Min-Min idea [43]. In, MP-MP, the meta-
scheduler finds the cloud sites for all applications that are considered which
results in the maximum profit, and then among these applications/sites
pairs, the meta-scheduler selects the pair to map first, which is the most
profitable. To determine which application/cloud site pair is the most prof-
itable, we have used the profit resulted due to execution of the application j
on the cloud site i, i.e. (Prof)ij as the fitness value. Thus, MP-MP includes
the following steps:
Step 1: For each application that is present in the meta-scheduler for exe-

cution, find the cloud site for which profit is the maximum i.e. maximum
fitness value (the first MP) among all the cloud sites which can complete
the application by its deadline. If there is no resource site where the appli-
cation can be completed by its deadline, then the application is dropped
or removed from the list of applications which are to be mapped.

Step 2: Among all the application/cloud site pairs found in Step 1, find
the pair that resulted in maximum profit, i.e. maximum fitness value (the
second MP). Then, map the application to the cloud site, and remove the
application from the list of applications which are to be mapped.

Step 3: Update the available slots from the cloud sites.
Step 4: Do steps 1 to 3 until all applications are mapped.

4.1.3 Minimizing Carbon Emission and Maximizing Profit (MCE-MP)

In this policy, the objective of the meta-scheduler is to minimize the total
carbon emission while maximizing the total profit of the Cloud provider. Thus,
this policy handles the trade-off between profit and carbon emission which may
be conflicting. This policy is very similar to MCE-MCE and MP-MP except
fitness functions (carbon emission i.e. (CO2E)ij and profit (Prof)ij) for each
step of finding “best” application/cloud site pair. Thus, the MCE-MP policy
include following steps:

Step 1: For each of the applications that are present in meta-scheduler for
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execution, find the cloud site for which the carbon emission is minimum,
i.e. minimum (CO2E)ij (the first MCE) among all the cloud sites that can
complete the application by its deadline. If there is no such cloud site where
the application can be completed by its deadline, then the application is
removed from the list of applications that are to be mapped.

Step 2: Among all the application/cloud site pairs found in Step 1, find the
pair that resulted in maximum profit i.e. maximum (Prof)ij (the second
MP). Then, map the application to the cloud site and remove the application
from the list of applications that are to be mapped.

Step 3: Update the available slots from the cloud sites.
Step 4: Do steps 1 to 3 until all applications are mapped.

4.2 Scheduling Policy

The energy consumption and carbon emission are further reduced within a
data center by using DVS at the CPU level that can save energy by scaling
down the CPU frequency. Thus, before the meta-scheduler assigns an appli-
cation to a cloud site, it decides the time slot in which the application should
be executed and the frequency at which the CPU should operate to save en-
ergy. But, since a lower CPU operating frequency can increase the number
of application rejected due to the deadline misses, the scheduling of the HPC
applications within the data center can be of two types: 1) CPUs run at the
maximum frequency (i.e. without DVS) or 2) CPUs run at various frequency
using DVS (i.e. with DVS). It is important to adjust DVS appropriately in
order to reduce the number of missed deadlines and energy consumption si-
multaneously.

Fig. 3. Energy Consumption VS Frequency

Section 3.4 shows that the energy consumption by a CPU depends on fre-
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quency at which an application will be executed. The objective is to obtain
an optimal frequency so that the energy consumption can be minimized while
executing the application within its deadline. From the plot of energy con-
sumption in Figure 3, we can observe existence of local minima where energy
consumption will be minimum. In order to identify this local minimum we
differentiate energy consumption of a HPC application j on a CPU at a data
center j with respect to operating CPU frequency fij ,

Ec
ij = (βi + αif

3
ij)× njeji × (γcpu,j(

fi,max
fij

− 1) + 1) (10)

∂(Ec
ij)

∂fij
= njeji × (

((βi + αif
3
ij)fi,maxγcpu,j)

f 2
ij

+ 3αif
2
ij(1 + (−1 +

fi,max
fij

)γcpu,j))(11)

For local minima,

∂(Ec
ij)

∂fij
= 0 (12)

((βj + αif
3
ij)fi,maxγcpu,j)

f 2
ij

+ 3αif
2
ij(1 + (−1 +

fi,max
fij

)γj) = 0 (13)

In Figure 3, we can clearly see that local minima exist. Thus, at least one
root of above polynomial will exist in range [0,∞]. When γcpu,j = 1, the above
equation will reduce to,

(
−βi
f 2
ij

+ 2αifij) = 0 (14)

It can be noted that the above equation depends on static variables such
as CPU power efficiency. Thus, we can pre-compute the local minima before
starting meta-scheduling algorithm.

