
 
 

1

Abstract- In the recent past there has been an increasing demand 

from users for QoS based resource selection especially in 

Enterprise Grids. Hence, ‘brokers’ which schedule jobs based on 

the QoS requirements have been designed and implemented in 

projects like Condor-G, Gridbus, GRUBER and Nimrod/G. 

Although several mechanisms have been suggested in these 

projects, all of them either consider optimization for the jobs 

submitted to the local node or use a conventional FCFS and 

Greedy approaches for scheduling the jobs.  

 

In this paper we propose and demonstrate results that such 

brokers are not only non-scalable but also fail to deliver optimal 

schedules. We then propose the need for a ‘third party broker’ 

and suggest a Clearing House Broker which uses Publish/Request 

mechanisms to schedule the jobs on Grid Federations or Virtual 

Organizations. The final execution and control still happens at the 

user end, which is decentralized. First, we present the 

architecture of such a broker and discuss the requirements and 

the functionality of the Clearing House Broker. Later, we discuss 

the pros and cons of different implementations of Clearing House 

Broker and finally propose a heuristic based Genetic Algorithm 

for an optimal mapping of application jobs to suitable resources. 

We simulate all the existing broker schedulers used in Gridbus, 

Nimrod/G and GRUBER, and compare the results of these with 

our proposed scheduling algorithm.  

Keywords: Third Party Broker, Scheduler, Quality of Service, 

Budget and Deadline, Genetic Algorithm  

 

I. INTRODUCTION 

he Grid [1] has started from the realization of scientific 
computations over geographically distributed systems and 
has been an emerging technology in recent years. A 

‘Virtual Organization’ (VO) in the Grid is defined as a set of 
individuals and institutions forming an ad-hoc partnership to 
solve a common problem by sharing the resources [1] [2]. 
Although the Grid has been visualized as a cooperative and 
coordinated sharing of resources, with the recent success of the 

commercial grids like Amazon Elastic Computing Cloud 
(EC2) [3], where the users are willing to pay for the quality of 
service (QoS) and also with the increasing demand from all 
scientific/commercial community for solving more complex 
solutions, Grid is becoming a main stream infrastructure. 
Hence Grid Brokers, which do an efficient resource 
management and scheduling considering the Grid economy 
models [4] are going to play a very critical role in achieving 
the optimal utilization of resources, thereby increasing the 
revenue for the Grid providers and also minimize the cost for 
Grid users for the desired QoS. 

Present Grid resource management and scheduling 
systems such as Gridbus[5], Nimrod/G[6] and Condor-G[9] 
implement the brokering at the user end, trying to optimize the 
cost or time for its local users by considering the other 
parameter (cost or time) as the constraint. In subsequent 
sections we present the results, that these approaches result in 
resource under utilization, thereby failing to achieve the 
cost/time optimizations. The next section discusses more of the 
related works in this area. It presents a case for a clearing 
house concept of scheduling, which does the scheduling at a 
centralized place, yet the actual job submission/execution is 
done at the local user site itself. The third section discusses the 
third party broker architecture namely, Clearing House Broker. 
We also present the mathematical model for the broker. The 
fourth section discusses the simulation studies of various 
brokers that are implemented in Nimrod/G, Gridbus and 
GRUBER brokers using GridSim[13] and compares the 
results. Finally, we conclude by proposing our future work in 
this area in section five. 

 

II. RELATED WORK 

Previous works [5][6] in the area  of economy based 
schedulers considered the personalized version of brokers, 
which resides at the user end and tries to optimize cost or time 
by keeping the other parameter as constraint, i.e., if cost 
optimization is performed then time of completion(deadline) is 
considered as the constraint and similarly for time 
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optimization. But the disadvantage with these approaches is 
when multiple users try to submit the jobs at the same time, it 
would result in contention for the same resource. This issue 
has been addressed by many researchers and have proposed 
Service Level Agreement (SLA) based or contract based 
negotiation before executing the jobs [7] [10] [14] [15] [27]. 
In [30] authors have suggested an auction based policies for 
VO, while [7] proposed a case for Grid Federation Agents, 
which uses a decentralised resource information sharing 
protocols and scheduling followed by SLA negotiations. These 
systems work fine for reservation based scheduling in Grids, 
where the probability of concurrent users or simultaneous job 
submissions is very low. These systems fail to scale especially 
when the concurrent users increase [25] and result in resource 
under utilization. In [8] policy based resource sharing has been 
suggested, but it does not address how to handle user QoS. 

