
Simulation of Buffer Management Policies in Networks for Grids

Agustı́n Caminero1∗, Anthony Sulistio2, Blanca Caminero1,
Carmen Carrión1, Rajkumar Buyya2

1Departamento de Sistemas Informáticos
Universidad de Castilla La Mancha

Campus Universitario s/n. 02071, Albacete. Spain
{agustin, blanca, carmen}@dsi.uclm.es

2Grid Computing and Distributed Systems Laboratory
Dept. of Computer Science and Software Engineering

The University of Melbourne
111 Barry St, Carlton VIC 3053 Australia
{anthony, raj}@csse.unimelb.edu.au

Abstract

Grid technologies are emerging as the next generation of distributed computing, allowing the

aggregation of resources that are geographically distributed across different locations. The network

remains an important requirement for any Grid application,as entities involved in a Grid system

(such as users, services, and data) need to communicate witheach other over a network. The per-

formance of the network must therefore be considered when carrying out tasks such as scheduling,

migration or monitoring of jobs. Network buffers management policies affect the network perfor-

mance, as they can lead to poor latencies (if buffers become too large), but also leading to a lot of

packet droppings and low utilization of links, when trying to keep a low buffer size. Therefore, net-

work buffers management policies should be considered whensimulating a real Grid system. In this

paper, we introduce network buffers management policies into the GridSim simulation toolkit. Our

framework allows new policies to be implemented easily, thus enabling researchers to create more

realistic network models. Fields which will harness our work are scheduling, or QoS provision. We

present a comprehensive description of the overall design and a use case scenario demonstrating the

conditions of links varied over time.

∗Corresponding author. Tel.: +34 967 59 92 00 ext. 2693; fax: +34 967 59 93 43

1 Introduction

Grid computing has emerged as the next-generation paralleland distributed computing methodology that

aggregates dispersed heterogeneous resources for solvingvarious kinds of large-scale parallel applica-

tions in science, engineering and commerce [11]. Grid systems are highly variable environments, made

of a series of independent organizations that share their resources [12]. Some application domains that

take advantage of the Grids are collaborative visualization [21] and medical applications [5].

The network remains an important requirement for Grid applications, as entities involved in a Grid

(e.g. users, services, and data) need to communicate with each other over a network [24]. Floyd et al.

demonstrated in [9] that the utilization level of the network links is heavily affected when the buffer

management policy is not efficiently tuned. Thus, since the performance of the network is affected by

them, network buffers policies also affect the performanceof Grids.

A number of policies have been developed to manage network buffers [10, 9, 17, 3]. According to

Floyd et al. [10], Random Early Detection (RED) algorithm isuseful to detect incipient network conges-

tion in packet-switched networks, which is similar to computational Grids since the Grid infrastructure

is built on existing public network. However, RED algorithmmight not be efficient under varying traffic

conditions, as it requires constant tuning of its parameters to be able to work efficiently. This makes

RED not suitable to be used when providing network Quality ofService (QoS), as a misconfiguration of

RED parameters would seriously affect the performance received by users [9]. Therefore, Floyd et al. [9]

suggest using Adaptive RED (ARED) algorithm to overcome this drawback.

Kumar et al. [17] present a buffer management framework for achieving end-to-end proportional

loss differentiation in networks, which is also based on RED. Aweya et al. [3] present a technique for

enhancing the effectiveness of RED by dynamically changingthe threshold settings as the number of

connections and system load changes. Kesselman et al. [16] introduce a novel general non-preemptive

buffer management scheme, which considers the queues ordered by their size. Gazi et al. [14] propose a

threshold-based dynamic buffer management policy, decay function threshold, to regulate the lengths of

very active queues and avoid performance degradations.

The contribution of this paper is as follows. We design and implement buffer policies, such as FIFO,

RED and ARED on GridSim [26], an open-source Grid simulationtool, since it can simulate both compu-

tational and data Grids. Moreover, several researchers have been using this simulator (such as [7, 23, 25]).

