
Decentralized Overlay for Federation of Enterprise Clouds

Rajiv Ranjan and Rajkumar Buyya
Grid Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering
The University of Melbourne, Australia

Email: {rranjan, raj}@csse.unimelb.edu.au

Abstract

This chapter describes Aneka-Federation, a decentralized and distributed system that combines

enterprise Clouds, overlay networking, and structured peer-to-peer techniques to create scalable

wide-area networking of compute nodes for high-throughput computing. The Aneka-Federation

integrates numerous small scale Aneka Enterprise Cloud services and nodes that are distributed

over multiple control and enterprise domains as parts of a single coordinated resource leasing

abstraction. The system is designed with the aim of making distributed enterprise Cloud resource

integration and application programming flexible, efficient, and scalable. The system is

engineered such that it: enables seamless integration of existing Aneka Enterprise Clouds as part

of single wide-area resource leasing federation; self-organizes the system components based on a

structured peer-to-peer routing methodology; and presents end-users with a distributed

application composition environment that can support variety of programming and execution

models. This chapter describes the design and implementation of a novel, extensible and

decentralized peer-to-peer technique that helps to discover, connect and provision the services of

Aneka Enterprise Clouds among the users who can use different programming models to

compose their applications. Evaluations of the system with applications that are programmed

using the Task and Thread execution models on top of an overlay of Aneka Enterprise Clouds

have been described here.

 page 2

1. Introduction

Wide-area overlays of enterprise Grids [4][11][14][18] and Clouds [25][26][27][32] are an

appealing platform for the creation of high-throughput computing resource pools and cross-

domain virtual organizations. An enterprise Cloud1 is a type of computing infrastructure that

consists of a collection of inter-connected computing nodes, virtualized computers, and software

services that are dynamically provisioned among the competing end-user’s applications based on

their availability, performance, capability, and Quality of Service (QoS) requirements. Various

enterprise Clouds can be pooled together to form a federated infrastructure of resource pools

(nodes, services, virtual computers). In a federated organisation: (i) every participant gets access

to much larger pools of resources; (ii) the peak-load handling capacity of every enterprise Cloud

increases without having the need to maintain or administer any additional computing nodes,

services, and storage devices; and (iii) the reliability of a enterprise Cloud is enhanced as a result

of multiple redundant clouds that can efficiently tackle disaster condition and ensure business

continuity.

 Emerging enterprise Cloud applications and the underlying federated hardware

infrastructure (Data Centers) are inherently large, with heterogeneous resource types that may

exhibit temporal resource conditions. The unique challenges in efficiently managing a federated

Cloud computing environment include:

• Large scale – composed of distributed components (services, nodes, applications,

users, virtualized computers) that combine together to form a massive

environment. These days enterprise Clouds consisting of hundreds of thousands

of computing nodes are common (Amazon EC2 [25], Google App Engine [26],

Microsoft Live Mesh [27]) and hence federating them together leads to a massive

scale environment;

1 3rd generation enterprise Grids are exhibiting properties that are commonly envisaged in Cloud computing
systems.

 page 3

• Resource contention - driven by the resource demand pattern and a lack of

cooperation among end-user’s applications, particular set of resources can get

swamped with excessive workload, which significantly undermines the overall

utility delivered by the system; and

• Dynamic – the components can leave and join the system at will.

 The aforementioned characteristics of the infrastructure accounts to significant

development, system integration, configuration, and resource management challenges. Further,

the end-users follow a variety of programming models to compose their applications. In other

words, in order to efficiently harness the computing power of enterprise Cloud infrastructures

[6][25][26][27], software services that can support high level of scalability, robustness, self-

organization, and application composition flexibility are required.

This chapter has two objectives. The first is to investigate the challenges as regards to

design and development of decentralized, scalable, self-organizing, and federated Cloud

computing system. The second is to introduce the Aneka-Federation software system that

includes various software services, peer-to-peer resource discovery protocols [5], and resource

provisioning methods [3][31] to deal with the challenges in designing decentralized resource

management system in a complex, dynamic, and heterogeneous enterprise Cloud computing

environment. The components of the Aneka-Federation including computing nodes, services,

providers and end-users self-organize themselves based on a structured peer-to-peer routing

methodology to create a scalable wide-area overlay of enterprise Clouds. In rest of this chapter,

the terms Aneka Cloud(s) and Aneka Enterprise Cloud(s) are used interchangeably.

The unique features of Aneka-Federation are: (i) wide-area scalable overlay of distributed

Aneka Enterprise Clouds [6]; (ii) realization of a peer-to-peer based decentralized resource

discovery technique as a software service, which has the capability to handle complex resource

queries; and (iii) the ability to enforce coordinated interaction among end-users through the

implementation of a novel decentralized resource provisioning method. This provisioning method

 page 4

is engineered over a peer-to-peer routing and indexing system that has the ability to route, search

and manage complex coordination objects in the system.

The rest of this chapter is organized as follows: Section 2 outlines the challenges and

requirements of designing decentralized enterprise Cloud overlays. Section 3 briefly introduces

the Aneka Enterprise Cloud system including the basic architecture, key services and

programming models. In Section 4, we describe how the Aneka-Federation software system

builds upon the decentralized Content-based services. Section 5 lists the comprehensive details on

the design and implementation of decentralized Content-based services for message routing,

search, and coordinated interaction. Next, Section 6 presents the experimental case study and

analysis based on the test run of two enterprise Cloud applications on the Aneka-Federation

system. Section 7 puts this work in context with the related works. And finally Section 8

presents a conclusion.

2. Designing Decentralized Enterprise Cloud Overlay: Challenges

In decentralized organization of Cloud computing systems both control and decision making are

decentralized by nature and where different system components interact together to adaptively

maintain and achieve a desired system wide behavior. A distributed Cloud system configuration

is considered to be decentralized “if none of the components in the system are more important

than the others, in case that one of the component fails, then it is neither more nor less harmful to

the system than caused by the failure of any other component in the system”.

A fundamental challenge in managing the decentralized Cloud computing system is to

maintain a consistent connectivity between the components (self-organization) [28]. This

challenge cannot be overtaken by introducing a central network model to connect the

components, since the information needed for managing the connectivity and making the

decisions is completely decentralized and distributed. Further, centralized network model [2]

does not scale well, lacks fault-tolerance, and requires expensive server hardware infrastructure.

 page 5

System components can leave, join, and fail in a dynamic fashion; hence it is an impossible task

to manage such a network centrally. Therefore, an efficient decentralized solution is mandatory

that can gracefully adapt, and scale to the changing conditions.

A possible way to efficiently interconnect the distributed system components can be

based on a structured peer-to-peer overlays. In literature, structured peer-to-peer overlays are

more commonly referred to as the Distributed Hash Tables (DHTs). DHTs provide hash table like

functionality at the Internet scale. DHTs such as Chord [7], CAN [8], Pastry [15], and Tapestry

[9] are inherently self-organizing, fault-tolerant, and scalable. DHTs provide services that are

light-weight and hence, do not require an expensive hardware platform for hosting, which is an

important requirement as regards to building and managing enterprise Cloud system that consists

of commodity machines. A DHT is a distributed data structure that associates a key with a data.

Entries in a DHT are stored as a (key, data) pair. A data can be looked up within a logarithmic

overlay routing hops if the corresponding key is known.

The effectiveness of the decentralized Cloud computing system depends on the level of

coordination and cooperation among the components (users, providers, services) as regards to

scheduling and resource allocation. Realizing cooperation among distributed Cloud components

requires design and development of the self-organizing, robust, and scalable coordination

protocols. The Aneka-Federation system implements one such coordination protocol using the

DHT-based routing, lookup and discovery services. The finer details about the coordination

protocol are discussed in Section 5.

