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Abstract— For an application in public-resource 
computing environments, providing reliable scheduling 
based on resource reliability evaluation is becoming 
increasingly important. Most existing reputation models 
used for reliability evaluation ignore the time influence. 
And very few works use a robust genetic algorithm to 
optimize both time and reliability for a workflow 
application. Hence, in this paper, we propose the 
reliability-driven (RD) reputation, which is time 
dependent and can be used to evaluate a task’s reliability 
directly using the exponential failure model. Based on 
the RD reputation, we also propose Knowledge-Based 
Genetic Algorithm (KBGA) to optimize both time and 
reliability for a workflow application. KBGA uses 
heuristics to accelerate the evolution process without 
giving invalid solutions. Our experiments show that the 
RD reputation can improve the reliability of a workflow 
application with more accurate reputation, while the 
KBGA can evolve to better scheduling solutions more 
quickly than traditional genetic algorithms. 

Keywords— reliability, reputation, workflow 
scheduling, genetic algorithm, heuristic 
1. Introduction 

Public-resource computing which combines elements 
of Peer-to-Peer (P2P) and Grid computing is an 
important technology, and is used in many applications 
such as SETI@Home and BOINC [3]. Usually, public-
resource computing comprises a large number of 
unsupervised resources which have no prior trust and are 
more susceptible to unreliability. Hence, many factors 
may lead to failures for an application. For example, a 
resource may be overloaded, slow connected, 
misconfigured or malicious. Thus, in public-resource 
computing, the scheduling of an application must also 
account for reliability, besides execution time (makespan) 
which is normally considered. To enable reliable 
scheduling, two important issues need to be considered: 
(i) how to evaluate a resource’s reliability and (ii) how to 
perform reliable scheduling based on the resource’s 
reliability information. 

Reputation systems are commonly used to evaluate a 
resource’s reliability [1,2,9,11,13]. But, most existing 
reputation systems have two problems. Firstly, from the 
resource perspective, most reputation models [1,2,9,11] 
evaluate a resource’s reputation according to its ratio of 
successfully completed tasks. They do not consider the 
influence of the task’s runtime (size). For example, peer 
A has a higher task failure rate (task failures per unit 
time) than peer B, so peer B should have a better 
reputation. But, traditional reputation models will instead 
predict a better reputation for peer A when peer A 
executes more short runtime tasks and peer B executes 
more tasks with longer runtime. This is because peer A 
may complete more short tasks successfully than peer B. 
Secondly, from the task perspective, existing reputation 
models assigned the same reliability (success probability) 
[1,13] to all the tasks on a resource based on the 
resource’s reputation. But, the longer a task runs on an 
unreliable resource, the lower success probability it 
should have.  

Given the resource reliability information, it is known 
to be a NP-hard problem to optimize both makespan and 
reliability for a workflow application with task 
dependencies [19]. Several list heuristics have been 
proposed for this problem in non-genetic algorithms 
[7,15,16]. Usually, genetic algorithms (GAs) can provide 
better quality solutions than list heuristics [6,12]. 
Although GA is more time consuming, it is acceptable 
for applications with long runtime. Moreover, the speed 
of GA can be accelerated by adopting parallel genetic 
algorithm technology [14]. Currently, bi-objective 
genetic algorithm (BGA) [17] is the only GA that we 
know can give both makespan and reliability optimized 
scheduling solutions for workflow applications. But 
BGA may give invalid solutions which violate the 
dependence between tasks. In addition, most GAs 
[8,10,17] evolve the scheduling solutions randomly, 
which may lead to slow convergence of the algorithm.  

In this paper, we propose the novel reliability-driven 
(RD) reputation model for resource reliability evaluation. 
RD reputation considers the runtime of tasks by using 
the resource’s task failure rate (task failures per unit time) 
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to define the reputation. It also provides a real time 
reputation that can be used to evaluate a task’s reliability 
directly using the exponential failure model. Based on 
RD reputation, we then define the reliability-driven 
scheduling problem and two scheduling heuristics which 
aim to optimize makespan and reliability for a workflow 
application. Finally, we design the knowledge-based 
genetic algorithm (KBGA) to provide scheduling 
solutions. KBGA evolves the task execution order 
according to the task’s importance value, so that the 
scheduling will not violate the dependency between 
tasks. The mutation of KBGA has two operators namely 
swapping mutation and reassigning mutation which 
evolve the solutions intelligently based on our heuristics.  

