
The Journal of Systems & Software 190 (2022) 111351

R
a

b

M

t
a
I
l
e
Z
e
F
r
d

r

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

iFogSim2: An extended iFogSim simulator formobility, clustering, and
microservicemanagement in edge and fog computing environments✩

edowan Mahmud a,b, Samodha Pallewatta b, Mohammad Goudarzi b,∗, Rajkumar Buyya b,∗

The School of Computing Technologies, STEM College, RMIT University, Melbourne, Australia
The Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of
elbourne, Australia

a r t i c l e i n f o

Article history:
Received 8 November 2021
Received in revised form 31 March 2022
Accepted 25 April 2022
Available online xxxx

Keywords:
Edge/Fog computing
Mobility
Microservices
Clustering
Simulation
Internet of Things

a b s t r a c t

Internet of Things (IoT) has already proven to be the building block for next-generation Cyber–Physical
Systems (CPSs). The considerable amount of data generated by the IoT devices needs latency-sensitive
processing, which is not feasible by deploying the respective applications in remote Cloud datacentres.
Edge/Fog computing, a promising extension of Cloud at the IoT-proximate network, can meet such
requirements for smart CPSs. However, the structural and operational differences of Edge/Fog infras-
tructure resist employing Cloud-based service regulations directly to these environments. As a result,
many research works have been recently conducted, focusing on efficient application and resource
management in Edge/Fog computing environments. Scalable Edge/Fog infrastructure is a must to
validate these policies, which is also challenging to accommodate in the real-world due to high cost and
implementation time. Considering simulation as a key to this constraint, various software have been
developed that can imitate the physical behavior of Edge/Fog computing environments. Nevertheless,
the existing simulators often fail to support advanced service management features because of their
monolithic architecture, lack of actual dataset, and limited scope for a periodic update. To overcome
these issues, we have developed modular simulation models for service migration, dynamic distributed
cluster formation, and microservice orchestration for Edge/Fog computing based on real datasets and
extended the basic components of iFogSim, a widely used Edge/Fog computing simulator for their ease
of adoption as iFogSim2. The performance of iFogSim2 and its built-in service management policies
are evaluated using three use case scenarios and compared with the contemporary simulators and
benchmark policies under different settings. Results indicate that our simulator consumes less memory
and minimizes simulation time by an average of 28% when compared to other simulators.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

The Internet of Things (IoT) paradigm has drastically changed
he convention of interactions between physical environments
nd digital infrastructures that sets the tone of using numerous
oT devices including fitness trackers, voice controllers, smart
ocks, and air quality monitors in our daily activities (Alsaedi
t al., 2022). Currently, IoT devices are contributing 11.5
ettabytes to the total data generated around the globe, which is
xperiencing an exponential rise each year (The World Economic
orum, 2019). The recent adoption of Edge/Fog computing has
elaxed the requirements of harnessing Cloud datacentres for
ifferent IoT-driven use cases. This novel computing paradigm

✩ Editor: J.C. Duenas.
∗ Corresponding authors.

E-mail addresses: mgoudarzi@student.unimelb.edu.au (M. Goudarzi),
buyya@unimelb.edu.au (R. Buyya).
ttps://doi.org/10.1016/j.jss.2022.111351
164-1212/© 2022 Elsevier Inc. All rights reserved.
spans the computing facilities across the proximate network and
enables smart health, smart city, Agtech, Industry 4.0, and other
IoT-enabled Cyber–Physical Systems (CPSs) to run the necessary
application software in the vicinity of the data source (Afrin
et al., 2021). Thus, Edge/Fog computing ensures the delivery
of application services to the requesting IoT-enabled CPSs with
reduced data transmission and propagation delay and lessens the
possibility of congestion within the core network infrastructure
by inhibiting the transfer of a large amount of raw data to the
Cloud datacentres.

The realization of Edge/Fog computing environments primar-
ily depends on the integration of computing resources such as
processing cores, nano servers, and micro datacentres with the
traditional networking components, including gateway routers,
switches, hubs, and base stations (Mahmud and Toosi, 2021; Deng
et al., 2021). In contrast to Cloud datacentres, such Edge/Fog com-
puting nodes are highly distributed. Similarly, the heterogeneity

in terms of resource architecture, communication standards, and

https://doi.org/10.1016/j.jss.2022.111351
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111351&domain=pdf
mailto:mgoudarzi@student.unimelb.edu.au
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1016/j.jss.2022.111351

R. Mahmud, S. Pallewatta, M. Goudarzi et al. The Journal of Systems & Software 190 (2022) 111351

o
c
p
i
n
e
r
t
c
i
H
E
b

u
e
n
f
d
s
p
c
A
e
t
i
o
m
a
c
t
p
c
a
p
F
r
s
e
s
a
a
i
C

r
2
t
a
t
m
s
t
e
d
g
s
i
c
h

d
t
c

perating principles predominantly exist among these nodes. Be-
ause of such constraints, the centralized Cloud-based resource
rovisioning and application placement techniques have compat-
bility issues with Edge/Fog computing environments and can-
ot be applied directly to regulate the respective services (Mass
t al., 2020a; Goudarzi et al., 2019). Identifying this potential
esearch gap, a significant number of initiatives have been taken
o develop efficient service management policies for Edge/Fog
omputing. The research interest for Edge/Fog computing has
ncreased around 69% in the last five years (Merenda et al., 2020).
owever, the newly developed service management policies for
dge/Fog computing environments require extensive validation
efore enterprise adoption.
Real-world deployment is the most effective approach to eval-

ate the performance of any service management policy. How-
ver, since Edge/Fog computing environments incorporate
umerous IoT devices and computing nodes, both in tiered and
latted order with vast amounts of batch or streaming data and
istributed applications, their real-world implementation with
uch a scale is challenging. The lack of global Edge/Fog service
roviders offering infrastructure on pay-as-you-go models like
ommercial Cloud platforms such as Microsoft Azure and Amazon
WS further forces researchers to set up real Edge/Fog computing
nvironments by themselves for costly policy evaluation. Addi-
ionally, the implementation time for a real-world environment
s significantly high, and the modification and tuning of any entity
r system parameters during the experiments are tedious (Mah-
ud et al., 2019). To address such constraints, several emulators
nd simulators have been proposed in the domain of Edge/Fog
omputing. Conventionally, an emulator imitates internal fea-
ures of each components (both from software and hardware
erspectives) within a real environment whereas a simulator
reates a virtual environment that mimics the overall behavior
nd configurations of a real-world implementation. Some exam-
les of these emulators are Microsoft Azure IoT platform1 and
ogify (Moysis et al., 2020). However, these emulators can be
un on specific platforms or imitate specific Edge/Fog computing
cenarios. In this context, simulation is considered to be an
ffective solution to develop and fine-tune various resource and
ervice management policies for Edge/Fog environments, which
re subjected to further research in diverse scenarios. Simulation
lso supports repeatable evaluation of these policies by design-
ng customized and scalable experiments (Gupta et al., 2017;
alheiros et al., 2011).
Although there exist several simulators for Edge/Fog envi-

onments (Sonmez et al., 2018; Qayyum et al., 2018; Jha et al.,
020), they have certain limitations—which can be discussed in
erms of usability, efficiency, compatibility and portability aspects,
s noted in Ashouri et al. (2019). For example, a majority of
he existing simulators lack benchmarks to validate other service
anagement policies that affect their usability. They merely use
ynthetic data without any functional ground, which often directs
o biased and erroneous performance evaluation and degrade
fficiency. Their monolithic architecture also refuses periodic up-
ates, resisting them to cope up with the advanced features of
enuine Edge/Fog computing nodes and arises compatibility is-
ues. Consequently, they fail in imitating various complex scenar-
os triggered by uncertain device mobility, collaborative Edge/Fog
omputing, microservice management, resource constraints, and
eavy-weight computations, and thus, inhibit portability.
To meet such shortcomings of existing simulators, we have

eveloped novel simulation models for mobility-aware applica-
ion migration, dynamic distributed cluster formation, and mi-
roservice orchestration. As the base for these models, we have

1 https://azure.microsoft.com/en-au/overview/iot/.
2

extended a widely adopted simulator for Edge/Fog computing
named, iFogSim and redefined many of its core components in-
cluding fog devices, application modules, sensors, and actua-
tors for their simplified integration. The proposed models along
with the modified iFogSim core components exploit various real-
world datasets and mimic the capabilities of the state-of-the-
art Edge/Fog computing nodes and IoT devices in detail, and
thus, satisfy the usability, efficiency, compatibility and porta-
bility requirements of an Edge/Fog computing simulator. More-
over, since these features are not comprehensively addressed by
none of the existing simulators, the proposed simulation mod-
els are launched as the iFogSim2 for widespread adoption and
potential use as the benchmarks. The components of iFogSim2
are also defined in such a generic way that developers and re-
searchers without having extensive knowledge of iFogSim can
still work on it. iFogSim2 as a complete simulator covers dif-
ferent aspects, such as heterogeneity in both link latency and
bandwidths, node capabilities even at the same tier, scalability,
support for legacy devices, volatility in all aspects, support for
Directed Acyclic Graphs (DAGs), and extensibility (e.g., with task
allocation policies, constraints regarding permissions to run an
app on a given node, etc.). While any policies implemented in
iFogSim works of iFogsim2, we have designed and integrated six
new policies for mobility management, clustering formation, and
microservice management. These new policies demonstrate how
to work with new modules and functionalities so that users can
easily develop their policies accordingly. Besides, these policies
can be used as baselines for comparison purposes.

The major contributions of our work are listed below.

• A service migration simulation model that can operate
across multi-tier infrastructure and support simplified inte-
gration of real-world dataset. Illustratively, the integration
EUA Dataset with iFogSim2 is presented, accommodating
different device mobility models, including pathway and
random waypoint.
• A dynamic distributed cluster formation among multi-tier

infrastructure is proposed, where Edge/Fog nodes in dif-
ferent tiers can provide services with a higher quality of
service. The cluster management is performed in a dis-
tributed manner through which different cluster formation
policies can be simultaneously integrated.
• An orchestration model for microservices deployed across

multi-tier infrastructure, which enables placement policies
to dynamically scale microservices among federated
Edge/Fog nodes to improve resource utilization. Different
service discovery and load balancing policies can be inte-
grated to simulate the dynamic microservice behavior.
• A capability demonstration of the proposed iFogSim2 in

supporting different mobility, clustering, and microservice
management policies and optimizing the ram usage and
simulation time in comparison to the existing simulators
while dealing with varying numbers of computing and net-
working resources.

The rest of the paper is organized as follows. In Section 2,
related researches are reviewed. Section 3 denotes how the pro-
posed simulation models are integrated with the iFogSim simula-
tor. The performance of proposed iFogSim2 simulator is evaluated
in Section 4. Finally, Section 5 concludes the paper with future
works.

