

SLA-based Admission Control for a Software-as-a-Service

Provider in Cloud Computing Environments

Linlin Wu, Saurabh Kumar Garg, and Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

{linwu, sgrag, raj}@csse.unimelb.edu.au

Abstract

With the increasing popularity of Cloud computing, the requirement for services supporting brokering

across multiple infrastructure providers is growing rapidly. Cloud Computing environments are not only

dynamic, but also heterogeneous with multiple types of Virtual Machine (VM) offered by various

infrastructure providers. Similarly, the demand on services can also vary with time, which affects the

number of VMs to be initiated. In this environment, the aim of Software as a Service (SaaS) providers is to

maximize their profit and enhance their reputation by meeting Service Level Agreement (SLA)

requirements of all accepted requests. SLAs are signed between SaaS providers and the customers to

decide on the issues such as payment and Quality of Service (QoS). Thus, SaaS providers need effective

strategies for accepting particular request, how many and what type of VMs to be initiated from suitable

IaaS provider. This paper proposes admission control and scheduling algorithms that take into account

dynamic parameters such as variation in VM’s initiation time and user’s QoS requirements such as budget

deadline, and penalty rate ratio. This paper also presents an extensive evaluation study to analyse well

suited algorithm for a particular scenario to maximise the SaaS provider's profit.

Keywords: Cloud computing; Service Level Agreement (SLA); Admission Control; Software as a Service;

Scalability of Application Services

I. INTRODUCTION

Cloud computing has emerged as a new paradigm for offering elastic access to dynamically provisioned IT

resources on a pay-as-you-go model to multiple customers. It has been increasingly adopted in many areas, such as

banking, e-commerce business, retail industry and academy due to its flexibility, scalability and cost-effectiveness

[8][9][11]. Cloud computing includes Software (SaaS), Platform (PaaS) and Infrastructure (IaaS) as a Service. This

paper focuses on SaaS providers, who lease VMs provided by IaaS providers, to offer software services. For

example, Animoto provides automated video generation with images using Amazon Cloud infrastructure services

[23].

The main objective of SaaS providers is to maximize their profit by either attracting large market share or

minimizing the cost. Cloud computing provides a very effective platform for enhancing market share. The Cloud

providers generally list their customers‟ applications on their web sites, which acts as an indirect advertisement for

their customers. For instance, Amazon‟s Customer App Catalogue includes all the details about the customers‟

applications. Another way to enlarge market share is to improve reputation by accepting more user requests and

improve user satisfaction level by meeting the contract terms defined in an SLA [40]. To minimize the cost, a SaaS

provider has to deal with the following questions:

 How many and which type of VMs are required from an IaaS provider?

 How to map user requests to VMs?

Therefore, to maximize profit, the SaaS provider needs to satisfy a major number of users while minimizing its cost.

To satisfy a large number of users, the SaaS provider requires initiating more VMs. However, currently IaaS

providers allow only a limited number of VMs to be initiated by a user [33]. For instance, Amazon [33] and

GoGrid [35] allow only the instantiation of maximum 200 VMs. Thus, using only one IaaS provider, SaaS

providers limit their capability to simultaneously serve several users. Hence, it is essential for a SaaS provider to

leverage multiple IaaS providers. In this case, a SaaS provider has to tackle many more challenges to minimize cost,

such as:

 How many IaaS providers are required?

 Which IaaS provider should be chosen?

 How many VMs are required from each IaaS provider?

In addition, while minimizing the cost, a SaaS provider has to manage the multiple users‟ demand and contractual

obligations in the form of SLAs. In other words, it has to balance between the cost minimization and satisfaction of

the SLA requirements. Moreover, multiple IaaS providers can offer many different types of VMs with various

pricing schemes and cloud interfaces. In any case, with the profit maximization mechanisms, a SaaS provider

requires to leverage multiple user requests and multiple IaaS providers. In order to utilizing resources effectively

and efficiently, admission control and scheduling capabilities at the platform layer to deal with various user

requirements and heterogeneity at the infrastructure level. A high level system model for application service

scalability using multiple IaaS providers in Cloud is illustrated in Figure 1. A user sends requests for utilizing

software applications offered by a SaaS provider, who includes two infrastructure layers, namely application layer

and platform layer, to satisfy the user‟s request. The application layer controls all application services which a SaaS

provider can offer to users. The platform layer includes admission control and scheduling policies for making

decision whether to reject or accept a request, and respond to the user‟s request. In addition, the platform layer also

schedules the processing of requests on VMs from IaaS providers. In academy and industry, pure PaaS maps to

our scenario‟s platform layer.

Figure 1. A high level system model for application service scalability using multiple IaaS providers in Cloud.

In this context, in order to achieve SaaS provider‟s objective of profit maximization, our work proposes scheduling

mechanisms which minimize the SaaS providers‟ cost by optimizing the placement of virtual infrastructures across

multiple IaaS providers and also provide the guaranteed QoS to users. Projects such as InterCloud [17], Sky

Computing [19], and Reservoir [18] investigated the technological advancement that is required to aid the

1. Request Software Service

3. Request | 4. Response VMs

Users

IaaS

Providers

6. Response Accept | Reject

7. Schedule on VMs

2. Analyze

5. Decision
Scheduling

Software Application

PaaS

Provider

Application Layer

Platform Layer

Software Application

SaaS

Provider

Admission Control

deployment of cloud services across multiple infrastructure providers. Thus, times are mature to examine the

admission control and scheduling strategies, which allow for a cost effective usage of physical resources in Clouds.

Although many works [30][16][3] proposed market based scheduling approaches to maximize the profit of IaaS

providers, research at the SaaS provider level in the context of Cloud computing is still in its infancy. Many works

do not consider the leasing scenario from multiple IaaS providers, where physical resources can be dynamically

expanded and contracted based on demand.

Therefore, in this paper, we propose cost effective admission control and scheduling mechanisms with the goal of

maximizing the SaaS provider‟s profit, by optimizing the placement of customer‟s service request on the VMs

leased from multiple IaaS providers. Our mechanisms take into account customer‟s QoS requirements such as

deadline, SLA requirements, and infrastructure heterogeneity in terms of VM types, VM initiation time, data

transfer time and pricing policies. The key contributions of this paper are the following:

 It defines two layers of SLAs - SLA(U) with users and SLA(R) with IaaS providers based on eight basic

QoS parameters.

 It designs and implements admission control and scheduling mechanisms to maximize service provider‟s

profit. The admission control mechanism examines which user request be accepted with least effect on

other accepted requests; especially, how incurred penalties will decrease profit. The scheduling mechanism

determines where and which type of VM will be initiated by incorporating the heterogeneity of IaaS

providers in terms of their price, dynamic VM initiation time, dynamic service time, and data transfer time.

 It presents performance analysis of the proposed algorithms based on varying SLA (U) properties: (i)

deadline, (ii) arrival rate, (iii) budget, (iv) service time, (v) penalty rate ratio, and (vi) input file size; and

SLA(R) property: (i) initiation time. Moreover, we also examine algorithms‟ robustness by considering

violation of SLA(R).

The rest of this paper is organized as follows. In Section II, we discuss prior works in SLA, which have been

carried out in Cluster, Grid, and Cloud computing contexts. We also identify how the work is differs from related

works. Section III presents the detailed scenario and outlines the two layers of SLAs supporting QoS parameters.

Section IV presents four analysis strategies used in the proposed algorithms, and describes the proposed algorithms,

which are ProfminVM, ProfRS and ProfPD. Section V firstly presents the experimental methodology including test

bed and evaluation metrics; secondly, discusses the overall comparison of the performance evaluation results with

reference algorithms; thirdly, compares the algorithms by providing the insights on when to use each algorithm

when each algorithm should be used; fourthly, evaluates the robustness of the algorithms. Finally, Section VI

concludes the paper by summarizing the comparison results and future work.

II. RELATED WORK

Research on market driven resource allocation and admission control has started as early as 1981 [10][6]. Most of

the market-based resource allocation methods are either non-pricing-based [16] or designed for fixed number of

resources, such as FirstPrice [4] and FirstProfit [7]. Our work is related to profit driven SLA based on admission

control and scheduling in Cloud computing environments. Thus, in following sections, we describe the differences

between our and the most relevant previous works.

Cluster & Grid Computing

Chun et al.[14] built a prototype cluster of time-sharing CPU usage to serve user requests. Another market-based

approach to solve traffic spikes for hosting Internet applications on Cluster was studied by Coleman et al. [14].

Their common concern is fixed number of resources. However, our work focuses on multiple resource providers

which supply dynamic number of VMs, where the resources are distributed globally and can be expanded on

demand in Cloud.

Liu et al. [24] analysed the problem of maximizing profit in e-commerce environment using web service

technologies, where the basic distributed system is Cluster. Their methodology belongs to general resource

management with SLAs that includes the “tail distributions of the per-class delays, per-class throughputs and mean

delays” [24]. However, we consider budget, deadline as QoS parameters, which are different from their work.

Besides resource management, admission control is also our main focus.

Menasce et al. [25] proposed a priority schema for requests during scheduling based on the user status, such as

normal navigation or shopping. Authors believe that users will lose patience if response time is too long. Hence,

their policy prioritised the request and assigned higher priority to requests with shopping status during scheduling

to improve the revenue. Nevertheless, response time is only the aspect of the concern. In addition, their work is not

SLA-based.

