

1

Abstract- In the recent past there has been an increasing demand

from users for QoS based resource selection especially in

Enterprise Grids. Hence, ‘brokers’ which schedule jobs based on

the QoS requirements have been designed and implemented in

projects like Condor-G, Gridbus, GRUBER and Nimrod/G.

Although several mechanisms have been suggested in these

projects, all of them either consider optimization for the jobs

submitted to the local node or use a conventional FCFS and

Greedy approaches for scheduling the jobs.

In this paper we propose and demonstrate results that such

brokers are not only non-scalable but also fail to deliver optimal

schedules. We then propose the need for a ‘third party broker’

and suggest a Clearing House Broker which uses Publish/Request

mechanisms to schedule the jobs on Grid Federations or Virtual

Organizations. The final execution and control still happens at the

user end, which is decentralized. First, we present the

architecture of such a broker and discuss the requirements and

the functionality of the Clearing House Broker. Later, we discuss

the pros and cons of different implementations of Clearing House

Broker and finally propose a heuristic based Genetic Algorithm

for an optimal mapping of application jobs to suitable resources.

We simulate all the existing broker schedulers used in Gridbus,

Nimrod/G and GRUBER, and compare the results of these with

our proposed scheduling algorithm.

Keywords: Third Party Broker, Scheduler, Quality of Service,

Budget and Deadline, Genetic Algorithm

I. INTRODUCTION

he Grid [1] has started from the realization of scientific
computations over geographically distributed systems and
has been an emerging technology in recent years. A

‘Virtual Organization’ (VO) in the Grid is defined as a set of
individuals and institutions forming an ad-hoc partnership to
solve a common problem by sharing the resources [1] [2].
Although the Grid has been visualized as a cooperative and
coordinated sharing of resources, with the recent success of the

commercial grids like Amazon Elastic Computing Cloud
(EC2) [3], where the users are willing to pay for the quality of
service (QoS) and also with the increasing demand from all
scientific/commercial community for solving more complex
solutions, Grid is becoming a main stream infrastructure.
Hence Grid Brokers, which do an efficient resource
management and scheduling considering the Grid economy
models [4] are going to play a very critical role in achieving
the optimal utilization of resources, thereby increasing the
revenue for the Grid providers and also minimize the cost for
Grid users for the desired QoS.

Present Grid resource management and scheduling
systems such as Gridbus[5], Nimrod/G[6] and Condor-G[9]
implement the brokering at the user end, trying to optimize the
cost or time for its local users by considering the other
parameter (cost or time) as the constraint. In subsequent
sections we present the results, that these approaches result in
resource under utilization, thereby failing to achieve the
cost/time optimizations. The next section discusses more of the
related works in this area. It presents a case for a clearing
house concept of scheduling, which does the scheduling at a
centralized place, yet the actual job submission/execution is
done at the local user site itself. The third section discusses the
third party broker architecture namely, Clearing House Broker.
We also present the mathematical model for the broker. The
fourth section discusses the simulation studies of various
brokers that are implemented in Nimrod/G, Gridbus and
GRUBER brokers using GridSim[13] and compares the
results. Finally, we conclude by proposing our future work in
this area in section five.

II. RELATED WORK

Previous works [5][6] in the area of economy based
schedulers considered the personalized version of brokers,
which resides at the user end and tries to optimize cost or time
by keeping the other parameter as constraint, i.e., if cost
optimization is performed then time of completion(deadline) is
considered as the constraint and similarly for time

Pramod Kumar Konugurthi†*, Krishnan Ramakrishnan† and Rajkumar Buyya*

† Project Implementation & High Performance Computing Section
Advanced Data Processing Research Institute (ADRIN)
Department of Space, Govt. of India, Hyderabad, India

Email:{pramod, krishnan}@adrin.res.in

 *Grid Computing and Distributed Systems (GRIDS) Lab
Department of Computer Science and Software Engineering

University of Melbourne, Australia
Email:{pramod, raj}@csse.unimelb.edu.au

A Heuristic Genetic Algorithm based Scheduler

for ‘Clearing House Grid Broker’

T

2

optimization. But the disadvantage with these approaches is
when multiple users try to submit the jobs at the same time, it
would result in contention for the same resource. This issue
has been addressed by many researchers and have proposed
Service Level Agreement (SLA) based or contract based
negotiation before executing the jobs [7] [10] [14] [15] [27].
In [30] authors have suggested an auction based policies for
VO, while [7] proposed a case for Grid Federation Agents,
which uses a decentralised resource information sharing
protocols and scheduling followed by SLA negotiations. These
systems work fine for reservation based scheduling in Grids,
where the probability of concurrent users or simultaneous job
submissions is very low. These systems fail to scale especially
when the concurrent users increase [25] and result in resource
under utilization. In [8] policy based resource sharing has been
suggested, but it does not address how to handle user QoS.