More importantly, GridSim allows the flexibility and extensibility to incorporate new components into its

existing infrastructure. We decided to implement these twoversions of RED because RED (or policies

based on it) is a widely used buffer management policy, as we showed above. Hence, our work benefits

researchers for evaluating and improving their schedulingworks against volatile network conditions.

This paper is organized as follows: Section 2 provides a overview on several Grid and network

simulation tools. Section 3 provides a brief explanation ofthe buffer management policies implemented

in this work. Section 4 describes the implementations on GridSim, which are supported by the results

depicted in Section 5. Section 6 concludes the paper and suggests some guidelines for future work.

2 Related Work

As we mentioned previously, simulations are essential for carrying out research experiments in Grid

systems. Thus, a number of simulation tools have been developed, such as GridSim [26], OptorSim [4],

SimGrid [13], and MicroGrid [20]. Sulistio et al. [26] provide a detailed comparison of these simulation

tools in terms of their network functionalities and features. The simulation tool we use for our work

is GridSim. Moreover, [26] also provides an in-depth explanation of its network components. In this

paper, we are interested in the simulation of network buffermanagement policies, and none of these

tools provide the mentioned functionality.

Simulations are also widely used in the networking researcharea. Examples of such simulators

are NS-2 [1], DaSSF [19], OMNET++ [27] and J-Sim [22]. Although their support for network pro-

tocols is extensive, they are not targeted at studying Grid computing. This is because simulating Grids

requires modeling the effects of scheduling algorithms on Grid resources and investigating users QoS

requirements for application processes. In addition, we believe simulating TCP and UDP connections

are sufficient to model a real world behavior, because Grid users are mostly interested in finding out

round trip time and available bandwidth of a host. Therefore, these network simulators perform other

complex functionalities which are not needed in simulatinga Grid computing environment [26].

As a result, we decided to extend GridSim with a better network model rather than integrating an

existing simulator tool into it. We decided it because GridSim is a very versatile tool that can be extended

in an easy and efficient way. Also, integrating a network simulator would be more complicated and time-

consuming than extending GridSim, and such integration would not be so interesting for the purposes of

Grid researchers.

3 Buffer Management Policies

The aim of our work is the extension of the GridSim Toolkit with network buffer management policies.

Thus, in this section, we provide an overview on the policieswe have implemented, namely RED, Adap-

tative RED, and FIFO. FIFO is an straightforward policy, which just enqueues packets into buffers, and

packets get dropped when buffers are full. The other two policies will be explained the next.

3.1 Random Early Detection

One of the most widely used policies is Random Early Detection (RED) [10]. RED routers detect incip-

ient congestion by computing the average queue size. The router could notify congestion to connections

either by dropping packets arriving at the router or by setting a bit in packet headers. When the average

queue size exceeds a preset threshold, the router drops or marks each arriving packet with a certain prob-

ability, where the exact probability is a function of the average queue size. RED routers keep the average

queue size low while allowing occasional bursts of packets in the queue [10].

During congestion, the probability that the router notifiesa particular connection to reduce its window

is roughly proportional to that connection’s share of the bandwidth through the router. RED routers are

designed to accompany a transport-layer congestion control protocol such as TCP. The RED router has

no bias against bursty traffic and avoids the global synchronization of many connections decreasing their

transmission window at the same time [10].

Algorithm 1 Calculation of average queue size.
1: if queue is non-emptythen
2: avg ← old avg + wq(q − old avg)
3: else
4: avg ← (1−wq)

(time−q time)/s × old avg
5: end if

The RED congestion control mechanisms monitor the average queue size for each output queue, and,

using randomization, choose connections to notify of that congestion. Transient congestion is accom-

modated by a temporary increase in the queue. Longer-lived congestion is reflected by an increase in the

computed average queue size, and results in randomized feedback to some of the connections to decrease

their windows [10].