Xiong et al. [28] focused on SLA-based resource allocation in Cluster computing systems, where QoS metrics

considered are response time, Cluster utilization, packet loss rate and Cluster availability. The main differences

between their work and ours are that we consider different QoS parameters (i.e., budget, deadline, penalty rate,

admission control and resource allocation, and multiple IaaS providers.

Yeo and Buyya [1] presented algorithms to handle penalties in order to enhance the utility of the cluster based on

SLA. They have outlined a basic SLA with four parameters in cluster environment. Our current proposed work is

quite different from that previous work because here we investigate resource outsourcing model from multiple IaaS

providers in Clouds. Moreover, in the previous work, we only consider one SLA layer (between user and resource

provider) while here we focus on two layers of SLAs, which are established with both end users and IaaS providers.

Kumar et al. [41] investigated two heuristics, HRED and HRED-T, to minimize business value, such as cost or

time, of users. They studied only the minimization of cost. Garg et al. [30] also proposed time and cost based

resource allocation in Grids on multiple resources for parallel applications. However, our current studies use

different QoS parameters, (e.g. penalty rate). In addition, our current studies focus on Clouds, where the unit of

resource is mostly VM, which may consist of multiple processors.

Bichler and Setzer [13] proposed the admission control for media on demand services, where the duration of

service is fixed in their scenario. The system accepts a request if its revenue is more than its cost. Our approachs

allow a SaaS provider to specify its expected profit ratio according to the cost, for example; the SaaS provider can

specify that the service request which can gain 3 times profit over total cost can be accepted.

Netto et al. [29] considered deadline as a QoS parameter for bag-of-task applications in utility computing systems.

They considered multiple providers but only focused on deadline constraint, which is one of QoS parameters we

are focusing on in the current proposed work.

Islam et al. [31][32] have investigated policies for admission control that consider jobs with deadline constraints

and response time guarantees. The main difference is that they consider parallel jobs submitted to a single site,

whereas we utilize multiple VM from multiple IaaS providers to serve multiple requests.

Cloud Computing

Reig G. et al [27] contributed on minimizing the resource consumption by requests and executing them before its

deadline with a prediction system. Their prediction system enables the scheduling policies to discard the service of

a request if the available resource capability is not able to complete request before its deadline. Our works

similarity is that both the works use the deadline constraint to reject some requests for more efficient scheduling.

However, in our work deadline is only one of the constraints, which is used to optimize resource scheduling; and

we also consider the profit constraint to avoid wastage of resources on low profit requests.

Popovici et al. [7] mainly focused on QoS parameters on resource provider‟s side such as price and offered load.

However, proposed work differs on QoS parameters from both users‟ and SaaS providers‟ point of view, such as

budget, deadline and penalty rate.

Jaideep and Varma [2] proposed learning-based admission control in Cloud computing environment. For instance,

learning-based opportunistic algorithm admits requests only if they are unlikely to cross the overload threshold set

by the service provider. Thus, this work focuses on the accuracy of admission control but does not consider

software service providers‟ profit.

Lee et al. [3] investigated the profit driven service request scheduling for workflow. The context of this work

differs from our proposed work in many ways, for instance, our work a) focus on SLA driven QoS parameters on

both user and provider sides, such as initiation time, and b) considers heterogeneity between multiple resource

providers in terms of VM type and price offerings.

In summary, this paper is unique in the following aspects:

 The utility function is time-varying by considering dynamic VM deploying time (aka initiation time),

processing time and data transfer time.

 It adapts to dynamic resource pools and consistently evaluates the profit of adding a new instance or

removing instances, while most previous work deal with fixed size of resource pools.

A summary of comparison between related and our work in Cloud Computing is given below in Table 1:

III. SYSTEM MODEL

As discussed previously, the system model considered is based on the Cloud computing environment, whereby

Cloud users want to perform some tasks using application service provided by a SaaS provider, who leases

infrastructure from multiple IaaS providers to deploy the software services. The SaaS provider‟s objective is to

accept and schedule a user request such that its profit is maximised while the Quality of Service (QoS)

requirements of user are assured. Users request the software from a SaaS provider by submitting their QoS requests

and input files. The platform layer of SaaS provider uses admission control mechanisms to interpret and analyse

the user‟s QoS parameters and decides whether to accept or reject the request based on the capability and

availability of VMs. Then, scheduling mechanisms facilitate the SaaS provider‟s platform layer to allocate

resources based on the decision of admission control.

Table 1. The summary and comparison of the related works in Cloud Computing area.

Related Works Admission

Control

Resource

Management

(Scheduling)

Profit

Driven

Resource

Characteristics

SLA

Oriented

QoS

For Users For SaaS

Providers

Reig G. et al [27] Yes Yes No NA Yes Deadline No

Bichler and Setzer

[13]

Yes No Yes NA Yes Budget No

Jaideep and

Varma [2]

Yes No No One resource

provider

No No

Lee et al. [3] Yes Yes Yes One resource

provider

Yes NA

Wu et al.

(proposed work)

Yes Yes Yes Multiple resource

providers

Yes Deadline. Budget.

Request length.

Penalty Rate.

VM Initiation Time.

Data Transfer Time.

Actors

The participating parties involved in the process are discussed below along with their objectives and constraints:

A. User

On users‟ side, a request for application is sent to a SaaS provider‟s application layer with QoS constraints, such as,

deadline, budget and penalty rate. Then, the platform layer of SaaS provider utilizes the admission control and

scheduling mechanisms to admit or reject this request. If the request can be accepted, a formal agreement (SLA) is

signed between both parties to guarantee the QoS requirements such as response time. SLA with Users – SLA (U)

includes the following properties:

 Deadline: Maximum time user would like to wait for the result.

 Budget: How much user is willing to pay for the requested services.

 Penalty Rate Ratio: A ratio for consumers‟ compensation if SaaS providers miss the deadline.

 Input File Size: The size of input file provided by users.

 Request Length: How many Millions of Instructions (MI) are required to be executed to serve the request.

B. Resource Provider

A Resource provider (RP) or IaaS provider offers VMs to SaaS providers and is responsible for dispatching VM

images to run on their physical resources. The platform layer of SaaS provider uses VM images to create instances.

In this paper, we consider multiple resource providers, because from a SaaS provider‟s point of view, one resource

provider may not be able to offer all required resources to assure SLA (U). In addition, the service provider can

exploit the advantages of one resource provider over others to satisfy the constrained user requests. For example,

one resource provider may offer VMs with high processing capability, but charging a higher price. The service

provider can use such resources to satisfy urgent user requests.

It is important to establish SLA with a resource provider – SLA (R), because it enforces the resource provider to

guarantee service quality. Furthermore, it provides a risk transfer for SaaS providers, when the terms are violated

by resource provider. In this work, we do not consider the compensation given by the resource provider because

85% resource providers do not really provide penalty enforcement for SLA violation currently [34]. The SLA (R)

includes the following properties:

 Initiation Time: How long it takes to deploy a VM.

 Price: How much a SaaS provider has to pay per hour for using a VM from a resource provider?

 Input Data Transfer Price: How much a SaaS provider has to pay for data transfer from local machine to

resource provider‟s VM.

 Output Data Transfer Price: How much a SaaS provider has to pay for data transfer from resource

provider‟s VM to local machine?

 Processing Speed: How fast the VM can process?. We use Machine Instruction Per Second (MIPS) of a VM

as processing speed.

 Data Transfer Speed: How fast the data is transferred.? It depends on the location distance and also the

network performance.

C. SaaS provider

A SaaS provider leases resources from IaaS providers and in turn leases software as services to end users. SaaS

providers aim at minimizing the cost of using resources from IaaS providers, and therefore maximizing the net

profit earned through serving user requests. It is also in the interest of SaaS providers to guarantee QoS levels of

accepted users in order to enhance their reputation. From SaaS provider‟s point of view, there are two layers of

SLA, which are SLA (U) and SLA(R). If any party in the contract violate its terms, the defaulter has to pay for the

penalty according to the clauses defined in the SLA.

Mathematical Models

A. Penalty model

We model the SLA violation penalty (P) as linear function which is similar to other related works [1][4][5].

DTP

where β is the penalty rate and DT is delay time. (1)

The penalty function not only penalizes the service provider by reducing the utility (profit) but also compensates

the users for tolerating the service failure. Thus, the penalty function is designed such that it reduces the budget of

the job over time after lapse of its deadline. Figure 2 shows the impact of penalty rate β on the SaaS provider‟s

utility. In the figure, “Delay” is the tolerance time after which budget will become zero.

Figure 2. Impact of penalty function on utility

Delay TimeDeadline

Submit

time

Budget

Utility

θ

β= tan(θ)

B. Profit Model

Let at a given time instant t, I be the number of initiated VMs, and J be the total number of IaaS providers. Let

IaaS provider j provides Nj types of VM, where each VM type l has Pjl price. The prices/GB charged for data

transfer-in and –out by the IaaS provider j are inPrij and outPrij

respectively. Let (iniTij) be the time taken for

initiating VM i of type l.