2. Related work

Among the existing simulators for Edge/Fog computing,
iFogSim is considered to be one of the pioneers (Gupta et al.,

2017). Although iFogSim incorporates programming abstractions

https://azure.microsoft.com/en-au/overview/iot/

R. Mahmud, S. Pallewatta, M. Goudarzi et al. The Journal of Systems & Software 190 (2022) 111351

t
c
E
d
l
a
t
t
a
r
F
i
d
t
o
S
t
l
a
n
(
f
p
o
E
r
f
t
t

M
t
t
p
s
C
l
v
c
c
m
a
H
p
a
m

Table 1
A summary of related work and their comparison.
Simulators Real dataset Benchmark policy Supports Modular architecture

Customized mobility Cluster formation Microservices

CloudSim (Calheiros et al., 2011) � � �
iFogSim (Gupta et al., 2017) � �
EdgeCloudSim (Sonmez et al., 2018) �
FogNetSim++ (Qayyum et al., 2018) � �
IoTSim-Edge (Jha et al., 2020) � � �
MobFogSim (Puliafito et al., 2020) � � � �
PureEdgeSim (Mechalikh et al., 2019) � �
STEP-ONE (Mass et al., 2020b) � �
YAFS (Lera et al., 2019) � � � �
IoTNetSim (Salama et al., 2019) � � �
SatEdgeSim (Wei et al., 2020) � � �
ECSNeT++ (Amarasinghe et al., 2020) � � � �
IoTSim-Osmosis (Alwasel et al., 2021) � �
iFogSim2 � � � � � �
for edge network-centric deployment of modular IoT applications,
it significantly fails in supporting mobility and integration with
external and real datasets. Conversely, CloudSim, the progeni-
or of iFogSim, facilitates diverse simulation models for Cloud
omputing-based use cases—which cannot be directly used in
dge/Fog environments (Calheiros et al., 2011). Moreover, its
ata parsing models only deal with native datasets that are of
east use in the context of Edge/Fog computing. EdgeCloudSim is
nother simulator software supports the nomadic movements of
he IoT devices (Sonmez et al., 2018). Additionally, it considers
he static deployment and coverage area for the gateway nodes
nd assumes the link quality between IoT and gateway nodes
emains always the same despite their distance. Similarly, the
ogNetSim++ simulator developed by Qayyum et al. (2018) can
mitate different mobility models for IoT devices, including ran-
omwaypoint, mass mobility, and linear mobility. It also provides
he facilities to develop customized mobility models as per the
perating environment. The mobility support system of FogNet-
im++ is loosely coupled with the core simulation engine, and
hus its extension requires the least modifications of the primary
ibraries. However, both EdgeCloudSim and FogNetSim++ lack
bstractions for implementing microservice orchestration and dy-
amic clusterization among multiple Edge/Fog nodes. In Jha et al.
2020), Jha et al. proposed another simulator named IoTSim-Edge
or modeling the characteristics of IoT devices in the Fog com-
uting environment. It represents IoT applications as a collection
f microservices, and the mobility model associated with IoTSim-
dge incorporates different attributes of IoT devices, including its
ange, velocity, location, and time interval. This simulator also
acilitates users to implement their mobility model by extending
he core simulator programming interfaces but barely highlights
he clustering of the computing nodes.

Furthermore, Puliafito et al. (2020) have recently developed
obFogSim for simulating device mobility and application migra-

ion in Fog computing environments. It is an extension of iFogSim
hat modifies the basic functionalities of different iFogSim com-
onents with mobility features. However, the mobility support
ystem of MobFogSim only deals with the IoT gateways and
loud datacentres instead of tiered Edge/Fog infrastructure and
imits the scope for creating clusters in Edge/Fog computing en-
ironments. Mechalikh et al. (2019) developed another simulator
alled PureEdgeSim to evaluate the performance of Fog and Cloud
omputing environments for different IoT-driven use cases. The
obility support system of PureEdgeSim includes a location man-
ger, which is loosely coupled with the core simulation engine.
owever, the default mobility-aware application management
olicy of PureEdgeSim is complex and difficult to customize. It
lso has limitations in forming node clusters and augmenting
icroservice management techniques. Conversely, Mass et al.
3

(2020b) developed the STEP-ONE simulator to imitate the oper-
ations of Fog-based opportunistic network environments. STEP-
ONE extends the conventional ONE simulator with advanced
mobility and messaging interfaces and primarily focuses on mod-
eling simple business processes. Although STEP-ONE incorporates
support for the real-world dataset, it lacks default policies for
mobility management, node clustering, and microservice orches-
tration. Likewise, in Lera et al. (2019), Lera et al. proposed YAFS
simulator for Fog computing to design and deploy various IoT
applications with customized resource management policies. The
mobility support system of YAFS operates based on the sender–
receiver relationship between the Fog nodes that identifies the
shortest path during device movements. YAFS also defines logi-
cal relations among microservices through graphs and provides
interfaces for node clustering.

Furthermore, the IoTNetSim (Salama et al., 2019) simulator for
Edge/Fog computing environments developed by Salama et al. can
model different IoT devices and their granular details, including
energy profile. It supports the mobility of IoT devices in three-
dimensional space. Although IoTNetSim is highly modular, it lacks
benchmark policies for mobility-driven service management and
dynamic cluster formation. Wei et al. proposed another simulator
named SatEdgeSim for evaluating the performance of service
management policies in three-tier satellite edge computing en-
vironments (Wei et al., 2020). Considering the high mobility of
satellite nodes, It supports the dynamic alteration in network
topology and imitates the impact of communication distance
on service offloading delay. Although SatEdgeSim is modular,
it barely exploits the concept of microservice. Conversely, the
IoTSim-Osmosis simulator, developed by Alwasel et al. targets
the migration of workload to edge nodes based on performance
and security requirements. It considers the IoT environment as
a four-tier architecture and models the applications in form of
microservices. However, the simulation components of IoTSim-
Osmosis are tightly coupled and constrained in imitating device
mobility. ECSNeT++ (Amarasinghe et al., 2020) is another simu-
lator developed by Amarasinghe et al. that mimics the execution
of distributed stream processing (DSP) applications in Edge/Fog
computing environments. It extends OMNeT++/INET and pro-
vides multiple configurations for two real DSP applications with
calibration and deployment management policy. Nevertheless,
ECSNeT++ lacks interfaces for supporting customized mobility of
IoT devices and forming dynamic clusters.

As Table 1 denotes that a majority of the existing simu-
lators does not integrate any real dataset. Thus, they enforce
users to adopt synthetic datasets, which are often non-portable
and cannot be applied directly to reproduce the simulation use
cases in varying contexts. The lack of benchmark policies also
makes several simulators unsuited to accurately validate and

R. Mahmud, S. Pallewatta, M. Goudarzi et al. The Journal of Systems & Software 190 (2022) 111351

c
r
o
c
a
t
o
s
f
a
a
c
a
t
t
c
d
c
t
s

3

t
o
s
M

b
s
a
w
v
s
e

Fig. 1. Overview of iFogSim2 simulator as an extension of existing iFogSim.
T
t
t
r

ompare the performances of any newly developed service and
esource management policies for Edge/Fog computing. More-
ver, most of the simulators are unable to simultaneously support
ustomized mobility, cluster formation and microservice man-
gement within Edge/Fog computing environment that lessen
heir credibility to a great extent. The monolithic architecture
f some simulators also restricts the scope of further exten-
ion and scalability, which consequently urges users to start
rom scratch for enabling any new functionalities. Aiming at
ddressing these technical gaps in terms of simulation practice
nd user experience, we have extended and redefined the core
omponents of existing iFogSim simulator in form of iFogSim2
nd enabled it to provide functional abstractions for supporting
he integration of real datasets. iFogSim2 also facilitates default
echniques for mobility management, node clustering, and mi-
roservice orchestration, which can be adopted as benchmarks
uring performance comparisons. Additionally, the simulation
omponents of iFogSim2 are highly modular that eases its cus-
omization for imitating a wide range of service management
cenarios in Edge/Fog computing environments.

. IFogSim2 components

To address the prevailing limitations of the iFogSim simula-
or in supporting the migration of application, logical grouping
f Fog nodes, and orchestration of loosely-coupled application
ervices, three new components, namely Mobility, Clustering and
icroservices have been implemented and included in iFogSim2.
Fig. 1 shows how the components of iFogSim2 simulator have

een extended from CloudSim and iFogSim. CloudSim is an exten-
ible simulation framework that supports modeling, simulation,
nd experimentation of Cloud computing environments along
ith provisioning techniques for cloud-native application ser-
ices (Calheiros et al., 2011). CloudSim 5.0, which is the latest ver-
ion of the Java-based simulator is developed with a distributed
vent management framework as its core platform. CloudSim
4

derives all the entities of the cloud environment (i.e., VM, Host,
Datacenter, etc.) from the SimEntity, which is a core class of the
simulator that enables the creation, scheduling, and processing
of the events represented by the SimEvent objects. To conduct
event-based simulations, CloudSim maintains a queue of future
SimEvents that are sorted based on their simulation time and
execute them sequentially by invoking event processing methods
from the SimEntity of the event. Herein, SimEvent class provides
a robust approach to create and simulate all events related to
the SimEntity objects (i.e., entity creation, VM deployment, task
scheduling, task execution etc.).

The core components of the CloudSim framework can be ex-
tended with ease to simulate dynamic resource provisioning and
application scheduling scenarios within distributed computing
paradigms. Hence, iFogSim was developed to model and simulate
IoT and Edge/Fog environments with CloudSim framework at
its center (Gupta et al., 2017). iFogSim extends the centralized
Datacenter object in CloudSim to create FogDevice which is used
to model distributed and heterogeneous computation resources
in Edge/Fog environments that span the continuum from edge
to cloud with direct communication among consecutive levels of
the Fog hierarchy. iFogSim introduces objects such as Sensors and
Actuators and IoT data streams (represented by Tuple class) to
provide support for simulation of IoT scenarios following sense-
process-actuate model. Moreover, the modular and distributed
application modeling for deployment within Edge/Fog environ-
ments is enabled by the implementation of AppModule objects
that collectively form an Application based on the Distributed Data
Flow (DDT) model.

While simulating any use case through basic iFogSim, its
Controller class contains the object references of all iFogSim
core classes such as FogDevice, Sensor, Actuator and AppModule.
hrough an Application object, the Controller class can also access
he Tuple class of iFogSim. Therefore, in the newly developed
hree components, we have inherited the Controller class sepa-
ately, so that they can be easily integrated with the core iFogSim

R. Mahmud, S. Pallewatta, M. Goudarzi et al. The Journal of Systems & Software 190 (2022) 111351

a
t
w
c
c

3

E
v
t
c
n
c
o

e
s
t
t
n
b

b
c
h
m
I
f
o
t
i
l
p
d
c
t
C

b
s

Fig. 2. (a) Block-wise Edge/Fog computing nodes, (b) Directional Movement of an user, and (c) Random Movement of an user in Melbourne Central Business District.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
simulator. Additionally, the Controller class of iFogSim itself is
subclass of SimEntity, which also helps bridge iFogSim2 with

he core CloudSim 5.0 simulator. Besides, FogDevice is updated
ith several parameters to support the integration of these new
omponents. In the following subsections, different iFogSim2
omponents are discussed in detail.

.1. Mobility

The Mobility of IoT devices can affect the performance of
dge/Fog computing, especially when they change access points
ery frequently (Toosi et al., 2019). This event urges to migrate
he requested application service of the IoT devices from one
omputing node (migration source) to another (migration desti-
ation) for ensuring the committed QoS. In a logical multi-tier
omputing infrastructure like Edge/Fog, such service migration
perations depend on the following aspects.

• The location of IoT devices.
• The timeline of movement or the mobility direction and

speed of the device.
• The identification of an intermediate node to which the

migration source can upload the corresponding application
service and the migration destination can download; pro-
vided that there is no direct link between the respective
migration points.