The remainder of this paper is organized as follows. 
Section 2 introduces related work. Section 3 presents the 
scheduling system model. Section 4 defines the RD 
reputation and its calculation algorithm. Section 5 
defines the scheduling problem and two heuristics, while 
KBGA is presented in Section 6. Experimental results 
are presented in Section 7, followed by the conclusions 
in Section 8. 

2. Related Work 
The real time resource reliability can be monitored by 

the resource’s reputation, which can be defined as the 
probability that the resource can deliver the expected 
utility service [2]. For P2P systems, two popular 
reputations EigenTrust [9] and PowerTrust [11] were 
designed. They compute the local trust value based on 
the normalized number of successful transactions 
between two participants. For public-resource computing 
systems, Sonnek et al. [1] calculated a worker’s 
reliability as the ratio of correct responses. Neither the 
normalized number nor the ratio of correct responses 
considered the time influence. Song et al. [13] used 
fuzzy logic to evaluate the reputation. Although task 
runtime is included in their model, they did not specify 
how the task runtime affects the reputation. The time 
related performance can also be evaluated by the 
resource availability [4]. But it focused on the hardware 
analysis, not including the task level behaviour analysis. 
Moreover, most existing works did not give methods or 
algorithms to predict the real time task failure rate for a 
resource, which is needed for task scheduling. However, 
our reliability-driven reputation is specially defined to be 
time dependent, and our reputation calculation algorithm 
can provide a real time failure rate evaluation for a 
resource. 

Optimizing both makespan and reliability for a 
workflow application is known to be a NP-hard problem. 
Many list heuristics have been proposed [7,15,16]. 
Dongarra et al. [15] proved that tasks should be 
scheduled to the node with the minimum multiplication 
value of the instruction execution time γ and reliability λ. 
Marek et al. [7] proposed a general bi-criteria scheduling 

heuristic which divides the scheduling into primary and 
secondary scheduling. Generally, a genetic algorithm can 
give better scheduling solutions than list heuristics [12]. 
Dogan et al. proposed a bi-objective genetic algorithm 
(BGA) for workflow applications [17]. BGA evolves the 
scheduling solutions randomly which may give invalid 
solutions violating the dependency between tasks. Wang 
et al. [10] represented a scheduling solution as two 
strings: the task-resource assignment string and the task 
execution order string. Although this method can solve 
the invalid solution problem, they did not consider 
reliability. Most existing GAs [8,10,17] also evolve the 
scheduling solutions randomly, which may lead to slow 
convergence of the algorithm. In contrast, our KBGA 
evolves the task execution order according to the task’s 
importance value and mutates a solution based on our 
two heuristics. Thus, our KBGA can evolve the 
scheduling solutions intelligent without giving invalid 
solutions.  

3. Models and Assumptions 
In the typical public-resource computing model [1] as 

shown in Fig. 1, there is a central server which assigns 
jobs submitted by the clients to the resource providers. 
We model a workflow job as a Directed Acyclic Graph 
(DAG): ),( EVJob = . V is the set of nodes 

)1( nivi ≤≤  which denotes the tasks of the workflow 
job. E is the set of edges )1)(,( njijie ≤<≤  which 
represents the dependence between tasks iv  and jv , 

iv is the parent task and jv is the child task. For each 

task node iv , its weight iv  is the number of instructions 
of this task which is assumed to be known using 
compiling technology [15]. The length of a path in the 
DAG is the sum of the weights of all nodes along the 
path. 

 
Fig. 1. System Model. 

There are some resource volunteers in the system, 
which are not centrally controlled and will join or leave 
the system dynamically. Let },{ 21 mrrrR =  be the m 

resources available in the system. Each resource ir  is 
associated with two values: irdr , the resource’s RD 

reputation and iγ , the resource’s computing speed 
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illustrated by unitary instruction execution time (i.e. the 
time to execute one instruction). Given the resource’s 
information, the central server can schedule the 
workflow job. Let RVM →: denotes the mapping 
function, and then jriM =)(  means task iv is assigned to 
resource jr .  