The resulting optimal CPU frequency fi,opt is not bounded to [fi,min, fi,max].
Since the CPU frequency of resource site i can operate only in the interval
[fi,min, fi,max], we define fi,opt = fi,min, if fi,opt < fi,min, and fi,opt = fi,max, if
fi,opt > fi,max.

The meta-scheduler will first try to operate the CPU at a frequency in the

range [fi,min, fi,max] nearest to fi,opt = 3

√
βi
2αi

. If the deadline of an application
will be violated, the meta-scheduler will scale up the CPU frequency to the
next level and then again try to find the free slot to execute the application.
If the meta-scheduler fails to schedule the application on the cloud site as no
free slot is available, then the application is forwarded to the next cloud site
for scheduling (the ordering of resource sites is described in Section 4.1).
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4.3 Upper Bound and Lower Bound

Due to the NP hardness of the meta-scheduling problem described in Sec-
tion 3.4, it is difficult to find the optimal profit and the carbon emission in
polynomial time. To estimate the performance of our scheduling algorithms
we present an upper bound of cloud provider profit and a lower bound of
carbon emissions due to execution of HPC workload for comparison purpose.
The bounds are based on the principle that we can get the maximum profit or
the minimum carbon emission when most of the applications run on the most
“efficient” data center and also at the optimal frequency. The most “efficient”
data center for the profit maximization is the data center that results in the
minimum energy cost for executing HPC applications. Similarly, the most “ef-
ficient” data center for the carbon emission minimization is the data center
that causes the minimum carbon emission for executing HPC applications.

To map the maximal number of HPC applications to the most efficient data
center, we relaxed some constraints of our system model. First, we relaxed
the constraint that when an application is executed at highest CPU frequency
it will result in the maximum energy consumption. To calculate the lower
and upper bounds we assume that all applications will be executed at the
highest CPU frequency, while for computing the energy consumption due to
application we will take into account energy consumed at the optimal CPU
frequency. Second, even though HPC applications considered in the system
model are parallel applications with fixed CPU requirements, we relaxed this
constraint to applications that are moldable in required number of CPUs.
Thus, the runtime of application will decrease linearly when it is scheduled on
a bigger number of CPUs. This will increase the number of applications that
can be allocated to the most efficient site with the minimum energy possible.
Third, the applications in the system are arriving dynamically in different
scheduling cycles, but for the identification of the bounds all applications are
considered in one scheduling cycle and then mapped them to data centers
while considering their deadlines. This is the best case, when all information
about the incoming applications are known in advance. Of course, the dynamic
system will have a worse performance.

The bounds of carbon emission and profit, thus, obtained by having these as-
sumption are unreachable loose bounds of the system model considered since
with these assumptions, data center will be executing the maximum possi-
ble workload with 100% utilization of CPUs while the least possible energy
consumption is considered for comparison. Let TWL be the total workload
scheduled, TP be the total profit gained by cloud provider, and TCE be the
total carbon emission. The computation of lower bounds involve the following
steps:
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Step 1: All HPC applications are ordered by their deadline, while the data
centers in all cloud sites are sorted in decreasing order of their carbon emis-

sion efficiency, i.e. r
CO2
i ×((βi/f

max
i )+αi(f

max
i )2)(1+COPi

COPi
). Each application

will be mapped to a data center in this ordering.
Step 2: For each HPC application j, search for the data center i, starting

from the most efficient one, where the application j can be scheduled with-
out missing deadline when running at maximum CPU frequency.

Step 3: If data center i is not found, then the application i will be removed
from the potential application list. Go to step 2 for scheduling other appli-
cations.

