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Abstract

Grid technologies are emerging as the next generation tiliited computing, allowing the
aggregation of resources that are geographically disgtbacross different locations. The network
remains an important requirement for any Grid applicatas entities involved in a Grid system
(such as users, services, and data) need to communicateadkhother over a network. The per-
formance of the network must therefore be considered whewiog out tasks such as scheduling,
migration or monitoring of jobs. Network buffers managetngalicies affect the network perfor-
mance, as they can lead to poor latencies (if buffers becomtatge), but also leading to a lot of
packet droppings and low utilization of links, when tryirgkkeep a low buffer size. Therefore, net-
work buffers management policies should be considered wimeunlating a real Grid system. In this
paper, we introduce network buffers management policiestire GridSim simulation toolkit. Our
framework allows new policies to be implemented easilystboabling researchers to create more
realistic network models. Fields which will harness our kvare scheduling, or QoS provision. We
present a comprehensive description of the overall desigraaise case scenario demonstrating the

conditions of links varied over time.
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1 Introduction

Grid computing has emerged as the next-generation paaalikediistributed computing methodology that
aggregates dispersed heterogeneous resources for searings kinds of large-scale parallel applica-
tions in science, engineering and commerce [11]. Grid systare highly variable environments, made
of a series of independent organizations that share thaiurees [12]. Some application domains that
take advantage of the Grids are collaborative visualing@d] and medical applications [5].

The network remains an important requirement for Grid agpilons, as entities involved in a Grid
(e.g. users, services, and data) need to communicate vathather over a network [24]. Floyd et al.
demonstrated in [9] that the utilization level of the netiwdinks is heavily affected when the buffer
management policy is not efficiently tuned. Thus, since tdgomance of the network is affected by
them, network buffers policies also affect the performaoic@rids.

A number of policies have been developed to manage netwdf&rb|10, 9, 17, 3]. According to
Floyd et al. [10], Random Early Detection (RED) algorithnusseful to detect incipient network conges-
tion in packet-switched networks, which is similar to corgtional Grids since the Grid infrastructure
is built on existing public network. However, RED algorithmight not be efficient under varying traffic
conditions, as it requires constant tuning of its paramseterbe able to work efficiently. This makes
RED not suitable to be used when providing network Qualit$sefvice QoS), as a misconfiguration of
RED parameters would seriously affect the performanceweddy users [9]. Therefore, Floyd et al. [9]
suggest using Adaptive RED (ARED) algorithm to overcomse thiawback.

Kumar et al. [17] present a buffer management framework éhiexing end-to-end proportional
loss differentiation in networks, which is also based on RE®eya et al. [3] present a technique for
enhancing the effectiveness of RED by dynamically changfiregthreshold settings as the number of
connections and system load changes. Kesselman et alntt@dliice a novel general non-preemptive
buffer management scheme, which considers the queuesdrigitheir size. Gazi et al. [14] propose a
threshold-based dynamic buffer management policy, dasagtibn threshold, to regulate the lengths of

very active queues and avoid performance degradations.



The contribution of this paper is as follows. We design anplé@ment buffer policies, such as FIFO,
RED and ARED on GridSim [26], an open-source Grid simulatami, since it can simulate both compu-
tational and data Grids. Moreover, several researcheesliean using this simulator (such as [7, 23, 25]).
More importantly, GridSim allows the flexibility and extelpidity to incorporate new components into its
existing infrastructure. We decided to implement thesewersions of RED because RED (or policies
based on it) is a widely used buffer management policy, ashowead above. Hence, our work benefits
researchers for evaluating and improving their schedwiingks against volatile network conditions.

This paper is organized as follows: Section 2 provides avisron several Grid and network
simulation tools. Section 3 provides a brief explanatiothefbuffer management policies implemented
in this work. Section 4 describes the implementations onl&m, which are supported by the results

depicted in Section 5. Section 6 concludes the paper anastgygome guidelines for future work.