Let a new user submit a service request at submission time subT
new

 to the SaaS Provider. The new user offers a

maximum price B
new

 (Budget) to SaaS provider with deadline DL
new

and Penalty Rate β
new

. Let inDS
new

 and

outDS
new

 be the data-in and –out required to process the user requests.

Let Costijl
new

 be the total cost incurred to the SaaS provider by processing the user request on VM i of type l and

resource provider j. Then, the profit Profij
new

 gained by the SaaS provider is defined as:

new
ij

newnew
ij CostBProf ; JjIi , (2)

The total cost incurred to SaaS provider for accepting the new request consists of request‟s processing cost

(PCij
new

), data transfer cost (DTCj
new

), VM initiation cost (ICij
new

), and penalty delay cost (PDCij
new

) (to

compensate for miss deadline). Thus, the total cost is given by processing the request on VM i of type l on IaaS

provider j:

new
ij

new
ij

new
j

new
ij

new
ij PDCICDTCPCCost ; jNlJjIi ,,

 (3)

The processing cost (PCij
new

) for serving the request is dependent on the new request‟s processing time (procTij
new

)

and hourly price of VMi (type l) offered by IaaS provider j . Thus, PCij
new

 is given by:

 jjl
new

ij
new
ij NlJjIiPprocTPC ,,,

 (4)

Data transfer cost as described in Equation (5) includes cost for both data-in and data-out.

 j
new

j
newnew

j ioutoutDSiininDSDTC PrPr ; Jj

(5)

The initiation cost (ICij
new

) of VM i (type l) is dependent on the type of VM initiated in the datacenter of IaaS

provider j.

 jjlij
new
ij NlJjIiPiniTIC ,,, (6)

In Equation (7), penalty delay cost (PDCij
new

) is how much the service provider has to give discount to users for

SLA(U) violation. It is dependent on the penalty rate (β
new

) and penalty delay time (PDTij
new

) period.

new

ij
newnew

ij PDTPDC ; JjIi , (7)

To process any new request, SaaS provider either initiate a new VM or schedule the request on already initiated

VM. If service provider schedules the new request on already initiated VM i, the new request has to wait until VM

i becomes available. The time for which the new request has to wait till it start processing on VM i is

K
k

ij
k

procT
1

 ,where K is the number of request yet to be processed before the new request. Thus, PDTij
new

 is given

by:

𝑃𝐷𝑇𝑖𝑗
𝑛𝑒𝑤 =

,

1

new
K

k
ij DL

new
ij

procT
k

procTt

 𝑖𝑓 𝑛𝑒𝑤 𝑉𝑀 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝑑

𝑝𝑟𝑜𝑐𝑇𝑖𝑗
𝑛𝑒𝑤 + 𝑖𝑛𝑖𝑇𝑖𝑗 + 𝐷𝑇𝑇𝑖𝑗

𝑛𝑒𝑤 − 𝐷𝐿𝑛𝑒𝑤
𝑖𝑗
𝑖𝑗, 𝑖𝑓 𝑛𝑒𝑤 𝑉𝑀 𝑖𝑠 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝑑

 (8)

Where, DTTij
new

 is the data transfer time which is the summation of time taken to upload the input (inDTij
new

) and

download the output data (outDTij
new

) from the VM i on IaaS Provider j. The data transfer time is given by:

new
ij

new
ij

new
ij outDTinDTDTT ; JjIi , (9)

Thus, the response time (Tij
new

) for the new request to process it on VM i of IaaS Provider j is calculated in

Equation (10) and consists of VM initiation time (iniTij
new

), request‟s service processing time (procTij
new

), data

transfer time (DTTij
new

), and penalty delay time (PDTij
new

).

𝑇𝑖𝑗
𝑛𝑒𝑤 =

,

1

new
ij

procT
k

procT
K

k
ij

 𝑖𝑓 𝑛𝑒𝑤 𝑉𝑀 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝑑

𝑝𝑟𝑜𝑐𝑇𝑖𝑗
𝑛𝑒𝑤 + 𝑖𝑛𝑖𝑇𝑖𝑗 + 𝐷𝑇𝑇𝑖𝑗

𝑛𝑒𝑤 , 𝑖𝑓 𝑛𝑒𝑤 𝑉𝑀 𝑖𝑠 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝑑

 (10)

The investment return (retij
new

) to accept new user request per hour on a particular VM i in IaaS Provider j is

calculated based on the profit (profij
new

) and time (Tij
new

):

new

ij

new

ijnew

ij
T

prof
ret ; JjIi , (11)

IV. ALGORITHM

As discussed, our main objective is to maximize the profit of a SaaS provider by minimizing the cost and

maximizing the number of accepted users. To achieve it, we propose three admission control and scheduling

algorithms. For admission control, the SaaS provider‟s platform layer first uses “analysis strategies” to analyze

the possible scheduling decision. These QoS based analysis strategies are a) initiate a new VM, b) queue up the

new user request at the end of scheduling queue of a VM, c) insert (prioritize) new user request at the

proper position before the accepted user requests and, d) delay new user request to wait all accepted users

to finish. The corresponding analysis strategies are described as follows.

Analysis Strategies

A. Initiate New VM Strategy

Function 1 describes the pseudo-code for “initiate new VM strategy”, where inputs are new user request QoS

parameters (such as deadline, budget, penalty rate ratio, request length, input file size) and parameters related to

resource provider (rpj). Function canInitiateNewVM () first checks for each type of VMs in the datacenter of rpj

whether the deadline of new request is long enough for itself to complete (Step 1). The estimated finish time

depends on the estimated start time, request processing time and VM initiation time.

If new request can be completed before deadline, then we calculate the investment return (Equation 11, Step2)

and record all related information (such as resource provider number, VM number, start time and estimated finish

time) into schedule decision (Step 3). In addition, they are recorded into potential schedule list (Step 4) and this

function returns true (Step 5) which means new VM can be created. Otherwise, this function returns false (Step 6-

8) which means new VM cannot be initiated.

Function 1: Pseudo-code for Initiate New VM Strategy

Input: New user‟s request parameters (u
new

), rpj

Output: Boolean

Function:

caniInitiateNewVM(unew , rpj) {

1. For each VM type available in Datacenter of rpj {

2 If

(unew „s deadline ≥ unew „s estimated finish time) {

3. Calculate the return retj
new on new initiated VM i

4. Record Schedule Decision SDij,

5. Insert [retij
new, SDij] in PotentialScheduleList

6. continue

7. }

8. Else

9. Return False

10. }

}

B. Wait Strategy

Function 2 describes the pseudo-code for wait strategy, in which the inputs are same as the strategy 1. Function

canWait () first checks if the deadline of new request is long enough for the request to complete (Step 1), and then

checks whether the flexible time (fTij
new

) of new request is enough to wait all accepted requests in vmi to complete

(Step 2). The fTij
new

 is given by Equation (12), in which K indicates total number of all accepted requests.

K

newk
ij

new

k
procTDLfT subTnew

ij
1

; KkJjIi ,, (12)

If new request can wait for all accepted requests to complete, then we calculate the investment return (Step 3) and

record all related information (such as resource provider number, VM number, start time and estimated finish

time) into schedule decision (Step 4). In addition, they are recorded into potential schedule list (Step 5) and this

function returns true (Step 6). Otherwise, this function returns false (Step 11 and 12).

Function 2: Pseudo-code for Wait Strategy

Input: New user‟s request parameters (u
new

), vmi

Output: Boolean

Function:

canWait (unew , vmi) {

 1. If (unew „s deadline ≥ unew „s estimated finish time) {

2. If (unew can wait all accepted users in vmi to finish) {

3. Calculate the return retij
new

4. Record Schedule Decision SDij,

5. Insert [retij
new, SDij] in PotentialScheduleList

6. Return True

7. }

8. Else

9. Return False

10. }

11. Else

12. Return False

}

C. Insert Strategy

Function 3 describes the pseudo-code for “insert strategy”, in which inputs are the same as Function 1. Function

canInsert () first checks whether any accepted request uk according to latest start time in vmi can wait new request

to finish. If the flexible time of accepted request (fTij
k
) is enough to wait for a new user request to complete (Step

1) then insert new request before request k. The fTij
k
 indicates duration of the request wait time with deadline and

it is given by Equation (13), in which DL
k
indicates the deadline of accepted request, k indicates the position of

accepted request, and K indicates total number of all accepted user requests.

newnew

ij

K

kn
n

n
ij

kk subTTprocTDLfTij

 ,1

; KkJjIi ,, (13)

If there is u
k
 that is able to wait for new user request to complete, the algorithm checks whether the new user

request can complete processing before deadline (Step 2). If so, u
new

gets priority over u
k
, then the algorithm

calculates the investment return (Step 3) and records all related information (such as, insert position k for new

user) into schedule decision (Step 4). The other remaining steps are the same as those in Function 1.

Function 3: Pseudo-code for Insert Strategy

Input: New user‟s request parameters (u
new

), vmi

Output: Boolean

Function:

canInsert(unew , vmi) {

1. If (any accepted user uk in vmi can wait unew to finish) {

2. If (unew „s deadline ≥ unew „s estimated finish time) {

3. Calculate the return retij
new

4. Record new request‟s insert position k into Schedule Decision SDij

5. Insert [retij
new, SDij] in PotentialScheduleList

6. Return True

7. }

8. Else

9. Return False

10. }

11. Else

12. Return False

}

D. Penalty Delay Strategy

Function 4 describes the pseudo-code for penalty delay strategy, in which inputs are the same as Function 1.