Based on them, the performance indicators of the Edge/Fog
nvironment such as network delay, energy consumption, and
ervice delivery time can also vary significantly. Therefore, taking
hese facts into account and aiming to assist users in customizing
hem, we have developed several classes in the Mobility compo-
ent of iFogSim2. A detailed description of these classes is given
elow.
DataParser: This class integrates various external datasets and

enchmarked parameters with different iFogSim2 components to
reate heterogeneous computing nodes and communication links
aving varying latency and bandwidths for simulating not only
obility but also clustering and microservice-based use cases.

t incorporates mechanisms for reading data from different file
ormats including .csv and .txt and can be further extended for
ther formats. As an illustration, here we have discussed how
he EUA Dataset has been augmented to iFogSim2 for simulat-
ng diverse mobility-driven scenarios. The EUA Dataset contains
ocation information such as latitude, longitude, licensing area,
ostcode, and elevation of a notable number of Edge/Fog nodes
eployed across Central Business District (CBD) regions of major
ities in Australia, including Melbourne and Sydney. The au-
henticity of this dataset is directly managed by the Australian
ommunications and Media Authority.
To ensure granularity, we further customized the EUA Dataset

y segmenting the respective regions in multiple blocks and
electing a particular node at the middle of each block as the
5

proxy server. All nodes but the proxy server within a block act as
the gateway for the IoT devices. As a means of notations, proxy
servers are specified as the tier-1 nodes in iFogSim2 and assumed
to be the immediate upper tier contact for the gateways residing
at the same block. In this case, the gateways are referred to as
tier-2 nodes. For example, Fig. 2a presents the location of tier-1
(marked in blue) and tier-2 (marked in red) nodes deployed in
the Melbourne CBD. Finally, such a logical hierarchy of Edge/Fog
nodes has been ended by connecting the proxy servers of all
blocks to a Cloud datacentre serving as the tier-0 node. To align
with the characteristics of conventional network topology, the
location of these computing nodes is set to be static. Furthermore,
using a config.properties file, these customized information are
injected to the DataParser class, which is easily modifiable as per
the simulation use cases.

Additionally, the DataParser class provides scope for assimi-
lating location information of multiple mobile users/IoT devices
individually so that respective application services can be man-
aged based on their distinctive mobility pattern without affecting
others. Currently, two different types of mobility patterns namely
DIRECTIONAL_MOBILITY and RANDOM_MOBILITY are associated
with the DataParser class through an object of Reference class.

• DIRECTIONAL_MOBILITY : This model refers to the fixed speed
acyclic movement of users/IoT devices. To realize the DI-
RECTIONAL_MOBILITY model, we have at first identified a
considerable number of sequential coordinates lying at the
same distances across the Melbourne CBD for a user/IoT
device (as shown in Fig. 2b). Later, based on those coordi-
nates, SimEvents using CloudSim 5.0 are created to mimic the
movement of the respective user/IoT device. During simula-
tions, the time interval between any two of such movements
is set to be equal for ensuring the fixed speed of the user/IoT
device. iFogSim2 provides a scope to tune this time interval
as per the test case requirements. Although this mobil-
ity model provides the pedestrial presentation of users’/IoT
devices’ movement, it is difficult and time-consuming to
generate for each individual. Therefore, iFogSim2 also incor-
porates the RANDOM_MOBILITY model for faster generation
of users’/IoT devices’ movement data.
• RANDOM_MOBILITY : There are several random mobility pat-

terns to model the mobility behavior of users. The Random-
MobilityGenerator class contains requirements to generate
and extend different random mobility models according
to various mobility characteristics, such as users’ direc-
tion, speed, stopping time in each position, and users’ so-
journ time in the communication range of each Edge/Fog
node. Currently, the RandomMobilityGenerator class imple-
ments two well-known random mobility models, called
random_waypoint and random_walk that can be used to rep-
resent the mobility model of either users or even Edge/Fog
nodes, if required. Besides, in multi-user scenarios, where
multiple different random mobility datasets are required,

R. Mahmud, S. Pallewatta, M. Goudarzi et al. The Journal of Systems & Software 190 (2022) 111351

E
a
i
c
L
f

s
s
a
i
e
o
s
r
C
o
t
C
p
r
s
F

i
w

t
t

m
m
t

e
t
i

c

A
t
F
C
e
c
ϕ
b
2
t
c

the RandomMobilityGenerator class can be configured to
generate different mobility datasets for users. Furthermore,
iFogSim2 users can use the functions embedded in Ran-
domMobilityGenerator class to generate mobility positions
in their desired Region of Interest (RoI). Fig. 2c depicts a
randommobility pattern where the RoI is in Melbourne CBD.

However, while parsing the location information of both
dge/Fog nodes and users/IoT devices, the DataParser class cre-
tes separate Location objects for each coordinate. The block-wise
nformation of the respective entities (servers and mobile objects)
an also be included in a Location object. Furthermore, using these
ocation objects, DataParser can refer to the LocationHandler class
or sequencing the movement events of all mobile entities.

MobilityController: Conventionally, iFogSim requires a test
cript where the overall simulation environment, including the
pecifications of sensors, actuators, Fog nodes, and applications
re defined. These classes are also set to be linked with the
FogSim simulation engine through a Controller object. How-
ver, for simulating any mobility-driven use cases, a synthesis
f such iFogSim core classes and the newly created mobility-
pecialized classes, including DataParser and LocationHandler is
equired. Therefore, in iFogSim2, we have created a subclass of
ontroller class named MobilityController and encapsulated the
bject references of those specialized classes within it so that
hey can collectively address the mobility-driven issues. Since the
ontroller class itself is a subclass of SimEntity, MobilityController
oses direct access to the SimEvent class of CloudSim 5.0. As a
esult, it allows the flexibility to dynamically initiate the required
equential or parallel events on different referenced objects of
ogDevice and AppModule for mobility management.
In iFogSim2, for initial placement of AppModules, the Mobil-

tyController refers to an object of MobilityPlacementMobileEdge-
ards class. This class replicates ModulePlacementEdgewards of

Algorithm 1 Mobility Management Logic
1: procedure ManageMobility(m, t)
2: dP ← getDataParserObject()
3: rF ← getReferenceObject()
4: lH ← getLocationHandlerObject()
5: Ltm ← dP .mobileLoction(m)
6: ρ ′ ← m.getParent()
7: η← m.getLevel()
8: ρ ← null
9: δ← rf .getMaxDistance()
10: for fu := Fη−1 do
11: Lfu ← dP .fogLoction(fu)
12: δ′ ← lH.calculateDistance(Lfu , L

t
m)

13: if δ′ ≤ δ then
14: δ← δ′

15: ρ ← fu
16: if ρ ′ ̸= ρ then
17: Λ← ρ ′.getPlacedModulesOf (m)
18: if ρ.inSameClusterOf (ρ ′) then
19: pushModules(ρ ′, ρ, Λ)
20: else
21: κ ← null
22: Φ ← getNodesInPath(ρ, Cloud)
23: Φ ′ ← getNodesInPath(ρ ′, Cloud)
24: for ϕ := Φ do
25: for ϕ′ := Φ ′ do
26: if ϕ = ϕ′ then
27: κ ← ϕ

28: break
29: pushModules(ρ ′, κ, Λ)
30: pushModules(κ, ρ, Λ)
31: m.setParent(ρ)
32: ρ.placeModules(m, Λ)
33: ρ ′.terminateModules(m, Λ)
6

core iFogSim with an additional feature that tracks the Fog node-
wise deployment of application modules/microservices for each
mobile entity in the simulation environment. Once the simulation
starts, MobilityController approaches to execute events, such as
launching of modules and management of resources as per the
initial placement. However, when it encounters any mobility-
driven event (e.g., changing of locations) as sequenced by the
LocationHandler class, MobilityController triggers a module mi-
gration operation. In this case, MobilityController executes the
built-in ManageMobility procedure as noted in Algorithm 1. This
procedure takes the object reference mobile entity m and the
SimEvent triggered timestamp t as the arguments (line 1) and
consists of the following five phases. For a better understanding
of the algorithm, Java-based object-oriented notations are used in
the description.
• Initialization: In this phase, the required initialization for

he mobility management operation is performed. At first, using
he Getter methods of MobilityController class, the object referrals
of DataParser, Reference and LocationHandler are extended to the
procedure (lines 2–4). Later, the location Ltm of the mobile entitym
at timestamp t is determined through the mobileLocation method
within the DataParser class (line 5). This procedure also identifies
the current upper tier contact ρ ′ (noted as parent Fog node) of

and its operating tier η using the Getter methods within the
obile entity (lines 6–7). An additional variable ρ is also format-

ed in the procedure to hold the reference of m’s prospective new
upper tier contact (due to location change) residing at the closest
distance (line 8). For realizing this case, another variable δ is set
with a maximum distant value denoted in the Reference class (line
9).
• New parent selection: Driven by the changing of locations,

this phase determines the minimum-distant new upper tier con-
tact for the mobile entity m. For such an operation, Algorithm 1
primarily considers Fη−1 as the set of all upper tier Fog nodes
corresponding to m and identifies the location Lfu of each fu ∈
Fη−1 with the help of DataParser object line (lines 10–11). Later,
the distance δ′ from m and a candidate fu is calculated. In this
case, the calculateDistance method of LocationHandler class is ex-
ploited that takes two location objects as arguments and returns
their haversine distance (line 12). Such exploration also continues
for other upper tier nodes, and the Fog node that resides at a
minimum distance from the mobile entity m is marked as its new
upper tier contact or parent node ρ (lines 13–15).
• Intra-cluster module migration: According to Algorithm 1, the

migration of application modules occurs when the current and
new upper tier contact (ρ ′ and ρ, respectively) of the mobile
ntity m differs (line 16). To deal with such a scenario, firstly,
he application modules Λ deployed in ρ ′ corresponding to m are
dentified (line 17). Later, it is checked whether both ρ ′ and ρ
belong to the same Fog node cluster (line 18). If this condition is
satisfied, ρ ′ simply push the modules Λ to ρ using their shared
cluster communication links (line 19). Such a shifting of modules
from one cluster node to another is referred to as the intra-cluster
module migration. Conversely, when ρ ′ and ρ do not share a
ommon cluster, inter-cluster migration is performed (line 20).
• Inter-cluster module migration: To start this approach,

lgorithm 1 firstly initializes a variable κ which is ultimately used
o refer a common accessible point for both ρ and ρ ′ (line 21).
or defining κ , it also includes all Fog nodes from ρ and ρ ′ to
loud in separate sets Φ and Φ ′, respectively (lines 22–23). Later,
ach Fog node ϕ ∈ Φ and ϕ′ ∈ Φ ′ are explored and mutually
ompared (lines 24–25). During the exploration, if any candidate
and ϕ′ indicates to the same Fog node, that node is defined to
e κ , and the exploration is immediately terminated (lines 26–
8). Subsequently, the application modules are pushed from ρ ′

o κ so that they can be further pushed to ρ ′ and migrated across
lusters (lines 29–30).

R. Mahmud, S. Pallewatta, M. Goudarzi et al. The Journal of Systems & Software 190 (2022) 111351

i
c
u
t

r
f
a
t
a
w
N
t
m
A

3

C
d
p
l
r
l
r
p
e
r
i
C
g

d
m
t
s
c
n
v

a
o
t
b
a
r
t
p
a
a
b

i
o
C
1
(
p
F
t
o

a
o
p
c
e
s

3

p
l
v
s
a
e
M
b
m
e
e
f
t
m
D
o
t
M
t

• Update: In the last phase of Algorithm 1, necessary updates
n the simulation environment based on either intra- or inter-
luster module migration are made. For example, the current
pper tier contact of mobile entity m is set as ρ (line 31). Finally,
he application modules Λ corresponding to m start execution in
ρ and ρ ′ terminates them.