2 Related Work

As we mentioned previously, simulations are essential &rying out research experiments in Grid
systems. Thus, a number of simulation tools have been dm@lcuch as GridSim [26], OptorSim [4],
SimGrid [13], and MicroGrid [20]. Sulistio et al. [26] prade a detailed comparison of these simulation
tools in terms of their network functionalities and feagirélhe simulation tool we use for our work
is GridSim. Moreover, [26] also provides an in-depth exptéon of its network components. In this
paper, we are interested in the simulation of network bufi@nagement policies, and none of these
tools provide the mentioned functionality.

Simulations are also widely used in the networking researela. Examples of such simulators
are NS-2 [1], DaSSF [19], OMNET++ [27] and J-Sim [22]. Altlgbutheir support for network pro-
tocols is extensive, they are not targeted at studying Gndputing. This is because simulating Grids
requires modeling the effects of scheduling algorithms ol Gesources and investigating users QoS
requirements for application processes. In addition, wevs simulating TCP and UDP connections

are sufficient to model a real world behavior, because Grasuare mostly interested in finding out



round trip time and available bandwidth of a host. Thereftiiese network simulators perform other
complex functionalities which are not needed in simulatinf@rid computing environment [26].

As a result, we decided to extend GridSim with a better ndtwoodel rather than integrating an
existing simulator tool into it. We decided it because Gimd% a very versatile tool that can be extended
in an easy and efficient way. Also, integrating a network $atou would be more complicated and time-
consuming than extending GridSim, and such integrationidvoot be so interesting for the purposes of

Grid researchers.

3 Buffer Management Policies

The aim of our work is the extension of the GridSim Toolkithwitetwork buffer management policies.
Thus, in this section, we provide an overview on the poligieshave implemented, namely RED, Adap-
tative RED, and FIFO. FIFO is an straightforward policy, efhjust enqueues packets into buffers, and

packets get dropped when buffers are full. The other twagadiwill be explained the next.

3.1 Random Early Detection

One of the most widely used policies is Random Early DetadtiRED) [10]. RED routers detect incip-
ient congestion by computing the average queue size. Therroould notify congestion to connections
either by dropping packets arriving at the router or by sgtt bit in packet headers. When the average
gueue size exceeds a preset threshold, the router dropsks ezch arriving packet with a certain prob-
ability, where the exact probability is a function of the eage queue size. RED routers keep the average
queue size low while allowing occasional bursts of packetbé queue [10].

During congestion, the probability that the router notifigmrticular connection to reduce its window
is roughly proportional to that connection’s share of thedweidth through the router. RED routers are
designed to accompany a transport-layer congestion dgmrtstocol such as TCP. The RED router has
no bias against bursty traffic and avoids the global syndhation of many connections decreasing their

transmission window at the same time [10].



Algorithm 1 Calculation of average queue size.
1: if queue is non-emptshen

2:  avg < old_avg + wy(q — old_avg)

3 ese

4 avg « (1 —w,)ime=atime)/s y old_avg
5: end if

The RED congestion control mechanisms monitor the averageeagsize for each output queue, and,
using randomization, choose connections to notify of tlmaigestion. Transient congestion is accom-
modated by a temporary increase in the queue. Longer-liordastion is reflected by an increase in the
computed average queue size, and results in randomizelgigetb some of the connections to decrease
their windows [10].

The RED algorithm can be graphically seen in Figure 1. Tharpaters are listed herevg: current
average queue sizejd_avg: previous average queue size,: queue weight, the significance of the
current queue size when calculating the average queue gizgjrrent queue sizej_time: the time
when the queue got empty for the last timéne: current time;s: typical transmission timemax,,:
maximum threshold, upper limit for the average queue sizey;;,: minimum threshold, lower limit for
the average queue sizenx,: the maximum probability for an incoming packet to get dregypFor each
incoming packet, the average queue size is calculatedslbé&low the minimum threshold, the packet is
enqueued. Ifitis above the maximum threshold, the pacldrbigped. Otherwise, the packet is dropped
with some probability. The average queue size calculaBaxplained by Algorithm 1. This algorithm
works as follows: if the queue is not empty, the average qe&eeis calculated based ofd_avg, q,
andw, (line 2). Otherwise, the it is calculated basedodth.avg, wy, time, andg_time (line 4).

RED algorithm has been used as a basis for the developmettteafalgorithms. Among the algo-

rithms developed based on RED we can find Adaptive RED [8] [9].