The RED algorithm can be graphically seen in Figure 1. The parameters are listed here:avg: current

average queue size;old avg: previous average queue size;wq: queue weight, the significance of the

current queue size when calculating the average queue size;q: current queue size;q time: the time

when the queue got empty for the last time;time: current time;s: typical transmission time.maxth:

maximum threshold, upper limit for the average queue size;minth: minimum threshold, lower limit for

the average queue size;maxp: the maximum probability for an incoming packet to get dropped; For each

incoming packet, the average queue size is calculated. If itis below the minimum threshold, the packet is

enqueued. If it is above the maximum threshold, the packet isdropped. Otherwise, the packet is dropped

with some probability. The average queue size calculation is explained by Algorithm 1. This algorithm

works as follows: if the queue is not empty, the average queuesize is calculated based onold avg, q,

andwq (line 2). Otherwise, the it is calculated based onold avg, wq, time, andq time (line 4).

RED algorithm has been used as a basis for the development of other algorithms. Among the algo-

rithms developed based on RED we can find Adaptive RED [8] [9].

3.2 Adaptive RED

Adaptive RED [8] [9] is based on the assumption that the resulting average queue length is quite

sensitive to the level of congestion and to the RED parametersettings, and is therefore not predictable

Figure 1: Random Early Detection (RED) algorithm.

Algorithm 2 The Adaptative RED algorithm.
1: repeat
2: Everyinterval seconds
3: if (avg > target andmaxp <= high limit) then
4: maxp ← maxp + α {increasemaxp}
5: else
6: if (avg < target andmaxp >= low limit) then
7: maxp ← maxp × β {decreasemaxp}
8: end if
9: end if

10: until end of simulation

in advance. Authors claim that adaptive RED removes the sensitivity to parameters that affect RED’s

performance and can reliably achieve a specified target average queue length in a wide variety of traffic

scenarios. Thus, Adaptative RED is similar to RED, but it updates themaxp parameter with a given fre-

quency, so that the average queue length is kept at a reasonable level at all times. The update procedure is

shown in Algorithm 2, and its parameters are the following:interval: a period of time;high limit: a top

limit for the maximum dropping probability (max p); α: increment;low limit: : a low limit for max p;

β: decrease factor (β < 1); target: the desired average queue length. Also, ARED calculateswq and

minth based on the speed of the link, thus choosing their values more accurately than just choosing them

by hand. The equations used for that arewq = 1− exp(−1/C) andminth = max
[

5,
delaytarget×C

2

]

[9].

In these equations, we can see two new parameters, namelyC, which is the link capacity in packets per

second, anddelaytarget, which is the target average queuing delay.

The Algorithm 2 works as follows: everyinterval seconds, the average queue size is checked (it is

calculated as Algorithm 1 says), and it is compared with thetarget. Also, themax p is compared with

thehigh limit (line 3). If the queue size is too large, and the dropping probability is smaller than the

high limit, then increase the dropping probability (line 4). Otherwise, if the queue is too small, and the

dropping probability is higher than the low limit (line 6), then decrease the dropping probability (line 7).

These three algorithms (FIFO, RED, and ARED) have been implemented in GridSim, and the im-

plementation will be explained in the next section.

4 Implementation of Buffers Management Policies in GridSim

In this section we will first explain the classes architecture developed to implement the network buffers

management policies, followed by an explanation on the interactions between entities.

4.1 Architecture

We have implemented FIFO, RED and ARED as management algorithms for finite buffers in routers,

and implementations have been carried out on GridSim. In order to provide GridSim with this new

functionality, several classes have been developed. Theseclasses are depicted in bold font Figure 2, and

will be explained the next:

• FnbUser: This class implements the users of our Grid environment. Its functionality can be

summarized as follows: (1) creation of jobs; (2) submissionof jobs to resources; (3) reception of

succeeded jobs.

• FnbSCFQScheduler: This class is based in theSCFQScheduler GridSim class with some

variations to support finite buffers. This is an abstract class, and by extending it, new policies can

Figure 2: Classes created for the network finite buffers functionality.

be implemented. We have implemented three policies: RED, ARED and FIFO. This class has

an abstract function, theenque(Packet) function, which is called everytime a new incoming

packet arrives at the router.