We assume that the central server can only schedule at 
most one task to one resource at any time. We also 
assume that the central server can monitor the task 
execution, hence if a task successfully finishes or fails 
before completion, the server can detect it and send a 
reputation report. Several technologies have been 
proposed to deal with this problem such as checkpoint 
and quizzes verification [18].  

4. Reliability Evaluation as Reputation 
In public-resource computing, many discrete events 

may lead to failures of an application such as non-
availability of required services, overloaded resource 
conditions and malicious activities. All these events are 
independent and may happen randomly, hence we use 
the commonly used Poisson Distribution [15,16,17] to 
model the failure of a resource provider. The failure 
density function is )0()( ≥= − tetf tλλ , where λ is the 
failure rate of a resource. Let num_fails be the number of 
failures within a resource during the job runtime period 
of run_time. We can compute the failure rate by 
Equation 1 which is the inverse of Mean Time To 
Failure (MTTF).  

timerun
failsnum

MTTFdxxe x _
_11

0

===
∫

∞ −λλ
λ .          (1) 

To enable reliable scheduling, the resource’s real time 
failure rate should be monitored. Although traditional 
reputation systems can be used to monitor the resource’s 
reliability, they neither predict the failure rate for a 
resource directly nor consider the time influence. Here, 
our time dependent reputation is directly related to the 
failure rate, which can be defined as: 

Reliability-Driven (RD) Reputation ( irdr ) of a resource 

ir  is the generally said or believed probability of task 
failure per unit time, with which the resource provider 
will fail to complete the tasks assigned to it. 

4.1 Calculation of Real time RD Reputation 
A resource’s RD reputation represents its real time 

failure rate λ introduced above. To maintain the RD 
reputation, we divide the successive time into time 
intervals which last a window time windowT . For each 
time interval, the server maintains a reputation statistic 

),,,(_ iiiii cruntimefsstarepu =  for each resource ir . 
The variables is  and if are the start and finish times for 

an interval respectively, iruntime  is the total CPU time 

that resource ir  donates for task execution in the interval, 

and ic is the number of failures experienced by tasks. 
Algorithm 1 shows the RD reputation calculation 
algorithm. It begins with initializing each resource’s 
reputation statistic istarepu _  for the first time interval 
(line 1~6).  

Let us assume that the algorithm comes to time 
interval it  for resource ir . After a task jv  assigned to 

resource ir  successfully finishes or fails, the server gives 

a reputation report ),,( i
j

i
j

i
j

i
j cfstestimony = , where i

js  

and i
jf  are the start and finish times of task jv  

respectively, and i
jc is the number of failures during this 

task. If a task fails, we simply assign i
jc  to be 1, 

otherwise it is 0. The server uses this report to update the 
reputation statistic istarepu _ ( line 9~11).  

After each update of the reputation statistic 
istarepu _ , a real time statistical failure rate 

statistic
i

λ for resource ir  can be computed using Equation 

1. Here, the whole length of the current time interval 
is ii sf − . During the iruntime  of the resource’s donated 
task execution time in the current interval, the resource 
has ic task failures. During the remaining 
time iii runtimesf −−  in the current interval, the 
resource is assumed to work with a reputation observed 
in the last time interval 1−it . Thus the assumed number 
of task failures for the remaining time in the current 
interval is )(1

iii
t

i runtimesfrdr i −−− , where 1−it
irdr  

is the recorded RD reputation for resource ir  in the last 
time interval 1−it . And we can get the real time statistic 
failure rate by: 

ii

iii
t
iistatistic

sf
runtimesfrdrc i

i −
−−+

=
− )(1

λ .    (2) 

The reputation should decay over time, thus the real 
time RD reputation for resource ir  in the current time 
interval it  can be defined as: 

)10(,)1(1 <≤−+⋅= − αλαα statistic
i

t
ii

irdrrdr  (3)  
where α is the decay factor. If α is zero, the real time RD 
reputation will be equal to statistic

i
λ , which means it is 

totally decided by the current statistical failure rate.  
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At the end of the current time interval it , the real 

time RD reputation irdr  is recorded as it
irdr  for 

resource ir (line 16), and the server starts another 
reputation statistic for the next time interval 1+it (line 
17~19). For the initial time interval, we assume that the 
RD reputation 0

irdr  for each resource ir  is initialrdr (line 

2). initialrdr  is the initial RD reputation for all the 
resources. It should be set to a relatively high failure rate. 
In this way, it gives resource providers incentives to 
supply good quality services to improve their reputation.  