Algorithm analysis: Algorithm 1 is a sample illustration of
managing mobility in iFogSim2. From line 10 to 15 of Algorithm
1, there are O(|Fη−1|) iterations, where |Fη−1| denotes the number
upper tier Fog nodes to the mobile entity m. Additionally, it has
O(|Φ| · |Φ ′|) iterations from line 24 to 28, where |Φ| and |Φ ′|
define the number of nodes residing in the path from ρ and ρ ′,
espectively. Such iterations helps ManageMobility procedure to
unction with polynomial time complexity. Moreover, it requires
dditional memory space to hold the references of new upper
ier contact ρ of the mobile entity, their distance δ, and common
ccessible point κ for both new and current upper tier contact,
hich can be resolved in O(1) complexity in worst case scenarios.
evertheless, using the mobility-specialized classes and respec-
ive methods of iFogSim2, further complex and comprehensive
obility management policies can be developed. In such cases,
lgorithm 1 can also be used as a benchmark.

.2. Clustering

In highly integrated computing environments, Edge/Fog and
loud resources are being simultaneously considered for service
elivery. Such resources are inherently heterogeneous with com-
lementary characteristics. Distributed fog nodes usually have
imited computing and storage resources compared to Cloud
esources, while they can be accessed with higher bandwidth and
ess latency. Therefore, resource augmentation can greatly help
esource-limited fog resources to be used for resource-critical ap-
lications, especially computing and storage resources (Goudarzi
t al., 2021). Accordingly, a clustering mechanism to enable
esource augmentation among Fog resources is of paramount
mportance. Such a clustering mechanism can also benefit multi-
loud service providers to communicate more efficiently to-
ether.
The Clustering component of iFogSim2 enables dynamic coor-

ination and cooperation among various nodes in a distributed
anner. While each node can probe and register their clus-

er members according to their specific clustering policy, the
cheduling and other iFogSim2 features are decoupled so that
lustering can be used for both centralized and distributed sce-
arios, such as scheduling, mobility management, and microser-
ices.
ClusteringController, which is extended from Controller, initi-

tes the process of dynamic clustering among different nodes. In
rder to adapt different scenarios, ClusteringController can trigger
he clustering mechanism on various occasions, such as at the
eginning of the simulation, after a specific simulation time, after
specific simulation event, or any combinations of these crite-

ia. Nodes receiving clustering messages in FogDevice can start
heir clustering process. The FogDevice is updated with several
arameters to keep the list of cluster members (CMs), bandwidth,
nd latency among CMs, just to mention a few. It also contains
processClustering method which triggers the clustering process
ased on the policy implemented in Clustering. As each node runs

the clustering process in a distributed manner, different policies
can be implemented in Clustering.

The current clustering policy, implemented in Clustering class,
works based on the communication range and/or latency among
different nodes. In Edge/Fog computing environments, heteroge-
neous nodes, either wired or wireless exist. So, clustering policies
can use various metrics for the creation of their clusters either
7

in the hierarchical or flattened model. The communication scope
of wireless nodes is usually estimated based on their commu-
nication ranges. Therefore, for each type of Edge/Fog node, a
communication range is defined according to their antenna’s
characteristics. Moreover, each node has a geographical position,
defined in the FogDevice. If a dataset for the position of nodes is
available, their geographical position can be parsed using Data-
Parser. Accordingly, each node based on its geographical position
and communication range can probe and create its list of CMs.
Furthermore, clustering can be performed based on the aver-
age latency among each pair of nodes, regardless of whether
these nodes are wireless or wired. In such scenarios, a clustering
communication latency threshold is defined, through which each
node can dynamically create its CMs. Algorithm 2 represents an
overview of Dynamic Distributed Clustering (DDC). First, each
Edge/Fog node retrieves the information about the location of
other Edge/Fog nodes (line 2). The information of nodes’ po-
sitions can be obtained by each node in different ways, such
as from (1) a centralized node (2) From a parent node in a
hierarchical approach, or (3) GPS. Also, each Fog node is aware
of the characteristics of its immediate parent, children nodes,
its communication range, and acceptable communication latency
(lines 3–6). Next, the latitude and longitude information of the
current Edge/Fog node will be compared by all other available
Edge/Fog nodes and those who are in the communication range
of the current node will be added to the clustering list of the
current node, listcmf (lines 9–16). The calculateInRange function
s responsible to calculate the distance of the current node to
ther Edge/Fog nodes. The latency of the current node to each
M will be estimated and stored in mapCMToLatency (lines 17–
8). If the communication latency of CMs is a clustering factor
which is checked by the lf flag), the list of current CMs will be
runed to find the CMs satisfying latency constraint (lines 19–25).
inally, the list of CMs listcmf of the current Fog node alongside
heir latency mappings mapCMToLatency will be returned as the
utputs (line 26).
Algorithm analysis: For Algorithm 2, there are O(|F |) iter-

tions in worst-case scenario, where |F | denotes the number
f Edge/Fog devices. Hence, the clustering algorithm helps to
erform distributed clustering in a linear time. Additionally, the
luster member list of each Edge/Fog device can have the refer-
nces of at most |F | − 1 entities in worst cases that incurs O(|F |)
pace complexity for Algorithm 2.

.3. Microservices

To harvest the full potential of the Edge/Fog computing
aradigm, application development has migrated from mono-
ithic architecture towards microservice architecture. Microser-
ices are designed as small and independent components re-
ponsible for carrying out a well-defined business function, en-
bling them to be moved between Edge/Fog and Cloud tiers
asily (Joseph and Chandrasekaran, 2019; Pallewatta et al., 2019).
ultiple loosely coupled microservices coordinate together to
uild applications. This allows microservice applications to be
odeled using DAGs where vertices denote the microservices and
dges represent the dependencies among microservices. How-
ver, simply modeling the application as a DAG is not sufficient
or the simulation of microservice application deployment. The
rue value of microservice architecture for Edge/Fog environ-
ents comes from the dynamism provided by the architecture.
ue to the loosely coupled and independently deployable nature
f the microservices, they can be shared among multiple applica-
ions and a large number of users, creating complex workflows.
icroservice scheduling algorithms exploit these characteristics

o scale microservices independently based on the workload and

R. Mahmud, S. Pallewatta, M. Goudarzi et al. The Journal of Systems & Software 190 (2022) 111351

s
m
p
f
u
c

v
s
c
t

c
a

a
T
e
m
t
m
e
f

b
m
i
E
i
w
d

m
c
i

Algorithm 2 Dynamic Distributed Clustering (DDC) Logic
1: procedure ManageClustering(f , t, loc, lf)
2: lHI ← loc.locationInfo()
3: ρ ← f .getParent()
4: η← ρ.getChildren()
5: δ← f .getRange()
6: σ ← f .getLatencyThresh()
7: listcmf ← null
8: mapCMToLatency← {}
9: fx ← lHI.get(f).lat
10: fy ← lHI.get(f).long
11: for f ′ := η do
12: f ′x ← lHI.get(f ′).lat
13: f ′y ← lHI.get(f ′).long
14: flag ← calculateInRange(fx, fy, f ′x , f

′
y , δ)

15: if flag then
16: listcmf .add(f ′)
17: latency← checkLatency(f , f ′)
18: mapCMToLatency.get(f ′)← latency
19: if lf then
20: temp← listcmf
21: for f ′ := listcmf do
22: if mapCMToLatency.get(f ′) > σ then
23: temp.remove(f ′)
24: mapCMToLatency.remove(f ′)
25: listcmf ← temp

26: return listcmf ,mapCMToLatency

resource availability of Edge/Fog nodes. Thus, microservice or-
chestration becomes a crucial process that combines distributed
microservice instances to create workflows dynamically. To this
end, Microservices component of iFogSim2 provides orchestration
upport to maintain seamless coordination between application
icroservices deployed across Edge/Fog and Cloud resources. To
rovide microservice orchestration, iFogSim2 models two main
eatures: service discovery and load balancing, which help sim-
lation of the dynamic nature of microservices within Edge/Fog
omputing environments.
MicroserviceFogDevice, which is created by extending FogDe-

ice makes it possible for Edge/Fog nodes to perform client-side
ervice discovery and load balancing to enable decentralized or-
hestration among microservices. Once a request is generated in
he form of a Tuple by a consumer microservice deployed on a
node, it uses ServiceDiscovery to retrieve locations of the service
provider and apply LoadBalancer logic to determine destination
node to route the created tuple. To support routing of the tuples
when multiple instances of the same microservice are available
on multiple Edge/Fog nodes, routing of the tuples is modeled
based on the destination node id of the tuple which is set after
executing the load balancer logic.

LoadBalancer and ServiceDiscovery are initialized as members
of the MicroserviceFogDevice. The default implementation of the
load balancer logic in iFogSim2 is based on Round Robin Load Bal-
ancing where requests are distributed equally among microser-
vice instances. The users of the iFogSim2 can incorporate different
load balancing logic to simulate the microservice behavior by
implementing LoadBalancer interface. ServiceDiscovery stores mi-
roservice to node mapping which can be dynamically updated
t any point of time during the simulation using SimEvents.
MicroservicesController which is extended from Controller initi-

tes microservice-based application placement and orchestration.
o this end, it initializes the LoadBalancer and ServiceDiscov-
ry objects within each Fog node of the simulation environ-
ent and generates routing data to be used by Edge/Fog node

o perform node id based routing of data tuples generated by
odeled applications. Default implementation contains Short-
st Path Routing with flexibility for the user to incorporate dif-
erent routing protocols. MicroservicesMobilityClusteringController
8

Algorithm 3 Scalable Microservice Placement Logic (SMP)
1: procedure ManageMicroservicePlacement(F , a)
2: mapNodeToµInst ← {}
3: mapNodeToSD← {}
4: mplaced ← {}

5: P ← getLeafToRootPaths(F)
6: mapPtoNextNode← getNextNode(P)
7: m← getNextMicroservice(a,mplaced)
8: while m is not null do
9: for p := P do
10: f ← mapPtoNextNode.get(p)
11: if resourcesavailf ≥ resourcesreqm then
12: placeModule(f ,m)
13: mapNodeToµInst.get(f).add(m)
14: f .updateResourcesAvail()
15: else
16: notPlacedPaths.add(p)
17: for p := notPlacedPaths do
18: f ← mapPtoNextNode.get(p)
19: F ′ ← f .getCMs()
20: placed← false
21: for f ′ := F ′ do
22: if resourcesavailf ′ ≥ resourcesreqm then
23: placeModule(f ′,m)
24: mapNodeToµInst.get(f ′).add(m)
25: f ′.updateResourcesAvail()
26: placed← true
27: break
28: while placed is false do
29: f ← getNextInPath(p, f)
30: if resourcesavailf ≥ resourcesreqm then
31: placeModule(f ,m)
32: mapNodeToµInst.get(f).add(m)
33: f .updateResourcesAvail()
34: placed← true
35: mapPtoNextNode.get(p).set(f)
36: mplaced.add(m)
37: m← getNextMicroservice(a,mplaced)
38: mapNodeToSD← generateSD(mapNodeToµInst)
39: return mapNodeToµInst,mapNodeToSD

extends MicroservicesController and integrates it with the Mo-
ility component of iFogSim2 to provide mobility support for
icroservice applications. It is also integrated with the Cluster-

ng component of iFogSim2 to enable dynamic clustering among
dge/Fog nodes that host microservices. Moreover, this controller
mplements dynamic updating of service discovery information
ith user mobility-induced microservice deployment and routing
ata updates due to user movements.
MicroservicePlacementLogic is the base class to implement the

icroservice application placement policy. Users of the iFogSim2
an extend this class to implement their placement policies. As
ts outputs MicroservicePlacementLogic provides two mappings:

1. Microservice to node mapping, which indicates where
each microservice of the application gets deployed.

2. Service discovery information per node, which is calcu-
lated based on the microservice to node mapping. This en-
sures that all nodes hosting a client microservice is aware
of the locations of the service instances, that are accessed
by the said microservice.

