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Abstract—Metaschedulers can distribute parts of a Bag-of-Tasks (BoT) application among various resource providers in order to
speed up its execution. The expected completion time of the user application is then calculated based on the run time estimates
of all applications running and waiting for resources. However, due to inaccurate run time estimates, initial schedules are not those
that provide users with the earliest completion time. These estimates increase the time distance between the first and last tasks
of a BoT application, which increases average user response time, especially in multi-provider environments. This paper proposes
a coordinated rescheduling algorithm to handle inaccurate run time estimates when executing BoT applications in multi-provider
environments. The coordinated rescheduling defines which tasks can have start time updated based on the expected completion time
of the entire BoT application. We have also evaluated the impact of system-generated run time estimates to schedule BoT applications
on multiple providers. We performed experiments using simulations and a real distributed platform, Grid’5000. From our experiments,
we obtained reductions of up to 5% and 10% for response time and slowdown metrics respectively by using coordinated rescheduling
over a traditional rescheduling solution. Moreover, coordinated rescheduling requires little modification of existing scheduling systems.
System-generated predictions, on the other hand, are more complex to be deployed and may not reduce response times as much as
when using coordinated rescheduling.

Index Terms—Rescheduling, bag-of-tasks, resource allocation, grid computing, metascheduling, parallel computing, performance
prediction, run time estimates, quality-of-service.
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1 INTRODUCTION

BAGS-of-Tasks (BoTs) are parallel applications with
no inter-task communication. A variety of problems

in several fields, including computational biology [1],
image processing [2], and massive searches [3], have
been modeled as BoT applications. In comparison to the
message passing model, BoT applications can be easily
executed on multiple resource providers to meet a user
deadline or reduce the user response time. Although
BoT applications comprise independent tasks, the results
produced by all tasks constitute the solution of a single
problem. In most cases, users need the entire set of
tasks completed to be able to post-process or analyse
the results. Therefore, the optimization of the aggregate
set of results is important, and not the optimization of a
particular task or group of tasks [4], [5].

Metaschedulers can distribute parts of a Bag-of-Tasks
(BoT) application among various resource providers in
order to speed up its execution. The expected completion
time of the user application is then calculated based on
the run time estimates of all applications running and
waiting for resources. A common practice is to overesti-
mate execution times in order to avoid user applications
to be aborted [6], [7]. Therefore, initial completion time
promises are usually not accurate. In addition, when
a BoT application is executed across multiple clusters,
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inaccurate estimates increase the time difference between
the completion of its first and last task, which increases
average user response time. This time difference, which
we call stretch factor, increases mainly because reschedul-
ing is performed independently by each provider.

System-generated predictions can reduce inaccurate
run time estimates and avoid users having to specify
these values. Several techniques have been proposed to
predict application run times and queue wait times. One
common approach is to analyse scheduling traces; i.e.
historical data [8], [9], [10]. Techniques based on trace
analyses have the benefit of being application indepen-
dent, however may have limitations when workloads
are highly heterogeneous. Application profiling has also
been vastly studied to predict execution times [11], [12],
[13], [14]. Application profiling can generate run time
predictions for multiple environments, but usually re-
quires application source code access.

This paper proposes a coordinated rescheduling strat-
egy for BoT applications running across multiple re-
source providers. Rather than providers performing in-
dependent rescheduling of tasks of a BoT application,
the metascheduler tracks of the expected completion
time of the last BoT task. This strategy minimizes
the stretch factor and reduces user response time. We
also show that on-line system generated predictions,
even though require time to be obtained, can reduce
user response time when compared to user estimations.
Moreover, with more accurate predictions, providers
can offer tighter expected completion times, thus in-
creasing system utilization by attracting more users. We
performed experiments using simulations and a real
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distributed platform, Grid’5000, on homogeneous and
heterogeneous resources. We also provide an example
of system-generated predictions using POV-Ray, a ray-
tracer tool to generate three dimensional images to com-
pose animations. The experiments consider three main
variables: time to generate run times, accuracy of run
time predictions, and time users are willing to wait for
scheduling decisions.