3. Aneka Enterprise Cloud: An Overview

Aneka [6] is a .NET-based service-oriented platform for constructing enterprise Clouds. It is

designed to support multiple application models, persistence and security solutions, and

communication protocols such that the preferred selection can be changed at anytime without

affecting an existing Aneka ecosystem. To create an enterprise Cloud, the resource provider only

 page 6

needs to start an instance of the configurable Aneka container hosting required services on each

selected Cloud node. The purpose of the Aneka container is to initialize services and acts as a

single point for interaction with the rest of the enterprise Cloud.

Remote
Interactions

Optional Compulsory

M
essage H

andler / D
ispatcher

Security

Author ization

Auditing

Authentication

Services

Information & Indexing

Application
Catalog

Data
Cata log

Membership
Catalog

Scheduling

Thread
Scheduler

Dataflow
Scheduler

MPI
Scheduler Mapping

Scheduler

Execution Storage

Dataflow
ExecutorMPI

Executor

Thread
Executor

File
Server

C
om

m
unication Layer

Container

Others

Banking
Service

…

Persistence

Remote
Interactions

Optional Compulsory

M
essage H

andler / D
ispatcher

Security

Author ization

Auditing

Authentication

Services

Information & Indexing

Application
Catalog

Data
Cata log

Membership
Catalog

Scheduling

Thread
Scheduler

Dataflow
Scheduler

MPI
Scheduler Mapping

Scheduler

Execution Storage

Dataflow
ExecutorMPI

Executor

Thread
Executor

File
Server

C
om

m
unication Layer

Container

Others

Banking
Service

…

Persistence

Optional Compulsory

M
essage H

andler / D
ispatcher

Security

Author ization

Auditing

Authentication

Services

Information & Indexing

Application
Catalog

Data
Cata log

Membership
Catalog

Scheduling

Thread
Scheduler

Dataflow
Scheduler

MPI
Scheduler Mapping

Scheduler

Execution Storage

Dataflow
ExecutorMPI

Executor

Thread
Executor

File
Server

C
om

m
unication Layer

Container

Others

Banking
Service

…

Persistence

M
essage H

andler / D
ispatcher

Security

Author ization

Auditing

Authentication

Services

Information & Indexing

Application
Catalog

Data
Cata log

Membership
Catalog

Scheduling

Thread
Scheduler

Dataflow
Scheduler

MPI
Scheduler Mapping

Scheduler

Execution Storage

Dataflow
ExecutorMPI

Executor

Thread
Executor

File
Server

C
om

m
unication Layer

Container

Others

Banking
Service

…

Persistence

Figure 1: Design of Aneka container.

Figure 1 shows the design of the Aneka container on a single Cloud node. To support

scalability, the Aneka container is designed to be lightweight by providing the bare minimum

functionality needed for an enterprise Cloud node. It provides the base infrastructure that consists

of services for persistence, security (authorization, authentication and auditing), and

communication (message handling and dispatching). Every communication within the Aneka

services is treated as a message, handled and dispatched through the message handler/dispatcher

that acts as a front controller. The Aneka container hosts a compulsory MembershipCatalogue

service, which maintains the resource discovery indices (such as a .Net remoting address) of those

 page 7

services currently active in the system. The Aneka container can host any number of optional

services that can be added to augment the capabilities of an enterprise Cloud node. Examples of

optional services are indexing, scheduling, execution, and storage services. This provides a single,

flexible and extensible framework for orchestrating different kinds of enterprise Cloud

application models.

To support reliability and flexibility, services are designed to be independent of each

other in a container. A service can only interact with other services on the local node or other

Cloud node through known interfaces. This means that a malfunctioning service will not affect

other working services and/or the container. Therefore, the resource provider can seamlessly

configure and manage existing services or introduce new ones into a container. Aneka thus

provides the flexibility for the resource provider to implement any network architecture for an

enterprise Cloud. The implemented network architecture depends on the interaction of services

among enterprise Cloud nodes since each Aneka container on a node can directly interact with

other Aneka containers reachable on the network.

4. Aneka-Federation

The Aneka-Federation system self-organizes the components (nodes, services, clouds) based on a

DHT overlay. Each enterprise Cloud site in the Aneka-Federation (see Figure 2) instantiates a

new software service, called Aneka Coordinator. Based on the scalability requirements and

system size, an enterprise Cloud can instantiate multiple Aneka Coordinator services. The Aneka

Coordinator basically implements the resource management functionalities and resource

discovery protocol specifications. The software design of the Aneka-Federation system decouples

the fundamental decentralized interaction of participants from the resource allocation policies and

the details of managing a specific Aneka Cloud Service. Aneka-Federation software system

utilizes the decentralized Cloud services (see Section 5) as regards to efficient distributed

resource discovery and coordinated scheduling.

 page 8

Figure 2: Aneka-Federation network with the Coordinator Services and Aneka

Enterprise Clouds.

4.1 Design and Implementation

 Aneka Coordinator software service is composed of the following components:

• Aneka Services: These include the core services for peer-to-peer scheduling (Thread

Scheduler, Task Scheduler, Dataflow Scheduler) and peer-to-peer execution (Thread

Executor, Task Executor) provided by the Aneka framework. These services work

independently in the container and have the ability to interact with other services such as

the P2PMembershipCatalogue through the MessageDispatcher service deployed within

each container.

• Aneka Peer: This component of the Aneka Coordinator service loosely glues together the

core Aneka services with the decentralized Cloud services. Aneka peer seamlessly

encapsulates together the following: Apache Tomcat container (hosting environment and

 page 9

web service front end to the Content-based services), Internet Information Server (IIS) (

hosting environment for ASP.Net service), P2PMembershipCatalogue, and Content-

based services (see Figure 4). The basic functionalities of the Aneka peer (refer to Figure

3) include providing services for: (i) Content-based routing of lookup and update

messages; and (ii) facilitating decentralized coordination for efficient resource sharing

and load-balancing among the Internet-wide distributed Aneka Enterprise Clouds. The

Aneka peer service operates at the Core services layer in the layered architecture shown

in Figure 9.

Aneka
Coordinator

User

Aneka
Coordinator

Aneka
Coordinator

Aneka Coordinator

Aneka Peer

Coordinate

Search Route

ThreadScheduler

ThreadExecutor

Aneka Services

TaskScheduler

TaskExecutor

Figure 3: Aneka-Federation over decentralized Cloud services.

Figure 4 shows a block diagram of interaction between various components of Aneka

Coordinator software stack. The Aneka Coordinator software stack encapsulates the

P2PMembershipCatalogue and Content-based decentralized lookup services. The design

components for peer-to-peer scheduling, execution, and membership are derived from the basic

Aneka framework components through object oriented software inheritance (see Figures 5, 6, and

7).

 page 10

Scheduling Handler
Service

P2PMemberShipCatalogue
Service

P2PScheduling Service

Content-based Service

Common API
(FreePastry)

Past DHT Service

P2PExecution Service

Aneka Coordinator

Desktop Nodes

Tomcat Web
Service

IIS Web
Service

Aneka Peer

Figure 4: A block diagram showing interaction between various components in the Aneka

Coordinator software stack.