 GRUBER [10] and DI-GRUBER [11] have also a 
centralized decision point and decentralized job execution 
environment, but the actual scheduling policies utilised are still 
classical ones such as FCFS, Round Robin, etc. Similarly the 
other resource management brokers listed in [20] [21] [22] 
[23] [24] use similar scheduling policies and are aimed at 
either minimizing the job completion time, and/or maximizing 
resource utilization. The limitations of these systems are two 
folds, first they have very limited support for user level QoS 
parameters and second, they use conventional scheduling 
algorithms which are suitable for per user based. In our 
previous work [12] we presented the drawbacks in such 
systems and presented a fuzzy based solution for 
combined/group scheduling. Although the schedule was ‘one-
to-one’, i.e., one machine could execute one job per schedule, 
the next schedule would consider the same machine for 
scheduling if sufficient resources were available. In this paper 
we also consider multiple jobs being submitted to a single 
node, and bring in QoS parameters, i.e., budget and deadline 
constraints. Then we model the scheduling problem as 
Generalized Assignment Problem (GAP) as discussed in [17] 
[27]. GAP is a well known NP-hard problem and several 
people have tried to address heuristic based solutions for 
solving GAP. In [17] authors, proposed a heuristic 
improvement based on repairing the infeasible solutions before 
going for next breeding. In [19] an LP/IP based initial solution 
and followed be an intelligent replacement of offspring based 
on [18]. But these models do not consider the deadline and 
budget constraints and hence have to be modified accordingly.  

III. CLEARING HOUSE BROKER 

A. Architecture 

Clearing House Broker offers a de-centralized control for grid 
consumers and providers, at the same time supports 
coordinated, optimal resource mapping for all the users and 
leaves individual user level brokers to manage the job 
submission and execution. Fig. 1 shows the architecture of the 
Clearing House Broker. Each user1 and owner2 registers with 

 
1 user and requestor are used interchangeably and both mean the Grid user 
2 owner and provider are used interchangeably both mean the owner of the 

resource 

the broker. The registration process yields generation of keys 
required for PKI (Public Key Infrastructure), which is used for 
negotiation and contract finalization (discussed later in this 
section). Grid owners publish their ‘resource-publish’ on their 
gateway node or at a common place from where broker can 
fetch them. Broker obtains the latest ‘resource-publish’ from 
all the grid resources at every scheduled period. A ‘resource-
publish’ consists of, the number of resources or processing 
elements (PEs) available for usage, corresponding load, 
memory, operating system, Grid middleware used, MIPS of 
each processing element and the cost per unit resource. Note 
that the publish information is dynamic and the Grid resource 
owners can vary any or all of the parameters at any time based 
on either their local requirements or based on economy models 
such as supply and demand. Finally, publish can also be 
merged with Grid Information Services (GIS) services also to 
make the implementation simpler. 

Flow 1 (hereafter denoted as (1)) in Fig. 1 indicates the 
resource publish obtained by the broker. Grid users submit 
their job requests along with their QoS demands (2) to the 
broker. The QoS demands consist of budget, deadline, Grid 
middleware, if any and preferred/authorized list of resources 
that broker should look for, if any. Since the broker itself does 
not do the job submission and execution, the authentication 
and credentials are kept outside the broker’s prerogative and 
hence they are considered as QoS parameters by the broker. 
We assume that the user obtains required credentials and 
authentications from the Grid owners before submitting the 
jobs to the broker. The idea behind this is to keep Grid owners 
and users, absolutely independent of the broker and the broker 
acts as a service provider for doing the optimal scheduling. 
This provides local autonomy, no centralised control and 
distributed ownership to all the users and Grid resource 
owners, which is a mandatory requirement for the Grid. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Clearing House Broker Architecture 
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The Clearing House Broker does HGA based scheduling 
as discussed in section 3.3 and generates combined schedule 
for all the jobs pending at the given instance(3). Then based on 
the schedule list the broker generates ‘Tickets’ for each valid 
job schedule in the schedule list (4) and the job is removed 
from the pending job list. ‘Ticket’ plays a critical role in 
establishing the contract and authentication between the Grid 
user and Grid owner. Ticket is a combination of broker id, 
broker’s secret code, user id, job id, provider id, number of 
processing elements to be used, start time, end time and the 
cost negotiated by the broker. Note that, the problem is 
asymmetric, i.e., the total number of resources required by all 
the users need not be equal to the total number of resources 
available in the Grid. Hence, all the jobs need not necessarily 
be scheduled. Jobs not scheduled in the current schedule 
period are automatically passed over for the next period of 
scheduling. 