Algorithm 1 RD Reputation Calculation Algorithm 

1    for each resource ir  do 
2         initial

i rdrrdrrdr
i

== 0                               

3         1←it                                                          
4         timecurrentfs ii _==                          
5         0   ;0 ←← ii cruntime             
6    end for 
7    while there is a reputation record i

jtestimony   do 

8         if ( windowsi
i
j Tsf +< ) then      //current interval   

9             i
jii ccc +←      

10           )( i
j

i
jii sfruntimeruntime −+←  

11           ),max( i
i
ji fff ←  

12            Remove the record i
jtestimony  

13            Compute statistic
i

λ by Equation 2 

14            Compute irdr by Equation 3 
15        else                                          //next interval     
16            i

t
i rdrrdr i ←                                             

17            1+← ii tt                                                 
18           windowsiii Tsfs +==                             
19           0   ;0 ←← ii cruntime  
20        end if 
21  end while 

5. Reliability-Driven Scheduling Problem 
In this section, the reliability-driven scheduling 

problem based on RD reputation is formalized first. 
Then two heuristics are defined for genetic algorithms to 
improve the scheduling solutions. 

5.1 Problem Representation 
In a workflow application, each task could be 

executed only after all its parent tasks have been 
completed. Thus the available start time for a task iv is: 

e
j

Eije
avail
i tt

∈
=

),(
max ,                    (4) 

where e
jt  is the end time for task jv . If task iv has no 

parent tasks, its available starting time is 0. Let function 
)( jridle be the time when resource jr  is idle. Then the 

beginning and ending times of task iv  can be defined as:  

jji
b
i

e
i

avail
i

b
i

rM(i)wherevtt

iMidlett

=+=

=

    

))}((,max{

γ
,          (5)                          

where )(iM is the resource to which task iv is assigned, 

and jγ  is the instruction speed of resource jr . Let j
st be 

the time when resource jr finishes all the tasks assigned 
to it in scheduling S, which can be defined as: 

}{max )(|
e
iriMi

j
s tt

j==  .               (6)  

The reliability of a workflow application is the 
probability that all its tasks complete successfully. It can 
be given by the probability that all the resources remain 
functional until all the tasks assigned to it are completed 
[15]. Since irdr  represents the failure rate for 

resource ir , the probability that resource ir  can 
successfully complete all its tasks in scheduling S is 

i
i
s rdrti

s eR ⋅−= . Thus the success probability sR  for 
an application in scheduling S can be computed as the 
product of all i

sR , which is illustrated in Equation 7. We 
can see that to maximize the reliability, we need to 
minimize the failure factor i

i

s

m

i rdrtSfal 1)( =∑= . 

i
i
s

m
i rdrt

m

i

i
ss e RR ⋅∑−

=

=∏ == 1

1
.             (7)  

The reliability-driven scheduling of a workflow 
application is to maximize the reliability and minimize 
the makespan for the application within the time 
constraint of the deadline D. Therefore the scheduling 
problem can be formalized as:  

DStime

tStime

rdrtSfal

i
s

Rr

m

i
i

i
s

i

<

=

⋅=

∈

=
∑

)(     

)(max)(   

)()( 

Subject to

Minimize

1
 Minimize

 .           (8)                           

5.2 Heuristic rules 
To maximize the reliability, Heuristic 1 can be applied 

[15]. It has been proved that to maximize the reliability, 
the task should be scheduled to the resource with 
minimal ii rdrγ  whenever it is possible.   