A UML (Unified Modeling Language) class diagram that displays the core entities within

the Aneka Coordinator’s Scheduling service is shown in Figure 5. The main class (refer to Figure

5) that undertakes activities related to application scheduling within the Aneka Coordinator is the

P2PScheduling service, which is programmatically inherited from the Aneka’s

IndependentScheduling service class. The P2PScheduling service implements the methods for:

(i) accepting application submission from client nodes (see Figure 8); (ii) sending search query to

the P2PMembershipCatalogue service; (iii) dispatching application to Aneka nodes

(P2PExecution service); and (iv) collecting the application output data. The core programming

models in Aneka including Task, Thread, and Dataflow instantiate P2PScheduling service as their

main scheduler class. This runtime binding of P2PScheduling service class to different

 page 11

programming models is taken care of by Microsoft .NET platform and Inverse of Control (IoC)

[19] implementation in the Spring .NET framework [20].

Figure 5: Class design diagram of P2PScheduling service.

Similar to P2PScheduling service, the binding of P2PExecution service to specific

programming models (such as P2PTaskExecution, P2PThreadExecution) is done by Microsoft

.NET platform and IoC implementation in the Spring .NET framework. The interaction between

 page 12

the services (such as P2PTaskExecution and P2PTaskScheduling service) is facilitated by the

MessageDispatcher service. The P2PExecution services update their node usage status with the

P2PMembershipCatalogue through the P2PExecutorStatusUpdate component (see Figure 6). The

core Aneka Framework defines distinct message types to enable seamless interaction between

services. The functionality of handling, compiling, and delivering the messages within the Aneka

framework is implemented in the MessageDispactcher service. Recall that the MessageDispatcher

service is automatically deployed in the Aneka container.

Figure 6: Class design diagram of P2PExecution service.

P2PMembershipCatalogue service is the core component that interacts with the Content-

based decentralized Cloud services and aids in the organization and management of Aneka-

 page 13

DFPastryManager

SoapHttpClientProtocol
Class

P2PMembershipCatalogue

MembershipCatalogue
Class

Fields

executionModels
logger
RLQList
statusPublisher

Methods

computeNodeLoad
dhtCallbackNotification
executorStatusUpdate
HandleMessage
HeartBeat
Register
remoteRLQRequest

P2PPublisherSubscriber
Class

Fields

instance
PastryManager
stringConverter
xmlConfigFileReader

Methods

getRLQString
getRUQString
P2PPublisherSubscriber
SubmitRUQ
Subscribe
Unsubscribe

P2PTicketObject

BaseIndex
Class

Fields

publicationString

Methods

GetPublicationStri…
PrintPublicationSt…

P2PClaimObject

BaseIndex
Class

Fields

subscriptionString

Methods

GetSubscriptionSt…
PrintSubscription…

MembershipCatalogue
Class

SoapHttpClientP…

HttpWebClientProtocol
Class

DHTXMLConfigFileReader
Class

Fields

Methods

ConvertStringToFloat
DHTXMLConfigFileReader
hashAnekaServiceIndices
hashCPUIndices
hashOSIndices
PrintIndexEncodings
readQueryXMLConfigFile
TestGenericDelegates

IService
IMembershipCatalogue

P2… P2…

P2…
P2…

P2PPublisherSubscriber

D…

 Namespace
 Peer.DHTPeer.PeerService

 Namespace
Peer.DHTPeer.JavaWebServiceStub

 Namespace
 Peer.DHTPeer.QueryStubs

 Namespace
 Peer.DHTPeer.QueryStubs

 Namespace
 Peer.DHTPeer.PeerService

 Namespace
 Peer.DHTPeer.QueryStubs

 Namespace
 Aneka.Runtime

Federation overlay. The UML class design for this service within the Aneka Coordinator is shown

in Figure 7. This service accepts resource claim and ticket objects from P2PScheduling and

P2PExecution services respectively (refer to Figure 8), which are then posted with the Content-

based services hosted in the Apache Tomcat container.

Figure 7: Class design diagram of P2PMembershipCatalogue service.

The P2PMembershipCatalogue interacts with the components hosted within the Apache

Tomcat container (Java implementation) using the SOAP-based web services Application

Programming Interfaces (APIs) exposed by the DFPastryManager component (see Figure 7). The

 page 14

Scheduler Node

MessageDispatcher

P2PScheduling
Service

P2PScheduling
Service

Executor Node

MessageDispatcher

P2PExecution
Service

Client

MessageDispatcher

.Net Web
Service

Tomcat Container

SOAP Stub

Content-based
Service

Content-based
Service

FreePastry
Framework
FreePastry
Framework

Submit

Result

MessageDispatcher

P2PMembership
Catalogue

SOAP Stub

SubmissionOutput

Status Update
(Publish Ticket)

Post Resource Claim

Post Resource Ticket

NotificationNotifi
cation

Query

Available Service

IIS Container

1

2

3

4

5

67

8

9

10

Aneka Container

Content-based service communicates with the P2PMembershipCatalogue service through an

ASP.NET web service hosted within in the IIS container (see Figure 4 or 8).

The mandatory services within a Aneka Coordinator that are required to instantiate a fully

functional Aneka Enterprise Cloud site includes P2PMembershipCatalogue, P2PExecution,

P2PScheduling, .Net web service, and Content-based services (see Figure 8). These services

exports a enterprise Cloud site to the federation, and give it capability to accept remote jobs

based on its load condition (using their P2PExecution services), and submit local jobs to the

federation (through their P2PScheduling services).

Figure 8: Application execution sequence in Aneka-Federation.

 Figure 8 demonstrates a sample application execution flow in the Aneka-Federation

system. Clients directly connect and submit their application to a programming model specific

scheduling service. For instance, a client having an application programmed using Aneka’s

 page 15

Thread model would submit his application to Thread P2PScheduling service (refer to step 1 in

Figure 8). Clients discover the point of contact for local scheduling services by querying their

domain specific Aneka Coordinator service. On receipt of an application submission message, a

P2PScheduling service encapsulates the resource requirement for that application in a resource

claim object and sends a query message to the P2PMembershipCatalogue (see step 2 in Figure 8).

 Execution services (such as the P2PThreadExecution, P2PTaskExecution), which are

distributed over different enterprise Clouds and administered by enterprise specific Aneka

Coordinator services, update their status by sending a resource ticket object to the

P2PMembership Catalogue (see step 3 in Figure 8). A resource ticket object in the Aneka-

Federation system abstracts the type of service being offered, the underlying hardware platform,

and level of QoS that can be supported. The finer details about the composition and the mapping

of resource ticket and claim objects are discussed in Section 5.

 The P2PMembershipCatalogue then posts the resource ticket and claim objects with the

decentralized Content-based services (see step 4 and 5 in Figure 8). When a resource ticket,

issued by a P2PTExecution service, matches with a resource claim object, posted by a

P2PScheduling service, the Content-based service sends a match notification to the

P2PScheduling service through the P2PMembershipCatalogue (see step 6, 7, 8 in figure 8). After

receiving the notification, the P2PScheduling service deploys its application on the P2PExecution

service (see step 9 in Figure 8). On completion of a submitted application, the P2PExecution

service directly returns the output to the P2PScheduling service (see step 10 in Figure 8).

The Aneka Coordinator service supports the following two inter-connection models as

regards to an Aneka Enterprise Cloud site creation. First, a resource sharing domain or enterprise

Cloud can instantiate a single Aneka-Coordinator service, and let other nodes in the Cloud

connect to the Coordinator service. In such a scenario, other nodes need to instantiate only the

P2PExecution and P2PScheduling services. These services are dependent on the domain specific

Aneka Coordinator service as regards to load update, resource lookup, and membership to the

 page 16

federation (see Figure 11). In second configuration, each node in a resource domain can be

installed with all the services within the Aneka Coordinator (see Figure 4). This kind of inter-

connection will lead to a true peer-to-peer Aneka-Federation Cloud network, where each node is

an autonomous computing node and has the ability to implement its own resource management

and scheduling decisions. Hence, in this case the Aneka Coordinator service can support

completely decentralized Cloud computing environment both within and between enterprise

Clouds.