Step 4: If data center j is found, application i is scheduled and molded such
that there is no fragmentation in the data center schedule for executing
applications.

Step 5: TWL+ = nj ∗ eji
Step 5: TCE+ = r

CO2
i nj(Execution time of application j at optimal frequency)×(Power

consumption at optimal CPU frequency)(1+COPi
COPi

).
Step 7: TP+ = nj∗(Execution time of application j at optimal frequency)*(1-
cei×(Power consumption at optimal CPU frequency)(1+COPi

COPi
))

Step 8: Repeat from Step 2 unless all applications are scheduled.

TCE
TWL

will be the lower bound of the average carbon emission due to the exe-
cution of all HPC application across multiple data center of cloud provider.
For finding the upper bound of the average profit gained by cloud provider, in
the first step, the sorting of data center is done in increasing order of the en-
ergy cost efficiency i.e., cei ×((βi/f

max
i )+αi(f

max
i )2)(1+COPi

COPi
) instead of carbon

emission efficiency, otherwise other steps will remain same.

5 Performance Evaluation

We use workload traces Feitelson’s Parallel Workload Archive (PWA) [45] to
model the HPC workload. Since this paper focuses on studying the applica-
tion requirements of cloud users with HPC applications, the PWA meets our
objective by providing application traces that reflect the characteristics of real
parallel applications. The experiments utilize the applications in the first week
of the LLNL Thunder trace (January 2007 to June 2007). The LLNL Thunder
trace from the Lawrence Livermore National Laboratory (LLNL) in USA is
chosen due to its highest resource utilization of 87.6% among available traces
to ideally model a heavy workload scenario. From this trace, we obtain the
submit time, requested number of CPUs, and actual runtime of applications.
However, the trace does not contain the service requirement of applications
(i.e. deadline). Hence, we use a methodology proposed by Irwin et al. [46] to
synthetically assign deadlines through two classes namely Low Urgency (LU)
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and High Urgency (HU).

An application i in the LU class has a high ratio of deadlinei/runtimei so
that its deadline is definitely longer than its required runtime. Conversely, an
application i in the HU class has a deadline of low ratio. Values are normally
distributed within each of the high and low deadline parameters. The ratio of
the deadline parameter’s high-value mean and low-value mean is thus known
as the high:low ratio. In our experiments, the deadline high:low ratio is 3,
while the low-value deadline mean and variance is 4 and 2 respectively. In
other words, LU applications have a high-value deadline mean of 12, which
is 3 times longer than HU applications with a low-value deadline mean of 4.
The arrival sequence of applications from the HU and LU classes is randomly
distributed.

Table 2
Characteristics of Cloud Sites

Location CO2 Emission Energy Cost a CPU Power Factors CPU Frequency Level Number

Rate b (kg/kWh) ($/kWh) β α fmax
i f

opt
i

of CPUs

New York, USA 0.389 0.15 65 7.5 1.8 1.630324 2050

Pennsylvania, USA 0.574 0.09 75 5 1.8 1.8 2600

California, USA 0.275 0.13 60 60 2.4 0.793701 650

Ohio, USA 0.817 0.09 75 5.2 2.4 1.93201 540

North Carolina, USA 0.563 0.07 90 4.5 3.0 2.154435 600

Texas, USA 0.664 0.1 105 6.5 3.0 2.00639 350

France 0.083 0.17 90 4.0 3.2 2.240702 200

Australia 0.924 0.11 105 4.4 3.2 2.285084 250

a Energy cost reflects average commercial rates till 2007 based on a US Energy
Information Administration (EIA) report [47].
b CO2 emission rates are derived from a US Department of Energy (DOE) document
[48] (Appendix F-Electricity Emission Factors 2007).