 GRUBER [10] and DI-GRUBER [11] have also a
centralized decision point and decentralized job execution
environment, but the actual scheduling policies utilised are still
classical ones such as FCFS, Round Robin, etc. Similarly the
other resource management brokers listed in [20] [21] [22]
[23] [24] use similar scheduling policies and are aimed at
either minimizing the job completion time, and/or maximizing
resource utilization. The limitations of these systems are two
folds, first they have very limited support for user level QoS
parameters and second, they use conventional scheduling
algorithms which are suitable for per user based. In our
previous work [12] we presented the drawbacks in such
systems and presented a fuzzy based solution for
combined/group scheduling. Although the schedule was ‘one-
to-one’, i.e., one machine could execute one job per schedule,
the next schedule would consider the same machine for
scheduling if sufficient resources were available. In this paper
we also consider multiple jobs being submitted to a single
node, and bring in QoS parameters, i.e., budget and deadline
constraints. Then we model the scheduling problem as
Generalized Assignment Problem (GAP) as discussed in [17]
[27]. GAP is a well known NP-hard problem and several
people have tried to address heuristic based solutions for
solving GAP. In [17] authors, proposed a heuristic
improvement based on repairing the infeasible solutions before
going for next breeding. In [19] an LP/IP based initial solution
and followed be an intelligent replacement of offspring based
on [18]. But these models do not consider the deadline and
budget constraints and hence have to be modified accordingly.

III. CLEARING HOUSE BROKER

A. Architecture

Clearing House Broker offers a de-centralized control for grid
consumers and providers, at the same time supports
coordinated, optimal resource mapping for all the users and
leaves individual user level brokers to manage the job
submission and execution. Fig. 1 shows the architecture of the
Clearing House Broker. Each user1 and owner2 registers with

1 user and requestor are used interchangeably and both mean the Grid user
2 owner and provider are used interchangeably both mean the owner of the

resource

the broker. The registration process yields generation of keys
required for PKI (Public Key Infrastructure), which is used for
negotiation and contract finalization (discussed later in this
section). Grid owners publish their ‘resource-publish’ on their
gateway node or at a common place from where broker can
fetch them. Broker obtains the latest ‘resource-publish’ from
all the grid resources at every scheduled period. A ‘resource-
publish’ consists of, the number of resources or processing
elements (PEs) available for usage, corresponding load,
memory, operating system, Grid middleware used, MIPS of
each processing element and the cost per unit resource. Note
that the publish information is dynamic and the Grid resource
owners can vary any or all of the parameters at any time based
on either their local requirements or based on economy models
such as supply and demand. Finally, publish can also be
merged with Grid Information Services (GIS) services also to
make the implementation simpler.

Flow 1 (hereafter denoted as (1)) in Fig. 1 indicates the
resource publish obtained by the broker. Grid users submit
their job requests along with their QoS demands (2) to the
broker. The QoS demands consist of budget, deadline, Grid
middleware, if any and preferred/authorized list of resources
that broker should look for, if any. Since the broker itself does
not do the job submission and execution, the authentication
and credentials are kept outside the broker’s prerogative and
hence they are considered as QoS parameters by the broker.
We assume that the user obtains required credentials and
authentications from the Grid owners before submitting the
jobs to the broker. The idea behind this is to keep Grid owners
and users, absolutely independent of the broker and the broker
acts as a service provider for doing the optimal scheduling.
This provides local autonomy, no centralised control and
distributed ownership to all the users and Grid resource
owners, which is a mandatory requirement for the Grid.

Fig. 1: Clearing House Broker Architecture

Cluster A
Condor with

GT3

(Broker-P)

Cluster B
Condor-G

(Broker-P)

Cluster C
Alchemi with

GT4

(Broker-P)

Clearing House
Broker

(Broker-S)

Publish Publish Publish

1
1 1

2
2

2

3 4

5
5

6 6

6

7

8

7

8

10
10

9
9

(Broker-R) (Broker-R) (Broker-R)

Users

3

The Clearing House Broker does HGA based scheduling
as discussed in section 3.3 and generates combined schedule
for all the jobs pending at the given instance(3). Then based on
the schedule list the broker generates ‘Tickets’ for each valid
job schedule in the schedule list (4) and the job is removed
from the pending job list. ‘Ticket’ plays a critical role in
establishing the contract and authentication between the Grid
user and Grid owner. Ticket is a combination of broker id,
broker’s secret code, user id, job id, provider id, number of
processing elements to be used, start time, end time and the
cost negotiated by the broker. Note that, the problem is
asymmetric, i.e., the total number of resources required by all
the users need not be equal to the total number of resources
available in the Grid. Hence, all the jobs need not necessarily
be scheduled. Jobs not scheduled in the current schedule
period are automatically passed over for the next period of
scheduling.

As there is a commercial angle to the entire problem, we
propose a PKI (Public Key Infrastructure) as followed in Grid
Security Infrastructure (GSI) to enable secure functioning of
the Grid scheduling, job execution and payment. Therefore the
ticket Ti,j implies ticket generated by broker for executing Qj
job on node Pi. First the broker’s secret code is encrypted
using its public key, i.e., Ω(Si,j) and then the ticket is encrypted
by provider ri’s public key, i.e., Γi (Ti,j) and both the strings are
sent to the provider ri (5). The string thus generated can be
represented as follows

Ω(Si,j) + Γi (Ti,j) (A)
Ω(Si,j) + Ψj (Ti,j) (B)

string (A) is sent to provider ri (5) and (B) is sent to requestor
uj (6).