5. Content-based Decentralized Cloud Services

It was pointed out in Section 2 that the DHT based overlay presents a compelling solution for

creating a decentralized network of Internet-wide distributed Aneka Enterprise Clouds. However,

DHTs are efficient at handling single-dimensional search queries such as “find all services that

match a given attribute value”. Since Cloud computing resources such as enterprise computers,

supercomputers, clusters, storage devices, and databases are identified by more than one attribute,

therefore a resource search query for these resources is always multi-dimensional. These resource

dimensions or attributes include service type, processor speed, architecture, installed operating

system, available memory, and network bandwidth. Recent advances in the domain of

decentralized resource discovery have been based on extending the existing DHTs with the

capability of multi-dimensional data organization and query routing [5].

Our decentralized Cloud management middleware supports peer-to-peer Content-based

resource discovery and coordination services for efficient management of distributed enterprise

Clouds. The middleware is designed based on a 3-tier layered architecture: the Application layer,

Core Services layer, and Connectivity layer (see Figure 9). Cloud services such as the Aneka

Coordinator, resource brokers, and schedulers work at the Application layer and insert objects via

the Core services layer. The core functionality including the support for decentralized

coordinated interaction, and scalable resource discovery is delivered by the Core Services Layer.

 page 17

The Core services layer, which is managed by the Aneka peer software service, is composed of

two sub-layers (see Figure 9): (i) Coordination Service [31]; and (ii) Resource discovery service .

The Coordination service component of Aneka peer accepts the coordination objects such as a

resource claim and resource ticket. A resource claim object is a multi-dimensional range look-up

query [29] (spatial range object), which is initiated by Aneka Coordinators in the system in order

to locate the available Aneka Enterprise Cloud nodes or services that can host their client ‘s

applications. A resource claim object has the following semantics:

Aneka Service = “P2PThreadExecution” && CPU Type = “Intel” && OSType =

“WinXP” && Processor Cores > “1” && Processors Speed > “1.5 GHz”

On the other hand, a resource ticket is a multi-dimensional point update query (spatial

point object), which is sent by an Aneka Enterprise Cloud to report the local Cloud nodes and

the deployed services’ availability status. A resource ticket object has the following semantics:

Aneka Service = “P2PThreadExecution” && CPU Type = “Intel” && OSType =

“WinXP” && Processor Cores = “2” && Processors Speed = “3 GHz”

Further, both of these queries can specify different kinds of constraints on the attribute

values. If a query specifies a fixed value for each attribute then it is referred to as a multi-

dimensional point query. However, in case the query specifies a range of values for attributes,

then it is referred to as a multi-dimensional range query. The claim and ticket objects encapsulate

coordination logic, which in this case is the resource provisioning logic. The calls between the

Coordination service and the Resource Discovery service are made through the standard

publish/subscribe technique. Resource Discovery service is responsible for efficiently mapping

these complex objects to the DHT overlay.

The Resource Discovery service organizes the resource attributes by embedding a logical

publish/subscribe index over a network of distributed Aneka peers. Specifically, the Aneka peer

in the system create a DHT overlay that collectively maintain the logical index to facilitate a

decentralized resource discovery process. The spatial publish/subscribe index builds a multi-

 page 18

dimensional attribute space based on the Aneka Enterprise Cloud node’s resource attributes,

where each attribute represents a single dimension. The multi-dimensional spatial index assigns

regions of space to the Aneka peer. The calls between Core services layer and Connectivity layer

are made through standard DHT primitives such as put(key, value), get(key) that are defined by

the peer-to-peer Common Application Programming Interface (API) specification [21].

There are different kinds of spatial indices [5] such as the Space Filling Curves (SFCs)

(including the Hilbert curves, Z-curves), k-d tree, MX-CIF Quad tree and R*-tree that can be

utilized for managing, routing, and indexing of objects by resource discovery service at Core

services layer. Spatial indices are well suited for handling the complexity of Cloud resource

queries. Although some spatial indices can have issues as regards to routing load-balance in case

of a skewed attribute set, all the spatial indices are generally scalable in terms of the number of

hops traversed and messages generated while searching and routing multi-dimensional/spatial

claim and ticket objects.

Resource Claim and Ticket Object Mapping: At the Core services layer, a spatial index that

assigns regions of multi-dimensional attribute space to Aneka peers has been implemented. The

MX-CIF Quadtree spatial hashing technique [23] is used to map the logical multi-dimensional

control point (point C in Figure 10 represents a 2-dimensional control point) onto a Pastry DHT

overlay. If an Aneka peer is assigned a region in the multi-dimensional attribute space, then it is

responsible for handling all the activities related to the lookups and updates that intersect with the

region of space. Figure 10 depicts a 2-dimensional Aneka resource attribute space for mapping

resource claim and ticket objects. The attribute space resembles a mesh-like structure due to its

recursive division process. The index cells, resulted from this process, remain constant throughout

the life of a d-dimensional attribute space and serve as the entry points for subsequent mapping of

claim and ticket objects. The number of index cells produced at the minimum division level, fmin

is always equal to (fmin)dim, where dim is the dimensionality of the attribute space. These index

 page 19

cells are called base index cells and they are initialized when the Aneka Peers bootstrap to the

federation network. Finer details on the recursive subdivision technique can be found in [23].

Every Aneka Peer in the federation has the basic information about the attribute space coordinate

values, dimensions and minimum division levels.

e.g. Resource Manager, Workflow Broker
Auction Manager

C
o

re
 S

e
rv

ic
e
s

L
a
y
e
r C

o
o

rd
in

a
ti

o
n

S
e
rv

ic
eClaim/Ticket Objects are inserted,

deleted, and queried

Ticket Claim

R
e
so

u
rc

e
 D

is
co

v
e
ry

S
e
rv

ic
e

E.g. Index logic

Logical index space management

Publish(Ticket) Subscribe(Claim)

A
n

e
k
a
 P

e
e
r

C
o

n
n

e
ct

iv
it

y

L
a
y
e
r e.g. Key-based routing,

Self-organizing overlay

Message routing, Replica management

put(Ticket Key)

Match message

get(Claim Key)

Ticket to Claim

match

Notification

Scheduling, Resource lookup

e.g. Resource Manager, Workflow Broker
Auction Manager

C
o

re
 S

e
rv

ic
e
s

L
a
y
e
r C

o
o

rd
in

a
ti

o
n

S
e
rv

ic
eClaim/Ticket Objects are inserted,

deleted, and queried

Ticket Claim

R
e
so

u
rc

e
 D

is
co

v
e
ry

S
e
rv

ic
e

E.g. Index logic

Logical index space management

Publish(Ticket) Subscribe(Claim)

A
n

e
k
a
 P

e
e
r

C
o

n
n

e
ct

iv
it

y

L
a
y
e
r e.g. Key-based routing,

Self-organizing overlay

Message routing, Replica management

put(Ticket Key)

Match message

get(Claim Key)

Ticket to Claim

match

Notification

Scheduling, Resource lookup

Figure 9: Layered view of the Content-based decentralized Cloud services.