Provider Configuration: We model 8 different cloud sites (data centers)
with different configurations as listed in Table 2. Power parameters (i.e. CPU
power factors and frequency level) of the CPUs at different sites are derived
from Wang and Lu’s work [20]. Current commercial CPUs only support dis-
crete frequency levels, such as the Intel Pentium M 1.6GHz CPU, which sup-
ports 6 voltage levels. We consider discrete CPU frequencies with 5 levels in
the range [fi,min, fi,max]. For the lowest frequency fi,min, we use the same value
used by Wang and Lu [20], i.e. fi,min is 37.5% of fi,max. Each local scheduler at
a cloud site use Conservative Backfilling with advance reservation support as
used by Mu’alem and Feitelson [49]. The meta-scheduler schedules the applica-
tion periodically at a scheduling interval of 50 seconds, which is to ensure that
the meta-scheduler can receive at least one application in every scheduling
interval. The COP (power usage efficiency) value of resource sites is randomly
generated using a uniform distribution between [0.6, 3.5] as indicated in the
study conducted by Greenberg et al. [13]. The cloud provider’s price to execute
an application is fixed at 40 cents/hour.

Performance Metrics: Four metrics are necessary to compare the policies:
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average energy consumption, profit gained, workload executed and average
CO2 emission. The Average energy consumption compares the amount of en-
ergy saved by using different scheduling algorithms, whereas the average CO2
emission compares its corresponding environmental impact. Since minimizing
carbon emission can effect cloud provider economically by decreasing his/her
profit, we have considered profit gained as another metric to compare differ-
ent algorithms. It is important to know the effect of various meta-scheduling
policies on energy consumption, since higher energy consumption is likely to
generate more CO2 emission for worse environmental impact and incur more
energy cost for operating cloud sites.

Experimental Scenarios: We examine various experimental scenarios to
evaluate the performance of our algorithms:

• Effect of urgency and arrival rate of applications
• Effect of mapping policy and DVS
• Impact of carbon emission rate
• Impact of electricity cost
• Impact of data center efficiency
• Comparison with lower bound and upper bound
• Comparison of our DVS and previous DVS

For the above scenarios, we observe the performance from the user and provider
perspective. From the user perspective, we observe the performance of vary-
ing: 1) urgency class and 2) arrival rate of applications. For the urgency class,
we use various percentages (0%, 20%, 40%, 60%, 80%, and 100%) of HU ap-
plications. For instance, if the percentage of HU applications is 20%, then
the percentage of LU applications is the remaining 80%. For the arrival rate,
we use various factors (10 (low), 100 (medium), 1000 (high), and 10000 (very
high)) of submit time from the trace. For example, a factor of 10 means an ap-
plication with a submit time of 10s from the trace now has a simulated submit
time of 1s. Hence, a higher factor represents higher workload by shortening
the submit time of applications.

6 Analysis of Results

6.1 Effect of Urgency and Arrival Rate of Applications

Figure 4 shows how the urgency and arrival rate of applications affects the per-
formance of carbon emission based policies (GMCE, MCE-MCE, and MCE-
MP) and profit based policies (GMP and MP-MP). The metrics of total carbon
emission and total profit are used since the Cloud provider needs to know the
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Fig. 4. Effect of Urgency and Arrival Rate of Applications

collective gain/loss in carbon emission and profit across all data centers.

When the number of HU applications increases, the total profit of all poli-
cies (Figure 4(c)) decreases almost linearly by about 45% from 0% to 100%
HU applications. Similarly, there is also a drop in total carbon emission (Fig-
ure 4(a)). This fall in total carbon emission and total profit is due to the lower
acceptance of applications as observed in Figure 4(e). In Figure 4(a), the de-
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crease in total carbon emission for profit based policies (GMP and MP-MP)
is much more than that of carbon emission based policies (MCE-MP, GMCE,
and MCE-MCE). This is because carbon emission based policies schedule ap-
plications on more carbon emission efficient sites.

Likewise, the increase in arrival rate also affects the total carbon emission
(Figure 4(b)) and total profit (Figure 4(d)). As more applications are submit-
ted, less applications can be accepted (Figure 4(f)) since it is harder to satisfy
their deadline requirement when workload is high.

6.2 Effect of Mapping Policy and DVS

As discussed in Section 4, our meta-scheduling policies are designed to save
energy at two phases, first at the mapping phase and then at the scheduling
phase. Hence, in this section, we examine the effect of each phase on perfor-
mance.