TABLE 1: LIST OF TERMS USED AND WHAT THEY CONTAIN

Term What it contains

Publish3
Pi

Resource Id, PEs available, Grid Middleware, and Cost
per node per unit time for each user, MIPS rating of PEs
(ri, ni, gi, ci,j, vi)

QoS1
Qj

User Id, Job Id, Budget, Deadline, List of resources,
Average estimated time for execution, credentials,
Number of nodes required. (uj, jj, bj, dj, td Lj, Aj, mj)

Ticket Ti,j Serial Number, User Id, Resource Provider Id, PEs
allotted, Start Time, End Time, cost negotiated
(sn, uj, jj, ri, mj, tsj, tej, ci,j)

Code Si,j Serial Number, Broker Id, Secret Code
(sn, B, X)

TSi,j Si,j + Ti,j

Γi PKI Encryption function of provider ‘i’

Ψj PKI Encryption function of user ‘j’

Ω PKI Encryption function of the broker

At requestor end the second part of the string, i.e., Ψj (Ti,j)

is decrypted using its private key to obtain ticket, Ti,j. The
string thus obtained is as follows:

3 Ideally Processor Architecture, Operating System, Memory and Disk

space available should be included, but for simplicity and for present

simulations we assume all of these criteria are satisfied.

Ω(Si,j) + Ti,j (C)

After obtaining the Ti,j, ri is extracted from the ticket by

the requestor uj. Similarly at the provider’s end also the same
process is applied. Note that both the provider and requestor
have generated the same string (C). Then the provider extracts
requestor’s id and number of processing elements along with
the time, from the ticket and accordingly blocks the necessary
resources for the requestor uj. Then the requestor makes the
claim for job submission and execution by sending the
following string to provider ri, i.e., the string obtained by
encrypting (C) using the public key of provider ri (7).

 Γi(Ω(Si,j)+ Ti,j) (D)

Provider ri upon receiving (D) decrypts the entire string

using its private key. The string thus obtained is checked for
equality with the string obtained after decrypting the string
sent by the broker. If the strings are matched then an
acknowledgment is sent, which triggers the job execution (8)
of user uj on resource provider ri. After the job execution is
completed then both the provider and requestor notify the
broker about the completion of transaction by sending the first
part of string A (9) and first part of string B (10), which
contains the broker’s secret code. Broker decrypts the strings
obtained by the providers and users using his private key, and
then checks for the consistency/equality of the strings obtained
from both the owner and user. If the strings are found to be
same and consistent then the broker initiates the payment
action. The incentive payment and auditing is outside the
scope of this paper.

For realization of this architecture we propose three
components, viz., Broker-S, Broker-P and the Broker-R.

Broker-S: This module resides at the Clearing House
Broker. Its main functionality is as follows:

• User and Owner Registration: This creates the
certificates and also stores the credentials.

• Receives all the ‘resource-publish’ from the Grid
owners and updates the hash table.

• Receive QoS demands from the users, i.e., Broker-R.

• Perform ‘Heuristic Genetic Algorithm (HGA)’
scheduling as discussed in the next section.

• Encryption and sending the schedules to
corresponding provider, ‘Broker-P’ and requestor,
‘Broker-R’.

Broker-P: This module resides at the provider end and
its main functionalities are as follows:

• Registration with ‘Broker-S’

• Update ‘publish’ parameters based on either supply
demand or based on manual decisions.

• Receive schedule information from the ‘Broker-S’

• Receive Job claims from ‘Broker-R’

• Encryption and Decryption

• Claim for payment

Broker-R: This module resides at the requestor/user and
has following functions:

• User registration with ‘Broker-S’

• Submit job requests and manage execution as per
schedule given by the Clearing House Broker

4

• Receive schedule information from the ‘Broker-S’

• Encryption and Decryption

• Job submission environment for various clusters

The present version of Gridbus broker has most of the

‘Broker-S’, ‘Broker-R’ components under one umbrella (i.e.,
except the encryption/decryption and HGA based scheduling)
and we propose to refractor them and break into three
components to support the Clearing House Broker.

Pros and Cons compared to the present implementations of

the Broker

One of the limitations of the present implementations of the
brokers in Nimrod/G, Gridbus, etc, which we refer to as
‘personalized broker’, is that each of the users try to optimize
for the local submitted jobs. Here we consider the case of
concurrent users (i.e., multiple users which are trying to use
the Grid which is very common, especially in Production
Grids), when each user tries to optimize for their jobs, then it
would result in a situation where all the users select the same
resource. Hence, when the users try to establish a contract or
SLA, the resource owner would select only the first user and
would send a ‘fail SLA’ for all other users. Failed-SLA jobs
are re-submitted by local broker which would result in the
same situation with reduced users as compared to previous
schedule, provided no other user enters the grid. The process
would be repeated until the job eventually finds a resource
where SLA is established. Meanwhile if the deadline is over
then the job is automatically thrown out. This is a live lock
situation, where, even if the resources are available the jobs
get omitted. Our simulation studies show more interesting
results of this argument. The reason for this is the lack of
coordination.

On the other hand, the personalised broker gives much
more autonomy, is very simple to implement and also ideal for
reservation based jobs and jobs with relaxed deadlines. The
disadvantages are resource under utilization, less throughput,
lower incentives to the Grid owners, and most importantly not
suitable for jobs with tighter deadlines and concurrent user
environments.