Heuristic 1  
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Let S be a schedule where all the tasks are assigned to a 
resource with minimum ii rdrγ . Then any schedule 

SS ≠′ with reliability of sR ′  is such that ss RR <′ . 
To minimize the makespan for an application, we 

should give higher priority to tasks that can start earlier 
and to tasks that have a bigger influence to the makespan 
of the application. Thus the second heuristic can be 
defined as: 
Heuristic 2 
Let the importance of a task iv  be the length of the 
longest path beginning from the task in the DAG graph, 
which can be denoted as: 

⎪⎩

⎪
⎨
⎧

+
∉∀

=
∈

otherwisejimptv
Ejiejv

iimpt
Ejie

i

i

     )(max
),( ,                                

)(
),(

.       (9)  

And the task iv ’s priority )(ip  is: 

)))((,max( )()()( iMidletiimptEip avail
i−⋅= γ  ,     (10)                                        

where )(γE is the mean instruction speed of all resources. 
Then, if there are two tasks scheduled to the same 
resource, the one with the higher priority should be 
scheduled first. 

6. Reliability-driven Scheduling using 
Genetic Algorithm 

For the scheduling problem of workflow applications, 
a GA can usually give better solutions than list heuristics 
[12]. A typical GA consists of the following steps: (1) 
create an initial population consisting of randomly 
generated solutions which are also called chromosomes; 
(2) evaluate the fitness of each solution and remove poor 
solutions from the population; (3) generate a new 
generation of solutions by applying two evolution 
operators, namely crossover and mutation; and (4) repeat 
step 2 and 3 until the population converges. In order to 
make a GA converge to better solutions more quickly 
without giving invalid solutions, we design the 
knowledge-based genetic algorithm (KBGA). KBGA 
evolves the task execution order according to the task’s 
importance value. It also optimizes the typical GA by 
applying two new mutation operators based on our two 
heuristics. The details of KBGA are presented in the 
following sections. 

6.1 Chromosome Encoding and Crossover 
For workflow applications, a chromosome is a data 

structure into which a scheduling solution is encoded. 
We use a two-dimensional encoding string [8] to 
represent a scheduling solution. As illustrated in Fig. 2c, 
one dimension of the string represents the index of 
resources, while the other dimension shows the order of 
tasks on each resource. The two-dimensional string can 
be converted into a one-dimensional string according to 

the resource’s index and task’s order. The one-
dimensional string comprises a list of ordered pairs (i, j), 
also called a gene. The pair (i, j) denotes task iv  is 
scheduled to resource jr . The order between tasks in the 
one-dimensional string only makes sense when tasks are 
scheduled to the same resource. 

c) chromosome strings

time

b) real schedulea) workflow example

d) crossover operation

r1

r2

r3

r4

0v

1v

7v3v

2v

5v

4v

6v

(0,1)(3,1)(7,1)  (1,2)(6,2) (5,3) (4,4)(2,4) 

r1:v0-v3-v7

r2:v1-v6

r3:v5

r4:v4-v2

One-dimensional string

Two-dimensional string before crossover

after crossover

(0,1)(3,1)(7,1)(1,2)(6,2)(5,3)(4,4)(2,4)  

(3,1)(4,2)(5,2)(0,3)(1,3)(7,3)(2,4)(6,4) 

(0,1)(3,1) (5,2) (1,3)(7,3) (4,4)(2,4)(6,4)
(3,1)(7,1) (1,2)(4,2)(6,2) (0,3)(5,3) (2,4)

2

1

11

2

1

1.5

1
0v

7v

6v5v

4v2v

3v1v

Fig. 2. Encoding and Crossover Example. 

The crossover operation creates new chromosomes by 
randomly exchanging part genes of the existing 
chromosomes. As illustrated in Fig. 2d, our algorithm 
performs the crossover operation on the one-dimensional 
string as follows: (1) Two chromosomes are randomly 
chosen from the current population, and two random 
genes are selected from one of the chromosomes; (2) All 
the genes between the selected two genes are chosen as 
crossover genes, and the resource allocation for all the 
tasks related to the crossover genes are exchanged 
between the selected two chromosomes; and (3) For each 
resource in the two new chromosomes, the tasks 
assigned to it are rescheduled in the descending order of 
their importance value )(iimpt . In this way, the parent 
tasks are always scheduled before their child tasks, thus 
avoiding the invalid solution problem [17]. After 
crossover, two new offspring are generated by 
combining task assignments taken from the two parents. 