2 RELATED WORK
Extensive research has been done on performance pre-
diction techniques, use of predictions for scheduling
applications, the impact of inaccurate run time estimates
for scheduling, and scheduling algorithms for BoT appli-
cations, which are the main related areas to our work.
Due to space constraints, we present a few projects on
these areas.

Several researchers have developed run time predic-
tion techniques based on historical data of previous
application executions [8], [9], [10], [15], [16]. These
techniques vary in complexity and quality of predictions.
Tsafrir et al. [8] proposed the use of average time of the
previous two executions of jobs with same characteristics
to calculate new estimation time, whereas Smith et al.
[10] use search for similar jobs of the entire historical
data base of previous executions. Run time predictions
also assist management systems to provide users with
expected waiting times [10] and to produce schedules
that increase system utilization [15]. Most of existing
techniques based on historical data are for homogeneous
resources hosted by a single provider.

Performance predictions for multi-cluster environ-
ments have also been developed. Sadjadi et al. [17]
proposed a modeling approach for estimating execution
times of single-cluster long-running scientific applica-
tions for multi-cluster environments. Their approach
relies on modeling resources, execution parallelism, and
application input parameters, along with a set of previ-
ous application executions. The applications can access
multiple resources, but those have to be homogeneous.
Sanjay and Vadhiyar [12] developed a set of perfor-
mance modeling strategies to predict execution times
of parallel applications for single-cluster applications
on Grid Computing environments. Yang et al. [11] in-
troduced a performance translation method based on
relative performance between two platforms for single-
cluster applications. Predictions are generated based on
a short execution of applications in each target platform
and require source code access. Romanazzi and Jimack
[13] proposed a prediction performance model for par-
allel numerical software systems on multi-cluster en-
vironments. Predictions for large-scale experiments are
generated based on executing applications with fewer
processors for short time periods, and require source
code modification.

He et al. [18] addressed the problem of dynamic
scheduling for parallel jobs in multi-cluster systems us-
ing performance predictions. In order to obtain run time

predictions, they relied on the PACE (Performance Anal-
ysis and Characterization Environment) tool-kit [14],
which requires application source code access. Berman
et al. [19] have also proposed the use predictions for
scheduling applications, and users have also to modify
the application source code. Sonmez et al. [16] studied
the use of time series prediction methods for job run
times and queue wait times in Grid environments. They
have also evaluated the impact of predictions when
scheduling jobs in Grids. Their experiments consider
schedulers using FIFO without backfilling and tasks of
a BoT application are submitted to a single cluster.

Existing work on BoT applications mostly focuses on
the initial scheduling [20], [21], [22], [23], [24], [25];
tasks are scheduled without considering the dynamic be-
haviour of resources and applications. Researchers have
also developed task replication techniques to reduce user
response time and handle the lack of information from
resources and tasks [26]. Task replication is a particular
type of rescheduling, but with the drawback of wasting
resources. Therefore, our contribution is a coordinated
rescheduling algorithm for BoT applications and an eval-
uation of impact of run time estimates when scheduling
these applications across multiple providers.

3 SCHEDULING ARCHITECTURE

A metascheduler receives user requests to schedule BoTs
on multiple autonomous resource providers in on-line
mode. Users provide the number of required resources
along with either a run time estimation or an application
profiler. The resources considered are space-shared ma-
chines such as clusters and massively parallel processing
machines.