As there is a commercial angle to the entire problem, we 
propose a PKI (Public Key Infrastructure) as followed in Grid 
Security Infrastructure (GSI) to enable secure functioning of 
the Grid scheduling, job execution and payment. Therefore the 
ticket Ti,j implies ticket generated by broker for executing Qj 
job on node Pi. First the broker’s secret code is encrypted 
using its public key, i.e., Ω(Si,j) and then the ticket is encrypted 
by provider ri’s public key, i.e., Γi (Ti,j) and both the strings are 
sent to the provider ri (5). The string thus generated can be 
represented as follows 

 
Ω(Si,j) + Γi (Ti,j)            (A) 
Ω(Si,j) + Ψj (Ti,j)             (B) 

 
string (A) is sent to provider ri (5) and (B) is sent to requestor 
uj (6). 

TABLE 1: LIST OF TERMS USED AND WHAT THEY CONTAIN 

Term What it contains 

Publish3 
Pi 

Resource Id, PEs available, Grid Middleware, and Cost 
per node per unit time for each user, MIPS rating of PEs 
(ri, ni, gi, ci,j, vi) 

QoS1 
Qj 

User Id, Job Id, Budget, Deadline, List of resources, 
Average estimated time for execution, credentials, 
Number of nodes required. (uj, jj, bj, dj, td Lj, Aj, mj)  

Ticket Ti,j Serial Number, User Id, Resource Provider Id, PEs 
allotted, Start Time, End Time, cost negotiated 
(sn, uj, jj, ri, mj, tsj, tej, ci,j) 

Code Si,j Serial Number, Broker Id, Secret Code 
(sn, B, X)  

TSi,j Si,j + Ti,j 

Γi PKI Encryption function of provider ‘i’ 

Ψj PKI Encryption function of user ‘j’ 

Ω PKI Encryption function of the broker 

 
At requestor end the second part of the string, i.e., Ψj (Ti,j)  

is decrypted using its private key to obtain ticket, Ti,j. The 
string thus obtained is as follows: 

 
3 Ideally Processor Architecture, Operating System, Memory and Disk 

space available should be included, but for simplicity and for present 

simulations we assume all of these criteria are satisfied. 

Ω(Si,j) + Ti,j           (C) 
 
After obtaining the Ti,j, ri is extracted from the ticket by 

the requestor uj. Similarly at the provider’s end also the same 
process is applied. Note that both the provider and requestor 
have generated the same string (C). Then the provider extracts 
requestor’s id and number of processing elements along with 
the time, from the ticket and accordingly blocks the necessary 
resources for the requestor uj. Then the requestor makes the 
claim for job submission and execution by sending the 
following string to provider ri, i.e., the string obtained by 
encrypting (C) using the public key of provider ri (7). 

 Γi(Ω(Si,j)+ Ti,j)           (D) 
 
Provider ri upon receiving (D) decrypts the entire string 

using its private key. The string thus obtained is checked for 
equality with the string obtained after decrypting the string 
sent by the broker. If the strings are matched then an 
acknowledgment is sent, which triggers the job execution (8) 
of user uj on resource provider ri. After the job execution is 
completed then both the provider and requestor notify the 
broker about the completion of transaction by sending the first 
part of string A (9) and first part of string B (10), which 
contains the broker’s secret code. Broker decrypts the strings 
obtained by the providers and users using his private key, and 
then checks for the consistency/equality of the strings obtained 
from both the owner and user. If the strings are found to be 
same and consistent then the broker initiates the payment 
action. The incentive payment and auditing is outside the 
scope of this paper.  

For realization of this architecture we propose three 
components, viz., Broker-S, Broker-P and the Broker-R.  

Broker-S: This module resides at the Clearing House 
Broker. Its main functionality is as follows: 

• User and Owner Registration: This creates the 
certificates and also stores the credentials. 

• Receives all the ‘resource-publish’ from the Grid 
owners and updates the hash table. 

• Receive QoS demands from the users, i.e., Broker-R. 

• Perform ‘Heuristic Genetic Algorithm (HGA)’ 
scheduling as discussed in the next section. 

• Encryption and sending the schedules to 
corresponding provider, ‘Broker-P’ and requestor, 
‘Broker-R’. 

Broker-P:  This module resides at the provider end and 
its main functionalities are as follows: 

• Registration with ‘Broker-S’ 

• Update ‘publish’ parameters based on either supply 
demand or based on manual decisions. 