Every cell at the fmin level is uniquely identified by its centroid, termed as the control

point. Figure 10 shows four control points A, B, C, and D. A DHT hashing (cryptographic

functions such as SHA-1/2) method is utilized to map the responsibility of managing control

points to the Aneka Peers. In a 2-dimensional setting, an index cell i = (x1, y1, x2, y2), and its

control point are computed as ((x2-x1)/2, (y2-y1)/2). The spatial hashing technique takes two input

 page 20

parameters, SpatialHash (control point coordinates, object’s coordinates), in terms of DHT

common API primitive that can be written as Put (Key, Value), where the cryptographic hash of

the control point acts as the Key for DHT overlay, while Value is the coordinate values of the

resource claim or ticket object to be mapped. In Figure 10, the Aneka peer at Cloud s is assigned

index cell i through the spatial hashing technique, which makes it responsible for managing all

objects that map to the cell i (Claim T2, T3, T4 and Ticket s).

For mapping claim objects, the process of mapping index cells to the Aneka Peers

depends on whether it is spatial point object or spatial range object. The mapping of point object

is simple since every point is mapped to only one cell in the attribute space. For spatial range

object (such as Claims T2, T3 or T4), the mapping is not always singular because a range object

can cross more than once index cell (see Claim T5 in Figure 10). To avoid mapping a spatial

range object to all the cells that it intersects, which can create many duplicates, a mapping

strategy based on diagonal hyperplane [24] in the attribute space is implemented. This mapping

involves feeding spatial range object coordinate values and candidate index as inputs to a

mapping function, Fmap (spatial object, candidate index cells). An Aneka Peer service uses the

index cell(s) currently assigned to it and a set of known base index cells as candidate cells, which

are obtained at the time of bootstrapping into the federation. The Fmap returns the index cells and

their control points to which the given spatial range object should be stored with. Next, these

control points and the spatial object is given as inputs to function SpatialHash(control point,

object), which in connection with the Connectivity layer generates DHT Ids (Keys) and performs

routing of claim/ticket objects to the Aneka Peers.

Similarly, the mapping process of a ticket object also involves the identification of the

intersection index cells in the attribute space. A ticket is always associated with a region [24]

and all cells that fall fully or partially within the region are selected to receive the corresponding

ticket. The calculation of the region is based upon the diagonal hyperplane of the attribute space.

 page 21

Aneka Cloud s

Aneka Cloud p

Pastry Overlay

Resource Ticket Coordinator
for index cell i

Index cell i

A

C D

B

Resource Ticket l

Resource Claim

Spatial Hash (index cell i)

Resource Claim p

Resource Ticket u

Resource Ticket s

Resource
Claim l

Resource Claim l

T2

T3

Aneka Peer

Aneka Peer

Aneka Cloud u

Aneka PeerAneka Peer

`

Aneka Peer

Aneka Cloud l

T2

T3
T1

T4

Diagonal
Hyperplane

Resource Ticket s

T5

Figure 10: Resource claim and ticket object mapping and coordinated scheduling across

Aneka Enterprise Cloud sites. Spatial resource claims {T1, T2, T3, T4}, index cell control points

{A, B, C, D}, spatial point tickets {l, s} and some of the spatial hashings to the Pastry ring, i.e.

the d-dimensional (spatial) coordinate values of a cell’s control point is used as the Pastry key.

For this Figure fmin =2, dim = 2.

Coordinated Load Balancing: Both resource claim and ticket objects are spatially hashed to an

index cell i in the multi-dimensional Aneka services’ attribute space. In Figure 10, resource claim

object for task T1 is mapped to index cell A, while for T2, T3, and T4, the responsible cell is i

with control point value C. Note that, these resource claim objects are posted by P2PScheduling

 page 22

services (Task or Thread) of Aneka Cloud nodes. In Figure 10, scheduling service at Cloud p

posts a resource claim object which is mapped to index cell i. The index cell i is spatially hashed

to an Aneka peer at Cloud s. In this case, Cloud s is responsible for coordinating the resource

sharing among all the resource claims that are currently mapped to the cell i. Subsequently,

Cloud u issues a resource ticket (see Figure 10) that falls under a region of the attribute space

currently required by the tasks T3 and T4. Next, the coordination service of Aneka peer at Cloud

s has to decide which of the tasks (either T3 or T4 or both) is allowed to claim the ticket issues by

Cloud u. The load-balancing decision is based on the principle that it should not lead to over-

provisioning of resources at Cloud u. This mechanism leads to coordinated load-balancing across

Aneka Enterprise Clouds and aids in achieving system-wide objective function, while at the same

time preserving the autonomy of the participating Aneka Enterprise Clouds.

Table 1: Claims stored with an Aneka Peer service at time T.

Time Claim ID Service Type Speed (GHz) Processors Type

300 Claim 1 P2PThreadExecution > 2 1 Intel

400 Claim 2 P2PTaskExecution > 2 1 Intel

500 Claim 3 P2PThreadExecution > 2.4 1 Intel

Table 2: Ticket Published with an Aneka Peer service at time T.

Time Cloud ID Service Type Speed (GHz) Processors Type

700 Cloud 2 P2PThreadExecution 2.7 1 (available) Intel

The examples in Table 1 are list of resource claim objects that are stored with an Aneka

peer’s coordination service at time T = 700 secs. Essentially, the claims in the list arrived at a

time <= 700 and wait for a suitable ticket object that can meet their application’s requirements

(software, hardware, service type). Table 2 depicts a ticket object that has arrived at T = 700.

 page 23

Following the ticket arrival, the coordination service undertakes a procedure that allocates the

ticket object among the list of matching claims. Based on the Cloud node’s attribute

specification, both Claim 1 and Claim 2 match the ticket issuing Cloud node’s configuration. As

specified in the ticket object, there is currently one processor available within the Cloud 2, which

means that at this time only Claim 1 can be served. Following this, the coordination service

notifies the Aneka-Coordinator, which has posted the Claim 1. Note that Claims 2 and 3 have to

wait for the arrival of tickets that can match their requirements.

 The Connectivity layer is responsible for undertaking a key-Based routing in the DHT

overlay, where it can implement the routing methods based on DHTs, such as Chord, CAN, and

Pastry. The actual implementation protocol at this layer does not directly affect the operations of

the Core services layer. In principle, any DHT implementation at this layer could perform the

desired task. DHTs are inherently self-organizing, fault-tolerant, and scalable.

At the Connectivity layer, our middleware utilizes the open source implementation of

Pastry DHT known as the FreePastry [30]. FreePastry offers a generic, scalable and efficient

peer-to-peer routing framework for the development of decentralized Cloud services. FreePastry

is an open source implementation of well-known Pastry routing substrate. It exposes a Key-based

Routing (KBR) API and given the Key K, Pastry routing algorithm can find the peer responsible

for this key in logb n messages, where b is the base and n is the number of Aneka Peers in the

network. Nodes in a Pastry overlay form a decentralized, self-organising and fault-tolerant

circular network within the Internet. Both data and peers in the Pastry overlay are assigned Ids

from 160-bit unique identifier space. These identifiers are generated by hashing the object's

names, a peer's IP address or public key using the cryptographic hash functions such as SHA-1/2.

FreePastry is currently available under BSD-like license. FreePastry framework supports the P2P

Common API specification proposed in the paper [21].

 page 24

6. Experimental Evaluation and Discussion

In this section, we evaluate the performance of the Aneka-Federation software system by creating

a resource sharing network that consists of 5 Aneka Enterprise Clouds (refer to Figure 11).