• RED, ARED, andFIFO: These are three buffer management policies. They implement the

enque(Packet) function, which calls the buffer management algorithm every time a new in-

coming packet arrives at the router. These classes behave aswas explained in Section 3. As ARED

policy is based on RED,ARED class extendsRED. This way, new policies based on RED can be

easily implemented, just by extendingRED. These four classes (includingFnbSCFQScheduler)

are the most important classes of our model, as they implement the policies to manage network

buffers.

Apart from that, when a packet gets dropped, we have to informthe user involved in that transmis-

sion. We do it after a certain delay, thus emulating the expiration of a time-out. This is essential

as the simulator does not deal well with entities waiting foran event that never arrives. In other

words, if a packet gets dropped, the user should be informed,because the job to which that packet

belongs is failed. Thus, that job will not arrive back to the user after completion. In real UDP

transmissions, users just inject packets into the network,and do not care if there are lost packets.

Work on implementing TCP on GridSim will be considered as future work.

• NetIO: It is an interface class, providing some functions to deal with IO ports.

• FnbInput: This class implementsNetIO, and it is based on theInput GridSim class. The

differences betweenFnbInput andInput are mainly in thegetDataFromLink() function.

As packets may get dropped, input ports must check if all the packets belonging to a transmission

have arrived properly. Hence, the transmission is successfull only if all the packets have arrived.

Therefore, if any packet belonging to a job’s transmission gets dropped, the job will get filtered at

the input port of the receiver, not reaching the receiver itself. We do that because we are considering

only UDP transmissions, so no detection of lost packets is performed. As mentioned before,

implementing TCP on GridSim is part of the future work.

• FnbOutput: This class implementsNetIO, and it is based on theOutput GridSim class. The

difference betweenFnbOutputandOutput is the way how it receives notifications from routers

when a packet is dropped. In this case, if the output port belongs to a user, the port will inform the

user about that. Another strategy would be retransmitting the lost packet, and this is considered as

a part of the future work. When a packet is dropped, and the output port of the user is informed

about that, the port has to match the packet ID to the job it belongs to. Then, the port tells the user

which job has suffered the dropping. This way a user can deem ajob as failed if any of its packets

got dropped. This has been done in order to avoid the fact thatusers keep waiting for a job that

never arrives. In real world with UDP transmissions, outputports only have to send packets to the

other end of transmissions.

• FnbRouter andFnbRIPRouter: based on GridSim classesRouter andRIPRouter, these

classes were modified to include some statistics, such as dropped packets counters.

• FirstLastPacketsGridlet: An array of objects of this class is used to keep the number of

packets each job (gridlet using the terminology of the simulator) is made of. This is necessary for

the output port to be able to match a packet ID to the gridlet itbelongs to.

• Source pktNum: This class is used in the input ports of users/resources, tomake sure that all

the packets of a job arrive at the user/resource. If any of thepackets of a job do not arrive, that job

will be considered as failed. In this case, the input port will filter that job, hence the user/resource

will not receive it.

• GridResource: An original GridSim class, used to execute users’ jobs.

4.2 Functionality

The process of creating an experiment in GridSim requires the following steps:

• Initialize the GridSim package by callingGridSim.init() and

GridSim.initNetworkType(GridSimTags.NET BUFFER PACKET LEVEL)methods.

This way we decide we want to use the finite buffer functionality.

• Create one or more Grid resource and Grid user entities. Eachresource must have number of

processors, speed of processing and internal process scheduling policy.

• Build a network topology by connecting Grid user and resource entities.

• Finally, run the experiment by callingGridSim.startGridSimulation()method.

Figure 3 depicts a use case in which a user sends a job to a resource, and all the packets reach the

resource. The same situation would be for the opposite direction, this is, from the resource to the user.

From left to right, we can see that an user submits a job, hencehis/her output port has to split that job into

a number of packets. The output port also creates afirstLastPacketGridlet object containing

the ID of the first and the last packet of that job, in this case,0 and 2. Then, packets are transmitted

through the network to the router, which callsFnbSCFQScheduler for each incoming packet. The

FnbSCFQScheduler object runs the policy algorithm to determine whether each packet is dropped

or not, and this is done by the child class implementing the chosen policy. In this case, no packet is

dropped, hence they are forwarded to the input port of the resource. As packets arrive at the input port

of the resource, the port counts them. When all the packets ofthe job have arrived, then the job has

successfully reached the resource, hence the input port sends the job to theGridResource entity

where it will be executed.