• Receive schedule information from the ‘Broker-S’  

• Receive Job claims from ‘Broker-R’ 

• Encryption and Decryption  

• Claim for payment 

Broker-R: This module resides at the requestor/user and 
has following functions: 

• User registration with ‘Broker-S’ 

• Submit job requests and manage execution as per 
schedule given by the Clearing House Broker 
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• Receive schedule information from the ‘Broker-S’ 

• Encryption and Decryption 

• Job submission environment for various clusters 
 
The present version of Gridbus broker has most of the 

‘Broker-S’, ‘Broker-R’ components under one umbrella (i.e., 
except the encryption/decryption and HGA based scheduling) 
and we propose to refractor them and break into three 
components to support the Clearing House Broker. 

 

Pros and Cons compared to the present implementations of 

the Broker 

One of the limitations of the present implementations of the 
brokers in Nimrod/G, Gridbus, etc, which we refer to as 
‘personalized broker’, is that each of the users try to optimize 
for the local submitted jobs. Here we consider the case of 
concurrent users (i.e., multiple users which are trying to use 
the Grid which is very common, especially in Production 
Grids), when each user tries to optimize for their jobs, then it 
would result in a situation where all the users select the same 
resource. Hence, when the users try to establish a contract or 
SLA, the resource owner would select only the first user and 
would send a ‘fail SLA’ for all other users. Failed-SLA jobs 
are re-submitted by local broker which would result in the 
same situation with reduced users as compared to previous 
schedule, provided no other user enters the grid. The process 
would be repeated until the job eventually finds a resource 
where SLA is established. Meanwhile if the deadline is over 
then the job is automatically thrown out. This is a live lock 
situation, where, even if the resources are available the jobs 
get omitted. Our simulation studies show more interesting 
results of this argument. The reason for this is the lack of 
coordination.  

On the other hand, the personalised broker gives much 
more autonomy, is very simple to implement and also ideal for 
reservation based jobs and jobs with relaxed deadlines. The 
disadvantages are resource under utilization, less throughput, 
lower incentives to the Grid owners, and most importantly not 
suitable for jobs with tighter deadlines and concurrent user 
environments. 

B. Problem Statement 

The above discussed points are the motivation factors for 
our work. One of the vital requirements of the Broker-S is 
scheduling. In a Grid, multiple users would be submitting their 
jobs and similarly many nodes may join and leave in a very 
short duration. Hence, the possibility of simultaneous or 
concurrent users exists especially in the case of production 
Grids [25]. The users demand QoS and are willing to pay for 
the services they get, on the other hand the Grid resource 
owners would like to maximize their return on investment, in 
terms of incentives for sharing their resources. Thus, there is a 
requirement of optimizing for both, minimizing cost for the 
users and maximize the resource utilization for the providers 
(more the usage more incentives for the provider). Hence, a 
conventional FCFS, Greedy approach of scheduling adopted 
by various resource management brokers, does not yield better 

results as the scheduling of each job is done independent of the 
other jobs in the queue. 

Thus we state the objectives of scheduling for a Clearing 
House Broker environment as follows: 

 

• Scheduling based on QoS, i.e., budget and deadline 

• Maximize the resource utilization, thereby increasing 
the owners payoff function 

• Minimize cost for the users by meeting the budget and 
deadline constraints 

 
In all our later discussions we assume that the basic 

requirements of processor architecture, memory, operating 
system, and other constraints are checked before scheduling. 
The broker categorises the requirements based on all these 
requirements and puts them in different queues. Similarly, it 
categorises the nodes also and does optimization for each such 
category. 

C. Mathematical Formulation 

Let Pi represent the ‘resource-publish’ of Grid resource i 
at a given instance T. 

 

Pi: (ri, ni, gi, ci,j, vi), where   
ri is the Resource Id  
ni  is number of free processing elements or 

resources available 
gi  is the Grid Middleware used at the local site 
ci,j  is the cost of using a single resource per second, 

for the job/user j. 
vi is the MIPS speed of one of the PE. In the case 

of varying MIPS each node is considered as a 
different resource 

and i ∈ I = {1..m} 
 
Let Qj represent the ‘QoS’ demand from the user j at a 

given instance T 
Qj: (uj, jj, bj, dj, Lj, Aj, Mk, tj, mj) where  

uj  is the user id  
jj   is the job id, since one user can submit multiple 

jobs, hence combination (uj,jj) is unique. 
bj  is the budget constraint the user specifies 
dj  is the deadline constraint for finishing the job 
Lj  is the vector of resource ids, where the user has 

required access and necessary credentials for 
executing the jobs 

Aj  is the Authorisation/Credential vector,  
Mk size of each task in the job in terms of MIPS (for 

every task k in mj) 
tj is the estimated duration of execution on an 

average processing capability node 
mj is the number of resources user requires for 

executing the job. 