Algorithm 3 provides an overview of Scalable Microservice
Placement Logic (SMP), which is the default microservice place-
ment policy available in iFogSim2. It is an edgeward placement
algorithm for microservices, which focuses on horizontally scaling
microservices among Edge/Fog nodes of the same cluster before
moving towards upper-tier nodes of the Edge/Fog hierarchy. First,
the placement policy identifies leaf to root paths (P) considered
for placement (line 5) and initializes the mapPtoNextNode with

R. Mahmud, S. Pallewatta, M. Goudarzi et al. The Journal of Systems & Software 190 (2022) 111351

t
(
c

he first eligible node in each path for the placement process
line 6). Leaf to root paths are calculated based on the physi-
al topology created by all available Edge/Fog nodes (F). Each
path in P starts with a user/IoT device and traverses upward
within the Edge/Fog hierarchy until it reaches the Cloud. For
the microservice application, the next eligible microservice for
placement is determined by traversing its DAG representation
(line 7). A microservice becomes eligible for placement if all
predecessor microservices are mapped to nodes. Afterward, the
policy iteratively tries to place eligible microservices onto the
next eligible node of each path (lines 9–16). If sufficient resources
are not available within the considered node, the policy considers
cluster members (lines 21–27) before moving onto the next tier
(lines 28–35). After all microservice instances are mapped to
nodes, the algorithm generates service discovery information for
each node hosting client microservices by traversing through the
mapNodeToSD (line 38).

Algorithm analysis: In Algorithm 3, for the worst-case sce-
nario, there are O(|Ma|.|P|.|F |) iterations, where |Ma|, |P| and |F |
denote the number of microservices of the application a, number
of leaf to root paths and number of Edge/Fog devices respec-
tively. Such iterations help SMP placement algorithm to complete
within polynomial time complexity. Additionally, each Edge/Fog
device can have the service discovery information of at most
|P|.(|Ma| − 1) microservice instances, which in worst case incurs
O(|P|.|Ma|) space complexity for Algorithm 3. Nevertheless, mi-
croservice orchestration related classes and methods in iFogSim2
provides a platform to develop more complex placement algo-
rithms and simulate the behavior of microservice deployment
within Fog/Edge environments. In such cases, Algorithm 3 can be
used as a benchmark.

These objects together create a platform to model microser-
vices in Edge/Fog computing environments, while capturing their
dynamic, independent, and scalable nature.

4. Performance evaluation

This section discusses the simulation of a set of Edge/
environments using iFogSim2 for different application case stud-
ies, including Audio Translation Service (ATS), Cardiovascular
Health Monitoring (CHM), and Crowd-sensed Data Collection
(CDC). We selected these three case studies to better illustrate
the importance of the functionalities proposed in iFogSim2. ATS
is an application used by mobile users whereas CHM application
consists of multiple services that benefit from design and devel-
opment based on microservice architecture. Finally, CDC repre-
sents a use case that combines both mobility of the end-users and
microservices-based design. After their implementation, we eval-
uated the efficiency of various combinations of iFogSim2’s built-in
Mobility, Clustering, and Microservice management policies with
respect to latency, network usage, and energy consumption for
each case study. Each parameter is calculated using in-built
features available in iFogSim; latency is calculated using both
processing latency of the Edge/Fog nodes and network latency
which consists of transmission and propagation delay of the
data (Mahmud et al., 2018; Pallewatta et al., 2019), network usage
is computed based on the amount of data propagated across
the network during the simulation time (Pallewatta et al., 2019),
and finally the energy consumption is determined considering
idle and busy power usage of the nodes (Ali et al., 2020). We
also parameterized the lightweight and modular architecture of
iFogSim2 in terms of RAM usage and execution time and com-
pared it with the existing simulators, including IoTSim-Edge (Jha
et al., 2020) and PureEdgeSim (Mechalikh et al., 2019). The use
cases and the experiment results are discussed below.
9

4.1. Case study 1: Audio Translation Service (ATS)

Translation service is highly recommended for tourists, es-
pecially when they are visiting non-native language speaking
countries. Currently, Google and Microsoft offer different transla-
tor services to the users, which mainly deal with text and imagery
inputs (Kepuska and Bohouta, 2018). Since the frequency and
variations of such inputs can be easily estimated or controlled,
their processing is usually performed by following a specific set of
operations without requiring any additional services. As a result,
most state-of-the-art smartphones can execute these translation
services with the available computing resources they have. How-
ever, for audio-based translation, various computation-intensive
data pre-processing operations are required as the pitch intensity
varies between the users, and the background noises always
couple tightly with the actual data (Yoon et al., 2018). Conversely,
for smartphones, the real-time adjustment or update of external
services for performing these operations is not often feasible due
to additional overhead. In such scenarios, the exploitation of Fog
computation can be a potential solution for Audio Translation
Service (ATS).

However, in any Fog computing-based ATS system, a majority
of users are expected to be mobile and their smartphones are
regarded as the data sources. Therefore, to meet the desired
QoS, efficient mobility-aware service management techniques are
required for such an ATS. Considering this issue, we have modeled
a mobility-driven simulation case study on Fog computing-based
ATS in iFogSim2. The details of the application model, simulation
parameters, comparing mobility management policies and their
performances for this case study are discussed below.

4.1.1. Application model
To align with the distributed data flow approach adopted by

core iFogSim, we have modeled the application for ATS as a
Directed Acyclic Graph (DAG) (shown in Fig. 3). It consists of three
application modules, which are described in the following

• Client module: It is deployed on smartphones that primarily
grasp audio data from the integrated sensors. The Client
module also performs necessary authentications to access
the ATS and forwards the data to the Processing module for
further analysis.
• Processing module: It is expected to execute by the tier-2

nodes for faster interactions with the smartphones. How-
ever, various computation-intensive Artificial Intelligence
(AI)-enabled audio data analysis operations including data
filtration, noise reduction, pitch classification, and speech
segmentation are performed by the Processing module. The
results of these analyses are then pushed back to the Client
module so that they can be displayed to the user via the
smartphone display.
• Storage module: The Processing module forwards the in-

put data and analytical outputs to the Storage module for
periodic updates of the AI models and thus ensures the
enhanced performance of the ATS.

Considering the amount of audio data generated through such
an ATS, it is recommended to host the Storage module in Cloud
for further scalability.

4.1.2. Simulation environment
The simulation environment for the ATS use case is highly

aligned with the EUA dataset of iFogSim2, having 118 Fog gate-
ways residing at 12 different blocks across the Melbourne CBD.
We assume that the smartphones of mobile users can connect
with any of the gateways (tier-2 nodes). The gateways of a par-
ticular block can also interact with a Cloud datacentre (tier-0

R. Mahmud, S. Pallewatta, M. Goudarzi et al. The Journal of Systems & Software 190 (2022) 111351

c
r
o
i
(

4

o
m
t
t
a
d
a
u
t
t
i

Fig. 3. Application model for Audio Translation Service (ATS).
Table 2
Simulation parameter for the ATS.
Duration of experiment : 500 s

Number of location change events:140

Resource type ⇒
Configuration ⇓

Cloud VM Proxy server Fog gateway Smart-phone

Numbers 10 12 118 50
Speed (MIPS) 4480 3600–4000 2800–3000 500
RAM (GB) 16 16 8 1
Uplink (MBPS) 100 10 50 100
Downlink (MBPS) 100 20 100 200
Busy power (MJ) 1468 428 206 60
Idle power (MJ) 1332 333 170 35

Attribute ⇒
Module ⇓

RAM (GB) Input (MB) Output (MB) CPU length (MI)

Client 0.10 2 2.5 500
Processing 4 2.5 1.5 2500
Storage 4 1 1 1000
i
b
m
m
t
C
t
a
n
a
t
i
p
t
d
t
t
m

m
c
u
t
w
t
r
u

nodes) via a proxy server (tier-1 nodes). The specifications of the
computing infrastructure along with that of application modules
are presented in Table 2. The simulation experiments are con-
ducted on an Intel Core 2 Duo CPU @ 2.33-GHz with 2 GB-RAM
onfigured computer, and the fractional selectivity of input–output
elationship within a module is set to be 1.0. The numeric values
f the simulation parameters have been extracted from the exist-
ng literature as mentioned in Rahman et al. (2018) and Liu et al.
2019).

.1.3. Comparing policies
While imitating the ATS case study in iFogSim2, the movement

f smartphones are set to vary using both directional and random
obility pattern. For organizing computing services according

o such mobility patterns, migration of application modules is
he key. There exist different techniques in the literature that
ccomplish module migration either by connecting source with
estination on ad-hoc basis (Mahmud et al., 2018) or by using
n intermediate point (Puliafito et al., 2018). Depending on the
se of Cloud-based VMs (as a migration mediator) and node-
o-node networking for module migration, we have simulated
hree different mobility management techniques in the proposed
FogSim2. These techniques are listed below.

• Cloud-centric migration: In this approach, the current
upper-tier contact (source gateway) of a mobile smartphone
pushes the respective application modules directly to the
Cloud VMs. Later, the Cloud VMs pushes the modules to
the new upper tier contact (destination gateway) of the
smartphone.
• Non-hierarchical migration: By connecting all Fog gate-

ways through a mesh communication channel, this ap-
proach allows the direct migration of application modules
between source and destination. As a result, the upper-
tier Fog nodes remain uninvolved during module migration,
leading it to be a non-hierarchical operation.
10
• Intra/Inter-cluster migration: This approach refers to the
built-in mobility management policy of iFogSim2 as dis-
cussed in Algorithm 1. It only involves the upper-tier Fog
nodes in migrating modules if the source and destination
gateway does not belong to the same cluster. Here, the node
clustering is performed by Algorithm 2.

4.1.4. Results
The performance of the comparing techniques is discussed

below.
• Average Migration time: Fig. 4 depicts the average delay

n migrating application modules for different comparing mo-
ility management policies. Since Cloud datacentres reside at a
ultihop distance from the gateways, the transfer of application
odules to the Cloud and later their forwarding to the des-

ination gateway increases the overall migration delay for the
loud-centric approach. Conversely, the Intra/Inter-cluster migra-
ion technique exploits all possible options to select a common
ccessible node (CAN) for both source and destination gateway
ot only in the node hierarchy but also in horizontal levels. As
result, it is more likely to find a CAN in the proximity of

he gateways than that of a Cloud-centric approach, minimiz-
ng the migration delay. However, the Non-hierarchical policy
rovides the most desirable outcome in this case as it exploits
he mesh connectivity between source and destination gateway
uring module migration reducing the delay significantly. Never-
heless, as the assurance of large-scale mesh connectivity across
he gateway is costly, such an approach is feasible only when user
obility is confined.
Furthermore, directional mobility presents better manage-

ent of average migration delay than random mobility in all
omparing policies. It happens because, in directional mobility,
ser speed remains the same. As a result, despite location change,
heir source and destination gateway are less likely to vary
ithin a short distance. Consequently, it reduces the number of
otal migration events and lessens the delay. Conversely, during
andom mobility, the number of migration events can increase
nevenly, resulting in increased migration delay.

R. Mahmud, S. Pallewatta, M. Goudarzi et al. The Journal of Systems & Software 190 (2022) 111351

n
T
f

T
d
g
b
P
c
i

Fig. 4. Time to migrate application modules.

Fig. 5. Network usage during module migration.