Figure 4 shows an scenario in which one of the packets is dropped. This happens when the

FnbSCFQScheduler runs the policy algorithm. In this case, the SCFQ scheduler informs the output

port of the user about the dropping. In turn, the output port checks which job this dropped packet belongs

to, and informs the user. This way, the user knows that this job will not get executed, so his/her will not

wait for the output of that job to come back. Also, the input port of the resource will discover the

Figure 3: Sequence diagram showing a transmission with no dropped packets.

Figure 4: Sequence diagram showing a transmission with one dropped packet.

dropping when a packet does not reach it. In this case, the port will filter that job, not sending it to the

resource. Next, we show the usefulness of our work with a use case scenario.

5 Use Case Scenario

The aim of this experiment is to show GridSim’s ability to simulate an adequate-size Grid testbed. There-

fore, we create a network scenario based on the on the EU DataGRID Testbed 1, as shown in Fig-

ure 5 [15]. For this experiment, our main concern is the network behavior in a Grid environment. Hence,

we are trying to look at how different buffer management policies affect the network performance.

In this scenario we will compare the RED and ARED, using a FIFOpolicy as a base case. Ta-

ble 1 summarizes the characteristics of simulated resources, which were obtained from a real LCG

testbed [18]. The parameter regarding to a CPU rating is defined in the form of MIPS (Million Instruc-

tions Per Second) as per SPEC (Standard Performance Evaluation Corporation) benchmark. Moreover,

the number of nodes for each resource have been scaled down by10, because of memory limitation on

the computer we ran the experiments on, and also for time restrictions. The complete experiments would

require more than 2GB of memory, and would take several weeksof processing. Finally, each resource

node has four CPUs.

For this experiment, we create 100 users and distribute themamong the locations, as shown in Ta-

ble 1. Each user has 10 jobs and the processing power of each job is1400000 Million Instructions (MI),

which means that each job takes about 2 seconds if it is run on the CERN resource. Also, I/O files sizes

are24 MB. All jobs have the same parameters that are taken from ATLAS online monitoring and cali-

bration system [2]. Moreover, we set the job duration time tobe small because it does not influence the

performance of the network buffer management policy.

In order to create congestion on a link, we have chosen20% of the uses to submit their jobs to the

resourceCERN. Thus, the link between this resource andRouter0 (shaded in Figure 5) will be heavily

used. So, all the statistics presented here are those collected at the link betweenCERN andRouter0.

To simplify the experiment set-up, some parameters are identical for all network elements, such as

the maximum transfer unit (MTU) of links is 1,500 bytes and the latency is 10 milliseconds. Links will

be scaled down by 1000, for the same reasons mentioned above.

Figure 5: EU DataGRID Testbed 1.

Resource Name (Location) # Nodes CPU Rating Policy Users

RAL (UK) 41 49,000 Space-Shared 12

Imp. College (UK) 52 62,000 Space-Shared 16

NorduGrid (Norway) 17 20,000 Space-Shared 4

NIKHEF (Netherlands) 18 21,000 Space-Shared 8

Lyon (France) 12 14,000 Space-Shared 12

CERN (Switzerland) 59 70,000 Space-Shared 24

Milano (Italy) 5 70,000 Space-Shared 4

Torino (Italy) 2 3,000 Time-Shared 2

Rome (Italy) 5 6,000 Space-Shared 4

Padova (Italy) 1 1,000 Time-Shared 2

Bologna (Italy) 67 80,000 Space-Shared 12

Table 1: Resource specifications.

Table 2 specifies the values for the parameters of the simulations running RED algorithm. In order

to calculate the thresholds, we have considered the rulemaxth = 3 × minth, as suggested in [10].