First, we examine the effect of the mapping phase by comparing meta-scheduling
policies without the energy saving feature at the scheduling phase, i.e. DVS
is not available at the local scheduler. Hence, we name the without-DVS ver-
sion of the carbon emission based policy (GMCE) and profit based policy
(GMP) as GMCE-WithoutDVS and GMP-WithoutDVS respectively. For var-
ious urgency of applications (Figure 5(a)), GMCE-WithoutDVS can prevent
up to 10% CO2 emission over GMP-WithoutDVS. For various arrival rate of
applications (Figure 5(b)), GMCE-WithoutDVS can produce up to 23% less
carbon emission than GMP-WithoutDVS. The corresponding difference in en-
ergy cost (Figure 5(c) and 5(d)) between them is very little (about 1–2%).
This is because with the decrease in energy consumption due to the execution
of HPC workload, both carbon emission and energy cost will automatically
decrease. This trend still remains by comparing GMCE and GMP, both of
which uses DVS at the scheduling phase.

In Figure 5(a), with the increase in the number of urgent applications, the dif-
ference in carbon emission between the carbon emission based policy (GMCE-
WithoutDVS) and profit based policy (GMP-WithoutDVS) is decreasing. This
is due to more applications being scheduled on less carbon efficient sites in
order to avoid deadline misses. This is also the reason for all four policies
to execute decreasing workload as the number of HU applications increases
(Figure 5(e)).

Next, we examine the effect of the scheduling phase by comparing meta-
scheduling policies with DVS (GMCE and GMP) and without DVS (GMCE-
WithoutDVS and GMP-WithoutDVS). With DVS, the energy cost (Figure 5(c))
to execute HPC workload has been reduced on average by 33% when we com-
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Fig. 5. Effect of Mapping Policy and DVS

pare GMP with GMP-withoutDVS. With the increase in high urgency appli-
cations, the gap is increasing and we can get almost 50% decrease in energy
cost as shown in Figure 5(c). With the increase in arrival rate, we get a consis-
tent 25% gain in energy cost by using DVS (Figure 5(d)). The carbon emission
is also reduced further on average by 13% with the increase in urgent applica-
tions as shown in Figure 5(a). With the increase in arrival rate, HPC workload
executed is decreasing in the case of policies using DVS as can be observed
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from Figure 5(f). This is because the execution of jobs at lower CPU frequency
results in more rejection of urgent jobs when the arrival rate is high. Thus,
HPC workload executed in the case of policies without DVS is almost the
same even when arrival rate is very high.

6.3 Impact of Carbon Emission Rate

To examine the impact of carbon emission rate in different locations on our
policies, we vary the carbon emission rate, while keeping all other factors such
as electricity cost as the same. Using normal distribution with mean = 0.2,
random values are generated for the following three classes of carbon emission
rate across all Cloud sites as: A) Low variation (low) with standard deviation =
0.05, B) Medium variation (mid) with standard deviation = 0.2, and C) High
variation (high) with standard deviation = 0.4. All experiments are conducted
at medium job arrival rate with 40% of high urgency jobs.
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Fig. 6. Impact of Carbon Emission Rate

The performance of all policies is similar for all three cases of carbon emission
rate. For example, in Figure 6(a), the carbon emission of profit based policies
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(GMP and MP-MP) is always higher than carbon emission based policies
(GMCE, MCE-MCE, and MCE-MP). Similarly, for profit (Figure 6(b)), all
profit based policies perform better than all carbon emission based policies.
For instance, in Figure 6(a), the difference in carbon emission of MCE-MCE
and MP-MP is about 14% for low variation, which increases to 23% for high
variation. On the other hand, in Figure 6(b), the corresponding decrease in
profit is almost negligible which is less than 1%. Moreover, by comparing
MCE-MCE and MP-MP in Figure 6(c), the amount of workload executed
by MCE-MCE is slightly higher than MP-MP. Thus, for the case of high
variation in carbon emission rate, Cloud providers can use carbon emission
based policies such as MCE-MCE to considerably reduce carbon emission
with almost negligible impact on their profit.