• Average Network usage: Fig. 5 portrays the average net-
work resource usage during module migration for different simu-
lating techniques. As the realization of the Cloud-centric approach
involves multiple nodes within the communication path between
gateways and Cloud to migrate modules in both directions, it con-
sequently increases their collective network usage. Nevertheless,
the Intra/Inter-cluster technique performs slightly better in this
case as it attempts to reduce the involvement of intermediate
nodes during module migration and consequently lessens their
network usage. Conversely, the Non-hierarchical approach only
exploits the network resources which is available within the
communication link between the source and destination gateway,
resulting in the least usage.

Moreover, as the number of migrating events increases with
random mobility, network usage increases. On the other hand, by
limiting the occurrence of such events, directional mobility can
help to lower network resource usage.
• Average Energy consumption: Fig. 6 illustrates the con-

sumption of energy during module migration for different
adopted policies. For the Cloud-centric approach, the increment
in energy usage is obvious as it directly involves Cloud datacen-
tres conventionally consuming a significant portion of energy in
the distributed computing ecosystem. The involvement of other
intermediate nodes further contributes to increasing the overall
energy consumption. The random mobility of users can also
elevate energy usage during mobility management by increasing
the migration frequency. In comparison, both Intra/Inter-cluster
and Non-hierarchical module migration approaches perform well
in managing energy usage as they resist the involvement of Cloud
and intermediate nodes to a greater extent for such an operation.

4.2. Case study 2: Cardiovascular Health Monitoring (CHM)

Electrocardiogram (ECG) monitoring is a widely used method
for diagnosing heart diseases using both reactive and proactive
methods (Cheikhrouhou et al., 2021; Pallewatta et al., 2019). In
IoT-based smart healthcare, wearable sensors are used to sense
and transmit ECG signals towards analysis platforms that host
11
Fig. 6. Energy consumed during module migration.

applications developed for detecting concerning heart conditions.
Such applications are designed to perform multiple tasks, includ-
ing: filtering ECG data to remove data anomalies, ECG feature
extraction and generating emergency warnings in the real-time,
long-term collection, and analysis of data to make predictions to
ensure preventive measures (Goudarzi et al., 2021).

Design and development of such IoT applications increas-
ingly use modular architectures, especially microservices archi-
tecture to enable balanced deployment of real-time tasks within
resource-constrained Fog resources and latency tolerant tasks
within Cloud datacentres. Hence, Cardiovascular Health Monitor-
ing (CHM) is designed following microservice architecture and
modeled using DAG-based modeling of applications integrated
into iFogSim2.

4.2.1. Application model
Fig. 7 shows the microservice architecture of the CHM applica-

tion, where vertices represent each microservice and edges depict
the data dependencies among microservices. CHM consists of four
microservices, namely Preprocessing Microservice, Emergency Diag-
osis Microservice, Prediction Microservice, and Client Microservice.
he specifications of each microservice are described in what
ollows:

• Client Microservice: This is the mobile front end of the CHM
application. Client microservice is deployed on users’ smart-
phones and receives raw ECG signals transmitted by the
sensors that are wirelessly connected to each smartphone.
Also, it is responsible for sending sensor data towards Pre-
processing Microservice placed in either Edge/Fog or Cloud
and displaying results received after processing.
• Preprocessing Microservice: The Preprocessing microservice

performs data cleaning using filters to filter out noise added
to ECG sensor data during transmission. Moreover, data
anomalies in the sensed data are also removed before send-
ing data for further processing.
• Emergency Diagnosis Microservice: This microservice is re-

sponsible for real-time analysis and identification of con-
cerning health conditions like heart attacks and sending
back a warning signal towards the client microservice to
trigger an emergency notification.
• Prediction Microservice: Prediction microservice stores and

analyses ECG time series data using machine learning mod-
els to predict health risks to the patients. Prediction reports
are sent back to the mobile front end to be displayed for
users.

hese microservices communicate together to monitor and pre-
ict the cardiovascular health of users. Preprocessing and Emer-
ency Diagnosis microservices form a latency-critical service to
e placed on Fog or Cloud, based on the placement policy whereas
rediction Microservice represents a service that requires high
omputation and storage resources and is expected to be placed
n the Cloud.

R. Mahmud, S. Pallewatta, M. Goudarzi et al. The Journal of Systems & Software 190 (2022) 111351

4

w
a
c
p
g
T
o
m
A
m
4
o
v
t
G

4

o
t
t
a
c
n
T
t
v
t
f

Fig. 7. Microservice application model for the Cardiovascular Health Monitoring (CHM).
4

b

a
C
a
f
c
a
p
o
a
p
s
f
n
i
s
E
t
m
a
c
w
H
c
a

c
e
o
p
e
a
i
o
o
d
b
p
b
c
t
m

Fig. 8. The average delay of the CHM application.

.2.2. Simulation environment
For this case study, a physical topology of 7 Fog nodes is used,

hich consists of 6 Wifi gateways (tier-2 nodes) connecting to
single proxy server. Besides, the proxy server (tier-1 nodes) is
onnected to the Cloud datacentre (tier-0 nodes). Also, 25 smart-
hones with randomly generated locations connect with the Wifi
ateways to send ECG sensor data towards the Fog environment.
he specifications of the computing infrastructure along with that
f application modules are presented in Table 3. Furthermore, to
odel the physical topology, MicroserviceFogDevcie, Sensor and
ctuator classes of iFogSim2 are used. The simulation experi-
ents are conducted on an Intel Core i7 CPU @ 1.80-GHz with a
GB-RAM computer and the fractional selectivity of the input–
utput relationship within a module is set to be 1.0. The numeric
alues of the simulation parameters have been extracted from
he existing literature as mentioned in Pallewatta et al. (2019),
oudarzi et al. (2020) and Xu et al. (2019).

.2.3. Comparing policies
The independently scalable nature of the microservices is

ne of the main characteristics of the microservice architecture
hat suits the distributed and resource-constrained nature of
he Edge/Fog resources. To horizontally scale the microservice
nd load balance among multiple instances, scheduling poli-
ies can benefit from the dynamic clustering of the Edge/Fog
odes (Joseph and Chandrasekaran, 2019; Pallewatta et al., 2019).
hus, in this case study, we implement three different placement
echniques that represent different combinations of Microser-
ices and Clustering related features introduced in iFogSim2
o evaluate performance under their presence and absence, as
ollows:

• Edgeward: This placement technique only considers vertical
scalability of application modules without taking Fog node
clustering and horizontal scalability-based load balancing
into consideration (Gupta et al., 2017).
• SMP-No-Clustering: It uses horizontal scalability and load

balancing features available in microservice orchestration of
iFogSim2 but does not implement clustering of Fog nodes.
12
• SMP-Clustering: Such an approach makes use of both mi-
croservice orchestration and clustering features available in
iFogSim2.

.2.4. Results
The performance of the comparing techniques are discussed

elow.
• Average delay of control loop: The control loop of the CHM

pplication, which is the most latency-sensitive loop, consists of
lient microservice→ Preprocessing Microservice→ Emergency Di-
gnosis Microservice→ Client microservice. The less average delay
or this control loop demonstrates better placement decision and
oordination among computational resources. Fig. 8 depicts the
verage delay for the execution of this control loop for three
lacement techniques. It depicts that the average execution delay
f the control loop significantly decreases for SMP-No-Clustering
nd SMP-Clustering in comparison to the Edgeward. Edgeward
lacement moves microservices upwards to the Fog hierarchy,
uch that a single instance of each microservice is deployed
or each edge to Cloud path. Due to the resource-constrained
ature of Fog nodes, this approach places microservice instances
n higher Fog tiers, thus increasing average delay. Also, the results
how that the SMP-Clustering outperforms SMP-No-Clustering.
ven though SMP-No-Clustering uses horizontal scalability, due
o lack of clustering, microservices are scaled among nodes on
ultiple Fog tiers whereas, in the case of SMP-Clustering, clusters
re dynamically formed among Fog nodes of the same hierar-
hical tier, which enables microservices to be horizontally scaled
ithin nodes of the same tier before moving to the upper tier.
ence, the SMP-Clustering scenario places latency-critical mi-
roservices closer to the edge network which results in lower
verage delay.
• Energy consumption:
Fig. 9 shows the amount of energy consumed by different

lasses of nodes and total energy consumption obtained through
ach technique. As Fig. 9a demonstrates the energy consumption
f Cloud resources is higher in the Edgeward technique because it
laces most of the microservices on the Cloud VMs. However, the
nergy consumption of Cloud resources for SMP-No-Clustering
nd SMP-Clustering are lower while they consume more energy
n the Fog tier due to running more microservices in the resources
f that tier. While energy consumption at different tiers depends
n the number of microservices running on that tier, Fig. 9b
epicts that the total energy consumption of all nodes is reduced
y in SMP-No-Clustering and SMP-Clustering. It highlights the
ositive effect of more efficient distribution, scaling, and load
alancing of microservices in the Fog tier compared to more
entralized approaches. Also, the results of SMP-Clustering prove
he potential of clustering for better scaling and load balancing of
icroservices either vertically or horizontally.

R. Mahmud, S. Pallewatta, M. Goudarzi et al. The Journal of Systems & Software 190 (2022) 111351

i
n
i
l
n
t
p
o
t
C
C
S
c
H
o
n

Table 3
Simulation parameter for the CHM.
Duration of experiment : 20000 s

Number of location change events:140

Resource type ⇒
Configuration ⇓

Cloud VM Proxy server Fog gateway Smart-phone

Numbers 16 1 6 25
Speed (MIPS) 2500–3000 2500–3000 2500–3000 500
RAM (GB) 16 16 8 1
Uplink (MBPS) 100 10 50 100
Downlink (MBPS) 100 20 100 200
Busy power (MJ) 107.339 107.339 107.339 87.530
Idle power (MJ) 83.433 83.433 83.433 82.440

Attribute ⇒
Module ⇓

RAM (GB) Input (MB) Output (MB) CPU length (MI)

Client 0.10 0.5 0.5 1000
Preprocessing 0.5 0.5 0.5 2000
Emergency Diagnosis 0.5 0.5 0.5 2500
Prediction 2 0.5 0.5 4000
Fig. 9. Energy consumption for running the CHM application (a) Energy consumed by the resources of different tiers, (b) Total energy consumption of resources.
Fig. 10. The total network usage of the CHM application.

• Network usage:
The total amount of data transferred in the network is an

mportant metric for the evaluation of different techniques. Tech-
iques resulting in high data transmission may lead to congestion
n the network, service interruption, or increasing average de-
ay of the applications’ control loop, especially in high-density
etworks. Fig. 10 illustrates the total network usage of different
echniques in Megabytes (MB). It demonstrates that Edgeward
lacement incurs higher network usage due to excessive usage
f higher tier Fog nodes and Cloud datacentre in comparison
o the other two techniques. Furthermore, it shows that SMP-
lustering results in lower network usage compared to SMP-No-
lustering. Although the clustering mechanism embedded in the
MP-Clustering requires data transmission for the formation of
lusters, it is a lightweight mechanism in terms of network usage.
ence, in a long simulation time, SMP-Clustering outperforms
ther techniques due to the efficient usage of the lower tier Fog
odes and better load balancing.
13
4.3. Case study 3: Crowd-sensed Data Collection (CDC)

Crowd-sensing exploits internet-connected sensors to collect
vast amounts of data that can be analyzed to retrieve complex
information. Crowd-sensed Data Collection (CDC) application rep-
resents a mobile crowd-sensed scenario that aids urban road
network planning. Within urban settings, road system design and
traffic signal controlling are extremely challenging. Thus, these
tasks can benefit from complex machine learning algorithms.
As such algorithms require large amounts of data for accurate
decision making, vehicular crowd-sensing is used as a solution
for data collection. Sensors onboard mobile vehicles sense and
transmit real-time location and speed data that can be used to
derive traffic conditions of the road networks. Using this method,
any vehicle can voluntarily share data with the data analytic
platforms, which results in a collection of large volumes of data.
Such applications can benefit from Fog computing environments
to process the data closer to the edge network, thereby reduc-
ing the burden on the data transmission networks connecting
sensors to the Cloud. So we design a CDC application following
the microservice architecture and modeled it using DAG-based
modeling of applications integrated with iFogSim2.