These Aneka Enterprise Clouds are installed and configured in three different Laboratories

(Labs) within the Computer Science and Software Engineering Department, The University of

Melbourne. The nodes in these Labs are connected through a Local Area Network (LAN). The

LAN connection has a data transfer bandwidth of 100 Mb/Sec (megabits per seconds). Next, the

various parameters and application characteristics related to this study are briefly described.

Aneka Enterprise Cloud Configuration: Each Aneka Cloud in the experiments is

configured to have 4 nodes out of which, one of the nodes instantiates the Aneka-Coordinator

service. In addition to the Aneka Coordinator service, this node also hosts the other optional

services including the P2PScheduling (for Thread and Task models) and P2PExecution

services (for Thread and Task models). The remaining 3 nodes are configured to run the

P2PExecution services for Task and Thread programming models. These nodes connect and

communicate with the Aneka-Coordinator service through .Net remoting messaging APIs. The

P2PExecution services periodically update their usage status with the Aneka-Coordinator service.

The update delay is configurable parameter with values in milliseconds or seconds. The nodes

across different Aneka Enterprise Clouds update their status dynamically with the decentralized

Content-based services. The node status update delays across the Aneka Enterprise Clouds are

uniformly distributed over interval [5, 40] seconds.

FreePastry Network Configuration: Both Aneka Peers’ nodeIds and claim/ticket

objectIds are randomly assigned from and uniformly distributed in the 160-bit Pastry identifier

space. Every Content-based service is configured to buffer maximum of 1000 messages at a given

instance of time. The buffer size is chosen to be sufficiently large such that the FreePastry does

not drop any messages. Other network parameters are configured to the default values as given in

the file freepastry.params. This file is provided with the FreePastry distribution.

 page 25

Aneka
Coordinator

Aneka Cloud 3

Aneka
Coordinator

Aneka Cloud 4

Aneka
Coordinator

Aneka Cloud 1

Aneka
Coordinator

Aneka Cloud 2

Lab 1
(Intel, 2.8GHz)

Lab 2
Intel, 3.2 GHz

Router
Aneka

Coordinator

Aneka Cloud 5

Lab 3
Intel, 3.4 GHz

POV-Ray

POV-Ray

POV-Ray

Mandelbrot

Mandelbrot

 Figure 11: Aneka-Federation test bed distributed over 3 departmental laboratories.

Spatial Index Configuration: The minimum division fmin of logical d-dimensional

spatial index that forms the basis for mapping, routing, and searching the claim and ticket objects

is set to 3, while the maximum height of the spatial index tree, fmax is constrained to 3. In other

words, the division of the d-dimensional attribute is not allowed beyond fmin. This is done for

simplicity, understanding the load balancing issues of spatial indices [23] with increasing fmax is a

different research problem and is beyond scope of this chapter. The index space has provision for

defining claim and ticket objects that specify the Aneka nodes/service's characteristics in 4

dimensions including number of Aneka service type, processors, processor architecture, and

processing speed. The aforementioned spatial index configuration results into 81(34) index cells at

 page 26

fmin level. On an average, 16 index cells are hashed to an Aneka Peer in a network of 5 Aneka

Coordinators.

Claim and Ticket Object’s Spatial Extent: Ticket objects in the Aneka-Federation

express equality constraints on an Aneka node’s hardware/software attribute value (e.g. =). In

other words, ticket objects are always d-dimensional(spatial) point query for this study. On the

other hand, the claim objects posted by P2PScheduling services have their spatial extent in d

dimensions with both, range and fixed constraint (e.g. >=, <=) for the attributes. The spatial

extent of a claim object in different attribute dimension is controlled by the characteristic of the

node, which is hosting the P2PScheduling service. Attributes including Aneka service type,

processor architecture, and number of processors are fixed, i.e. they are expressed as equality

constraints. The value for processing speed is expressed using >= constraints, i.e. search for the

Aneka services, which can process application atleast as fast as what is available on the

submission node. However, the P2PScheduling services can create claim objects with different

kind of constraints, which can result in different routing, searching, and matching complexity.

Studying this behavior of the system is beyond the scope of this chapter.

Application Models: Aneka supports composition and execution of application

programmers using different models [22] to be executed on the same enterprise Cloud

infrastructure. The experimental evaluation in this chapter considers simultaneous execution of

applications programmed using Task and Thread models. The Task model defines an application

as a collection of one or more tasks, where each task represents an independent unit of execution.

Similarly, the Thread model defines an application as a collection of one or more independent

threads. Both models can be successfully utilized to compose and program embarrassingly

parallel programs (parameter sweep applications). The Task model is more suitable for cloud

enabling the legacy applications, while the Thread model fits better for implementing and

architecting new applications, algorithms on clouds since it gives finer degree of control and

flexibility as regards to runtime control.

 page 27

To demonstrate the effectiveness of the Aneka-Federation platform with regards to: (i)

ease of heterogeneous application composition flexibility; (ii) different programming model

supportability; and (iii) concurrent scheduling feasibility of heterogeneous applications on

shared Cloud computing infrastructure, the experiments are run based on the following

applications:

• Persistence of Vision Raytracer (POV-Ray [33]): This application is cloud

enabled using the Aneka Task programming model. POV-Ray is an image

rendering application that can create very complex and realistic three

dimensional models. Aneka POV-Ray application interface allows the selection

of a model, the dimension of the rendered image, and the number of independent

tasks into which rendering activities have to be partitioned. The task partition is

based on the values that a user specifies for parameter rows and columns on the

interface. In the experiments, the values for the rows and the columns are varied

over the interval [5 x 5, 13 x 13] in steps of 2.

• Mandelbrot [34]: Mathematically, the Mandelbrot set is an ordered collection

of points in the complex plane, the boundary of which forms a fractal. Aneka

implements and cloud enables the Mandelbrot fractal calculation using the

Thread programming model. The application submission interface allows the

user to configure number of horizontal and vertical partitions into which the

fractal computation can be divided. The number of independent thread units

created is equal to the horizontal x vertical partitions. For evaluations, we vary

the values for horizontal and vertical parameters over the interval [5 x 5, 13 x 13

] in steps of 2. This configuration results in 5 observation points.

 page 28

Results and Discussion

To measure the performance of Aneka-Federation system as regards to scheduling, we quantify

the response time metric for the POV-Ray and Mandelbrot applications. The response time for an

application is computed by subtracting the output arrival time of the last task/thread in the

execution list from the time at which the application is submitted. The observations are made for

different application granularity(sizes) as discussed in the last Section.

Figure 12 depicts the results for response time in seconds with increasing granularity for

the POV-Ray application. The users at Aneka Cloud 1, 3, 4 submit the applications to their

respective Aneka Coordinator services (refer to the Figure 11). The experiment results show that

the POV-Ray application submitted at Aneka Cloud 1 experienced comparatively lesser response

times for its POV-Ray tasks as compared to the ones submitted at Aneka Cloud 3 and 4. The

fundamental reasons behind this behavior of system is that the spatial extent and attribute

constraints of the resource claim objects posted by the P2PTaskScheduling service at Aneka

Cloud 1. As shown in Figure 11, every Aneka Cloud offers processors of type “Intel” with

varying speed. Based on the in the previous Section, the processing speed is expressed using >=

constraints, which means that the application submitted in the Aneka Enterprise Clouds, 1 and 2

(processing speed = 2.4 GHz), can be executed on any of the nodes in the enterprise Clouds 1, 2,

3, 4, and 5.