The value forwq has been chosen too small, so that we can appreciate the improvement achieved by

ARED, which calculates that parameter based on the speed of the link. Table 3 specifies the values for

the parameters of the simulations running Adaptative RED algorithm, and these values are those used

Parameter Value

maxth 150 packets

minth 50 packets

maxp 0.02

wq 0.0001

Table 2: Values of RED parameters.

Parameter Value

interval 0.5 seconds

α min(0.001, maxp/4)

β 0.9

target [minth + 0.4 × (maxth − minth),

minth + 0.6 × (maxth − minth)]

delaytarget 0.005 seconds

low limit 0.01

high limit 0.5

Table 3: Values of Adaptative RED parameters.

in [9]. The value formaxth follows the same rule as for RED. The maximum buffer size for all the

simulations is 200 packets, and this is the only parameter for the base case running FIFO.

Figure 6 shows the first performance results that are collected at the beginning of our simulations.

Figure 6 (a) shows variations on the buffer occupation. We can see that around time 250, buffer occu-

pations suffer an increase, and this is because users start submitting their jobs to the resource. Thus, the

buffer of that link receives a lot of incoming packets. When FIFO is running, the buffer gets saturated,

as FIFO imposes no restrictions on the buffer occupations. As opposed to it, both RED and ARED can

keep buffer occupations at reasonable levels, far away fromsaturation. In order to achieve that, ARED

increases themax p, and this can be seen in Figure 6 (b). Regarding RED, the buffer occupation has

several spikes, and this is because thewq has been chosen to a non-optimal parameter and RED cannot

detect congestion efficiently. As opposed to it, ARED chooses wq based on the link features, thus the

buffer occupation remains more stable.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 300 400 500 600 700 800 900 1000

m
ax

_p

Simulation Time (sec.)

Low_limit

High_limit

RED
ARED

(a) Buffer occupation. (b)maxp.

Figure 6: Timelines showing the progress of buffer occupations andmaxp.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 b
uf

fe
r

oc
cu

pa
tio

n
(#

 p
kt

s.
)

Simulation Time (sec.)

Min_threshold

Max_threshold

ARED

 0

 20

 40

 60

 80

 100

 120

 140

 160

 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 b
uf

fe
r

oc
cu

pa
tio

n
(#

 p
kt

s.
)

Simulation Time (sec.)

Min_threshold

Max_threshold

RED

(a) Average buffer occupation for ARED. (b) Average buffer occupation for RED.

Figure 7: Timelines showing the progress of average buffer occupations for RED and ARED.

Figure 7 shows average buffer occupation for RED and ARED. Wedo not present this statistic for

FIFO, as we can see in Figure 6 (a) that the buffer occupation reaches the full buffer capacity (200

packets) and does not change. As we mentioned above, ARED cankeep the average buffer occupation

quite stable, as opposed to RED, which shows some spikes. Both of them can keep the average buffer

size between the thresholds. Recall that thresholds are different for RED and ARED, since they are

automatically calculated (in the case of ARED), and chosen by hand (in the case of RED). Because

of this, ARED’s thresholds are lower (minth = 5 packets and maxth = 15 packets) than RED’s

(minth = 50 packets andmaxth = 150 packets). This way, the difference in average buffer occupation

between both policies showed in Figure 6 (a) is explained.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000
 13000

 200 300 400 500 600 700 800 900 1000

D
ro

pp
ed

 p
ac

ke
ts

Simulation Time (sec.)

FIFO
RED
ARED

Figure 8: Statistics on dropped packets.

Figure 8 shows the dropped packets at the link between resourceCERN and the router it is directly

connected to. We can see that the policy which drops more packets at this link is FIFO, because it does

nothing to control the buffer occupations. Thus, too many packets reach this link, and fill the buffer.

Then, all the packets reaching this link when the buffer is full will get dropped. On the other hand,

RED and ARED does perform that kind of control, thus the amount of packets that reach this link is

lower. RED and ARED schedulers at each link in the topology filter packets when the average queue

size becomes too high, thus the amount of packets that reach this link is lower. Recall that the current

infrastructure does not provide retransmission of droppedpackets, and this improvement is considered

as future work.