3.2 Adaptive RED

Adaptive RED [8] [9] is based on the assumption that the teguhverage queue length is quite

sensitive to the level of congestion and to the RED paransstitings, and is therefore not predictable
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Figure 1: Random Early Detection (RED) algorithm.

Algorithm 2 The Adaptative RED algorithm.
1: repeat
2. Everyinterval seconds
3 if (avg > target andmazx, <= high_limit) then
4: max, < max, + o {increasenax,}
5 dse
6
7
8

if (avg < target andmax, >= low_limit) then
mazx, < maz, X 3 {decreasenax,}

end if

90  endif

10: until end of simulation

in advance. Authors claim that adaptive RED removes theitsatysto parameters that affect RED’s
performance and can reliably achieve a specified targeageequeue length in a wide variety of traffic
scenarios. Thus, Adaptative RED is similar to RED, but itatpd thenax, parameter with a given fre-
quency, so that the average queue length is kept at a redsdmadd at all times. The update procedure is
shown in Algorithm 2, and its parameters are the followingterval: a period of timehigh_limit: atop
limit for the maximum dropping probabilityn¢az_p); c: incrementow_limit: : alow limit for max_p;

B: decrease factord( < 1); target: the desired average queue length. Also, ARED calculateand



ming, based on the speed of the link, thus choosing their values ammurately than just choosing them
by hand. The equations used for thatage= 1 — exp(—1/C) andming, = max [5, M} [9].
In these equations, we can see two new parameters, n@mabpich is the link capacity in packets per
second, andelay;qrq4e¢, Which is the target average queuing delay.
The Algorithm 2 works as follows: evemnterval seconds, the average queue size is checked (it is
calculated as Algorithm 1 says), and it is compared withtthget. Also, themax_p is compared with
the high_limit (line 3). If the queue size is too large, and the dropping @dlty is smaller than the
high limit, then increase the dropping probability (line ©therwise, if the queue is too small, and the
dropping probability is higher than the low limit (line 6lhen decrease the dropping probability (line 7).
These three algorithms (FIFO, RED, and ARED) have been m@iged in GridSim, and the im-

plementation will be explained in the next section.

4 Implementation of Buffers Management Policiesin GridSim

In this section we will first explain the classes architeetdeveloped to implement the network buffers

management policies, followed by an explanation on theateons between entities.

4.1 Architecture

We have implemented FIFO, RED and ARED as management dgwifor finite buffers in routers,
and implementations have been carried out on GridSim. lerom provide GridSim with this new
functionality, several classes have been developed. Tdt@sses are depicted in bold font Figure 2, and

will be explained the next:

e FnbUser: This class implements the users of our Grid environmerg.fubctionality can be
summarized as follows: (1) creation of jobs; (2) submissibjobs to resources; (3) reception of

succeeded jobs.

e FnbSCFQSchedul er: This class is based in tBCFQSchedul er GridSim class with some

variations to support finite buffers. This is an abstracsgland by extending it, new policies can
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Figure 2: Classes created for the network finite bufferstionality.

be implemented. We have implemented three policies: RECEBRNd FIFO. This class has
an abstract function, thenque( Packet ) function, which is called everytime a new incoming

packet arrives at the router.

RED, ARED, andFI FO These are three buffer management policies. They implethen

enque( Packet) function, which calls the buffer management algorithm guane a new in-
coming packet arrives at the router. These classes behavesas<plained in Section 3. As ARED
policy is based on REDARED class extend®ED. This way, new policies based on RED can be
easily implemented, just by extendiRED. These four classes (includifignb SCFQSchedul er)

are the most important classes of our model, as they impletherpolicies to manage network

buffers.

Apart from that, when a packet gets dropped, we have to intbenuser involved in that transmis-
sion. We do it after a certain delay, thus emulating the etjoin of a time-out. This is essential
as the simulator does not deal well with entities waitingdarevent that never arrives. In other
words, if a packet gets dropped, the user should be inforbvehuse the job to which that packet
belongs is failed. Thus, that job will not arrive back to treeuafter completion. In real UDP
transmissions, users just inject packets into the netwarll,do not care if there are lost packets.

Work on implementing TCP on GridSim will be considered asifetwork.
Net | O Itis an interface class, providing some functions to dd#h VO ports.