B. Problem Statement

The above discussed points are the motivation factors for
our work. One of the vital requirements of the Broker-S is
scheduling. In a Grid, multiple users would be submitting their
jobs and similarly many nodes may join and leave in a very
short duration. Hence, the possibility of simultaneous or
concurrent users exists especially in the case of production
Grids [25]. The users demand QoS and are willing to pay for
the services they get, on the other hand the Grid resource
owners would like to maximize their return on investment, in
terms of incentives for sharing their resources. Thus, there is a
requirement of optimizing for both, minimizing cost for the
users and maximize the resource utilization for the providers
(more the usage more incentives for the provider). Hence, a
conventional FCFS, Greedy approach of scheduling adopted
by various resource management brokers, does not yield better

results as the scheduling of each job is done independent of the
other jobs in the queue.

Thus we state the objectives of scheduling for a Clearing
House Broker environment as follows:

• Scheduling based on QoS, i.e., budget and deadline

• Maximize the resource utilization, thereby increasing
the owners payoff function

• Minimize cost for the users by meeting the budget and
deadline constraints

In all our later discussions we assume that the basic

requirements of processor architecture, memory, operating
system, and other constraints are checked before scheduling.
The broker categorises the requirements based on all these
requirements and puts them in different queues. Similarly, it
categorises the nodes also and does optimization for each such
category.

C. Mathematical Formulation

Let Pi represent the ‘resource-publish’ of Grid resource i
at a given instance T.

Pi: (ri, ni, gi, ci,j, vi), where
ri is the Resource Id
ni is number of free processing elements or

resources available
gi is the Grid Middleware used at the local site
ci,j is the cost of using a single resource per second,

for the job/user j.
vi is the MIPS speed of one of the PE. In the case

of varying MIPS each node is considered as a
different resource

and i ∈ I = {1..m}

Let Qj represent the ‘QoS’ demand from the user j at a

given instance T
Qj: (uj, jj, bj, dj, Lj, Aj, Mk, tj, mj) where

uj is the user id
jj is the job id, since one user can submit multiple

jobs, hence combination (uj,jj) is unique.
bj is the budget constraint the user specifies
dj is the deadline constraint for finishing the job
Lj is the vector of resource ids, where the user has

required access and necessary credentials for
executing the jobs

Aj is the Authorisation/Credential vector,
Mk size of each task in the job in terms of MIPS (for

every task k in mj)
tj is the estimated duration of execution on an

average processing capability node
mj is the number of resources user requires for

executing the job.

and j∈J={1..n}, k∈K={1.. mj}

Here we assume that the authorization credentials, Grid

middleware, etc., are already checked and filtered out before

5

coming to the scheduling stage, therefore it does not appear in
the problem formulation:

ri,j denotes the number of resources allotted to a node. Note
that the value would be either 0 or mj (the number of resources
required by the job j. Equation (2) denotes the node’s capacity
constraints. Equations (3) and (4) denote the assignment
matrix, which indicates that a job can be assigned to a
maximum of one node. Equation (5) is added for satisfying the
budget constraints and equation (6) is added for the time
constraints. Equation (1) is solved for minimization to obtain
optimal schedule. Both equations (5) and (6) are specific to the
Grid broker, which are additions on top of the classical
Generalized Assignment Problem. All the quantities i.e., the
resources, cost, deadline and budget are greater than zero,
hence the equation (7). Note that Equations (3), (4) and (6)
make the problem a ‘NP-hard problem’, thus an intelligent
heuristics are required to reduce the time complexity.

D. Genetic Algorithm formulation

Genetic algorithms (GAs) [26] provide robust search
techniques that allow a high-quality solution to be derived
from a large search space in polynomial time, by applying the
principle of evolution. A genetic algorithm combines the
exploitation of best solutions from past searches with the
exploration of new regions of the solution space. Any solution
in the search space of the problem is represented by an
individual (chromosomes). A genetic algorithm maintains a
population of individuals that evolves over generations. The
quality of an individual in the population is determined by a
fitness-function. The fitness value indicates how good the
individual is compared to others in the population. A typical
genetic algorithm consists of the following steps:

1. Create an initial population consisting of randomly
generated solutions.

2. Generate new offspring by applying genetic operators,
namely selection, crossover and mutation, one after the
other.

3. Compute the fitness value for each individual in the
population.

4. Repeat steps 2 and 3 until the algorithm converges.

Convergence can be a different criterion for different

problems, but generally ‘a no change in the solution for n
generations’ is considered as convergence. n could be

application specific again, in our implementation n is assigned
a value of 10.

The most important aspect in GA is the solution space
encoding and the fitness function. The genetic operations, i.e.,
crossover, mutation, inversion are standard operation in GA.

1) Problem Encoding

The solution for the scheduling is an assignment vector S,
and each element sj in the vector represents the node/resource
onto which the job is scheduled. Since each job can be
assigned to a maximum of one node, it can be denoted as a
simple single dimensional integer vector of size equal to the
number of jobs. Note that the node number sj can be the same
for multiple jobs, which means that, if there are sufficient
resources then the node can execute multiple jobs.