As illustrated in Figure 1, the scheduling of a BoT ap-
plication consists of 6 steps. In step 1, the metascheduler
exposes the application profiler or user estimations to
the resource providers. In step 2, the resource providers
execute the profiler (if available) and generate a list of
offers that can serve the entire BoT or only part of it. An
offer consists of a number of tasks, and the their expected
completion time. In this work, resource providers gener-
ate offers to do not violate the expected completion time
of already scheduled tasks and to consider the tasks’
runtime estimation errors. Once the resource providers
generate the offers, they send them to the metascheduler
(step 3), which composes them according to the user
requirements (step 4), and submits the tasks to resource
providers (step 5). After the tasks of a BoT are sched-
uled, resource providers contact the metascheduler for
rescheduling purposes (step 6).

Due to system heterogeneity and the different loads
in each resource provider, offers arrive at different time
to the metascheduler. Once the metascheduler receives
all offers, some of them may no longer be valid since
other users submitted applications to the providers. To
overcome this problem, we use a similar approach devel-
oped by Haji et al. [27], who introduced a Three-Phase
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Fig. 1. Components’ interaction to schedule a Bag-of-Tasks using application profiling and execution offers.

commit protocol for SNAP-based brokers. Our protocol
uses probes, which are signals sent from the providers to
the metaschedulers interested in the same resources to
be aware of resource status’ changes.

The schedulers’ goal is to provide users with expected
completion time and reduce such a time as much as
possible during rescheduling phases.

4 COORDINATED RESCHEDULING

Once the metascheduler provides the user with an ex-
pected completion time of his/her BoT application, tasks
can start execution either immediately or after resources
become available. For the second case, it means tasks
are placed in a waiting queue and can be rescheduled to
start before expected when tasks from other applications
have inaccurate run time estimates.

Figure 2 illustrates the difference between the tradi-
tional rescheduling strategy, which considers all tasks
independently, and the coordinated rescheduling, which
considers the tasks of a BoT as being part of a single
application. In this example, by using uncoordinated
rescheduling the BoT application tasks in Site 1 are
rescheduled without considering the tasks from Site 2;
which increases stretch factor of this BoT, and delays the
completion time of application A. By using the coordi-
nated rescheduling approach, application A is resched-
uled first since it earlier start time does not increase the
overall completion time of the BoT application.

Whenever a job completes before the expected time,
local schedulers execute Algorithm 1 to reschedule the
waiting queue. The first step is to sort the jobs in the
waiting queue by increasing order of their expected
completion times. Jobs from the same BoT are sorted
by increasing order of expected start time individually.
Later, jobs are rescheduled one by one. For each job ji

being part of a BoT, the scheduler verifies whether ji

holds the expected completion time of the entire BoT.
Both BoT jobs and other type of jobs are then resched-
uled using FIFO with conservative backfilling. If a BoT

job holds the expected completion time of the entire job
and received a new completion time due to reschedul-
ing, the algorithm keeps this job in a structure called
newCompletionTimes, which contains the job id and the
new completion time. After all jobs are rescheduled, the
algorithm analyses the last completion time for each BoT
in the newCompletionTimes structure. The local scheduler
sends this structure to the metaschedulers holding the
respective BoTs.

From the metascheduler side, each time it receives
the newCompletionT imes structure, it verifies whether
the new completion times are local or global. If they
are global, the metascheduler sends the new completion
times to the resource providers holding the respective
BoT tasks.

5 ON-LINE SYSTEM GENERATED RUN TIME
ESTIMATIONS

In environments where resource providers work with
precise run time estimates, metaschedulers can better
distribute the load, thus reducing applications’ response
time, and resource providers can publish offers with
tighter response times, thus increasing system utilization
by attracting more users. However, it is difficult for
users to provide accurate estimates, especially when
they have various resource set options. One approach
to generate run time estimations is through the analysis
from previous execution of applications with similar
characteristics. The main limitation of this approach is
that if applications are submitted by several users with
different requirements, it is difficult to find patterns to
estimate execution times. Another approach to generate
run time estimates is through application profiling via
sampling execution.