6.4 Impact of Electricity Cost

To investigate the impact of electricity cost in different locations on our poli-
cies, we vary the electricity cost, while keeping all other factors such as carbon
emission rate as the same. Using normal distribution with mean = 0.1, ran-
dom values are generated for the following three classes of electricity cost/rate
across all Cloud sites as: A) Low variation (low) with standard deviation =
0.01, B) Medium variation (mid) with standard deviation = 0.02, and C)
High variation (high) with standard deviation = 0.05. All experiments are
conducted at medium job arrival rate with 40% of high urgency jobs.

The variation in electricity cost/rate affects the performance of profit based
policies (GMP and MP-MP) in terms of carbon emission (Figure 7(a)) and
workload executed (Figure 7(c)), while carbon emission based policies (GMCE,
MCE-MCE and MCE-MP) are not affected. But, the profit of all policies
decrease more as the variation of electricity rate increases (Figure 7(b)) due
to the subtraction of cost from profit. For high variation in electricity rate,
there is not much difference (about 0.1%) in carbon emission between MP-
MP and MCE-MCE (Figure 7(a)). Hence, Cloud providers can use MP-MP
which gives slightly better average profit than carbon emission based policies
(GMCE, MCE-MCE and MCE-MP). On the other hand, for cases when the
variation in electricity rate is not high, providers can use carbon emission
based policies such as MCE-MCE and MCE-MP to reduce about 1% of carbon
emission by sacrificing less than 0.006% of profit.
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Fig. 7. Impact of Electricity Cost

6.5 Impact of Data Center Efficiency

To study the impact of data center efficiency in different locations on our
policies, we vary the data center efficiency = COP

(COP+1)
, while keeping all other

factors such as carbon emission rate as the same. Using normal distribu-
tion with mean = 0.4, random values are generated for the following three
classes of data center efficiency across all Cloud sites as: A) Low variation
(low) with standard deviation = 0.05, B) Medium variation (mid) with
standard deviation = 0.12, and C) High variation (high) with standard deviation =
0.2. All experiments are conducted at medium job arrival rate with 40% of
high urgency jobs.

Figure 8(a) shows carbon emission based policies (GMCE, MCE-MCE and
MCE-MP) achieve the lowest carbon emission with almost equal values. MCE-
MCE performs better than MCE-MP by scheduling more HPC workload (Fig-
ure 8(c)) while achieving similar profit (Figure 8(b)). But when the variation
in data center efficiency is high, GMCE can execute much higher workload
(Figure 8(c)) than MCE-MCE and MCE-MP while achieving only slightly
less profit than profit based policies (GMP and MP-MP) (Figure 8(b)). Thus,
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Fig. 8. Impact of Data Center Efficiency

cloud providers can use GMCE to decrease the carbon emissions across their
data centers without significant profit loss.

6.6 Comparison with Lower Bound and Upper Bound
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Figure 9 shows how different policies perform in comparison to the lower
bound of average carbon emission and the upper bound of average profit. In
Figure 9(a) and 9(b), with the increase in HU applications, the difference be-
tween the lower/upper bound and various policies is increasing. This is due to
the increase in looseness of the bounds with the increase in HU applications. To
avoid deadline misses with a higher number of HU applications, our proposed
policies schedule more applications at higher CPU frequency which results in
higher energy consumption. This in turn leads to an increase in the carbon
emission and decrease in the profit. Whereas, for computing the lower/upper
bounds, we only consider energy consumption at the optimal CPU frequency.
Thus, the effect of urgency on the bounds is not as considerable as in our
policies. This explains why our policies are closer to the bounds for a lower
number of HU applications.

In Figure 9(a), the difference in average carbon emission for carbon emission
based policies (GMCE, MCE-MCE, and MCE-MP) and the lower bound is
less than about 16% which becomes less than about 2% in the case of 20%
HU applications. On the other hand, in Figure 9(b), the difference in average
profit for profit based policies (GMP and MP-MP) and the upper bound is less
than about 2% which becomes less than about 1% in the case of 40% of HU
applications. Hence, in summary, our carbon emission based and profit based
policies perform within about 16% and 2% of the optimal carbon emission and
profit respectively.