1 3 8 0 5 1 2 1 3 7

Fig. 2: Chromosome representation or Problem encoding

Iswhere

sssS

j

n

∈

= },..,,{ 21

2) Fitness Function

The fitness function we use is the cost function on the
same lines of equation (1) and is denoted as follows:

∑∑
= =

+=

n

j

jskjs

m

k

pCvMcSF
jji

j

1

,

1

)8(*/*)(

pj is the priority of job j (priority sequence number, i.e., 1..n)
and C is a ‘cost constant’ chosen such that it is sufficiently
large, and also the fitness value of a least priority (higher value
of pj) job assigned to real node is always less than a higher
priority (lower value of pj) job scheduled to a dummy node.
Addition of pj into the fitness function gives preference to the
jobs, which promise better QoS, and constraints on C ensures
that the solution does not prematurely end in a local minimum.
Priority is computed based on the QoS index discussed in the
next section.

If constraints listed in equation (2), (5) and (6) are not
satisfied then an infeasible cost or high cost is assigned to ‘S’.

3) QoS index

QoS index is used to assign priority to the jobs. Generally
priority is personal or provider’s preference, but in an ideal
market situation priority is linked with QoS, i.e., priority is
given to the users who are willing to pay more incentives, and
provide relaxed deadlines. Therefore it can be represented as

follows:
)1.9(),1(/* jjjj tdMAXbC −=α

where C is a constant value. QoS index is a fairness index
computed for each job based on the deadline and budget
parameters of the job. Ideally the user pays either the entire
budget or amount proportional to its priority. As we are
considering a ‘fair market’ broker scheduling, where user pays
only for the resources he/she used, we use equation 9.2 for
computing the priority index.

)7(0,,

(6)*MAX

(5)

(4)10

(3)

(2)

(1)

,,

,

1

1

,

1

1 1

,,

JI, jidandbrc

KJ, kI,ji,dx)/v(M

Jj,bcr

JI, ji},, {x

Jj,mxr

Ii,nxr

rxcc(x)

jjjiji

jjiik

mi

i

ji,ji,j

i,j

mi

i

ji,jji

nj

j

ii,ji,j

mi

i

nj

j

jii,jji

∈∈∀>∋

∈∈∈∀≤∋

∈∀≤∋

∈∈∀∈∋

∈∀=∋

∈∀≤∋

=

∑

∑

∑

∑ ∑

=

=

=

=

=

=

=

=

=

=

6

0

)2.9())(,1(/1

))((

=

+−=

+>

j

jjj

jj

else

tTdMAX

tTdif

α

α

T is the current schedule time. This function assigns
priority to the jobs/users, which have lesser time for finish and
also offer better incentive. Note that as the time increases,
even the relaxed deadline jobs gain priority and similarly, if
the user provides a tight deadline then there is a danger of
getting eliminated from scheduling very quickly.

4) Proposed HGA Algorithm

Genetic Algorithms are known for their robust searching
algorithms, but at the same time have a drawback of taking a
long time and also more iterations before convergence. An
initial solution to the problem significantly reduces the search
space and converges fast [18]. Hence we suggest a priority
based greedy scheduling to obtain a good initial solution.
Priority is computed based on fairness index as denoted in
equation (9.2). Then we iterate using genetic operations to get
the best solution.

TABLE 2: HGA ALGORITHM

1. while (current_time < next_schedule_time) do

 1.1 Receive ‘resource-publish’ (Pj) from the providers

 1.2 Receive ‘QoS requests’ (Qj) from all the users

2. scheduleList:do HGAScheduling()

 2.1 Add a dummy node(S) with more PEs and high cost to P

 2.2 PLIST:sort(P(ascending order of cost))

 2.2 for each job ‘j’ in Q compute QoS index as given in (8)

 2.3 JLIST=sort(Q(descending order of QoS index))

 2.4 // greedy scheduling

 for each job ‘j’ in JLIST do

 for each node in PLIST do

 if(JLIST[i].PEs<PLIST[j])

 If (check_deadline_budget() is true)

 Add (j,i) to the SCHEDULE_LIST

 PLIST[j].freePEs:=PLIST[j]-JLIST[i].PEs

 break; // process next job

 else

 continue; // check for the next node else

 continue; //go for next node

 continue; //go for next job

 2.4 add SCHEDULE_LIST to the initial population POPU_LIST.

 2.5 generateNextGenerationPopulation()

 2.5.1 for each i in (population_size-size (POPU_LIST)

 Generate random sequence chromosome and add to

POPU_LIST)

 2.5.2 Compute Fitness function based on equation (7) and Select

best chromosome.

 2.5.3 if (termination) return best chromosome

 2.5.4 doSelection()

 Select best ‘crossover_rate%’ chromosomes based on

‘Roulette wheel selection policy’

 Do crossover()

 Do Mutation()

 Add to POPU_LIST

 2.5.2 repeat thru 2.5.1

3. Generate SCH_LIST from best chromosome from step 2

 3.1 for each element in SCH_LIST do

 3.1.1 Notify user

 3.1.2 Notify provider.

4. Repeat thru step 1 at ‘the next scheduling’ time.

One limitation to the problem formulation is that if the
number of resources requested is more than the number of
resources available for the broker, then the problem results in
an infeasible solution. Therefore, we propose addition of
dummy nodes with infinite capacity and having more cost than
any of the nodes available on the Grid. This would enable the
algorithm to converge and assign some of the jobs to the
dummy nodes. The fitness function forces the jobs with lower
priority to be scheduled on the dummy nodes rather than the
jobs with higher priority. Dummy node jobs are rolled over to
the next schedule period, as they cannot be executed. Ideally
priority is directly proportional to the cost, which means that
the higher priority users would pay more incentives than the
lower priority users. Here we assume a fair policy priority
based on user QoS demands using equation (9.2) and also
assume that the users would not under/over quote for their
jobs. We now formulate the algorithm as given in Table-2:

IV. SIMULATION AND RESULTS

We used GridSim toolkit for simulating a Grid environment.
We simulated 50 concurrent users, who submit jobs to the
brokers. Grids having resources as small as 2 nodes to as large
as 200 resources are generated. We simulated the Grid with
heterogeneous resources having different MIPS ratings and
each resource having different processing elements (PEs) in
the range of 4 to 12. The cost of each resource is varied,
between 4G$-5G$ with mean cost of 4.5G$. The cost of using
a resource is kept the same for all the users. The jobs are also
simulated with varying QoS requirements. Jobs with average
PE requirements of 4 and having 10-50% variations4 are
considered and all the jobs are submitted within 20 seconds of
simulation start time. As far as QoS parameters, viz., budget
and deadline are concerned, three simulations are done for
different deadlines which are listed as below:

Simulation-1: Tight deadline (estimated time + 50 seconds
with 20% variation)

Simulation-2: Medium deadline (estimated time + 250
seconds with 20% variation)

Simulation-3: Relaxed deadline (estimated time + 500
seconds with 20% variation)

As far as budget is concerned, all the jobs are given

relaxed budget constraints (i.e., twice the cost of average job
execution time). The above jobs are submitted separately to
the three broker implementations, viz.,

1. Personalized broker implementations as in Nimrod/G,
Gridbus and GRUBER

2. Greedy implementation of Clearing House Broker and
GRUBER

3. Heuristic GA algorithm for Clearing House Broker

The results for three different simulation scenarios are
plotted in Fig 3.a to Fig. 6.

In the following comparison plots two result sets are
shown. In the first set of results, i.e., Fig. 3a, 4a, and 5a, on X-
axis grid resources are plotted while on Y-axis jobs completed

4 Until or otherwise specified variation implies Gaussian distribution

7

(out of the 50 concurrent jobs submitted) are plotted. In the
second set of results, i.e., Fig. 3b, 4b and 5b, aggregated
revenue earned for the completed jobs are plotted on Y-axis.

Fig. 3a clearly indicates that inspite of having more
resources, the personalized broker could not execute all the
jobs. For example, when 200 grid resources were available the
personalized broker could only complete 9 jobs out of the
possible 42 jobs (8 jobs had very tight deadline, hence cannot
be completed within the deadline provided), whereas in the
case of Clearing House Broker all the jobs were finished when
the nodes available were around 50 or more. The reason
behind this is the contention, leading to live lock situation
created due to lack of coordination in the case of personalized
broker. It is noticed (thru Fig. 6) that the broker executes more
SLAs before scheduling the jobs, hence resulting in resource
under utilization. The situation is found to be the same
whenever there were more jobs and is independent of the
number of nodes available.

Another interesting observation that can be made is that
the greedy approach and HGA algorithm perform equally or
with marginal difference until the number of nodes are less
than 25, but when the number of nodes increases then the
HGA algorithm outperforms all the implementations by
completing more jobs and also yeilding less aggregated cost
for the same number of completed jobs. For example, in the
first simulation when the Grid size was 50, the greedy
implementation of Clearing House Broker could only complete
35 jobs, whereas the HGA implementation could complete all
42 jobs which explains the higher aggregated revenue (see Fig.
3b). When both of the Clearing House Brokers complete the
same number of jobs the HGA implementation reduces the
aggregated revenue. The personalized broker billed less
revenue than the HGA implementation but the number of jobs
completed is also significantly less compared to other brokers.
Therefore, HGA implementation produces better optimised
schedule in terms of cost per job. The same trend can be
noticed in all the simulations as shown in Fig. 3b, 4b and 5b.

Fig. 3a: Jobs completed in ‘tight deadline’

It can be noticed from Fig. 3a to 4a and 4a to 5a the curves
get smoother because as the deadlines get relaxed, more jobs
get completed with the same number of resources. For
example, in case of tight deadline for 25 resources, the number
of jobs completed is less than 25 for HGA implementation,
while in the case of relaxed deadline it is more than 40. Hence

the curves become more smoother and peak early compared to
tighter deadlines (Fig 3a, 4a and 5a).

If the deadline for the jobs is relaxed, all the brokers
including the personalised broker try to complete more tasks,
but far less compared to the Clearing House Broker. This
behaviour is understandable because when the deadline is too
relaxed the jobs find time to finish the tasks within the
deadline even after executing multiple SLAs. Both the
implementations of Clearing House Brokers complete all the
50 jobs when number of resources available are around 50 or
more.

Fig. 3b: Aggregated revenue billed for the jobs completed in ‘tight deadline’

Fig.4a: Jobs completed in ‘medium deadline’

Fig.4b: Aggregated revenue earned in ‘medium deadline’

It can also be noticed that the aggregated revenue for

completing all the jobs in the case of tighter deadline is just
above 500K G$, while it is about 600K G$ in the case of
medium/relaxed deadline. The reason for this is that in the
tight deadline, maximum jobs completed are only 42, while in

8

medium and relaxed deadlines all the 50 jobs were completed.
Since the cost variations within the grid resources are not
significant (i.e., 4.5 G$ with ± 0.5 G$) only 10% cost benefit
was noticed. We believe it would be much more if the
variations are higher.