However, the application submitted at Aneka Clouds 3 and 4 can be executed only on

Clouds 3, 4, and 5. Accordingly, the application submitted in Aneka Cloud 3 can only be

processed locally as the spatial dimension and processing speed for the resource claim objects

specifies constraints as >= 3.5 GHz. Due to these spatial constraints on the processing speed

attribute value, the application in different Clouds gets access to varying Aneka node pools that

result in different levels of response times. For the aforementioned arguments, it can be seen in

Figure 12 and 13 (Mandelbrot applications) that applications at Aneka Clouds 1 and 2 have

relatively better response times as compared to the ones submitted at Aneka Cloud 3, 4, and 5.

 page 29

0

100

200

300

400

500

600

700

800

5 * 5 7 * 7 9 * 9 11 * 11 13 * 13

Problem Size

R
es

p
o
n
se

 T
im

e
(s

ec
s)

Aneka Cloud 3
Aneka Cloud 1
Aneka Cloud 4

 Figure 12: POV-Ray Application: Response Time (secs) vs. Problem Size

0

50

100

150

200

250

300

350

400

450

5 * 5 7 * 7 9 * 9 11 * 11 13 * 13
Problem Size

R
es

p
o
n
se

 T
im

e
(s

ec
s)

Aneka Cloud 5

Aneka Cloud 2

Figure 13: Mandelbrot Application: Response Time (Secs) vs. Problem Size.

 page 30

Figures 14 and 15 present the results for the total number of jobs processed in different Aneka

Clouds by their P2PTaskExecution and P2PThreadExectuion services. The results show that the

P2PTaskExecution and P2PThreadExecution services hosted within the Aneka Clouds 3, 4, and 5

processes relatively more jobs as compared to those hosted within Aneka Clouds 1 and 2. This

happens due to the spatial constraint on the processing speed attribute value in the resource claim

object posted by different P2PScheduling (Task/Thread) services across the Aneka Clouds. As

Aneka Cloud 5 offers the fastest processing speed (within the spatial extent of all resource claim

objects in the system), it processes more jobs as compared to other Aneka Clouds in the

federation (see Figure 14 and 15). Thus, in the proposed Aneka-Federation system, the spatial

extent for resource attribute values specified by the P2PScheduling services directly controls the

job distribution and application response times in the system.

0

50

100

150

200

250

300

350

400

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00

Time (secs)

N
u
m

b
e

o
f
Jo

b
s

C
om

p
le

te
d

Aneka Cloud 1
Aneka Cloud 2
Aneka Cloud 3
Aneka Cloud 4
Aneka Cloud 5

 Figure 14: P2PTaskExecution Service: Time (secs) vs. Number of Jobs Completed.

 page 31

0

50

100

150

200

250

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00

Time (secs)

N
u
m

b
er

 o
f
Jo

b
s

C
o
m

p
le

te
d Aneka Cloud 1

Aneka Cloud 2

Aneka Cloud 3

Aneka Cloud 4

Aneka Cloud 5

 Figure 15: P2PThreadExecutionService: Time (secs) vs. Number of Jobs Completed.

Figure 16 shows the aggregate percentage of task and thread jobs processed by the nodes of the

different Aneka Clouds in the federation. As mentioned in our previous discussions, Aneka

Clouds 3, 4, and 5 ends up processing larger percentage for both Task and Thread application

composition models. Together they process approximately 140% of total 200% jobs (100% task +

100% thread) in the federation.

7. Related Work

Volunteer computing systems including Seti@home [1] and Boinc [10] are the first generation

implementation of public resource computing systems. These systems are engineered on the

traditional master/worker model, wherein a centralized scheduler/coordinator is responsible for

scheduling, dispatching tasks and collecting data from the participant nodes in the Internet. These

systems do not provide any support for multi-application and programming models, a capability

which is inherited from the Aneka to the Aneka-Federation platform. Unlike Seti@home and

 page 32

Boinc, Aneka-Federation creates a decentralized overlay of Aneka Enterprise Clouds. Further,

Aneka-Federation allows submission, scheduling, and dispatching of application from any

Aneka-Coordinator service in the system, thus giving every enterprise Cloud site autonomy and

flexibility as regards to decision making.

OurGrid [11] is a peer-to-peer middleware infrastructure for creating an Internet-wide

enterprise Grid computing platform. The message routing and communication between the

OurGrid sites is done via broadcast messaging primitive based on the JXTA [12] substrate.

ShareGrid [13] project extends the OurGrid infrastructure with fault-tolerance scheduling

capability by replication tasks across a set of available nodes. In contrast to the OurGrid and the

ShareGrid, Aneka-Federation implements a coordinated scheduling protocol by embedding a d-

dimensional index over a DHT overlay, which makes the system highly scalable and guarantees

deterministic search behavior (unlike JXTA). Further, the OurGrid system supports only the

parameter sweep application programming model, while the Aneka-Federation supports more

general programming abstractions including Thread, Task, and Dataflow.

0

20

40

60

80

100

120

140

160

180

200

Jo
b
 %

Aneka
Cloud 1

Aneka
Cloud 2

Aneka
Cloud 3

Aneka
Cloud 4

Aneka
Cloud 5

Sum
(across all
Clouds)

Cloud Id

Thread Model

Task Model

Figure 16: Enterprise Cloud Id vs. Job %.

 page 33

 Peer-to-Peer Condor flock system [14] aggregates Internet-wide distributed condor work

pools based on the Pastry overlay [15]. The site managers in the Pastry overlay accomplish the

load-management by announcing their available resources to all sites, who’s Identifiers (IDs)

appear in the routing table. An optimized version of this protocol proposes recursively

propagating the load-information to the sites who’s IDs are indexed by the contacted site’s

routing table. The scheduling coordination in an overlay is based on probing each site in routing

table for resource availability. The probe message propagates recursively in the network until a

suitable node is located. In the worst case, the number of messages generated due to recursive

propagation can result into broadcast communication. In contrast, Aneka-Federation implements

more scalable, deterministic and flexible coordination protocol by embedding a logical d-

dimensional index over DHT overlay. The d-dimensional index gives the Aneka-Federation the

ability to perform deterministic search for Aneka services, which are defined based on the

complex node attributes (CPU type, speed, service type, utilization).

 XtermWeb-CH [16] extends the XtermWeb [17] project with the functionalities such as

peer-to-peer communication among the worker nodes. However, the core scheduling and

management component in XtermWeb-CH, which is called the coordinator, is a centralized

service that has a limited scalability. G2-P2P [18] uses the Pastry framework to create a scalable

cycle-stealing framework. The mappings of objects to nodes are done via Pastry routing method.

However, the G2-P2P system does not implement any specific scheduling or load-balancing

algorithm that can take into account the current application load on the nodes and based on that

perform runt-time load-balancing. In contrast, the Aneka-Federation realizes a truly decentralized,

cooperative and coordinated application scheduling service that can dynamically allocate

applications to the Aneka services/nodes without over-provisioning them.

 page 34

8. Conclusion and Future Directions

The functionality exposed by the Aneka-Federation system is very powerful, and our

experimental results on real test-bed prove that it is a viable technology for federating high

throughput Aneka Enterprise Cloud systems. One of our immediate goals is to support

substantially larger Aneka-Federation setups than the ones used in the performance evaluations.

We intend to provide support for composing more complex application models such as e-

Research workflows that have both compute and data node requirement. The resulting Aneka-

Federation infrastructure will enable new generation of application composition environment

where the application components, Enterprise Clouds, services, and data would interact as peers.

There are several important aspects of this system that require further implementation and

future research efforts. One such aspect being developing fault-tolerant (self-healing) application

scheduling algorithms that can ensure robust executions in the event of concurrent failures and

rapid join/leave operations of enterprise Clouds/Cloud nodes in decentralized Aneka-Federation

overlay. Other important design aspect that we would like to improve is ensuring a truly secure

(self-protected) Aneka-Federation infrastructure based on peer-to-peer reputation and

accountability models.