Fnbl nput : This class implementblet | O, and it is based on thienput GridSim class. The

differences betweeRnbl nput andl nput are mainly in theget Dat aFr onli nk() function.



As packets may get dropped, input ports must check if all #ukgis belonging to a transmission
have arrived properly. Hence, the transmission is suadkssfly if all the packets have arrived.
Therefore, if any packet belonging to a job’s transmissiets giropped, the job will get filtered at
the input port of the receiver, not reaching the receivetfit¥V/e do that because we are considering
only UDP transmissions, so no detection of lost packets ifopred. As mentioned before,

implementing TCP on GridSim is part of the future work.

FnbQut put : This class implementset | O, and it is based on th@ut put GridSim class. The
difference betweeRnbQut put andQut put is the way how it receives notifications from routers
when a packet is dropped. In this case, if the output portrigeldo a user, the port will inform the
user about that. Another strategy would be retransmittiegdst packet, and this is considered as
a part of the future work. When a packet is dropped, and theubytort of the user is informed
about that, the port has to match the packet ID to the job drgs to. Then, the port tells the user
which job has suffered the dropping. This way a user can dejein @s failed if any of its packets
got dropped. This has been done in order to avoid the factuders keep waiting for a job that
never arrives. In real world with UDP transmissions, outparts only have to send packets to the

other end of transmissions.

FnbRout er andFnbRI PRout er : based on GridSim class®ut er andRl PRout er , these

classes were modified to include some statistics, such apedopackets counters.

Fi rst Last Packet sG i dl et : An array of objects of this class is used to keep the number of
packets each jolg(idiet using the terminology of the simulator) is made of. This isgssary for

the output port to be able to match a packet ID to the gridle¢libngs to.

Sour ce_pkt Num This class is used in the input ports of users/resourcesiale sure that all
the packets of a job arrive at the user/resource. If any op#tokets of a job do not arrive, that job
will be considered as failed. In this case, the input port fier that job, hence the user/resource

will not receive it.

G i dResour ce: An original GridSim class, used to execute users’ jobs.



4.2 Functionality

The process of creating an experiment in GridSim requiregdtiowing steps:

e Initialize the GridSim package by callir@ i dSiminit() and
GidSiminitNetworkType(Gi dSi mrags. NET BUFFER PACKET_LEVEL) methods.

This way we decide we want to use the finite buffer functidgali

e Create one or more Grid resource and Grid user entities. Emsthurce must have number of

processors, speed of processing and internal processusicigegdolicy.
e Build a network topology by connecting Grid user and reseunatities.

e Finally, run the experiment by callingri dSi m start Gri dSi nul ati on() method.

Figure 3 depicts a use case in which a user sends a job to acesand all the packets reach the
resource. The same situation would be for the oppositetairechis is, from the resource to the user.
From left to right, we can see that an user submits a job, hieistfeer output port has to split that job into
a number of packets. The output port also createsrast Last Packet Gri dl et object containing
the ID of the first and the last packet of that job, in this c&sand 2. Then, packets are transmitted
through the network to the router, which calabSCFQSchedul er for each incoming packet. The
FnbSCFQSchedul er object runs the policy algorithm to determine whether eaamtket is dropped
or not, and this is done by the child class implementing theseh policy. In this case, no packet is
dropped, hence they are forwarded to the input port of theures. As packets arrive at the input port
of the resource, the port counts them. When all the packetseofob have arrived, then the job has
successfully reached the resource, hence the input paisgbe job to thes i dResour ce entity
where it will be executed.

Figure 4 shows an scenario in which one of the packets is dhpphis happens when the
FnbSCFQSchedul er runs the policy algorithm. In this case, the SCFQ scheduferms the output
port of the user about the dropping. In turn, the output poecks which job this dropped packet belongs
to, and informs the user. This way, the user knows that thisjii not get executed, so his/her will not

wait for the output of that job to come back. Also, the inputtpaf the resource will discover the
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Figure 3: Sequence diagram showing a transmission with oapeid packets.
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Figure 4: Sequence diagram showing a transmission with moppdd packet.

dropping when a packet does not reach it. In this case, thenlbfilter that job, not sending it to the

resource. Next, we show the usefulness of our work with a ase scenario.