Fig.5a: Jobs completed in ‘relaxed deadline’

Fig.5b: Aggregated revenue earned in the ‘relaxed deadline’

Fig.6 SLAs executed in different simulations

Next simulation study presents the advantages of using

heuristics in the proposed HGA algorithm. As the conventional
GA was taking more number of iterations for larger problem
sizes, we reduced the problem size to 25 and varied the grid
size from 15 to 50. In order to ensure that the solution is not
trapped in the local minima, we also increased the iterations to
a maximum of 10000 with convergence criterion of 200
successive generations. The results are shown in Table 2 and
Fig. 7, which indicate that the addition of heuristics not only
reduced the number of iterations but also reduced the

aggregate revenue billed. In some cases, HGA algorithm
completed more jobs compared to the conventional GA
algorithm, which again explains the aggregated revenue being
higher than the conventional GA in the corresponding cases.
This result also indicates that despite taking more iterations the
conventional GA could not find the global/better optimum.

The conventional GA resulted in better result, when the
Grid size was 15 and 25. The reason for this was investigated
and found to be that the conventional GA could not converge
to a solution for 6 schedule periods i.e., from 150 to 400,
during the seventh schedule interval (450), some of the jobs
got eliminated because of the deadline constraints. The
elimination of jobs resulted in better schedule in the case of
conventional GA, whereas the HGA algorithm produced result
in the first schedule period itself (150) without any
elimination.

TABLE 2: COMPARISON OF CONVENTIONAL GA WITH HGA

GA

#Providers #Jobs

Sch

Time

jobs

Scheduled

Tasks

Scheduled iterations Total Cost

15 25 450 22 115 1479 227599

20 25 150 25 129 2040 182015

25 22 450 22 113 4004 136124

35 25 150 25 129 6593 120984

40 25 150 25 129 2877 107756

50 25 150 25 129 2640 57458

HGA

15 25 150 22 114 2559 228267

20 25 150 25 129 1354 178242

25 25 150 25 129 1565 159764

35 25 150 25 129 1331 119719

40 25 150 25 129 1629 101389

50 25 150 25 129 1545 52190

Fig.7 Iterations before finding convergence

V. CONCLUSION AND FUTURE WORK

Generalized Assignment Problem has been extensively
studied by many researchers and various heuristics have been
proposed. In this paper, the problem of scheduling concurrent
users/jobs in the Grid is modelled as a GAP. A fairness index
based on deadline and budget is used to do a greedy
assignment which provides the initial solution for the Genetic
Algorithm. Then the combined optimal schedule for
concurrent users is obtained using standard operations of GA.
The heuristic initial solution has reduced the number of
iterations significantly, which otherwise would take longer
time for convergence.

9

The key aspects this paper addresses are twofold. First, by
proposing a Clearing House Broker which addresses the
drawbacks arising in negotiations in the case of personalized
Grid brokers when trying to optimize independently and
second, by suggesting a Heuristic GA based algorithm for
Clearing House Broker. The scheduling focuses on achieving
better cost payoff for resource providers by maximizing the
resource utilization, thereby resulting in more incentives to the
Grid resource providers, and also minimizes the overall cost
for the combined users by meeting the user level QoS
constraints, i.e., deadline and budget. The fairness index,
which is used to assign priority for the jobs, assigned higher
priority to the users/jobs approaching the deadline. The
heuristics have not only reduced the iterations considerably but
also resulted in finding a better resource mapping.

HGA algorithm successfully acheived its objectives with
encouraging processing speeds. Each iteration on a normal
Pentium Centrino laptop for a 25 user test took 20
milliseconds, thus the entire scheduling for 25 concurrent users
finished in less than 10 seconds including IO operations, which
is very encouraging.

Our future work in this area is to provide multiple initial
solutions from Greedy and Linear Programming/Integer
Programming solutions, and also to add better heuristics for
new offspring breeding. This we believe would not only result
in better optimization but also further reduce the iterations.
The other direction of work is to add more dynamics into the
market model, where the Grid owners from ‘time- to-time’
announce incentives in terms of reducing price for
certain/specific users or brokers. Brokers also act as profit
agencies like an ‘airline ticketing agents’. The incentives could
be a function of time, user and broker. These would result in
different architecture, protocols and scheduling algorithms.

ACKNOWLEDGEMENTS

This research is partially supported by the Australian
Department of Education, Science and Training awards:
Endeavour Research Fellowship and International Science
Linkage. The first author is visiting the University of
Melbourne on deputation from Dept. of Space, Govt. of India.

REFERENCES

[1] I. Foster, C. Kesselman and S. Tuecke, “The anatomy of the

Grid:Enabling scalable virtual organizations,” International Journal of

SupercomputerApplications, vol. 15, no. 3, pp. 200–222, 2001.

[2] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The physiology of the

Grid: An open Grid services architecture for distributed systems

integration”, In Open Grid Service Infrastructure WG, Global Grid

Forum, 2002.

[3] Amazon Elastic Compute Cloud (Amazon EC2)

http://www.amazon.com/gp/browse.html?node=201590011

[4] R. Buyya, D. Abramson, J. Giddy and H. Stockinger. “Economic

models for resource management and scheduling in grid computing.