Function canPenaltyDelay() first checks whether new user request‟s budget is enough to wait for all accepted user

requests in vmi to complete with delay after its deadline (Step 1). Equation (2) is used to check whether budget is

enough to compensate the penalty delay loss. If penalty delay loss is affordable to a SaaS provider to accept new

user request (Profit > 0), then we calculate the investment return (Step 2) and record all related information (such

as resource provider number, VM number, start time and estimated finish time) into schedule decision (Step 3).

The other remaining steps are the same as those in Function 1.

Function 4: Pseudo-code for Penalty Delay Strategy

Input: New user‟s request parameters (u
new

), vmi

Output: Boolean

Function:

canPenaltyDelay(unew , vmi) {

1. If (unew can wait all accepted users with penalty delay) {

2. Calculate the return retij
new

3. Record Schedule Decision SDij

4. Insert [retij
new, SDij] in PotentialScheduleList

5. Return True

6. }

7. Else

8. Return False

}

Proposed Algorithms

Based on above strategies we propose three algorithms, which are ProfminVM, ProfRS, and ProfPD:

1. Maximizing the profit by minimizing the number of VMs (ProfminVM).

2. Maximizing the profit by rescheduling (ProfRS).

3. Maximizing the profit by exploiting the penalty delay (ProfPD).

These algorithms are discussed below:

A. Maximizing the Profit by Minimizing the number of VMs (ProfminVM)

A service provider can maximize the profit by reducing the resource cost, which depends on the number and type

of initiated VMs in IaaS provider's datacenter. Therefore, ProfminVM algorithm is designed to minimize the

number of VMs by maximizing the utilization of already initiated VMs. Algorithm 1 describes the ProfminVM

algorithm, which involves two main phases: a) admission control and b) schedule.

In admission control phase, we analyse whether the new user request is able to be processed either by queuing it

up in an already initiated VM or by initiating a new VM. Hence, firstly, it searches on which VM the new request

is able to be queued by using Wait Strategy (Function 2). If this request cannot wait then we check whether it can

be accepted by initiating a new VM provided by any IaaS provider using Initiate New VM Strategy (Step 3-7). If a

SaaS provider does not make sufficient profit by initiating a new VM, the algorithm will reject this request (Step

8- 10). Otherwise, the algorithm gets the maximum return from all analysis results (Step 12). The acceptance and

rejection of a new request depends on the maximum expected investment return (expInvRetij
new

) which the SaaS

provider can get. If the investment return
new

ijret is more than the SaaS provider‟s expInvRetij
new

, the algorithm

accepts the new request (Step 14, 15), otherwise, the algorithm rejects this request (Step 16, 17). The expected

investment return ratio w is customized by SaaS providers. The expected investment return (expInvRetij
new

) is

given by Equation (14):

new

ij

new
ijnew

ij
T

Cost
 expInvRet ; JjIi , (14)

The schedule phase is the actual scheduling process based on the admission control result; if the algorithm

accepts the new user request, the algorithm gets the scheduling decision from the PotentialSchedulingList for

which SaaS provider is making maximum profit, in other word, we first find out in which IaaS Provider rpj and

which VM vmi a SaaS provider can gain the maximum investment return (Step 20). If the maximum investment

return is gained by initiating a new VM, then the algorithm initiates a new VM in the referred rpj, and allocates

this VM to this request. Otherwise, the algorithm schedules the new request on the referred vmi in rpj (Step 21-23).

The time complexity of this algorithm is O(RJ+R), where R indicates the total number of requests and J indicates

the number of IaaS providers.

Algorithm 1. Pseudo-code for ProfminVM algorithm

Input: New user‟s request parameters (unew), expInvRetij
new

Output: Boolean

Functions:

admissionControl() {

 1. If (there is any initiated VM) {

 2. For each vmi in each resource provider rpj {

 3. If (! canWait (unew, vmi)) {

 4. If (! canInitiateNew(unew, rpj)) {

 5. continue;

 6. }

 7. }

 8. Else If (! canInitiateNew(unew, rpj))

 9. Return reject

10. If (PotentialScheduleList is empty)

11. Return reject

12. Else {

 13. Get the max[retij
new, SDij] in PotentialScheduleList

 14. If (max(retij
new) ≥ expInvRetij

new)

 15. Return accept

 16. Else

 17. Return reject

 18. }

 19. }

}

schedule () {

20. Get the [retmax
new, SDmax] in maxRet(PotentialScheduleList)

21. If (SDmax is initiateNewVM)

22. initiateNewVM in rpj

23. Schedule the unew in VMmax in rpmax according to SDmax.

 }

B. Maximizing the Profit by Rescheduling (ProfRS)

In ProfminVM algorithm, a new user request does not get priority over any accepted requests. This inflexibility

affects the profit of a SaaS provider since many urgent and high budget service requests will be rejected. Thus, the

algorithm reschedules the accepted users in ProfRS algorithm to accommodate an urgent and high budget request.

The advantage of this algorithm is that a SaaS provider accepts more users utilizing initiated VMs and earns more

profit. Algorithm 2 describes ProfRS algorithm.

In admission control phase, the algorithm analyses whether the new user request is able to be processed by

queuing it up in an already initiated VM, inserting it into an initiated VM, or initiating a new VM. Hence, firstly it

searches on which VM the new request is able to be queued by invoking Wait Strategy (Function 2, Step 3). If the

new request cannot wait, then the algorithm checks whether it can be accepted by inserting into already initiated

VMs using Insert Strategy (Step 4). Otherwise, the algorithm checks whether it can be accepted by initiating a

new VM provided by any IaaS provider using Initiate New VM Strategy (Step 5). If a SaaS provider does not

make sufficient profit by any strategies, the algorithm rejects this user request (Step 11). Otherwise the algorithm

gets the maximum return from all analysis results (Step 15). The remaining steps are the same as those in

ProfminVM algorithm. The time complexity of this algorithms is O (RJ+R
2
), where R indicates total number of

requests, J indicates total number of IaaS providers.

Algorithm 2. Pseudo-code for ProfRS algorithm

Input: New user‟s request parameters (unew), expInvRetij
new

Output: Boolean

Functions:

admissionControl() {

 1. If (there is any initiated VM) {

 2. For each vmi in each resource provider rpj {

 3. If (! canWait (unew, vmi)) {

 4. If (! canInsert (unew, vmi)) {

 5. If (! canInitiateNew(unew, rpj)) {

 6. continue;

 7. }

 8. }

 9. }

 10. Else If (! canInitiateNew(unew, rpj))

 11. Return reject

 12. If (PotentialScheduleList is empty)

 13. Return reject

 14. Else {

 15. Get the max[retij
new, SDij] in PotentialScheduleList

 16. If (max(retij
new) ≥ expInvRetij

new)

 17. Return accept

 18. Else

 19. Return reject

 20. }

 }

schedule () {

21. Get the [retmax
new, SDmax] in maxRet(PotentialScheduleList)

22. If (SDmax is initiateNewVM)

23. initiateNewVM in rpj

24. Schedule the unew in VMmax in rpmax according to SDmax.

 }

C. Maximizing the Profit by exploiting penalty delay (ProfPD)

The profit of the service provider can be further enhanced by delaying the requests. In other word, a SaaS

provider tries to delay a new request with penalty compensation. Algorithm 3 describes ProfPD algorithm.

In admission control phase, we analyse whether the new user request is able to be processed by queuing it up in

the end of an already initiated VM, inserting it into an initiated VM, or initiating a new VM. Hence, firstly it

searches on which VM new request is able to be queued by using Wait Strategy (Step 3). If the new request

cannot wait, then the algorithm checks whether it can be accepted by inserting into already initiated VM using

Insert Strategy (Step 4). Otherwise, the algorithm checks whether it can be accepted by initiating a new VM

provided by any IaaS provider using Initiate New VM Strategy or by delaying the new request with penalty

compensation using Penalty Delay Strategy (Step 5, 6). If a SaaS provider does not make sufficient profit by any

strategies, we reject this user request (Step 16). Otherwise, the request is accepted and scheduled based on the

entry in PotentialScheduleList which gives the maximum return (Step 17). The rest of the steps are the same as

those in ProfminVM. The time complexity of this algorithms is O (RJ+R
2
), where R indicates total number of

requests, J indicates total number of IaaS providers.

Algorithm 3. Pseudo-code for ProfPD algorithm

Input: New user‟s request parameters (unew), expInvRetij
new

Output: Boolean

Functions:

admissionControl() {

 1. If (there is any initiated VM) {

 2. For each vmi in each resource provider rpj {

 3. If (! canWait (unew, vmi)) {

 4. If (! canInsert (unew, vmi)) {

 5. If (! canInitiateNew(unew, rpj))

 6. continue;

 7. If (! canPenaltyDelay(unew, rpj))

 8. continue;

 9. }

10. }

11. }

12. }

13. Else If (! canInitiateNew(unew, rpj))

14. Return reject

15. If (PotentialScheduleList is empty)

16. Return reject

17. Else { Get the max[retij
new, SDij] in PotentialScheduleList

18. If (max(retij
new) ≥ expInvRetij

new)

19. Return accept

20. Else

21. Return reject

22. }

}

schedule () {

23. Get the [retmax
new, SDmax] in maxRet(PotentialScheduleList)

24. If (SDmax is initiateNewVM)

25. initiateNewVM in rpj

26. Schedule the unew in VMmax in rpmax according to SDmax.

}

V. PERFORMANCE EVALUATION

In this section, we present the performance results obtained from an extensive set of experiments. Since, none of

the existing algorithm can be directly applied in our scheduling scenario; we used two following reference

algorithms, MinResTime and StaticGreedy, to compare with our proposed algorithms.