4.3.1. Application model
Fig. 11 shows the microservice architecture of the CDC ap-

plication, where vertices represent each microservice and edges
depict the data dependencies among microservices. CDC consists
of two microservices, namely Nginx Microservice, Processing Mi-
croservice and a database to store data for further processing. The
specifications of each microservice are described in what follows:

• Nginx Microservice: This is the webserver that acts as the
gateway to the processing microservice. Nginx microservice

R. Mahmud, S. Pallewatta, M. Goudarzi et al. The Journal of Systems & Software 190 (2022) 111351

r
s
a
e
t
f
t
c
n
t
G
t
v
e
R

4

i
E
a
t

Fig. 11. Microservice application model for the Crowd-sensed Data Collection (CDC).
Table 4
Simulation parameter for the CDC.
Duration of experiment : 500 s

Tuple generation rate : 5/s

Mobility interval : 10–50 s

Number of total nodes : 100–200

Resource type ⇒
Configuration ⇓

Mobile vehicles Tier-2 node Tier-1 node Tier-0 node

Percentage of nodes 30% 30% 20% 20%
Speed (MIPS) 500–1000 2000–2500 3000–2500 4000–5000
RAM (GB) 2 4 8 16
Uplink (MBPS) 100 50 10 100
Downlink (MBPS) 200 100 50 150
Busy power (MJ) 50–100 200–300 400–600 1500–2000
Idle power (MJ) 20–30 80–100 150–200 700–900
4

e
P
m
d

e
I
c

receives data, which is generated by the vehicular sen-
sor network, and routes that data towards the Processing
microservice to perform data analytics. Also, it is responsi-
ble for load balancing requests among multiple Processing
microservices.
• Processing Microservice: The processing microservice is re-

sponsible for sanitizing the sensor data, extracting features
that represent trajectories of vehicles, and sending the pro-
cessed data towards the Cloud to be saved in a time-series
database. Data analytic platforms can use crowd-sensed data
stored in the database for urban planning.

4.3.2. Simulation environment
Table 4 presents the specifications of general simulation pa-

ameters used in imitating the CDC case study. The value of
imulation parameters within a specific range is determined by
pseudo-random number generator. Moreover, the computing
nvironment is set to be hierarchical having mobile vehicles at
he lowest tier. Tier-2 Fog nodes are marked as the gateway,
ollowed by proxy servers and Cloud at tier-1 and tier-0, respec-
ively. During experiments, the total number of nodes and their
onfigurations are set to be varied to depict that iFogSim2 has
o limitations in mimicking the node’s increment and defining
he node-level heterogeneity. An Intel Core 2 Duo CPU @ 2.33-
Hz with 2 GB-RAM configured computer has been used to execute
he simulation script and perform the experiments. The numeric
alues of the simulation parameters have been extracted from the
xisting literature as mentioned in Pallewatta et al. (2019) and
ahman et al. (2018).

.3.3. Comparing simulators
The simulation environment for the CDC use case has been

mplemented on three different simulators including IoTSim-
dge (Jha et al., 2020) and PureEdgeSim (Mechalikh et al., 2019)
long with iFogSim2. These simulators have been selected due to
he following reasons:

• These simulators are specifically developed for the simu-
lation of different scenarios in Edge and Fog computing
environments.
• They are among the recent inclusions to the literature. For

example, IoTSim-Edge was proposed in 2020, while PureEd-

geSim has been updated on multiple occasions since it was

14
first developed in 2019. Both also offer open source license
for further extension.2 ,3
• Their Java programming language-based implementation

does not arise any compatibility issues with the proposed
iFogSim2 simulator, which also helps in reconstructing the
experimental results.
• These simulators have been recently considered in several

related works by the researchers, e.g., Savaglio and Fortino
(2021), Cruz et al. (2020) and Qayyum et al. (2021), Mecha-
likh et al. (2020) have considered IoTSim-Edge and PureEd-
geSim, respectively.

In what follows, we briefly describe each simulator:

• IoTSim-Edge: This monolithic simulator supports the imita-
tion of microservices in form of microelements and provides
support for customizing the user mobility; however, lacks
abstractions for node clustering.
• PureEdgeSim: It supports the modularization of different

simulation components and facilities qualitative allocation
of tasks using a built-in Fuzzy inference engine; neverthe-
less, barely provides functionalities for node clustering and
microservice management.
• iFogSim2: The proposed simulator is well-equipped with

APIs and built-in policies for illustrating mobility, microser-
vice, and node clustering-related use cases in Edge/Fog com-
puting environments. The function of its different compo-
nents can also be tuned as per the case studies to create
variations in the simulations.

.3.4. Results
The simulation experiments on the CDC use case study are

xclusively exploited to demonstrate the efficacy of IoTSim-Edge,
ureEdgeSim, and iFogSim2 simulators in terms of supporting
obility, microservice, and node clustering issues. The results are
iscussed below.
• RAM usage: Table 5 illustrates the RAM usage of differ-

nt simulators for varying simulation configurations. As noted,
oTSim-Edge supports the imitation of device mobility and mi-
roservice orchestration in Edge/Fog computing environments.

2 https://github.com/DNJha/IoTSim-Edge.
3 https://github.com/CharafeddineMechalikh/PureEdgeSim.

https://github.com/DNJha/IoTSim-Edge
https://github.com/CharafeddineMechalikh/PureEdgeSim

R. Mahmud, S. Pallewatta, M. Goudarzi et al. The Journal of Systems & Software 190 (2022) 111351

u
t

b
a
c
s
b
f

a
a
s
o
a
e
A
p
f
e
d
o
i
C
m
s
w

c
3
s
o
p
s

I
r
t
i
a
d

Table 5
Memory usage for different simulators on a 2 GB RAM device.
Simulators ⇒
Variations ⇓

IoTSim-Edge Pure
EdgeSim

iFogSim2

Mobility 26%
0.52 GB

38%
0.76 GB

12%
0.24 GB

Mobility+Microservices 26%
0.52 GB

– 21%
0.42 GB

Mobility+Clustering – – 19%
0.38 GB

Microservices+Clustering – – 15%
0.30 GB

Mobility+Microservices+Clustering – – 32%
0.64 GB
However, as it does not facilitate modularization of the simulation
components and mostly operates in a monolithic manner, its RAM
usage does not vary for Mobility and Mobility+Microservices sim-
lation configurations. Conversely, PureEdgeSim only supports
he Mobility configuration. Nevertheless, this simulator consumes
more RAM than other simulators because of its
built-in Fuzzy inference engine, supporting task allocation based
on qualitative features. On the other hand, iFogSim2 supports a
wide range of simulation configurations, including Mobility, Mo-
ility+Microservices, Mobility+Clustering, Microservices+Clustering
nd Mobility+Microservices+Clustering. Despite facilitating such
onfigurations, the RAM usage for iFogSim2 does not increase
ignificantly because of its modular architecture and lightweight
uilt-in service and resource management policies. Illustratively,
or the Mobility configuration, which is common for all comparing
simulators, iFogSim2 operates with an average of 20% less RAM
usage.
• CPU and power usage: Fig. 12 denotes the CPU utilization of

different simulators in a stacked manner while operating in dif-
ferent configurations—which is Mobility, Mobility+Microservices,
nd Mobility+Microservices+Clustering for iFogSim2, and Mobility
nd Mobility+Microservices for PureEdgeSim and IoTSim-Edge, re-
pectively. This performance parameter indicates the percentage
f total working time when a computing processor core was actu-
lly being utilized by these simulators to process the simulation
vents. During this experiment, System Information, Gathering
nd Reporting (SIGAR) APIs have been used to grasp the per
rocess CPU usage (Reddy and Rajamani, 2014). Although the
requent I/O operations of iFogSim2 involving external datasets
levate the CPU usage, its simulation configurations support more
iversity due to the modular implementations compared to that
f the other simulators. The CPU utilization of PureEdgeSim also
ncreases because of its recurring access to the fuzzy rule-base.
onversely, the increased number of in-memory operations and
onolithic structure of IoTSim-Edge restrict this simulator to
imulate only a particular type of event (Mobility+Microservices)
ith the least CPU usage.
Furthermore, Fig. 13 indicates the power consumption of

omparing simulators, accumulated using Intel Power Gadget
.6 (Öztürk, 2019). This software tool estimates the power con-
umption of a process depending on the clock speed frequency
f the CPU in GHz and the temperature of the CPU. Since these
arameters explicitly depend on the CPU usage, this power con-
umption study shows a similar trend like Fig. 12.
• Simulation time: Fig. 14 depicts the simulation time of

oTSim-Edge, PureEdgeSim and iFogSim2 for Mobility configu-
ation. With the increasing number of location change events,
he simulation time escalates for all simulators. Although this
ncrement is small for the lower limits of the x-axis, it is compar-
tively higher at the opposite end. In particular, as PureEdgeSim
eliberately exploits the Fuzzy inference for managing mobility,
15
Fig. 12. CPU usage for different simulators.

Fig. 13. Power consumption for different simulators.

it requires more time to imitate the effect of changing locations.
However, iFogSim2 performs well in this case, more specifi-
cally with an average of 37% improvement because of its low
complexity built-in mobility management techniques. Its modu-
lar architecture further helps to outperform IoTSim-Edge, which
cannot ensure mobility management in a segmental manner.

5. Conclusions and future work

Efficient resource management in Edge/Fog computing en-
vironment is an important challenge due to the dynamic and
heterogeneous nature of Edge/Fog nodes and IoT devices. In this
paper, we put forward the iFogSim2 simulator, which is an ex-
tension of the iFogSim simulator, to address service migration
for different mobility models of IoT devices, distributed cluster
formation among Edge/Fog nodes of different hierarchical tiers,
and microservice orchestration. To support different simulation
scenarios, the new components of the iFogSim2 simulators are
loosely coupled, so that components (Mobility, Clustering, and

R. Mahmud, S. Pallewatta, M. Goudarzi et al. The Journal of Systems & Software 190 (2022) 111351

c
m
i
l
t
t
a
s
a

S

h

C

W

P

D

c
t

R

A

A

A

Fig. 14. Simulation processing time for different simulators.

Microservices) can be solely used for the simulation, or they can
be integrated for more complex scenarios. Besides, to enhance
the usability of iFogSim2, several case studies and test scripts are
implemented and integrated with this simulator, which simplifies
the process of defining new policies and case studies for its users.
The results demonstrate the effectiveness of using iFogSim2 for
different case studies and also prove its low footprint with an
average of 28% improvement in ram usage and simulation time
compared to other related simulators.