and  j∈J={1..n}, k∈K={1.. mj} 
 
Here we assume that the authorization credentials, Grid 

middleware, etc., are already checked and filtered out before 
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coming to the scheduling stage, therefore it does not appear in 
the problem formulation: 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

ri,j denotes the number of resources allotted to a node. Note 
that the value would be either 0 or mj (the number of resources 
required by the job j. Equation (2) denotes the node’s capacity 
constraints. Equations (3) and (4) denote the assignment 
matrix, which indicates that a job can be assigned to a 
maximum of one node. Equation (5) is added for satisfying the 
budget constraints and equation (6) is added for the time 
constraints. Equation (1) is solved for minimization to obtain 
optimal schedule. Both equations (5) and (6) are specific to the 
Grid broker, which are additions on top of the classical 
Generalized Assignment Problem. All the quantities i.e., the 
resources, cost, deadline and budget are greater than zero, 
hence the equation (7). Note that Equations (3), (4) and (6) 
make the problem a ‘NP-hard problem’, thus an intelligent 
heuristics are required to reduce the time complexity. 

D.  Genetic Algorithm formulation 

Genetic algorithms (GAs) [26] provide robust search 
techniques that allow a high-quality solution to be derived 
from a large search space in polynomial time, by applying the 
principle of evolution. A genetic algorithm combines the 
exploitation of best solutions from past searches with the 
exploration of new regions of the solution space. Any solution 
in the search space of the problem is represented by an 
individual (chromosomes). A genetic algorithm maintains a 
population of individuals that evolves over generations. The 
quality of an individual in the population is determined by a 
fitness-function. The fitness value indicates how good the 
individual is compared to others in the population. A typical 
genetic algorithm consists of the following steps: 

1.  Create an initial population consisting of randomly 
generated solutions. 

2.  Generate new offspring by applying genetic operators, 
namely selection, crossover and mutation, one after the 
other. 

3.  Compute the fitness value for each individual in the 
population. 

4.  Repeat steps 2 and 3 until the algorithm converges.  
 
Convergence can be a different criterion for different 

problems, but generally ‘a no change in the solution for n 
generations’ is considered as convergence. n could be 

application specific again, in our implementation n is assigned 
a value of 10. 

The most important aspect in GA is the solution space 
encoding and the fitness function. The genetic operations, i.e., 
crossover, mutation, inversion are standard operation in GA. 

 
1) Problem Encoding 

The solution for the scheduling is an assignment vector S, 
and each element sj in the vector represents the node/resource 
onto which the job is scheduled. Since each job can be 
assigned to a maximum of one node, it can be denoted as a 
simple single dimensional integer vector of size equal to the 
number of jobs. Note that the node number sj can be the same 
for multiple jobs, which means that, if there are sufficient 
resources then the node can execute multiple jobs. 

 

1 3 8 0 5 1 2 1 3 7 
 
Fig. 2: Chromosome representation or Problem encoding  
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2) Fitness Function 

The fitness function we use is the cost function on the 
same lines of equation (1) and is denoted as follows: 
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pj is the priority of job j (priority sequence number, i.e., 1..n) 
and C is a ‘cost constant’ chosen such that it is sufficiently 
large, and also the fitness value of a least priority (higher value 
of pj)  job assigned to real node is always less than a higher 
priority (lower value of  pj ) job scheduled to a dummy node. 
Addition of pj into the fitness function gives preference to the 
jobs, which promise better QoS, and constraints on C ensures 
that the solution does not prematurely end in a local minimum. 
Priority is computed based on the QoS index discussed in the 
next section.  

If constraints listed in equation (2), (5) and (6) are not 
satisfied then an infeasible cost or high cost is assigned to ‘S’.  

 

3) QoS index 

QoS index is used to assign priority to the jobs. Generally 
priority is personal or provider’s preference, but in an ideal 
market situation priority is linked with QoS, i.e., priority is 
given to the users who are willing to pay more incentives, and 
provide relaxed deadlines. Therefore it can be represented as 

follows:
)1.9(),1(/* jjjj tdMAXbC −=α

 

 
where C is a constant value. QoS index is a fairness index 
computed for each job based on the deadline and budget 
parameters of the job. Ideally the user pays either the entire 
budget or amount proportional to its priority. As we are 
considering a ‘fair market’ broker scheduling, where user pays 
only for the resources he/she used, we use equation 9.2 for 
computing the priority index.  
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T is the current schedule time. This function assigns 
priority to the jobs/users, which have lesser time for finish and 
also offer better incentive. Note that as the time increases, 
even the relaxed deadline jobs gain priority and similarly, if 
the user provides a tight deadline then there is a danger of 
getting eliminated from scheduling very quickly. 