6.2 Mutation 
Typically, a mutation operation changes some of the 

genes in a chromosome randomly, which causes the 
algorithm to search randomly around the good solutions. 
We obtain two new mutation operators, namely 
reassigning mutation and swapping mutation. They use 
the two defined heuristics to help the algorithm evolve 
more directly to the good solutions. 

The reassigning mutation improves the reliability for a 
scheduling using Heuristic 1. First, it chooses a task in 
one scheduling solution randomly. Then it reassigns the 
task to a resource with a lower ii rdrγ , and schedules the 
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task order according to its importance value )(iimpt . In 
Fig. 3a, task 6v is originally scheduled to 

resource 2r whose ii rdrγ  is 2. The reassigning mutation 

reassigns it to resource 1r with a lower ii rdrγ  of 1 as 
shown in Fig. 3b. Hence the reliability of the workflow 
application has been improved, although the makespan 
remains the same.  

The swapping mutation improves the makespan for a 
scheduling according to Heuristic 2. It randomly chooses 
a resource in one scheduling, and compares the priority 
of two successive tasks on the resource. It swaps the 
execution order of the two tasks if the preceding task has 
a lower priority. In Fig. 3a, task 4v is scheduled before 

2v  because it has a higher importance value, but has a 
lower priority. Therefore the swapping mutation 
exchanges their execution order. Fig. 3c shows the new 
scheduling where the makespan of the application has 
been reduced. 

22,12 == rdrγ

5.1)2( =h1)4( =h

0v

1v

7v3v

2v

5v

4v

6v

11,11 == rdrγ

0v

1v

7v3v

2v

5v

4v

6v

6v

0v

1v

7v3v

2v

5v

4v

6v

Fig. 3. Mutation Operation. 

6.3 Evaluation 
In the evolutionary-based optimization methods, 

fitness functions are used to measure the quality of a 
solution according to the optimization objectives. As our 
goal is to optimize the reliability and makespan for a 
workflow application under the time constraint, the 
fitness value )(sf for a scheduling solution S can be 

defined as: 

   
    if    1
    if    0

)(      where

)1(               )(            

  )()()(

21

minTimemaxTime
minTime

2minFalmaxFal
minFal

1

⎩
⎨
⎧

>
<

=

=++

⋅+⋅=
−
−

−
−

Dtime(s)
Dtime(s)

sf

sf

stimesfalsf

penalty

penalty ωω
ωω

.  (11) 

Here, maxFal and minFal are the maximum and 
minimum failure factors for the solutions in the current 
population respectively, while maxTime and minTime 

are the maximum and minimum makespan respectively. 
The first two elements of )(sf  encourage the algorithm 

to choose the solutions with minimum failure factor and 
minimum makespan. Both these two objectives are 
assigned a weight according to the user’s trade-off 
requirement. The third element )(sf penalty  is to handle 

the time constraint. If the makespan of a scheduling 
exceeds the time deadline D, the function will give a 
penalty to its fitness value. 

7. Experiments 
We use GridSim [5] to simulate a public-resource 

computing environment for our experiments. There are 
200 resource providers in the system. They donate 
various numbers of CPU cycles whose speed is 

uniformly distributed in [ 310,4105 −−× ] milliseconds per 
instruction. The actual failure rates for resource 
providers are assumed to be uniformly distributed from 

h/10 3− ψto h/10 4−  [17]. The structure of a workflow 
application can be categorized into balanced and 
unbalanced [8]. Like other previous works [8,16,17], we 
use a random DAG generator to simulate the application. 
Our simulated workflow application consists of 300 
tasks. The mean outdegree for a task node is 2. The 
task’s size is chosen uniformly between 3105 ×  Million 
instructions (MI) and MI1072 5× . The reputation decay 
factor is 0.2, while the fitness evaluation weight 1ω  
and 2ω  are both set to be 0.5 so that the algorithm gives 
the same priority to both reliability and makespan.  