 The MinResTime algorithm selects the IaaS provider where user request can be processed with the earliest

response time to avoid deadline violation and profit loss, therefore it minimizes the response time for

users. Thus, it is used to know how fast user requests can be served.

 The StaticGreedy algorithm, as name suggests, assumes that all user requests are known at the beginning

of the scheduling process. In this algorithm, we select the most profitable schedule obtain by sorting all

the requests either based on Budget or Deadline, and then scheduling using ProfPD algorithm. Thus, the

profit obtained from StaticGreedy Algorithm acts as an upper bound for the maximum profit generated by

our three proposed algorithms. It is clear that assumption taken in StaticGreedy Algorithm is not possible

in reality as we cannot know all the future user requests.

In following sections, we first describe our experiment methodology, followed by performance metrics and detailed

QoS parameters description. In subsequent sections, we present the analysis of results showing the impact of users’

side QoS parameters (i) request arrival rate, (ii) deadline, (iii) budget, (iv) service time, and (v) penalty rate

ratio; IaaS providers’ side QoS parameter (i) VM initiation time; and robustness analysis of our algorithms.

Experimental Methodology

CloudSim [20] is used to simulate a cloud computing environment that utilises our proposed algorithms for

admission control and resource allocation. We observe the performance of the proposed algorithms from both

users‟ and SaaS providers‟ perspectives. From users‟ perspective, we observe how many requests are accepted

and how fast user requests are processed (we call it average response time). From SaaS providers‟ perspective, we

observe how much profit they gain and how many VMs they initiate. Therefore, we use four performance

measurement metrics: total profit, average request response time, number of initiated VMs, and number of

accepted user. All the parameters from both users‟ and IaaS providers‟ side used in the simulation study are given

in following section:

A) Users’ side: We examine our algorithms with 5000 users. From user side, five parameters (deadline, service

time, budget, arival rate and penalty rate factor) are varied to evaluate their impact on the performance of our

proposed algorithms. Since there is no available workload specifiying these parameters, thus, we use normal

distribution (standard deviation =(1/2)xmean) to model all parameters, except request arrival rate, which follows

poisson distribution.

 The equation to calculate deadline mean (DLij
new

) is given in Equation 15. is the factor which is used to

vary the deadline from “very tight” (=0.5) to “very relax” (=2.5). estprocTij
new

 indicates the new

service request‟s estimated processing time.

new
ij

estprocTnew
ij

estprocTnew
ij

DL ; JjIi , (15)

 Service time is estimated based on the Request Length (MI) and the Millions of Instruction per Second

(MIPS) of a VM. The mean Request Lengths are selected between 10
6
MI (“very small”) to 5x10

6
MI

(“very large”), while MIPS value for each VM type is fixed.

 In common economic models, budget is generated by random numbers [1]. Therefore, we follow the

same random model for budget, and vary it from “very small” (mean=0.1$) to “very large” (mean=1$).

We choose budget factor up to 1, because the trend of results does not show any change after 1.

 Five different types of request arrival rate are used by varying the mean from 1000 to 5000 users per

second.

 The penalty rate β (the same as in Equation 1) is modelled by Equation 16. It is calculated in terms of how

long a user is willing to wait (r) in proportion to the deadline when SLA is violated. In order to vary the

penalty rate, we vary the mean of r from “very small” (4) to “very large” (44).

rnewDL

newB

 ; JjIi , (16)

B) Resource Providers’ side:

We consider five IaaS providers, which are Amazon EC2, GoGrid, Microsoft Azure, RackSpace and IBM. To

simulate the effect of using different VM types, MIPS ratings are used. Thus, the request processing capability of

each VM type is assigned a MIPS value of an equivalent processor. The prices for VM follows the price schema

of GoGrid [35] , Amazon EC2 [33], RackSpace [36], Microsoft Azure [37], and IBM [38]. The detail resource

characteristics which are used for modelling IaaS providers are shown in Table 2. The three different types of

average VM initiation time are used in the experiment, and the mean initiation time are varied from 30 seconds

to 15 minutes (standard deviation= (1/2)xmean). The mean of initiation time is calculated by conducting real

experiments of 60 samples on GoGrid[35] and Amazon EC2[33] done for four days (2 week days and 2 weekend

days). The VM initiation time is varied using normal distribution.

Overview of Performance Results

In this section, first, we compare our proposed algorithms with reference algorithms by varying number of users.

Then, the impact of QoS parameters on the performance metrics is evaluated. Finally, robustness analysis of our

algorithm is presented. All of the results present the average obtained by 5 experiment runs. in each experiment

during we vary one parameter, the rest parameters are given constant mean vaule. The constant mean values,

which are used during experiment, are as follows: arrival rate=5000 requests/sec, deadline=2*estprocT, budget=1

$, requst length= 4x10
6
MI, and penalty rate factor (r) =10.

Table 2. The summary of resource provider characteristics.

Provider VM Types VM Price

($/hour)

Amazon EC2 Small / Large 0.12/0.48

GoGrid 1 Xeon / 4 Xeon 0.19/0.76

RackSpace Windows 0.32

Microsoft Azure Compute 0.12

IBM VMs 32-bit (Gold) 0.46

A. Comparison with Reference Algorithms

To observe the overall performance of our algorithms, we vary the number of users from 1000 to 5000 without

varying all other factors such as deadline and budget. Figure 2 presents the comparison of our proposed

algorithms with reference algorithms StaticGreedy and MinResTime in terms of four performance metrics. When

the number of user requests varies from 1000 to 5000, for each algorithm the total profit and average response

time has increased, because of the more user requests.

Figure 2 shows that ProfPD just generate 8% less profit (Requests = 5000) for SaaS provider than StaticGreedy

which is used as the upper bound. That is because in the case of StaticGreedy, all the user requests are already

known from the beginning to the SaaS provider. The base algorithm MinResTime even though results in the least

(two third of StaticGreedy) response time, generate the least profit (approximately half of ProfPD). These

observations indicate the trade-off between the response time and profit, which SaaS provider has to manage

while scheduling the requests.

Figure 2a shows that the ProfPD achieves upto (15%) more profit over ProfRS and (17%) over ProfminVM by

accepting (10%, 15%) more user requests and initiating (19%, 40%) less number of VMs, when number of users

changes from 1000 to 5000. When the user number is 1000 ProfPD earn 4% and 15% more profit over

ProfminVM and ProfRS respectively. When the user number is increased from 1000 to 5000, the profit difference

between ProfPD and other two algorithms has become larger. This is because when the number of requests

increased, the number of users being accepted increased by utilizing initiated VMs. In such a way, the cost has

been reduced to speed the profit increase. If all requests are known before scheduling, then StaticGreedy is the

best choice for maximizing profit, however, in real Cloud computing market, these are unknown. Therefore, a

SaaS provider should use ProfPD, however, ProfRS is a better choice for a SaaS provider in comparison with

ProfminVM. In addition, we are able to demonstrate that ProfPD is effective in maximizing profit in heavy

workload situations.

Figure 2b presents that all of our algorithms‟ trend of response time are increased from 1000 users to 5000 users

because of increase processing of user requests per VM. When there is smaller number of users, the difference

between different algorithm‟s response times becomes significant, for example, with 1000 users request, ProfPD

gives users 16% lower response time than ProfminVM and ProfRS, and even accept more requests. This is

because ProfPD scheduled less number of users per VM, thus user‟s experience less delay. In other scenarios the

reason for lower response time is due to less initiation time. ProfminVM provides the lowest response time

compare with others, because it can serve a new user with new VMs.

(a). Total profit (b). Average response time

(c). Number of initiated VMs (d). Number of accepted users

0

1000

2000

3000

4000

5000

6000

7000

8000

1000 2000 3000 4000 5000

T
o

ta
l
P

ro
fi

t
($

)

Variation in User Requests Number

ProfminVm ProfRS ProfPD StaticGreedy MinResTime

0

100

200

300

400

500

600

700

800

900

1000 2000 3000 4000 5000

A
v
g

.
R

e
s

p
o

n
s
e

T

im
e
 (s

e
c

.)

Variation in User Request Number

ProfminVm ProfRS ProfPD StaticGreedy MinResTime

0

20

40

60

80

100

120

1000 2000 3000 4000 5000

V
M

 I
n

it
ia

te
d

Variation in User Request Number

ProfminVm ProfRS ProfPD StaticGreedy

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1000 2000 3000 4000 5000

U
s

e
r

A
c

c
e

p
te

d

Variation in User Request Number

ProfminVm ProfRS ProfPD StaticGreedy MinResTime

 Figure 2. Overall algorithms’ performance during variation in user numbers

B. Impact of QoS parameters

In the following sections, we examine various experiments by varying both user and resource provider side‟s SLA

properties to analyse the impact of each parameter.