 
4) Proposed HGA Algorithm 

Genetic Algorithms are known for their robust searching 
algorithms, but at the same time have a drawback of taking a 
long time and also more iterations before convergence. An 
initial solution to the problem significantly reduces the search 
space and converges fast [18]. Hence we suggest a priority 
based greedy scheduling to obtain a good initial solution. 
Priority is computed based on fairness index as denoted in 
equation (9.2). Then we iterate using genetic operations to get 
the best solution. 

TABLE 2: HGA ALGORITHM 

1. while (current_time < next_schedule_time) do 

 1.1 Receive ‘resource-publish’ (Pj) from the providers 

 1.2 Receive ‘QoS requests’ (Qj) from all the users 

2. scheduleList:do HGAScheduling() 

 2.1 Add a dummy node(S) with more PEs and high cost to P 

 2.2 PLIST:sort(P(ascending order of cost)) 

 2.2 for each job ‘j’ in Q compute QoS index as given in (8) 

 2.3 JLIST=sort(Q(descending order of QoS index)) 

 2.4 // greedy scheduling 

  for each job ‘j’ in JLIST do 

   for each node in PLIST do 

    if(JLIST[i].PEs<PLIST[j]) 

     If (check_deadline_budget() is true) 

      Add (j,i) to the SCHEDULE_LIST 

      PLIST[j].freePEs:=PLIST[j]-JLIST[i].PEs 

      break; // process next job 

     else 

      continue; // check for the next node else 

    continue; //go for next node  

   continue; //go for next job 

 2.4 add SCHEDULE_LIST to the initial population POPU_LIST. 

 2.5 generateNextGenerationPopulation() 

   2.5.1 for each i in (population_size-size (POPU_LIST) 

      Generate random sequence chromosome and add to 

POPU_LIST) 

   2.5.2 Compute Fitness function based on equation (7) and  Select 

best chromosome. 

   2.5.3 if (termination) return best chromosome 

   2.5.4 doSelection() 

      Select best ‘crossover_rate%’ chromosomes based on 

‘Roulette wheel selection policy’ 

      Do crossover() 

      Do Mutation() 

      Add to POPU_LIST 

   2.5.2 repeat thru 2.5.1  

3. Generate SCH_LIST from best chromosome from step 2  

 3.1 for each element in SCH_LIST do 

     3.1.1 Notify user 

     3.1.2 Notify provider. 

4. Repeat thru step 1 at ‘the next scheduling’ time. 

 

One limitation to the problem formulation is that if the 
number of resources requested is more than the number of 
resources available for the broker, then the problem results in 
an infeasible solution. Therefore, we propose addition of 
dummy nodes with infinite capacity and having more cost than 
any of the nodes available on the Grid. This would enable the 
algorithm to converge and assign some of the jobs to the 
dummy nodes. The fitness function forces the jobs with lower 
priority to be scheduled on the dummy nodes rather than the 
jobs with higher priority. Dummy node jobs are rolled over to 
the next schedule period, as they cannot be executed. Ideally 
priority is directly proportional to the cost, which means that 
the higher priority users would pay more incentives than the 
lower priority users. Here we assume a fair policy priority 
based on user QoS demands using equation (9.2) and also 
assume that the users would not under/over quote for their 
jobs. We now formulate the algorithm as given in Table-2: 

IV. SIMULATION AND RESULTS 

We used GridSim toolkit for simulating a Grid environment. 
We simulated 50 concurrent users, who submit jobs to the 
brokers. Grids having resources as small as 2 nodes to as large 
as 200 resources are generated. We simulated the Grid with 
heterogeneous resources having different MIPS ratings and  
each resource having different processing elements (PEs) in 
the range of 4 to 12. The cost of each resource is varied, 
between 4G$-5G$ with mean cost of 4.5G$. The cost of using 
a resource is kept the same for all the users. The jobs are also 
simulated with varying QoS requirements. Jobs with average 
PE requirements of 4 and having 10-50% variations4 are 
considered and all the jobs are submitted within 20 seconds of 
simulation start time. As far as QoS parameters, viz., budget 
and deadline are concerned, three simulations are done for 
different deadlines which are listed as below: 

Simulation-1: Tight deadline (estimated time + 50 seconds 
with 20% variation)  

Simulation-2: Medium deadline (estimated time + 250 
seconds with 20% variation) 

Simulation-3: Relaxed deadline (estimated time + 500 
seconds with 20% variation) 

 
As far as budget is concerned, all the jobs are given 

relaxed budget constraints (i.e., twice the cost of average job 
execution time). The above jobs are submitted separately to 
the three broker implementations, viz.,  

1. Personalized broker implementations as in Nimrod/G, 
Gridbus and GRUBER  

2. Greedy implementation of Clearing House Broker and 
GRUBER 

3. Heuristic GA algorithm for Clearing House Broker 
 

The results for three different simulation scenarios are 
plotted in Fig 3.a to Fig. 6. 