As for the users point of view, Figure 9 shows statistics regarding the moment when users from

the locationCERN receive the first dropped packet for a job. In a real environment, this means the

retransmission of the lost packet, and if it is a TCP connection, the decrease of the transmission window

and the retransmission of all the packets from the lost one onwards. As we explained in Section 3,

avoiding global synchronization is one of the aims of the policies based on RED. In this figure, we can

see that there are few users who receive a dropped packet at the same time (the vertical lines in the figure

show the moment when more than 1 user gets a dropped packet at the same time, and number on them

show how many users get synchronized) when using RED or ARED policies. Figure 9 (a) shows that up

 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58

 0 25 50 75 100 125 150 175 200 225

U
se

r
ID

Simulation Time (min.)

2 2 3 4 2

43

 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58

 0 25 50 75 100 125 150 175 200 225

U
se

r
ID

Simulation Time (min.)

3

2

 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58

 0 25 50 75 100 125 150 175 200 225

U
se

r
ID

Simulation Time (min.)

3

2 2

(a) FIFO. (b) ARED. (c) RED.

Figure 9: Timelines showing the moment when users fromCERN receive a packet dropped.

to 4 users get a dropped packet at the same time, and Figure 9 (b) and (c) show no more than 3. Also,

this happens less frequently when RED or ARED is being used, than with FIFO.

6 Conclusion and Future Work

Grid technologies are emerging as the next generation of distributed computing, allowing the aggregation

of resources that are geographically distributed across different locations. Due to the large scale and

distributed management of Grids, the use of simulation tools is essential to carry out research efficiently.

Thus, simulation tools should cover the main features of a real Grid system, but this was not totally true

for the network of Grids.

In this paper we propose an extension to one of the most widelyused simulation tools to cover this

gap. More precisely, we have introduced finite network buffers and network buffers management policies

into GridSim. Three management policies have been implemented, namely FIFO, RED, and ARED, but

more policies can be implemented using the current framework. This way, researchers will be able to

create more realistic network models, thus improving theirresearch in several key fields in Grids, such

as scheduling, or QoS provision.

As for future work, we are planning to use the improved simulation tool to carry out research aimed at

providing network QoS in Grids. This will be done by integrating this functionality into the Grid network

broker outlined in [6]. Moreover, the functionality explained in this paper can be extended to include

retransmissions of dropped packets. Furthermore, we are thinking on implementing TCP in GridSim as

another future step.

Acknowledgement

This work has been jointly supported by the Spanish MEC and European Commission FEDER funds un-

der grants “Consolider Ingenio-2010 CSD2006-00046” and “TIN2006-15516-C04-02”; by JCCM under

grants PBC-05-007-01, PBC-05-005-01 and José Castillejo. This research is also partially funded by the

Australian Research Council and the Department of Education, Science and Training.

References

[1] The network simulator - ns-2. Web Page, 2007.http://www.isi.edu/nsnam/ns/.

[2] ATLAS online monitoring and calibration system. Web Page, 2007. http://

dissemination.interactive-grid.eu/applications/HEP.

[3] J. Aweya, M. Ouellette, D. Y. Montuno, and A. Chapman. Enhancing TCP performance with a

load-adaptive RED mechanism.Intl. Journal of Network Management, 11(1):31–50, 2001.

[4] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar, K. Stockinger, and F. Zini. Simulation

of dynamic grid replication strategies in OptorSim. InProc. of the 3rd Intl. Workshop on Grid

Computing (GRID’02), London, UK, 2002.

[5] R. Buyya, S. Date, Y. Mizuno-Matsumoto, S. Venugopal, and D. Abramson. Neuroscience in-

strumentation and distributed analysis of brain activity data: a case for escience on global grids.

Concurrency and Computation: Practice and Experience, 17(15):1783–1798, 2005.

[6] A. Caminero, C. Carrión, and B. Caminero. Designing an entity to provide network QoS in a

Grid system. InProc. of the 1st Iberian Grid Infrastructure Conference (IberGrid), Santiago de

Compostela, Spain, 2007.