1) Impact of arrival rate variation

To observe the impact of arrival rate in our algorithms, we vary the arrival rate factor, while keeping all other

factors such as deadline, budget as the same. All experiments are conducted with 5000 user requests. It can be

seen from Figure 3, when arrival rate is “very high”, the performance of ProfminVM, ProfRS, and ProfPD are

affected significantly. The overall trend of profit is decreasing and the response time is increasing because when

there is more users come per second, the service capability is decreased due to less new VM be initiated.

Figure 3a shows that the ProfPD achieves the highest profit (maximum 15% more than ProfminVM and ProfRS)

by accepting (45%) more users and initiating the least number of VMs (19% less than ProfminVM, 28% less than

ProfRS) when arrival rate is increased from “very small” to “very large”. This is because ProfPD accept users

with existing machines with penalty delay. In the same scenario, ProfminVM and ProfRS gain similar profit, but

ProfRS accepts 4% more number of users with 13% more number of VMs than ProfminVM. Therefore, in this

variation scenario ProfPD is the best choice for a SaaS provider, however, when arrival rate is “very large”, and

the number of VM is limited, ProfRS is a better choice compare with ProfminVM because although it provides

similar profit as ProfminVM, yet it accepts more number of user requests, leading to market share expanding.

Figure 3b presents that the ProfPD results in the least response time and accepted more number of users with less

number of VMs except when arrival rate is very high. Even in the case of high arrival rate, the difference between

response time from ProfPD and its next competitor is just 3%. ProfminVM and ProfRS have similar response

time. However, there is drastic jump in response time when arrival rate is very high because more number of users

is accepted per VM which delays the processing of requests. It is safe to conclude that even considering the

response time constraints from users, the first choice for a SaaS provider is still the ProfPD.

2) Impact of deadline variation

To investigate the impact of deadline in our algorithms, we vary the deadline, while keeping all other factors such

as arrival rate and budget fixed. Figure 4a presents that the ProfPD gained the highest profit (45% over

ProfminVM and 41% over ProfRS) by accepting 33% more user requests (Figure 4d) and initiating 52% less

number of VMs (Figure 4c)”. In some scenarios, ProfminVM provides higher profit than ProfRS, for example,

when deadline is “very tight”, because ProfRS accepted requests with larger service time, which occupy the space

for accepting other requests. Hence, in general a SaaS provider should use ProfPD for maximizing profit.

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

 Figure 3. Impact of arrival rate variation

Figure 4b presents that when deadline is relaxed, ProfPD results 4% higher average response time than in the case

of ProfminVM and ProfRS. The ProfPD responses the slowest to requests because of the two factors governing

response time, i.e., request‟s service time and VM initiation time. It can be seen from Figure 4d, ProfPD always

requires less number of VMs, to process more requests. Thus, when service time is comparable to the VM

initiation time, the response time will be lower. When the VM initiation time is larger than the service time, the

response time will be affected by the number of initiated VMs.

3) Impact of budget variation

Figure 5 shows how budget variation impact our algorithms, while keeping all other factors such as arrival rate,

200

1200

2200

3200

4200

5200

6200

7200

8200

very low low medium high very high

T
o

ta
l
P

ro
fi

t
($

)

Variation in Arrival Rate

ProfminVm ProfRS ProfPD

0

100

200

300

400

500

600

700

800

900

very low low medium high very high

A
v
g

.
R

e
s

p
o

n
s

e
T

im
e

 (S
e

c
.)

Variation in Arrival Rate

ProfminVm ProfRS ProfPD

0

20

40

60

80

100

120

very low low medium high very high

V
M

 I
n

it
ia

te
d

Variation in Arrival Rate

ProfminVm ProfRS ProfPD

0

1000

2000

3000

4000

5000

6000

very low low medium high very high

U
s

e
r

A
c

c
e

p
te

d

Variation in Arrival Rate

ProfminVm ProfRS ProfPD

deadline as the same. Figure 5a shows that when budget is varied from “very small” to “very large”, in average

the total profit by all the algorithms has increased, and response time has decreased since the less number of

requests are processed using more number of VMs. From Figure 5a, it can be observed that ProfPD gains the

highest profit for SaaS provider except when budget is “large”. In case of scenario when budget is “large”,

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

 Figure 4. Impact of deadline variation

ProfminVM provides highest profit (20%) over others by accepting similar number of user requests with initiating

more VMs without penalty delay. This is due to the increase in Penalty Delay Rate (β) (Equation 16) with the

budget raise. Between ProfminVM and ProfRS, ProfminVM provides more profit in all scenarios. Therefore, in

general a SaaS provider should consider ProfPD, ProfminVM is a better choice for a SaaS provider in comparison

with ProfRS.

In the case of response time (Figure 5b), ProfPD on average delayed the processing of request longest (e.g. 33%

more response time for “very small” budget scenario) even though it processed more user requests and initiated

less VMs. However, when budget is “large”, the response time provided by ProfminVm is the longest even though

it accepts similar number of users as ProfPD. This anomaly is due to the contribution of VM initiation time which

200

1200

2200

3200

4200

5200

6200

7200

very tight tight medium relax very relax

T
o

ta
l
P

ro
fi

t
($

)

Variation in Deadline

ProfminVm ProfRS ProfPD

0

200

400

600

800

1000

1200

1400

1600

very tight tight medium relax very relax

A
v
g

.
R

e
s
p

o
n

s
e

T
im

e
 (S

e
c

.)

Variation in Deadline

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

80

90

100

very tight tight medium relax very relax

V
M

 I
n

it
ia

te
d

Variation in Deadline

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

very tight tight medium relax very relax

U
s

e
r

A
c

c
e

p
te

d

Variation in Deadline

ProfminVm ProfRS ProfPD

becomes very significant when ProfRS initiated large number of VM.

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

 Figure 5. Impact of budget variation

4)Impact of service time variation

Figure 6 shows how service time impact our algorithms, while keeping all other factors such as arrival rate,

deadline as the same. In order to vary the service time, five classes of request length (MI) are chosen from “very

small” (10
6
MI) “very large” (5x10

6
MI).

Figure 6a shows that the total profit by all algorithms has slightly decreased but response time increased rapidly

when the request length is varied from “very small” to “very large”. ProfPD achieves the highest profit among

other competitor algorithms. For example, in the case of “very large” request length scenario, ProfPD generated

about 30% more profit than other algorithms by accepting 24% more number of user requests (Figure 6d) and

0

500

1000

1500

2000

2500

3000

3500

4000

4500

very small small medium large very large

T
o

ta
l
P

ro
fi

t
($

)

Variation in Budget

ProfminVm ProfRS ProfPD

0

200

400

600

800

1000

1200

1400

very small small medium large very large

A
v
g

.
R

e
s
p

o
n

s
e

T
im

e
 (S

e
c

.)

Variation in Budget

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

80

90

very small small medium large very large

V
M

 I
n

it
ia

te
d

Variation in Budget

ProfminVm ProfRS ProfPD

0

1000

2000

3000

4000

5000

6000

very small small medium large very large

U
s

e
r

A
c

c
e

p
te

d

Variation in Budget

ProfminVm ProfRS ProfPD

initiating 32% (Figure 6c) less number of VMs. In addition, ProfminVM and ProfRS gain similar profit in most of

the cases. Therefore, the ProfPD is the best solution for any size of requests.

In addition, it can be observed from Figure 6b that ProfPD provides only a slightly higher response time (almost

6%) than others except when the request size is very small. When request size is very small, the response time

provided by ProfPD becomes 27% more than others, this is because it accepts 63% more number of user requests

with 22% more number of VMs, leading to the more user requests waiting longer for processing on each VM.

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

 Figure 6. Impact of request length variation

5)Impact of penalty rate varation

In this section, we investigate how penalty rate (β) impacts our algorithms. The penalty rate (Equation (16))

depends on how long user is willing to wait (r), which is defined as penalty rate factor in our paper. Therefore,

when the penalty rate factor (r) is large, the penalty rate is small. All the results are presented in Figure 7.

200

1200

2200

3200

4200

5200

6200

7200

8200

very small small medium large very large

T
o

ta
l
P

ro
fi

t
($

)

Variation in Request Length

ProfminVm ProfRS ProfPD

0

200

400

600

800

1000

1200

very small small medium large very large

A
v
g

.
R

e
s

p
o

n
s

e
T

im
e

 (S
e

c
.)

Variation in Request Length

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

80

very small small medium large very large

V
M

 I
n

it
ia

te
d

Variation in Request Length

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

very small small medium large very large

U
s

e
r

A
c

c
e

p
te

d

Variation in Request Length

ProfminVm ProfRS ProfPD

In can be observed from Figure 7 that only ProfPD shows some effect of variation in penalty rate since this is the

only algorithm which uses Penalty Delay strategy to maximize the total profit. Even the total profit (Figure 7a)

and average response time (Figure 7b) are only slightly decreased when the (r) is varied from “very low” to “very

high”. In almost all scenarios, ProfPD achieves 29% more profit over others by accepting 22% more number of

users and initiating 30% less number of VMs. In addition, when the penalty rate varies from “very low” to very

high”, the response time slightly decreased. This is because ProfPD accept a little bit less number of users with

similar number of VMs. Thus, the number of user requests waiting in each VM becomes less, leading to faster

response time for each request.