5 UseCase Scenario

The aim of this experiment is to show GridSim’s ability to silate an adequate-size Grid testbed. There-
fore, we create a network scenario based on the on the EU BéitaGestbed 1, as shown in Fig-
ure 5[15]. For this experiment, our main concern is the ndtwehavior in a Grid environment. Hence,
we are trying to look at how different buffer managementge# affect the network performance.

In this scenario we will compare the RED and ARED, using a Fpielicy as a base case. Ta-
ble 1 summarizes the characteristics of simulated ressumghich were obtained from a real LCG
testbed [18]. The parameter regarding to a CPU rating is eléfimthe form of MIPS (Million Instruc-
tions Per Second) as per SPEC (Standard Performance Bval@airporation) benchmark. Moreover,
the number of nodes for each resource have been scaled doff bgcause of memory limitation on
the computer we ran the experiments on, and also for timeatshs. The complete experiments would
require more than 2GB of memory, and would take several wekgsocessing. Finally, each resource
node has four CPUs.

For this experiment, we create 100 users and distribute #imaong the locations, as shown in Ta-
ble 1. Each user has 10 jobs and the processing power of dachlj¢00000 Million Instructions (Ml),
which means that each job takes about 2 seconds if it is ruhe@ERN resource. Also, I/O files sizes
are24 MB. All jobs have the same parameters that are taken from A loAline monitoring and cali-
bration system [2]. Moreover, we set the job duration timbdésmall because it does not influence the
performance of the network buffer management policy.

In order to create congestion on a link, we have ch@¥a of the uses to submit their jobs to the
resourceCERN. Thus, the link between this resource &ualt er O (shaded in Figure 5) will be heavily
used. So, all the statistics presented here are thosetedllatthe link betwee@ERN andRout er 0.

To simplify the experiment set-up, some parameters ardiagrfor all network elements, such as
the maximum transfer unit (MTU) of links is 1,500 bytes and tatency is 10 milliseconds. Links will

be scaled down by 1000, for the same reasons mentioned above.
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Figure 5: EU DataGRID Testbed 1.

Resource Name (L ocation) ‘ # Nodes ‘ CPU Rating ‘ Policy ‘ Users ‘
RAL (UK) 41 49,000 Space-Shared 12
Imp. College (UK) 52 62,000 Space-Shared 16
NorduGrid (Norway) 17 20,000 Space-Shared
NIKHEF (Netherlands) 18 21,000 Space-Shared
Lyon (France) 12 14,000 Space-Shared 12
CERN (Switzerland) 59 70,000 Space-Shared 24
Milano (Italy) 5 70,000 Space-Shared 4
Torino (Italy) 2 3,000 Time-Shared
Rome (ltaly) 5 6,000 Space-Shared 4
Padova (Italy) 1 1,000 Time-Shared
Bologna (ltaly) 67 80,000 Space-Shared 12

Table 1: Resource specifications.

Table 2 specifies the values for the parameters of the siiongatunning RED algorithm. In order
to calculate the thresholds, we have considered themule;, = 3 x ming,, as suggested in [10].
The value forw, has been chosen too small, so that we can appreciate thevienpeat achieved by
ARED, which calculates that parameter based on the spedut dihk. Table 3 specifies the values for

the parameters of the simulations running Adaptative REorghm, and these values are those used



Parameter Value

mazep, 150 packets
ming, 50 packets
maxp 0.02

wg 0.0001

Table 2: Values of RED parameters.

‘ Parameter ‘ Value ‘
interval 0.5 seconds
a min(0.001, mazxy /4)
8 0.9
target [ming, + 0.4 X (mazy, — ming,),
ming, + 0.6 X (mazy, — ming,)]
delaytarget 0.005 seconds
low limit 0.01
high_limit 0.5

Table 3: Values of Adaptative RED parameters.

in [9]. The value formax;, follows the same rule as for RED. The maximum buffer size fbthe
simulations is 200 packets, and this is the only parametgh&base case running FIFO.