[7] E. Elmroth and P. Gardfjäll. Design and evaluation of a decentralized system for grid-wide fairshare

scheduling. InProc. of the 1st Intl. Conference on e-Science and Grid Computing (eScience),

Melbourne, Australia, 2005.

[8] W. Feng, D. D. Kandlur, D. Saha, and K. G. Shin. A self-configuring RED gateway. InProc. of the

INFOCOM Conference, New York, USA, 1999.

[9] S. Floyd, R. Gummadi, and S. Shenker. Adaptive RED: An algorithm for increasing the robustness

of RED’s active queue management. Technical report, AT & T Center for Internet Research at ICSI,

Aug. 2001.

[10] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance.Transactions

on Networking, 1(4):397–413, 1993.

[11] I. Foster and C. Kesselman.The Grid 2: Blueprint for a New Computing Infrastructure. Morgan

Kaufmann, 2 edition, 2003.

[12] I. T. Foster. The anatomy of the Grid: Enabling scalablevirtual organizations. InProc. of the 1st

Intl. Symposium on Cluster Computing and the Grid (CCGrid), Brisbane, Australia, 2001.

[13] K. Fujiwara and H. Casanova. Speed and accuracy of network simulation in the simgrid framework.

In Proc. of the 1st Intl. Workshop on Network Simulation Tools (NSTools), Nantes, France, 2007.

[14] B. Gazi and Z. Ghassemlooy. Dynamic buffer management using per-queue thresholds: Research

articles.Intl. Journal Communications and Systems, 20(5):571–587, 2007.

[15] W. Hoschek, F. J. Janez, A. Samar, H. Stockinger, and K. Stockinger. Data management in an

international data grid project. InProc. of the 1st Intl. Workshop on Grid Computing, Bangalore,

India, 2000.

[16] A. Kesselman and Y. Mansour. Harmonic buffer management policy for shared memory switches.

Theoretical Computer Science, 324(2-3):161–182, 2004.

[17] A. Kumar, J. Kaur, and H. Vin. End-to-end proportional loss differentiation. Technical Report

TR-01-33, University of Texas, USA, 2001.

[18] LCG Computing Fabric Area. Web Page, 2007.http://lcg-computing-fabric.web.

cern.ch.

[19] J. Liu and D. M. Nicol.DaSSF 3.1 User’s Manual. Dartmouth College, April 2001.

[20] X. Liu. Scalable Online Simulation for Modeling Grid Dynamics. PhD thesis, Univ. of California

at San Diego, 2004.

[21] F. T. Marchese and N. Brajkovska. Fostering asynchronous collaborative visualization. InProc. of

the 11th Intl. Conference on Information Visualization, Washington DC, USA, 2007.

[22] J. A. Miller, R. S. Nair, Z. Zhang, and H. Zhao. JSIM: A JAVA-based simulation and animation

environment. In30th Annual Simulation Symposium (ANSS’97), Atlanta, USA, 1997.

[23] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou, K. Vahi, K. Blackburn, D. Mey-

ers, and M. Samidi. Scheduling data-intensive workflows onto storage-constrained distributed re-

sources. InProc. of the 7th Intl. Symposium on Cluster Computing and the Grid (CCGrid), Rio,

Brazil, 2007.

[24] A. Roy. End-to-End Quality of Service for High-End Applications. PhD thesis, Dept. of Computer

Science, University of Chicago, 2001.

[25] G. Singh, C. Kesselman, and E. Deelman. A provisioning model and its comparison with best-effort

for performance-cost optimization in grids. InIntl. Symposium on High Performance Distributed

Computing (HPDC), Monterey Bay, California, USA, 2007.

[26] A. Sulistio, G. Poduval, R. Buyya, and C.-K. Tham. On incorporating differentiated levels of

network service into GridSim.Future Generation Computer Systems, 23(4):606–615, May 2007.

[27] A. Varga. The omnet++ discrete event simulation system,. In Proc. of the European Simulation

Multiconference (ESM), Prague, Czech Republic, 2001.