Special Issue on Grid computing Environment”, The Journal of

concurrency and Computation:Practice and Experience (CCPE),

Volume 14, Issue13-15, Wiley Press, 2002.

[5] S. Venugopal, R. Buyya and L. Winton, “A Grid Service Broker for

Scheduling e-Science Applications on Global Data Grids”, Concurrency

and Computation: Practice and Experience, Volume 18, Issue 6, Pages:

685-699, Wiley Press, New York, USA, May 2006.

[6] D. Abramson, R. Buyya, and J. Giddy. “A computational economy for

grid computing and its implementation in the Nimrod-G resource

broker”, Future Generation Computer Systems (FGCS) Journal,

Volume 18, Issue 8 Pages: 1061-1074, Elsevier Science, The

Netherlands, October, 2002.

[7] R. Ranjan, A. Harwood and R. Buyya, “SLA-Based Coordinated

Superscheduling Scheme for Computational Grids”, In Proceedings of

the 8th IEEE International Conference on Cluster Computing (Cluster

2006), Sept. 27-30, 2006, Barcelona, Spain.

[8] C. Dumitrescu and I. Foster, “Usage Policy-based CPU Sharing in

Virtual Organizations”, In 5th International Workshop in Grid

Computing, 2004, Pittsburg, PA.

[9] Condor Project, Condor-G, www.cs.wisc.edu/condor/2002.

[10] C. Dumitrescu and I. Foster, “GRUBER: A Grid Resource SLA

Broker”, In Euro-Par, Portugal, September 2005.

[11] C. Dumitrescu, I. Raicu and I. Foster, “DI-GRUBER: A Distributed

Approach to Grid Resource Brokering”, Proceedings of the 2005

ACM/IEEE conference on Supercomputing (SC '05), Seattle, USA.

[12] P. K. Konugurthi, A. Agarwal and R. Krishnan, “A Fuzzy based

Resource Management Framework for High Throughput Clusters”, In

Proceedings of the 4th IEEE International Symposium on Cluster

Computing and the Grid, 555 – 562pp, Chicago, USA.

[13] R. Buyya and M. Murshed, “GridSim: A Toolkit for the Modeling and

Simulation of Distributed Resource Management and Scheduling for

Grid Computing”, Concurrency and Computation: Practice and

Experience (CCPE), Volume 14, Issue 13-15, Pages: 1175-1220, Wiley

Press, USA, November - December 2002.

[14] M. Siddiqui, A. Villazón and T. Fahringer, “Grid allocation and

reservation---Grid capacity planning with negotiation-based advance

reservation for optimized QoS”, In Proceedings of the 2006 ACM/IEEE

conference on Supercomputing, November 11-17, 2006, Tampa, Florida

[15] D. Ouelhadj and J. Garibaldi and J. MacLaren and R. Sakellariou and

K. Krishnakumar and A. Meisels, "A Multi-agent Infrastructure and a

Service Level agreement Negotiation Protocol for Robust Scheduling in

Grid Computing Advances in Grid Computing”, EGC 2005, European

Grid Conference, Amsterdam, The Netherlands, February 14-16, 2005:

651-660

[16] K. Lai, L. Rasmusson, E. Adar, S. Sorkin, L. Zhang, and B. A.

Huberman. “Tycoon: An Implementation of a Distributed Market-Based

Resource Allocation System”, Technical Report, HP Labs, USA, Dec.

2004.

[17] P. C. Chu, J. E. Beasley, “A genetic algorithm for the generalised

assignment problem”, Computers and Operations Research, v.24 n.1,

p.17-23, Jan. 1997.

[18] S. Martello and P. Toth, “An alogorithm for Generalized Assignment

Problem”, Operational Research, 81:589-603, 1981.

[19] Harald Feltl , Günther R. Raidl, “An improved hybrid genetic algorithm

for the generalized assignment problem”, Proceedings of the 2004 ACM

symposium on Applied computing, March 2004, Nicosia, Cyprus.

[20] S. Chapin, J. Karpovich, and A. Grimshaw. “The legion resource

management system”, Proceedings of the 5th Workshop on Job

Scheduling Strategies for Parallel Processing, San Juan, Puerto Rico,

16 April, Springer:Berlin, 1999.

[21] H. Casanova and J. Dongara. Netsolve: A Network server solving

computational science problem. International Journal of

Supercomputing Applications and High Perfomance Computing;11(3);

Pages:212-223, 1997.

[22] J. Litzkow, M. Livny, and M.W. Mukta. Condor- A hunter of idle

workstations. IEEE, 1988.

[23] B. Bode, D. Halstead, R. Kendall, and D. Jackson, “PBS: The portable

batch scheduler and the maui scheduler on linux clusters”, In

Proceedings of the 4th Linux Showcase and Conference, Atlanta, GA,

USENIX Press, Berkley,CA, October, 2000.

[24] W. Gentzsh. Sun grid engine: Towards creating a compute power grid.

In Proceedings of the First IEEE/ACM International Symposium on

Cluster Computing and the Grid (CCGrid 2001), Brisbane, Australia.

[25] I. Foster et al., “The Grid2003 Production Grid: Principles and

Practice”, In 13th International Sysmposium on High Performance

Distributed Computing, HPDC 2004: 236-245

[26] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley,1989.