Usually, tasks in a BoT application have similar nature,
and therefore by executing a few tasks it is possible
to estimate the overall application execution time. In
addition, depending on the application, it is possible
to reduce the problem size in order to speed up the
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Fig. 2. Example of schedule using coordinated rescheduling.

Algorithm 1: Pseudo-code for rescheduling jobs,
which is executed on the local schedulers when a job
completes before the expected time.

Sort jobs by expected completion time. BoT tasks1

are sorted by expected completion of the entire BoT.
Tasks from the same BoT are sorted by expected
start time
for ∀ji ∈ waiting queue do2

isLastTask ← false3

previousCompletionT ime← ji’s completion time4

if ji is part of a BoT then5

isLastTask ← holds the last expected6

completion time

Reschedule ji using FIFO with conservative7

backfilling
if previousCompletionT ime 6=8

newCompletionT ime and isLastTask = true
then

add task to possible new completion time list9

Check new completion times10

Send new completion times11

prediction phase. For example, applications in image
manipulation can have the problem size reduced by
modifying image resolutions. The following sections de-
scribe an example of run time generator and discuss
when and how to execute the generator.

5.1 Example of run time estimator for POV-Ray

This section describes a run time generator for POV-Ray,
a ray-tracer tool in order to generate three dimensional
images to compose animations. Ray tracing is a CPU
intensive process that depends on several factors such as
image size, rendering quality, and objects and materials
in a image. We consider users with animation specifica-
tions to generate sets of frames. The execution times are
unknown since they depend on several factors in each
frame and on the properties of the machine processing
the frames. Therefore, application profiling can give an

insight on the time cost to generate all the frames, which
has an impact on the application scheduling. We use
POV-Ray to create three short animations containing 200
frames each, with a resolution of 2048x1536 pixels (Quad
eXtended Graphics Array).

In order to create the animations, we used three ex-
amples of images that come with the POV-Ray package,
namely Sky Vase, Box, and Fish. Sky Vase consists of
a Vase with a sky texture on a table with two mirrors
next to it (we replaced the texture BrightBlueSky to Clouds
in order to increase the workload). To generate the
animation for Sky Vase, we rotate the vase 360 degrees.
Box consists of a chess floor with a box containing a
few objects with mirrors inside. We therefore included a
camera the gets closer to the box and crosses it on the
other side. Fish consists of a fish over water that rotates
360 degrees. Different from Sky Vase, Fish has a more
heterogeneous animation due to the fish’s shape (a vase
shape is symmetric vertically).

Regarding execution time behaviour, Sky Vase has a
steady execution time since the vase is the only object
the rotates and its texture has similar work to be pro-
cessed on each frame. For the Box animation, at the
beginning of the animation the box is still far, and hence
small, consuming little processing time. However, as
the camera approaches the box, more work has to be
processed, getting to its maximum when the camera is
inside the box. After the camera cross the box, only the
floor has to be rendered. The Fish animation has a very
heterogeneous execution time due to the fish’s shape,
which impacts on the amount of work that needs to
be processed when rendering the reflex of the fish on
the water. An example of images for each of the three
animations is illustrated in Figure 3.

When predicting the execution time, one must con-
sider a trade-off between the time spent to predict and
its accuracy. The prediction should be fast enough allow
prompt scheduling decisions to be made and accurate
enough to be meaningful for the schedulers. Apart from
that, it should be easy to be deployed in practice. One
possibility is to render the animation in a much lower
resolution and render a base frame of the actual ani-
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(a) Sky Vase. (b) Box. (c) Fish.

Fig. 3. Example of images for each of the three animations.
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Fig. 4. Predicted execution time using most CPU consuming frame as base for estimations.

TABLE 1
Time to generate execution time estimates.

Animation Resolution Exec. Time Perc. of Accuracy
(min) total time

Sky Vase 640x480 223 10.3 0.1% underest.
320x240 64 2.9 1.3% underest.
160x120 27 1.2 0.2% underest.