In the following comparison plots two result sets are 
shown. In the first set of results, i.e., Fig. 3a, 4a, and 5a, on X-
axis grid resources are plotted while on Y-axis jobs completed 

 
4 Until or otherwise specified variation implies Gaussian distribution 
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(out of the 50 concurrent jobs submitted)  are plotted. In the 
second set of results, i.e., Fig. 3b, 4b and 5b, aggregated 
revenue earned for the completed jobs are plotted on Y-axis. 

Fig. 3a clearly indicates that inspite of having more 
resources, the personalized broker could not execute all the 
jobs. For example, when 200 grid resources were available the 
personalized broker could only complete 9 jobs out of the 
possible 42 jobs (8 jobs had very tight deadline, hence cannot 
be completed within the deadline provided), whereas in the 
case of Clearing House Broker all the jobs were finished when 
the nodes available were around 50 or more. The reason 
behind this is the contention, leading to live lock situation 
created due to lack of coordination in the case of personalized 
broker. It is noticed (thru Fig. 6) that the broker executes more 
SLAs before scheduling the jobs, hence resulting in resource 
under utilization. The situation is found to be the same 
whenever there were more jobs and is independent of the 
number of nodes available.  

Another interesting observation that can be made is that 
the greedy approach and HGA algorithm perform equally or 
with marginal difference until the number of nodes are less 
than 25, but when the number of nodes increases then the 
HGA algorithm outperforms all the implementations by 
completing more jobs and also yeilding less aggregated cost 
for the same number of completed jobs. For example, in the 
first simulation when the Grid size was 50, the greedy 
implementation of Clearing House Broker could only complete 
35 jobs, whereas the HGA implementation could complete all 
42 jobs which explains the higher aggregated revenue (see Fig. 
3b).  When both of the Clearing House Brokers complete the 
same number of jobs the HGA implementation reduces the 
aggregated revenue. The personalized broker billed less 
revenue than the HGA implementation but the number of jobs 
completed is also significantly less compared to other brokers. 
Therefore, HGA implementation produces better optimised 
schedule in terms of cost per job. The same trend can be 
noticed in all the simulations as shown in Fig. 3b, 4b and 5b. 

 

 
Fig. 3a: Jobs completed in ‘tight deadline’ 

 

It can be noticed from Fig. 3a to 4a and 4a to 5a the curves 
get smoother because as the deadlines get relaxed, more jobs 
get completed with the same number of resources. For 
example, in case of tight deadline for 25 resources, the number 
of jobs completed is less than 25 for HGA implementation, 
while in the case of relaxed deadline it is more than 40. Hence 

the curves become more smoother and peak early compared to 
tighter deadlines (Fig 3a, 4a and 5a). 

If the deadline for the jobs is relaxed, all the brokers 
including the personalised broker try to complete more tasks, 
but far less compared to the Clearing House Broker. This 
behaviour is understandable because when the deadline is too 
relaxed the jobs find time to finish the tasks within the 
deadline even after executing multiple SLAs. Both the 
implementations of Clearing House Brokers complete all the 
50 jobs when number of resources available are around 50 or 
more. 

 

 
Fig. 3b: Aggregated revenue billed for the jobs completed in ‘tight deadline’ 

 

 
Fig.4a: Jobs completed in ‘medium deadline’ 

 

 
Fig.4b: Aggregated revenue earned in ‘medium deadline’ 

 
It can also be noticed that the aggregated revenue for 

completing all the jobs in the case of tighter deadline is just 
above 500K G$, while it is about 600K G$ in the case of 
medium/relaxed deadline. The reason for this is that in the 
tight deadline, maximum jobs completed are only 42, while in 



 
 

8

medium and relaxed deadlines all the 50 jobs were completed. 
Since the cost variations within the grid resources are not 
significant (i.e., 4.5 G$ with ± 0.5 G$) only 10% cost benefit 
was noticed. We believe it would be much more if the 
variations are higher. 