6.7 Comparison of Our DVS and Previous DVS

To correctly highlight the difference in DVS performance for the scheduling
phase of the meta-scheduling policy, we need an independent policy (which is
not linked to our proposed polices) for the mapping phase. Hence, we use EDF-
EST, where the user jobs are ordered based on Earliest Deadline First (EDF),
while the data centers are ordered based on Earliest Start Time (EST). Fig-
ure 10 shows that our proposed DVS (EDF-EST-withOurDVS) has not only
outperformed previously proposed DVS [20][21](EDF-EST-withPrevDVS) by
saving about 35% of energy, but also executed about 30% more workload.
This is because most previously proposed DVS schemes focus on optimizing
the power and thus try to run applications at the minimum CPU frequency
fmin. As discussed in Section 4.2 and shown in Figure 3, it is clear that a
job executed at fmin may not lead to the least energy consumption due to
the presence of local minima. Moreover, executing jobs at a lower frequency
results in a lower acceptance of jobs since less CPUs are available.
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Fig. 10. Effectiveness of Our Proposed DVS

7 Conclusions

The usage of energy has become a major concern since the price of electricity
has increased dramatically. Especially, Cloud providers need a high amount of
electricity to run and maintain their computer resources in order to provide
the best service level for the customer. Although this importance has been
emphasized in a lot of research literature, the combined approach of analyzing
the profit and energy sustainability in the resource allocation process has not
been taken into consideration.

The goal of this paper is to outline how managing resource allocation across
multiple locations can have an impact on the energy cost of a provider. The
overall meta-scheduling problem is described as an optimization problem with
dual objective functions. Due to its NP hard characteristic, several heuristic
policies are proposed and compared. The policies are compared with each other
for different scenarios and also with the derived lower/upper bounds. In some
cases, the policies performed very well with only almost 1% away from the
upper bound of profit. By introducing Dynamic Voltage Scaling (DVS) and
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hence lowering the supply voltage of CPUs, the energy cost for executing HPC
workloads can be reduced by 33% on average. Jobs will run on CPUs with a
lower frequency than expected, but they still meet the deadlines. The limita-
tion of carbon emission can be forced by governments to comply with certain
threshold values [11]. In such cases, Cloud providers can focus on reducing
carbon emission in addition to minimizing energy consumption. We identified
that policies like MCE-MCE can help provider to reduce their emission while
almost maintaining their profit. If the provider faces a volatile electricity rate,
the MP-MP policy will lead to a better outcome. Depending on the envi-
ronmental and economic constraints, Cloud providers can selectively choose
different policies to efficiently allocate their resources to meet customers’ re-
quests. The characteristics and performance of each meta-scheduling policy
are summarized in Table 3, where “low” and “high” represent the scenario
for which the overall performance of the policy is given. For instance, GMCE
performs the best when the variation in data center efficiency is high, while
MCE-MP performs the best when the variation in energy cost is low or when
there is a low number of HU applications.

Table 3
Summary of Heuristics with Comparison Results

Meta-Scheduling Description Time Overall Performance

Policy Complexity HU Jobs Arrival
Rate

CO2
Emission
Rate

Data
Center
Efficiency

Energy
Cost

GMCE Greedy (CO2
Emission)

O(NJ) Bad Bad Bad Best
(high)

Bad

MCE-MCE Two-phase Greedy
(CO2 Emission)

O(NJ2) Good
(low)

Good
(low)

Best
(high)

Okay
(low)

Good
(low)

GMP Greedy (Profit) O(NJ) Okay
(high)

Okay
(high)

Bad (low) Bad
(high)

Bad

MP-MP Two-phase Greedy
(Profit)

O(NJ2) Good
(high)

Bad
(CO2
emis-
sion),
Best
(Profit)

Good
(low)

Best
(low)

Good
(High)

MCE-MP Two-phase Greedy
(CO2 Emission
and Profit)

O(NJ2) Best
(low)

Good
(high)

Okay Okay Best
(low)

In future, we will like to extend our model to consider the aspect of turning
servers on and off, which can further reduce energy consumption. This requires
a more technical analysis of the delay and power consumption for suspending
servers, as well as the effect on the reliability of computing devices. We will
also want to extend our policies for virtualized environments, where it can be
easier to consolidate many applications on fewer physical servers.
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