Box 640x480 18.4 12.3 7.30% overest.
320x240 6.8 4.5 14.00% overest.
160x120 4.0 2.6 64.90% overest.

Fish 640x480 53.1 11.0 3.03% overest.
320x240 18.57 3.9 10.47% overest.
160x120 9.90 2.0 37.64% overest.

mation. Using the execution time of the base frame of
the actual and the reduced animation, it is possible to
generate a factor to be multiplied on the lower resolution
animation to predict the execution actual time of each
frame. Figure 4 presents predictions using the maximum
and execution time frame as base frame. For this exper-
iment, we used 640x480, 320x240, and 160x120 as lower
resolutions for generating predictions. We also observe
that both 640x480 and 320x240 resolutions provided
much better predictions than 160x120. For the Box an-
imation using the base frame with minimum execution

time, all resolutions provided inaccurate predictions for
long execution time frames. This happens because the
base frame is to small to capture the differences between
the resolutions. Table 1 summarizes the execution times
to generate the predictions and their accuracies using the
base frame with maximum execution time. The results
show that good predictions are time consuming since we
are using the entire animation.

It is possible to reduce the profiling time by sampling
a set of frames with a lower resolution rather than
using the entire animation. Figures 5 and 6 show the
execution time and the prediction accuracy as a function
of the number of frames sampled using resolutions
640x480 and 320x240 respectively. For this experiment
we used the maximum execution time as base frame. The
results show that it is possible to considerably reduce
the profiling time keeping a good prediction accuracy
level. This happens because in an animation, neighbour
frames have similar content and depending on the case
the variation is minimum during the entire animation,
such as for Sky Vase.

5.2 Where to generate the estimations

Either users or resource providers can generate run time
estimates. If users know the exact resource configuration
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(b) Box.
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Fig. 5. Predicted execution time using partial sampling of 640x480 frames.

0 50 100 150 200
Number of Frames

−10

−8

−6

−4

−2

0

2

4

O
ve

re
st

im
at

io
n

 (
%

) 

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

50

55

E
xe

cu
ti

o
n

 T
im

e 
+ 

10
.9

6 
(m

in
)

Exec. Time

Prediction

(a) Sky Vase.

0 50 100 150 200
Number of Frames

−10

−5

0

5

10

15

20

25

O
ve

re
st

im
at

io
n

 (
%

) 

0 50 100 150 200
0

1

2

3

4

5

E
xe

cu
ti

o
n

 T
im

e 
+ 

2.
08

 (
m

in
)

Exec. Time

Prediction

(b) Box.

0 50 100 150 200
Number of Frames

−5

0

5

10

15

20

O
ve

re
st

im
at

io
n

 (
%

) 

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

10

11

12

13

E
xe

cu
ti

o
n

 T
im

e 
+ 

5.
48

 (
m

in
)

Exec. Time

Prediction

(c) Fish.

Fig. 6. Predicted execution time using partial sampling of 320x240 frames.

for each provider, users can execute the run time esti-
mation generator. Also, even if users do not know the
configuration, providers that work with virtual machines
can make them available to users. In this case, the users
can run the generator through virtual machines in their
local machines. Another option is to allow providers to
generate run time estimates at the moment users submit
their application requirements to the metascheduler. In
this case, providers can have a dedicated set of resources
to generate run time estimates, or providers can generate
them by placing estimator jobs in their shared resources
for actual executions. All these options depend on the
application, environment settings, and user needs.

6 EVALUATION

This section evaluates the coordinated rescheduling al-
gorithm and the impact of inaccurate run time estimates
when scheduling BoT applications on multiple resource
providers. We performed experiments using both a sim-
ulator and a real testbed. Simulations have allowed us to
perform repeatable and controllable experiments using
various parameters. The experiments in a real testbed
allow us to verify how the scheduler architecture can

be used in practice. We have used our event-driven
simulator, named PaJFit (Parallel Job Fit), and workloads
produced by the Lublin-Feitelson model. For the real
experiments, we used an extended version of PaJFit,
which works with sockets for communication between
modules, on Grid’5000. Following we describe the ex-
periment configuration and the analysis of the results.