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

 Figure 7. Impact of penalty rate factor variation

6)Impact of Initiation Time variation

200

1200

2200

3200

4200

5200

6200

7200

8200

very low low medium high very high

T
o

ta
l
P

ro
fi

t
($

)

Variation in Penalty Rate Factor

ProfminVm ProfRS ProfPD

0

100

200

300

400

500

600

700

800

900

very low low medium high very high

A
v
g

.
R

e
s

p
o

n
s

e
T

im
e

 (S
e

c
.)

Variation in Penalty Rate Factor

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

very low low medium high very high

V
M

 I
n

it
ia

te
d

Variation in Penalty Rate Factor

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

very low low medium high very high

U
s

e
r

A
c

c
e

p
te

d

Variation in Penalty Rate Factor

ProfminVm ProfRS ProfPD

In this section, we analyse how our algorithms perform for different initiation times which are varied from “low”

to “high”. Figure 8a illustrates that with increase in initiation time the total profit gained from all the algorithms

decreases slightly while response time has increased a little bit. Due to increase in initiation time, the number of

initiated VMs (Figure 8c) has decreased rapidly due to the contribution of initiation time in SaaS providers cost

(spending). In all the scenarios, still ProfPD gains highest profit over others by accepting almost upto 17% more

user requests (Figure 8d) and with almost upto 37% less initiated VMs. Therefore, ProfPD is the best choice for a

SaaS provider in all scenarios.

The response time offered by ProfPD is slightly higher than others in most of cases, because it accepted more

users with less number of VMs, in other word, a VM required to serve more number of users, leading to delay in

request processing. The anomaly is when initiation time is “long”. The response time of ProfPD is the lowest in

this scenario, because due to large initiation time of VM, the response time is also increased with each initiated

VM. However, the contribution to delay in processing of requests, due to more number of requests per VM, will

also increase. This leads to higher response time in the scenario when the initiation time is “very long”.

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

Figure 8. Impact of initiation time variation

200

1200

2200

3200

4200

5200

6200

7200

8200

very short short medium long very long

T
o

ta
l
P

ro
fi

t
($

)

Variation in VM InitiationTime

ProfminVm ProfRS ProfPD

0

100

200

300

400

500

600

700

800

900

very short short medium long very long

A
v
g

.
R

e
s
p

o
n

s
e

T
im

e
 (S

e
c

.)

Variation in VM Initiation Time

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

very short short medium long very long

V
M

 I
n

it
ia

te
d

Variation in VM Initiation Time

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

very short short medium long very long

U
s

e
r

A
c

c
e

p
te

d

Variation in VM Initiation Time

ProfminVm ProfRS ProfPD

C. Robustness Analysis

In order to evaluate the robustness of our algorithms, we run some experiments by reducing the actual

performance of VMs in the SLA(R) promised by IaaS providers. This performance degradation has been

observed by previous research study in Cloud computing environments [39]. This experiment is

conducted also to signify the inclusion of compensation (penalty) clauses in SLAs which is absent in

current IaaS providers‟ SLAs [34]. We modelled the reduced performance using normal distribution,

and mean varies from 0% to 50% equally.

Figure 10 shows that during the degradation of VM performance, the average total profit (Figure 10a)

has reduced 11% and average response time (Figure 10b) has doubled with the increase in performance

degradation of initiated VMs. This is because of the performance degradation of VMs has not been

accounted in SLA(R). Therefore, a SaaS provider does not consider this variation during their

scheduling, but it impacts significantly on the total profit and average user requests response time.

 (a). Total profit (b). Average response time

200

250

300

350

400

450

500

0% 10% 20% 30% 40% 50%

T
o

ta
l
P

ro
fi

t
($

)

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

0% 10% 20% 30% 40% 50%

A
v
g

.
R

e
s

p
o

n
s
e

T
im

e
 (S

e
c

.)

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

80

0% 10% 20% 30% 40% 50%

V
M

 I
n

it
ia

te
d

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

3200

3400

3600

3800

4000

4200

4400

0% 10% 20% 30% 40% 50%

U
s
e

r
A

c
c

e
p

te
d

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

 (c). Number of initiated VMs (d). Number of accepted users

Figure 10. Impact of performance degradation variation

Two solutions to handle this VMs performance degradation are: firstly, use the penalty clause in SLA(R)

to compensate for profit loss; secondly, consider the degradation as a potential risk. Therefore, while

scheduling we add a (300 seconds) slack time in estimated service request processing time and it can be

seen from Figure 11, that the impact on the total profit due to degradation has reduced considerably

(from 0% to 50%, profit decreased only by 2%). Thus, if there is a risk for a SaaS provider to enforce

SLA violation with an IaaS provider, an alternative solution to reduce risk is by considering a slack time

during scheduling.

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

Figure 11. Impact of performance degradation variation after considering slack time

200

250

300

350

400

450

500

550

0% 10% 20% 30% 40% 50%

T
o

ta
l
P

ro
fi

t
($

)

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

0% 10% 20% 30% 40% 50%

A
v
g

.
R

e
s

p
o

n
s
e

T
im

e
 (S

e
c

.)

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

0% 10% 20% 30% 40% 50%

V
M

 I
n

it
ia

te
d

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0% 10% 20% 30% 40% 50%

U
s

e
r

A
c

c
e

p
te

d

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In Cloud computing environments, primarily three types of on-demand services are available for users

i.e. Software as a Service, Infrastructure as a Service and Platform as a Service. This paper focuses on

admission control and scheduling user requests for SaaS providers with the explicit aim of profit

maximization without violating SLAs signed with users. Thus, to achieve this goal, we presented three

profit driven algorithms which consider various QoS parameters from both users‟ and providers‟ side

such as deadline, budget, penalty rate, service time, and VM initiation time. Simulation results show that

in average the ProfPD algorithm gives the maximum profit among all proposed algorithms by varying

parameter. If a user request needs fast response time, ProfRS and ProfminVM could be chosen

depending on the scenario. The summary of algorithms and their ability to deal with different scenarios

is shown in Table 3.

In this work we assumed that the estimated service will be accurate since one can use existing

performance estimation techniques (e.g. analytical modeling [23], empirical, and historical data [24]) to

predict very accurate service times on various types of VMs. But still some errors exist in this estimated

service time [39] due to VMs‟ performance degradation in Cloud computing environment. This error

could be solved by two strategies: firstly, consider the penalty compensation clause in SLAs with IaaS

provider and enforce SLA violation; secondly, during scheduling add some slack time for preventing

risk.

Table 3. Summary of heuristics of comparison results (Profit)

Algorithm Time

complexity

Overall Performance

Arrival

Rate

Deadline Budget Request

Length

Penalty

Rate

Factor

VM

Initiation

Time

Data

Transfer

ProfminV

M

O(KJ+K) Good

(low -

high)

Good

(low-

high)

Good Good

(very

low &

very

high)

No

effect

Okay Good

(very

low &

very

high)

ProfRS
O(KJ+K

2
)

Okay

(very

Okay

(very

Okay

(very

Okay No

effect

Good

(low-

Okay

high) high) low) high)

ProfPD O(KJ+K
2
) Best Best Best Best Best Best Best

Although we have added some slack time, in the future we will try to increase the robustness of our

algorithms by handling such errors dynamically. In addition, due to this performance degradation error,

we would like to consider SLA negotiation in Cloud computing environment to improve the robustness.

We also like to add different type of services and other pricing strategies such as spot pricing to increase

the profit of service provider. Moreover, to investigate the knowledge based admission control and

scheduling for maximize a SaaS provider‟s profit will be one of our future direction for improving our

algorithms‟ time complexity.

REFERENCES

[1] Yeo, C.S., and Buyya, R. (2005). Service level agreement based allocation of cluster resources: Handling

penalty to enhance utility. In Proceedings of the 7th IEEE International Conference on Cluster Computing

(Cluster 2005), Bostan, MA, USA.

[2] Jaideep, D.N., and Varma, M.V. (2010). Learning based Opportunistic admission control algorithms for map

reduce as a service. In Procedings of the 3rd India Software Engineering Conference (ISEC 2010), Mysore,

India.

[3] Lee, Y.C., Wang C.,Zomaya, A.Y. and Zhou, B.B. (2010). Profit-driven Service Request Scheduling in Clouds.

In Proceedings of the International Symposium on Cluster and Grid Computing, (CCGrid 2010), Melbourne,

Australia.

[4] Rana, O. F., Warnier, M., Quillinan, T. B., Brazier, F., and Cojocarasu, D. (2008). Managing Violations in

Service level agreements. In proceedings of the 5th International Workshop on Grid Economics and Business

Models (GenCon 2008), Gran Canaris, Spain.

[5] Irwin, D.E. and Grit, L.E. and Chase, J.S. (2004) Balancing Risk and Reward in a Market-based Task Service.

In Proceedings of the 13th International Symposium on High Performance Distributed Computing (HPDC

2004), Honolulu, HI, USA.

[6] Yemini, Y. (1981). Selfish optimization in computer networks processing. In Proceeding of the 20th IEEE

Conference on Decision and Control including the Symposium on Adaptive Processes, San Diego, USA.