 

 
Fig.5a: Jobs completed in ‘relaxed deadline’ 

 

 
Fig.5b: Aggregated revenue earned in the ‘relaxed deadline’  

 

 
Fig.6 SLAs executed in different simulations 

 
Next simulation study presents the advantages of using 

heuristics in the proposed HGA algorithm. As the conventional 
GA was taking more number of iterations for larger problem 
sizes, we reduced the problem size to 25 and varied the grid 
size from 15 to 50. In order to ensure that the solution is not 
trapped in the local minima, we also increased the iterations to 
a maximum of 10000 with convergence criterion of 200 
successive generations. The results are shown in Table 2 and 
Fig. 7, which indicate that the addition of heuristics not only 
reduced the number of iterations but also reduced the 

aggregate revenue billed. In some cases, HGA algorithm 
completed more jobs compared to the conventional GA 
algorithm, which again explains the aggregated revenue being 
higher than the conventional GA in the corresponding cases. 
This result also indicates that despite taking more iterations the 
conventional GA could not find the global/better optimum.  

The conventional GA resulted in better result, when the 
Grid size was 15 and 25. The reason for this was investigated 
and found to be that the conventional GA could not converge 
to a solution for 6 schedule periods i.e., from 150 to 400, 
during the seventh schedule interval (450), some of the jobs 
got eliminated because of the deadline constraints. The 
elimination of jobs resulted in better schedule in the case of 
conventional GA, whereas the HGA algorithm produced result 
in the first schedule period itself (150) without any 
elimination. 

TABLE 2: COMPARISON OF CONVENTIONAL GA WITH HGA 

GA 

#Providers #Jobs 

Sch 

Time 

jobs 

Scheduled 

Tasks 

Scheduled iterations Total Cost 

15 25 450 22 115 1479 227599 

20 25 150 25 129 2040 182015 

25 22 450 22 113 4004 136124 

35 25 150 25 129 6593 120984 

40 25 150 25 129 2877 107756 

50 25 150 25 129 2640 57458 

HGA 

15 25 150 22 114 2559 228267 

20 25 150 25 129 1354 178242 

25 25 150 25 129 1565 159764 

35 25 150 25 129 1331 119719 

40 25 150 25 129 1629 101389 

50 25 150 25 129 1545 52190 

 

 
Fig.7 Iterations before finding convergence 

V. CONCLUSION AND FUTURE WORK 

Generalized Assignment Problem has been extensively 
studied by many researchers and various heuristics have been 
proposed. In this paper, the problem of scheduling concurrent 
users/jobs in the Grid is modelled as a GAP. A fairness index 
based on deadline and budget is used to do a greedy 
assignment which provides the initial solution for the Genetic 
Algorithm. Then the combined optimal schedule for 
concurrent users is obtained using standard operations of GA. 
The heuristic initial solution has reduced the number of 
iterations significantly, which otherwise would take longer 
time for convergence.  
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The key aspects this paper addresses are twofold. First, by 
proposing a Clearing House Broker which addresses the 
drawbacks arising in negotiations in the case of personalized 
Grid brokers when trying to optimize independently and 
second, by suggesting a Heuristic GA based algorithm for 
Clearing House Broker. The scheduling focuses on achieving 
better cost payoff for resource providers by maximizing the 
resource utilization, thereby resulting in more incentives to the 
Grid resource providers, and also minimizes the overall cost 
for the combined users by meeting the user level QoS 
constraints, i.e., deadline and budget. The fairness index, 
which is used to assign priority for the jobs, assigned higher 
priority to the users/jobs approaching the deadline. The 
heuristics have not only reduced the iterations considerably but 
also resulted in finding a better resource mapping.  

HGA algorithm successfully acheived its objectives with 
encouraging processing speeds. Each iteration on a normal 
Pentium Centrino laptop for a 25 user test took 20 
milliseconds, thus the entire scheduling for 25 concurrent users 
finished in less than 10 seconds including IO operations, which 
is very encouraging. 

Our future work in this area is to provide multiple initial 
solutions from Greedy and Linear Programming/Integer 
Programming solutions, and also to add better heuristics for 
new offspring breeding. This we believe would not only result 
in better optimization but also further reduce the iterations. 
The other direction of work is to add more dynamics into the 
market model, where the Grid owners from ‘time- to-time’ 
announce incentives in terms of reducing price for 
certain/specific users or brokers. Brokers also act as profit 
agencies like an ‘airline ticketing agents’. The incentives could 
be a function of time, user and broker. These would result in 
different architecture, protocols and scheduling algorithms. 
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