6.1 Experimental configuration
We have set up a computing environment with a
metascheduler and four clusters, C1−4, with 300 proces-
sors each. From this environment, we have explored a
set of scenarios as described in Table 2. The set of experi-
ments with all clusters with the same configuration helps
us to analyse the differences between system and user
generated estimations and the rescheduling algorithm.
The experiment with all clusters with the same configu-
ration but using different policies for run time estimates
helps us to understand which resource provider would
benefit more from each approach. We also analyse the
impact of heterogeneity for scheduling and rescheduling
of bag-of-tasks across multiple providers.

We used the workload model proposed by Lublin and
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TABLE 2
Main scenarios for the experiments.

Hardware Estimation Type and rescheduling
C1=C2=C3=C4 UE with independent rescheduling
C1=C2=C3=C4 SE 50% and 80% more accurate than UEs with uncoordinated

rescheduling and 5-30min generation time
C1=C2=C3=C4 UE with coordinated rescheduling
C1=C2=C3=C4 C1 and C2 with UEs and C3 and C4 with SEs
C1=C2 20 % and 50% faster than C3=C4 UEs
C1=C2 20 % and 50% faster than C3=C4 SEs
C1=C2 20 % and 50% faster than C3=C4 UEs with coordinated rescheduling

Feitelson [28] to generate traces for both the simulations
and the experiments in Grid’5000. We simulated 15
days of the workload and used 10 workloads for each
experiment. We also considered 10 run time estimation
values. Therefore, for each scenario described in Table 2,
we have a total of 100 simulations. For all experiments
we set up the system load as 70% by changing the
arrival times of the external jobs. To achieve this load
we used a strategy similar to that described by Shmueli
and Feitelson to evaluate their backfilling strategy [29],
but we fixed the time interval and included more jobs
from the trace.

We performed our experiments in Grid’5000 by plac-
ing a local scheduler in four clusters with access to
300 processors. Table 3 presents an overview of the
node configurations in which we deployed the local
schedulers and the metascheduler.1

TABLE 3
Overview of the node configurations for the experiments
in Grid’5000. Sites are interconnected inside the same

VLAN at 10Gbps.

Scheduler Cluster Location CPUs’ Configuration
Metascheduler sol Sophia AMD Opteron 2.0 GHz
Provider 1 paradent Rennes Intel Xeon 2.5 Ghz
Provider 2 bordemer Bordeaux AMD Opteron 2.2 GHz
Provider 3 grelon Lille AMD Opteron 2.6 GHz
Provider 4 chicon Nancy Intel Xeon 1.6 GHz

6.2 Results and analysis

There are two factors related to the reduction of user
response times: load balancing and backfilling. Load
balancing can be improved by having better run time
estimates, since the metascheduler can decide the right
amount of work to send to each provide, whereas back-
filling can fill queue fragments generated by earlier com-
pletion times of user requests. These fragments can be
filled as long as estimations are smaller or the same size
as the fragments. By increasing user estimations, more
fragments are created and therefore more jobs can be

1. More details about the machines in Grid’5000 can be found at
https://www.grid5000.fr
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Fig. 7. Location of resources in Grid’5000.

backfilled. However, there is a limit in which backfilling
can be explored. Figures 8 and 9 show the requested
run times, fragment lengths, and number of jobs that
would fit into the fragments for run time estimates with
accuracy of 85% and 50%, respectively. We observe that
the higher the accuracy the smaller is the number of jobs
that have changes of being backfilled. In this example,
we are not considering the submission time of the jobs.
However, by plotting the total number of jobs that would
have chances to be backfilling as a function of run time
accuracy, we notice that there is a limit on the backfilling
chances. Figure 10 shows that after an overestimation of
200%, the chances of backfilling become steady.