[7] Popovici, I., and Wiles, J. (2005). Proitable services in an uncertain world. In Proceeding of the18th

Conference on Supercomputing (SC 2005), Seattle, WA.

http://www.ourglocal.com/?c=28%2C1%2Cus%2CSan+Diego
http://www.ourglocal.com/?c=15%2Cus

[8] Buyya, R., Yeo, C. S., Venugopal, S, Broberg, J and Brandic, I. (2009). Cloud Computing and Emerging IT

Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility, Future Generation Computer

Systems, 25(6), (pp. 599-616), Elsevier Science, Amsterdam, The Netherlands.

[9] Vaquero, L.M., Rodero-Merino, L., Caceres, J., and Lindner, M. (2009). A break in the clouds: towards a cloud

definition, ACM SIGCOMM Computer Communication Review, 39(1), (pp.50-55).

[10] Parkhill, D. (1966). The challenge of the computer utility, Addision-Wesley Educational Publishers Inc., USA.

[11] Vouk, M. A. (2008). Cloud Computing-Issues, Research and Implementation. In Proceedings of 30th

International Conference on Information Technology Interfaces (ITI 2008), Dubrovnik, Croatia.

[12] Youseff, L., Butrico, M. and Silva, D. (2008). Toward a Unified Ontology of Cloud Computing. In

Proceedings of 2008 Grid Computing Environments Workshop (GCE 2008), Austin, Texas, USA.

[13] Bichler, M. and Setzer, T. (2007). Admission control for media on demand services. Service Oriented

Computing and Application. In Proceedings of IEEE International Conference on Service Oriented Computing

and Applications (SOCA 2007), Newport Beach, California, USA.

[14] Chun, N. B. and Culler, D.E. (2002). User-centric performance analysis of market-based cluster batch

schedulers. In Proceedings of the 2nd IEEE/ACM International Symposium on Cluster and Grid Computing

(CCGrid 2002), Berlin, Germany.

[15] Coleman, K., Norris, J., Candea, G. and Fox, A. (2004). OnCall: Defeating spikes with a free-market

application cluster, In Proceedings of the 1st International Confererance on Autonomic Computing. NY, US.

[16] Broberg, J., Venugopal, S., and Buyya, R. (2008). Market-oriented Grids and Utility Computing: The state-of-

the-art and future directions, Journal of Grid Computing, 3(6), (pp.255-276).

[17] Buyya, R., Ranjan R., and Calheiros, R. N. (2010). InterCloud: Utility-Oriented Federation of Cloud

Computing Environments for Scaling of Application Services, Proceedings of the 10th International

Conference on Algorithms and Architectures for Parallel Processing (ICA3PP 2010), Busan, South Korea.

[18] Rochwerger, B. et al. (2009). The Reservoir Model and Arhitecture for Open Federated Cloud Computing.

IBM Systems Jaunal, 4 (53), (pp.1-11).

[19] Keahey, K., Matsunaga, A., and Fortes, J. (2009). Sky computing, IEEE Internet Computing, 13(5), (pp. 43–

51).

[20] Buyya, R., Ranjan, R. and Calheiros, R.N. (2009). Modeling and Simulation of Scalable CloudComputing

Environments and the CloudSim Toolkit: Challenges and Opportunities. In Proceedings of the 7th High

Performance Computing and Simulation Conference, Leipzig, Germany.

http://www.cloudbus.org/papers/MarketGridUtilityComp2001_2007.pdf
http://www.cloudbus.org/papers/MarketGridUtilityComp2001_2007.pdf

[21] Nudd, G.R., Kerbyson, D.J., Papaefstathiou, E., Perry, S.C., Harper, J.S., and Wilcox, D.V. (2000). Pace-A

Toolset for the Performance Prediction of Parallel and Distributed Systems. International Journal of High

Performance Computing Applications, 14(3), (pp. 228–251).

[22] Smith, W. and Foster, I. and Taylor, V. (1998). Predicting Application Run Times Using Hitorical Inforamtion.

In Proceedings of IPPS/SPDP Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP 1998),

Florida, USA.

[23] Animoto, retrieved on 12nd Sep 2010.

http://developer.amazonwebservices.com/connect/entry!default.jspa;jsessionid=5E63CF198EA2949E920D500

303C858CE?categoryID=89&externalID=932&fromSearchPage=true

[24] Liu, Z., Squillante, M.S. and Wolf, J.L. (2001). On Maximizing Service-Level-Agreement Profits. In

Proceedings of the 3rd ACM conference on Electronic Commerce (EC 01), Tampa, Florida, USA

[25] Menasce D. A., Almeida V. A. F., Fonseca R., and Mendes M. A. (1999). A methodology for workload

characterization of e-commerce sites. In Procedings of the 1999 ACM Conference on Electronic Commerce

(EC 1999), Denver, CO, USA.

[26] Chen, Y., Iyer, S., Liu, X., Milojicic, D., and Sahai, A. (2007). SLA Decomposition: Traslating Service Level

Objectives to System Level Thresholds, In Proceedings of 4th IEEE Internaltional Conference on Autonomic

Computing, Florida, USA.

[27] Reig, G. Alonso, J. and Guitart, J. (2010). Deadline Contrained Prediction of Job Resource Requirments to

Manage High-Level SLAs for SaaS Cloud Providers. Tech. Rep. UPC-DAC-RR, Dept. d‟Arquitectura de

Computadors, University Polit‟ecnica de Catalunya, Barcelona, Spain.

[28] Xiong, K., Perros, H. (2008). SLA-based Resource Allocation in Cluster Computing Systems. In Proceedings

of 17th IEEE International Symposium on Parallel and Distributed Processing (IPDPS 2008), Alaska, USA.

[29] Netto, M. and Buyya, R. (2009). Offer-based Scheduling of Deadline-Constrained Bag-of-Tasks Applications

for Utility Computing Systems, Proceedings of the 18th International Heterogeneity in Computing Workshop

(HCW 2009), in conjunction with the 23rd IEEE International Parallel and Distributed Processing Symposium

(IPDPS 2009), Roma, Italy.

[30] Garg, S. K., Buyya, R., and Siegel, H. J. (2009). Time and Cost Trade-off Management for Scheduling Parallel

Applications on Utility Grids, Future Generation Computer Systems,26(8), (pp. 1344-1355).

[31] Islam, M., Balaji, P., Sadayappan, P. and Panda, D. K. QoPS: A QoS Based Scheme for Parallel Job

Scheduling. In Proceedings of the 9th International Workshop on Job Scheduling Strategies for Parallel

Processing (JSSPP 2003), Seattle, USA.

http://developer.amazonwebservices.com/connect/entry!default.jspa;jsessionid=5E63CF198EA2949E920D500303C858CE?categoryID=89&externalID=932&fromSearchPage=true
http://developer.amazonwebservices.com/connect/entry!default.jspa;jsessionid=5E63CF198EA2949E920D500303C858CE?categoryID=89&externalID=932&fromSearchPage=true
http://www.cloudbus.org/papers/Offers-based_Scheduling-HCW2009.pdf
http://www.cloudbus.org/papers/Offers-based_Scheduling-HCW2009.pdf
http://dx.doi.org/10.1016/j.future.2009.07.003
http://dx.doi.org/10.1016/j.future.2009.07.003

[32] Islam, M., Sadayappan, P., and Panda, D. K. (2004). Towards provision of quality of service guarantees in job

scheduling. In Proceedings of the 6th IEEE International Conference on Cluster Computing (Cluster 2004),

San Diego, USA.

[33] Varia, J. (2010), Architecting Applications for the Amazon Cloud, Cloud Computing: Principles and

Paradigms, R. Buyya, J. Broberg, A.Goscinski (eds), ISBN-13: 978-0470887998, Wiley Press, New York,

USA. Web - http://aws.amazon.com

[34] CIO, retrieved on 10 Sep 2010: http://www.cio.com.au

[35] GoGorid, retrieved on 10 Sep 2010: http://www.gogrid.com

[36] RackSpace, retrieved on 10 Sep 2010: http://www.rackspacecloud.com

[37] Microsoft Azure, retrieved on 10 Sep 2010: http://www.microsoft.com/windowsazure/

[38] IBM, retrieved on 10 Sep 2010: http://www.ibm.com/ibm/cloud/ibm_cloud/

[39] Ostermann, S., Iosup, A., Yigitbasi, M.N., Prodan, R., Fahringer, T. and Epema, D. (2009). An early

performance analysis of cloud computing services for scientific computing. In Proceedings of the 1st

International Conference on Cloud Computing (Cloudcom 2009), Beijing, China.

[40] Dinesh, V. (2004). Supporting Service Level Agreements on IP Networks. In Proceedings of IEEE/IFIP

Network Operations and Management Symposium, 92(9), (pp. 1382-1388), NY, USA.

[41] Kumar, S., Dutta, K., Mookeriee, V. (2009). Maximizing business value by optimal assignment of jobs to

resources in grid computing, European Journal of Operational Research, 194(3).

http://aws.amazon.com/
http://www.cio.com.au/
http://www.gogrid.com/
http://www.rackspacecloud.com/
http://www.microsoft.com/windowsazure/
http://www.ibm.com/ibm/cloud/ibm_cloud/