9. Acknowledgements

The authors would like to thank Australian Research Council (ARC) and the Department of

Innovation, Industry, Science, and Research (DIISR) for supporting this research through the

Discovery Project and International Science Linkage grants respectively. We would also like to

thank Dr. Tejal Shah, Dr. Sungjin Choi, Dr. Christian Vecchiola, and Dr. Alexandre di Costanzo

for proofreading the initial draft of this chapter. The chapter is partially derived from our previous

publications [3].

10. References

[1] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. Seti@home: An

experiment in public-resource computing. Communications of the ACM, 45(11): 56-61, 2002.

 page 35

[2] X. Zhang, J. L. Freschl, and J. M. Schopf. A performance study of monitoring and

information services for distributed systems. In HPDC'03: Proceedings of the Twelfth

International Symposium on High Performance Distributed Computing (HPDC-12), June. IEEE

Computer Society, Los Alamitos, CA, USA,2003.

[3] R. Ranjan, Coordinated Resource Provisioning in Federated Grids, Ph.D. Thesis, The

University of Melbourne, Australia, July 2007.

[4] A. Luther, R. Buyya, R. Ranjan, S. Venugopal. Alchemi: A .NET-Based Enterprise Grid

Computing System, Proceedings of the 6th International Conference on Internet Computing

(ICOMP'05), June 27-30, 2005, Las Vegas, USA.

[5] R. Ranjan, A. Harwood, and R. Buyya, Peer-to-Peer Resource Discovery in Global Grids:

A Tutorial. In the IEEE Communication Surveys and Tutorials (COMST), Issue 2, IEEE

Communications Society Press, 2008.

[6] X. Chu, K. Nadiminti, C. Jin, S. Venugopal, and R. Buyya, Aneka: Next-Generation

Enterprise Grid Platform for e-Science and e-Business Applications, e-Science'07: In Proceedings

of the 3rd IEEE International Conference on e-Science and Grid Computing (e-Science 2007),

Bangalore, India, December 10-13, 2007.

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H. Balakrishnan, Chord: A Scalable

Peer-to-Peer Lookup Service for Internet Applications, In SIGCOMM’01: Proceedings of the

2001 SIGCOMM Conference, Pages 149 - 160 , ACM Press, NY USA.

[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, A Scalable Content-

Addressable Network, In SIGCOMM’01: Proceedings of the 2001 SIGCOMM Conference,

Pages 161 - 172 , ACM Press, NY USA.

[9] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for fault-

tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141, UC Berkeley,

April 2001.

 page 36

[10] D. P. Anderson. BOINC: A system for public-resource computing and storage. In

Grid’04: Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing, Pages

4-10. IEEE Computer Society, Los Alamitos, CA, USA, 2004.

[11] N. Andrade, W. Cirne, F. Brasileiro, and R. Roisenberg. OurGrid: An approach to easily

assemble grids with equitable resource sharing. In JSSPP’03: Proceedings of the 9th Workshop on

Job Scheduling Strategies for Parallel Processing, LNCS, Springer, Berlin/Heidelberg, Germany.

[12] L. Gong. JXTA: A network programming environment. IEEE Internet Computing,

Volume 05, Issue 3, Pages 88-95, IEEE Computer Society, Los Alamitos, CA, USA.

[13] ShareGrid Project, http://dcs.di.unipmn.it/sharegrid [22 Aug 2008].

[14] A. Raza Butt, R. Zhang, and Y. C. Hu. A self-organizing flock of condors. In SC ’03:

Proceedings of the 2003 ACM/IEEE Conference on Supercomputing. IEEE Computer Society,

Los Alamitos, CA, USA, 2003.

[15] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing

for large-scale peer-to-peer systems. In Middleware’01: Proceedings of the IFIP/ACM

International Conference on Distributed Systems Platforms, Pages 329–359, SpringerLink,

Heidelberg, Germany.

[16] N. Abdennadher and R. Boesch. Towards a peer-to-peer platform for high performance

computing. In HPCASIA’05: Proceedings of the Eighth International Conference in High-

Performance Computing in Asia-Pacific Region, Pages 354, 2005.

[17] G. Fedak et al. XtremWeb : A Generic Global Computing System. In CCGRID’01:

Proceeding of the 2001 IEEE Conference on Cluster and Grid Computing, workshop on Global

Computing on Personal Devices. Brisbane, Australia. May 2001.

[18] R. Mason and W. Kelly. G2-p2p: A fully decentralized fault-tolerant cycle-stealing

framework. In R. Buyya, P. Coddington, and A. Wendelborn, editors, Australasian Workshop on

Grid Computing and e-Research (AusGrid 2005), Volume 44 of CRPIT, Pages 33-39, Newcastle,

Australia, 2005.

 page 37

[19] M. Fowler, Inversion of Control Containers and the Dependency Injection pattern,

http://www.martinfowler.com/articles/injection.html [22 Aug 2008].

[20] Spring.NET, http://www.springframework.net [22 Aug 2008].

[21] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a Common API

for Structured Peer-to-Peer Overlays, In IPTPS03: Proceedings of the 2nd International

Workshop on Peer-to-Peer Systems, 2003, Berkeley, CA.

[22] C. Vecchiola, X Chu. Aneka Tutorial Series on Developing Task Model Applications.

Gridbus Project, The University of Melbourne, Australia, 2008.

[23] T. Egemen, A. Harwood, and H. Samet. Using a Distributed Quadtree Index in Peer-to-

Peer Networks. The VLDB Journal, Volume 16, Issue 2, Pages 165-178, 2007, SpringerLink,

Heidelberg, Germany.

[24] A. Gupta, O. D. Sahin, D. Agarwal, and A. El Abbadi, Meghdoot: Content-based

Publish/Subscribe over Peer-to-Peer Networks. In Middleware’04: Proceedings of the 5th

ACM/IFIP/USENIX International Conference on Middleware, Toronto, Canada, 2004.

[25] Amazon Elastic Compute Cloud (EC2), http://www.amazon.com/ec2/ [22 Aug 2008].

[26] Google App Engine, http://appengine.google.com [22 Aug 2008].

[27] Microsoft Live Mesh, http://www.mesh.com [22 Aug 2008].

[28] M. Parashar and S. Hariri (Editors), Autonomic Computing: Concepts, Infrastructures,

and Applications, CRC Press, Taylor and Francis Group, USA, 2007.

[29] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley

Publishing Company, 1989.

[30] FreePastry, http://freepastry.rice.edu/FreePastry [22 Aug 2008].

[31] R. Ranjan, A. Harwood, and R. Buyya, Coordinated Load Management in Peer-to-Peer

Coupled Federated Grid Systems. Technical Report GRIDS-TR-2008-2, Grid Computing and

Distributed Systems Laboratory, The University of Melbourne, Australia, 2008.

 page 38

[32] R. Buyya, C. S. Yeo, and S. Venugopal. Market-Oriented Cloud Computing: Vision,

Hype, and Reality for Delivering IT Services as Computing Utilities. Proceedings of the 10th

IEEE International Conference on High Performance Computing and Communications (HPCC-

08, IEEE CS Press, Los Alamitos, CA, USA), Sept. 25-27, 2008, Dalian, China.

[33] Persistence of Vision Raytracer (POVRay), http://www.povray.org [22 Aug 2008].

[34] Mandelbrot Set, http://mathworld.wolfram.com/MandelbrotSet.html [22 Aug 2008].