The main motivation for developing the coordinated
rescheduling for BoT applications is the observation that
stretch factor increases with the run time overestima-
tions. Figure 11 presents the stretch factor for appli-
cations scheduled in multiple clusters as a function of
run time overestimation for homogeneous and heteroge-
neous environments. Until 30% of overestimation, there
is no difference between the rescheduling strategies.
This happens because by this value, just a few jobs
have chances of backfilling. However, after 30%, tasks
of BoT applications spread over the scheduling queues
due to the backfilling, thus increasing the stretch fac-
tor. The coordinated rescheduling minimises this effect
in approximately 20% and 10% for homogeneous and
heterogeneous environments respectively.
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Fig. 8. Requested run times and fragment lengths of the workloads for accuracy of 85%.
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Fig. 9. Requested run times and fragment lengths of the workloads for accuracy of 50%.
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Fig. 10. Backfilling limit as a function of run time overestimations.

For the heterogeneous environment, although stretch
factor is reduced using coordinated rescheduling over
the uncoordinated one, this improvement is slightly
lower (Figure 11). The reason is that applications tend
to execute in fewer clusters (the fastest ones), and there-
fore the importance for coordinated rescheduling among
providers is reduced. As showed in Figure 12, the num-
ber of clusters per job is reduced in the heterogeneous
environment. Most of the applications are scheduled
to one or two clusters, whereas for the homogeneous
environment similar number of applications access two,
three, and four clusters.

Reducing the stretch factor has a direct impact on

the user response time. Figure 13 presents the response
time reduction of coordinated rescheduling and system-
generated predictions in comparison to user run time
estimates with uncoordinated rescheduling. We observe
that the differences between the policies is higher for
the homogeneous environment, since jobs are more dis-
tributed to multiple providers than in the heterogeneous
environment. In addition, system-generated predictions
have better improvements in the heterogeneous envi-
ronment than in the homogeneous one. The reason is
that incorrect balancing the load in a heterogeneous
environment causes more negative effects than in a ho-
mogeneous one. We also observe that system-generated
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Fig. 11. Stretch factor variation as a function of the run time estimation accuracy and rescheduling schema.
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Fig. 12. Number of clusters per job.

prediction policies have a similar curve shape that per-
fect user estimation until a certain threshold (60% for
homogeneous and 70% for heterogeneous environment).
After this threshold the advantage of using system-
generated predictions is reduced. This happens because
there is a benefit limit in backfilling (as illustrated in
Figure 10) and it becomes lower than the cost paid to
obtain better estimations.

We also analysed the user response time separately
for multi- and single-provider jobs. Figure 15 presents
the results for single-provider jobs. We observed that the
increase of user overestimations actually reduces user
response time for these jobs, which corroborates with
previous studies on effects of run time estimates for
job scheduling [30]. User response time for coordinated
rescheduling produces an improvement of up to 5% in
relation to uncoordinated rescheduling for these jobs.
The main benefits of higher run time accuracy and coor-
dinated rescheduling come from multi-provider jobs, as
illustrated in Figure 16.

We have also analysed the slowdown (with 10 minutes
bound), which is the response time divided by the
application run time. Figure 14 presents the slowdown

for homogeneous and heterogeneous environments. We
observe that for this metric, coordinated rescheduling
presents even better results than using perfect run time
estimations. This happens because this metric highlights
the improvements of smaller jobs in relation to big
ones—smaller jobs have more chances of backfilling than
the big ones.

We have also calculated system utilization for
user and system-generated estimations and uncoordi-
nated/coordinated rescheduling algorithms. The results
are similar with a difference of less than 1%. This differ-
ence may increase if we consider a competition scenario
with providers offering different levels of completion
time guarantees. In this scenario, users will tend to
execute their applications on providers with more opti-
mized completion time guarantees. Figure 17 illustrates
the average utilization level of providers with different
run time estimation schemas; the higher the accuracy of
run time predictions the higher the chances of attracting
more users.