Figure 6 shows the first performance results that are cellieat the beginning of our simulations.
Figure 6 (a) shows variations on the buffer occupation. Wesze that around time 250, buffer occu-
pations suffer an increase, and this is because usersugbaniting their jobs to the resource. Thus, the
buffer of that link receives a lot of incoming packets. WheR@® is running, the buffer gets saturated,
as FIFO imposes no restrictions on the buffer occupatiorssopgposed to it, both RED and ARED can
keep buffer occupations at reasonable levels, far away fatoration. In order to achieve that, ARED
increases thenax_p, and this can be seen in Figure 6 (b). Regarding RED, the rboffeupation has
several spikes, and this is becausehehas been chosen to a non-optimal parameter and RED cannot
detect congestion efficiently. As opposed to it, ARED chseasgbased on the link features, thus the

buffer occupation remains more stable.
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Figure 7 shows average buffer occupation for RED and AREDd@/aot present this statistic for
FIFO, as we can see in Figure 6 (a) that the buffer occupataches the full buffer capacity (200
packets) and does not change. As we mentioned above, AREReegnthe average buffer occupation
quite stable, as opposed to RED, which shows some spiket. ddhhem can keep the average buffer
size between the thresholds. Recall that thresholds deratit for RED and ARED, since they are
automatically calculated (in the case of ARED), and chosemdnd (in the case of RED). Because
of this, ARED'’s thresholds are lowern(in;, = 5 packets andmaz;, = 15 packets) than RED’s
(ming, = 50 packets andmaxy, = 150 packets). This way, the difference in average buffer occupation

between both policies showed in Figure 6 (a) is explained.
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Figure 8: Statistics on dropped packets.

Figure 8 shows the dropped packets at the link between resQERN and the router it is directly
connected to. We can see that the policy which drops moregtmek this link is FIFO, because it does
nothing to control the buffer occupations. Thus, too mangkpts reach this link, and fill the buffer.
Then, all the packets reaching this link when the buffer Is\ill get dropped. On the other hand,
RED and ARED does perform that kind of control, thus the amafirpackets that reach this link is
lower. RED and ARED schedulers at each link in the topologegrfibackets when the average queue
size becomes too high, thus the amount of packets that rbachink is lower. Recall that the current
infrastructure does not provide retransmission of dropmetkets, and this improvement is considered
as future work.

As for the users point of view, Figure 9 shows statistics mdigg the moment when users from
the locationCERN receive the first dropped packet for a job. In a real envirantmthis means the
retransmission of the lost packet, and if it is a TCP conoectihe decrease of the transmission window
and the retransmission of all the packets from the lost owveaaits. As we explained in Section 3,
avoiding global synchronization is one of the aims of thage$ based on RED. In this figure, we can
see that there are few users who receive a dropped packetsarite time (the vertical lines in the figure
show the moment when more than 1 user gets a dropped packet sdrne time, and number on them

show how many users get synchronized) when using RED or AR#HiDigs. Figure 9 (a) shows that up
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Figure 9: Timelines showing the moment when users f@ERN receive a packet dropped.

to 4 users get a dropped packet at the same time, and Figujeadl{c) show no more than 3. Also,

this happens less frequently when RED or ARED is being usedh with FIFO.

6 Conclusion and Future Work

Grid technologies are emerging as the next generation wiited computing, allowing the aggregation
of resources that are geographically distributed acrdésreint locations. Due to the large scale and
distributed management of Grids, the use of simulatiorst@méssential to carry out research efficiently.
Thus, simulation tools should cover the main features obh@eid system, but this was not totally true
for the network of Grids.

In this paper we propose an extension to one of the most wigsdg simulation tools to cover this
gap. More precisely, we have introduced finite network yaféand network buffers management policies
into GridSim. Three management policies have been implesdenamely FIFO, RED, and ARED, but
more policies can be implemented using the current framlew®his way, researchers will be able to
create more realistic network models, thus improving thesearch in several key fields in Grids, such
as scheduling, or QoS provision.

As for future work, we are planning to use the improved sirmoitetool to carry out research aimed at
providing network QoS in Grids. This will be done by integngtthis functionality into the Grid network

broker outlined in [6]. Moreover, the functionality expiad in this paper can be extended to include



retransmissions of dropped packets. Furthermore, we enld@rig on implementing TCP in GridSim as

another future step.
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