a) RD reputation compared with traditional 
reputation: The traditional reputation model uses the 
ratio of successfully completed tasks as a resource’s 
reputation. To compare the difference between RD and 
traditional reputations, we test the two reputations under 
several extreme conditions: the size of all the test tasks 
in the system are {12,24,36,48,60,72} MI105×  
respectively, the resource provider has a high failure rate 
of h/10 3−  or a low failure rate of h/10 4− , and the 
resource provider donates resources of a fast speed of 
1000MIPS or a slow speed 500MIPS. To facilitate the 
comparison, we derive the task failure probabilities for a 
medium-sized task based on the traditional and RD 
reputation. Fig. 4 shows the two failure probabilities 
normalized by the standard task failure probability based 
on the resource’s actual failure rate. The task failure 
probabilities based on RD reputation remain consistently 
close to the standard task failure probability. The 
traditional reputation based task failure probability gets 
close to the standard task failure probability only when 
the test tasks in the system also have the medium task 
size. Otherwise, the failure probability also increases as 
the size of the test tasks increases. And when the 
resources have a faster speed (Fig. 4a) or lower failure 
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rate (Fig. 4b), the task failure probability based on 
traditional reputation will have a greater deviation from 
the correct one. This is because the normalized failure 
probability based on traditional reputation obeys a 
negative exponential function. The lower failure rate and 
faster speed will contribute to a smaller exponent which 
results in greater deviation.  

b) RD reputation’s influence to scheduling: To 
compare the scheduling results based on traditional and 
RD reputation, half of the resources in the simulation 
have the actual failure rate, while the other half of the 
resources have either RD reputation based failure rate or 
traditional reputation based task failure probability. Fig. 

5 shows both the traditional reputation based scheduling 
and RD reputation based scheduling have almost the 
same makespan under various conditions. The RD 
reputation based scheduling also has a consistently lower 
failure probability, while the traditional reputation based 
scheduling has a higher failure probability, especially 
when the reputations are computed under conditions 
when the task’s size is very small or very large. This is 
because under such conditions, the traditional reputation 
gives a different resource failure rate from the standard 
one, and tasks are scheduled to more unreliable 
resources.  
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Fig. 4. Normalized failure probability of a medium-sized task based on traditional reputation and RD reputation. 
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Fig. 5. Failure probability and makespan of a workflow application based on traditional reputation and RD reputation. 
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Fig. 6. Makespan and reliability given by BGA and KBGA in terms of iterations. 
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c) KBGA’s performance: We compare KBGA with 
BGA [17] which also optimizes makespan and reliability 
for an application by evolving solutions randomly. The 
average makespan and reliability of all the solutions are 
computed after each iteration. Fig. 6 shows KBGA 
improves the makespan and the reliability for an 
application more quickly than BGA. After some 
iterations, it becomes very difficult for BGA to find a 
better solution by randomly evolving solutions, while it 
is easier for KBGA to evolve with heuristics. At the end 
of the algorithm, KBGA can give a better quality 
solution than BGA, in particular, the heuristics of KBGA 
can optimize reliability more than makespan. 

8. Conclusions 
In this paper, we studied the reliability-driven 

scheduling problem in public-resource computing 
environments. We proposed the time-dependent RD 
reputation for resource reliability evaluation. The RD 
reputation uses the failure rate to define a resource’s 
reputation so that it can be used to evaluate a task’s 
reliability directly using the exponential failure model. 
Our RD reputation calculation algorithm can also 
monitor the real-time changes of the reputation 
dynamically.  

Based on the RD reputation, we defined the 
reliability-driven scheduling problem and two heuristics 
that aim to optimize makespan and reliability for a 
workflow application. We proposed the KBGA to evolve 
the scheduling solutions intelligently using the heuristics. 
KBGA addresses the invalid solution problem by 
evolving the order between tasks according to their 
importance value. Simulation results show that the RD 
reputation model can improve the reliability of a 
workflow application with more accurate reputation. The 
KBGA algorithm also outperforms the typical GA in 
evolving scheduling solutions. 
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