We have also performed experiments in Grid’5000 to
evaluate possible technical difficulties to deploy the coor-
dinated rescheduling. We selected a few workloads and
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Fig. 13. Global user response time reduction in comparison to uncoordinated rescheduling.
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Fig. 14. Global slowdown reduction in comparison to uncoordinated rescheduling.
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Fig. 15. User response time reduction in comparison to uncoordinated rescheduling for single-cluster jobs.

compared the results of simulation and the execution
in the real system. Table 4 presents the scenarios and
obtained results. We observed that for these experiments,
both simulations and executions in the real environment
provided similar results, showing the practical benefits
of coordinated rescheduling. As we described in Section

3, the required modification in an existing scheduling
architecture is minimal.

7 CONCLUSIONS

This paper presented a coordinated rescheduling algo-
rithm for BoT applications executing across multiple



11

0 20 40 60 80 100 120 140 160 180 200
User run time overestimation (%)

0

5

10

15

20

25
R

es
p

o
n

se
 T

im
e 

R
ed

u
ct

io
n

 (
%

) 
Perfect user estimation

UE with Coord. Rescheduling

SE 80% more accurate than UE

SE 50% more accurate than UE

(a) Homogeneous environment.

0 20 40 60 80 100 120 140 160 180 200
User run time overestimation (%)

0

5

10

15

20

25

R
es

p
o

n
se

 T
im

e 
R

ed
u

ct
io

n
 (

%
) 

Perfect user estimation

UE with Coord. Rescheduling

SE 80% more accurate than UE

SE 50% more accurate than UE

(b) Heterogeneous environment.

Fig. 16. User response time reduction in comparison to uncoordinated rescheduling for multi-cluster jobs.
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Fig. 17. Impact of estimations on the system utilization by attracting more users through more optimized completion
time guarantees.

TABLE 4
Comparison of results from Grid’5000 and simulations.

Metric and From From
Overestimation (%) simulation (%) real system (%)

SFactor uncoord - 50 2.92 ± 0.08 3.05
SFactor uncoord - 100 2.86 ± 0.07 2.81
SFactor uncoord - 150 2.81 ± 0.04 2.69

SFactor coord - 50 2.59 ± 0.05 2.65
SFactor coord - 100 2.53 ± 0.07 2.42
SFactor coord - 150 2.49 ± 0.04 2.56

Response time red. - 50 3.14 ± 0.55 3.84
Response time red. - 100 4.95 ± 0.74 6.94
Response time red. - 150 5.68 ± 0.74 5.99

Slowdown red. - 50 6.66 ± 0.79 6.74
Slowdown red. - 100 8.48 ± 0.92 10.4
Slowdown red. - 150 8.88 ± 1.29 10.07

providers and the impact of run time estimates for
these applications. Due to inaccurate run time estimates,
initial schedules have to be updated, and therefore, when

each provider reschedules tasks of a BoT application
independently, other applications may not have chances
of reducing their response time.

The main finding is that tasks of the same BoT can be
spread over time due to inaccurate run time estimates
and environment heterogeneity. Coordinated reschedul-
ing of these tasks can hence reduce user response time
for both single- and multi-provider applications in ap-
proximately 5%; and slowdown reduction of up to 10%.
This improvement comes from the observation that re-
ducing completion time of tasks from the same BoT inde-
pendently prevents backfilling of other tasks. Moreover,
in order to deploy coordinated rescheduling, metasched-
ulers and resource providers only require to keep track
of the expected completion time of the last task of
each BoT applications. System-generated predictions can
serve as an alternative to coordinated rescheduling but
require more effort for deployment and may not reduce
user response times as much as when using coordinated
rescheduling. From the providers perspective, one of
the main advantages of system-generated predictions is
to be able to attract more users by providing tighter
expected completion times.
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