Although iFogSim2 provides many competitive advantages
ompared to existing simulators in imitating Edge/Fog environ-
ents for mobility, node cluster and microservice management,

t lacks of supports for simulating 5G network slices and cross-
ayer security. In addition to addressing them, as future work,
he iFogSim2 simulator can be further improved by integra-
ion of monetary-based policies, simulating distributed ledgers
cross Fog nodes, setting different communication profiles for
ensors such as LoRa and Bluetooth, and simulating distributed
nd federated machine learning approaches.

oftware availability

The source code of the iFogSim2 simulator is accessible from:
ttps://github.com/Cloudslab/iFogSim2

RediT authorship contribution statement

Redowan Mahmud: Implementation of mobility component,
riting the paper. Samodha Pallewatta: Implementation of

the microservices component, Writing the paper. Moham-
mad Goudarzi: Implementation of mobility and clustering
components, Writing the paper. Rajkumar Buyya: Supervisor,
roviding technical advises.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

eferences

frin, M., Jin, J., Rahman, A., Gasparri, A., Tian, Y.-C., Kulkarni, A., 2021. Robotic
edge resource allocation for agricultural cyber-physical system. IEEE Trans.
Netw. Sci. Eng. 1.

li, B., Pasha, M.A., ul Islam, S., Song, H., Buyya, R., 2020. A volunteer-supported
fog computing environment for delay-sensitive IoT applications. IEEE Internet
Things J. 8 (5), 3822–3830.

lsaedi, A., Tari, Z., Mahmud, R., Moustafa, N., Mahmood, A.N., Anwar, A., 2022.
USMd: UnSupervised misbehaviour detection for multi-sensor data. IEEE
Trans. Dependable Secure Comput. 1.
16
Alwasel, K., Jha, D.N., Habeeb, F., Demirbaga, U., Rana, O., Baker, T., Dustdar, S.,
Villari, M., James, P., Solaiman, E., Ranjan, R., 2021. IoTSim-Osmosis: A
framework for modeling and simulating IoT applications over an edge-cloud
continuum. J. Syst. Archit. 116, 101956.

Amarasinghe, G., de Assuncao, M.D., Harwood, A., Karunasekera, S., 2020.
ECSNeT++: A Simulator for distributed stream processing on edge and cloud
environments. Future Gener. Comput. Syst. 111, 401–418.

Ashouri, M., Lorig, F., Davidsson, P., Spalazzese, R., 2019. Edge computing
simulators for IoT system design: An analysis of qualities and metrics. Future
Internet 11 (11), 235.

Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R., 2011.
CloudSim: a toolkit for modeling and simulation of cloud computing envi-
ronments and evaluation of resource provisioning algorithms. Softw. - Pract.
Exp. 41 (1), 23–50.

Cheikhrouhou, O., Mahmud, R., Zouari, R., Ibrahim, M., Zaguia, A., Gia, T.N.,
2021. One-dimensional CNN approach for ECG arrhythmia analysis in fog-
cloud environments. IEEE Access 9, 103513–103523. http://dx.doi.org/10.
1109/ACCESS.2021.3097751.

Cruz, B.D., Paul, A.K., Song, Z., Tilevich, E., 2020. Stargazer: A deep learning ap-
proach for estimating the performance of edge-based clustering applications.
In: Proceedings of the IEEE International Conference on Smart Data Services
(SMDS). IEEE, pp. 9–17.

Deng, Q., Goudarzi, M., Buyya, R., 2021. FogBus2: a lightweight and distributed
container-based framework for integration of IoT-enabled systems with edge
and cloud computing. In: Proceedings of the International Workshop on Big
Data in Emergent Distributed Environments, pp. 1–8.

Goudarzi, M., Palaniswami, M., Buyya, R., 2019. A fog-driven dynamic resource
allocation technique in ultra dense femtocell networks. J. Netw. Comput.
Appl. 145, 102407.

Goudarzi, M., Palaniswami, M., Buyya, R., 2021. A distributed application place-
ment and migration management techniques for edge and fog computing
environments. In: Proceedings of the 16th Conference on Computer Science
and Information Systems (FedCSIS 2021). IEEE Press, USA.

Goudarzi, M., Wu, H., Palaniswami, M., Buyya, R., 2020. An application place-
ment technique for concurrent IoT applications in edge and fog computing
environments. IEEE Trans. Mob. Comput. 20 (4), 1298–1311.

Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R., 2017. IFogSim: A toolkit for
modeling and simulation of resource management techniques in the internet
of things, edge and fog computing environments. Softw. - Pract. Exp. 47 (9),
1275–1296.

Jha, D.N., Alwasel, K., Alshoshan, A., Huang, X., Naha, R.K., Battula, S.K., Garg, S.,
Puthal, D., James, P., Zomaya, A., et al., 2020. IoTSim-Edge: A simulation
framework for modeling the behavior of internet of things and edge
computing environments. Softw. - Pract. Exp. 50 (6), 844–867.

Joseph, C.T., Chandrasekaran, K., 2019. Straddling the crevasse: A review of
microservice software architecture foundations and recent advancements.
Softw. - Pract. Exp. 49 (10), 1448–1484.

Kepuska, V., Bohouta, G., 2018. Next-generation of virtual personal assistants
(microsoft cortana, apple siri, amazon alexa and google home). In: Proceed-
ings of the IEEE 8th Annual Computing and Communication Workshop and
Conference (CCWC). IEEE, pp. 99–103.

Lera, I., Guerrero, C., Juiz, C., 2019. YAFS: A simulator for IoT scenarios in fog
computing. IEEE Access 7, 91745–91758.

Liu, X., Fan, L., Xu, J., Li, X., Gong, L., Grundy, J., Yang, Y., 2019. FogWorkflowSim:
an automated simulation toolkit for workflow performance evaluation in fog
computing. In: Proceedings of the 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, pp. 1114–1117.

Mahmud, R., Ramamohanarao, K., Buyya, R., 2018. Latency-aware application
module management for fog computing environments. ACM Trans. Internet
Technol. (TOIT) 19 (1), 1–21.

Mahmud, R., Ramamohanarao, K., Buyya, R., 2019. Edge affinity-based manage-
ment of applications in fog computing environments. In: Proceedings of the
12th IEEE/ACM International Conference on Utility and Cloud Computing. In:
UCC’19, ACM, New York, NY, USA, pp. 61–70.

Mahmud, R., Toosi, A.N., 2021. Con-Pi: A Distributed container-based edge and
fog computing framework. IEEE Internet Things J. 1.

Mass, J., Srirama, S.N., Chang, C., 2020a. STEP-ONE: simulated testbed for edge-
fog processes based on the opportunistic network environment simulator. J.
Syst. Softw. 166, 110587.

Mass, J., Srirama, S.N., Chang, C., 2020b. STEP-ONE: Simulated testbed for edge-
fog processes based on the opportunistic network environment simulator. J.
Syst. Softw. 166, 110587.

Mechalikh, C., Taktak, H., Moussa, F., 2019. PureEdgeSim: A simulation toolkit
for performance evaluation of cloud, fog, and pure edge computing environ-
ments. In: Proceedings of the International Conference on High Performance
Computing Simulation (HPCS), pp. 700–707.

Mechalikh, C., Taktak, H., Moussa, F., 2020. A fuzzy decision tree based tasks
orchestration algorithm for edge computing environments. In: Proceedings
of the International Conference on Advanced Information Networking and
Applications. Springer, pp. 193–203.

https://github.com/Cloudslab/iFogSim2
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb1
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb1
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb1
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb1
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb1
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb2
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb2
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb2
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb2
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb2
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb3
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb3
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb3
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb3
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb3
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb4
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb4
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb4
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb4
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb4
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb4
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb4
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb5
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb5
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb5
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb5
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb5
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb6
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb6
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb6
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb6
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb6
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb7
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb7
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb7
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb7
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb7
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb7
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb7
http://dx.doi.org/10.1109/ACCESS.2021.3097751
http://dx.doi.org/10.1109/ACCESS.2021.3097751
http://dx.doi.org/10.1109/ACCESS.2021.3097751
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb9
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb9
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb9
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb9
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb9
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb9
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb9
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb11
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb11
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb11
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb11
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb11
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb12
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb12
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb12
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb12
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb12
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb12
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb12
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb13
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb13
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb13
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb13
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb13
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb14
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb14
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb14
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb14
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb14
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb14
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb14
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb15
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb15
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb15
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb15
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb15
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb15
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb15
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb16
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb16
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb16
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb16
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb16
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb17
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb17
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb17
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb17
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb17
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb17
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb17
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb18
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb18
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb18
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb19
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb19
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb19
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb19
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb19
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb19
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb19
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb20
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb20
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb20
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb20
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb20
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb21
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb21
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb21
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb21
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb21
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb21
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb21
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb22
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb22
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb22
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb23
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb23
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb23
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb23
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb23
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb24
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb24
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb24
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb24
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb24
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb26
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb26
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb26
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb26
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb26
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb26
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb26

R. Mahmud, S. Pallewatta, M. Goudarzi et al. The Journal of Systems & Software 190 (2022) 111351

M

M

Ö

P

P

P

Q

Q

R

R

S

S

S

T

T

W

X

Y

m
w
a
a
t
e

erenda, M., Porcaro, C., Iero, D., 2020. Edge machine learning for AI-enabled
IoT devices: a review. Sensors 20 (9), 2533.

oysis, S., Zacharias, G., Demetris, T., George, P., Marios D., D., 2020. Fogify: A
fog computing emulation framework. In: Proceedings of the 5th ACM/IEEE
Symposium on Edge Computing. In: SEC ’20, Association for Computing
Machinery, New York, NY, USA.

ztürk, M.M., 2019. Deep learning-based software energy consumption profil-
ing. In: The International Conference on Artificial Intelligence and Applied
Mathematics in Engineering. Springer, pp. 73–83.

allewatta, S., Kostakos, V., Buyya, R., 2019. Microservices-based IoT application
placement within heterogeneous and resource constrained fog comput-
ing environments. In: Proceedings of the 12th IEEE/ACM International
Conference on Utility and Cloud Computing, pp. 71–81.

uliafito, C., Goncalves, D.M., Lopes, M.M., Martins, L.L., Madeira, E., Mingozzi, E.,
Rana, O., Bittencourt, L.F., 2020. MobFogSim: Simulation of mobility and
migration for fog computing. Simul. Model. Pract. Theory 101, 102062.

uliafito, C., Mingozzi, E., Vallati, C., Longo, F., Merlino, G., 2018. Companion
fog computing: Supporting things mobility through container migration at
the edge. In: Proceedings of the IEEE International Conference on Smart
Computing (SMARTCOMP). IEEE, pp. 97–105.

ayyum, T., Malik, A.W., Khattak, M.A.K., Khalid, O., Khan, S.U., 2018. FogNet-
Sim++: A toolkit for modeling and simulation of distributed fog environment.
IEEE Access 6, 63570–63583.

ayyum, T., Trabelsi, Z., Malik, A.W., Hayawi, K., 2021. Multi-level resource
sharing framework using collaborative fog environment for smart cities. IEEE
Access 9, 21859–21869.

ahman, F.H., Au, T.W., Newaz, S.S., Suhaili, W.S.H., 2018. A performance study of
high-end fog and fog cluster in iFogSim. In: Proceedings of the International
Conference on Computational Intelligence in Information System. Springer,
pp. 87–96.

eddy, P.V.V., Rajamani, L., 2014. Evaluation of different operating systems per-
formance in the private cloud with ESXi hypervisor using SIGAR framework.
In: 2014 5th International Conference - Confluence the Next Generation
Information Technology Summit (Confluence). pp. 18–23.

alama, M., Elkhatib, Y., Blair, G., 2019. IoTNetsim: A modelling and simulation
platform for end-to-end IoT services and networking. In: Proceedings of the
12th IEEE/ACM International Conference on Utility and Cloud Computing. In:
UCC’19, ACM, New York, NY, USA, ISBN: 9781450368940, pp. 251–261.

avaglio, C., Fortino, G., 2021. A simulation-driven methodology for IoT data
mining based on edge computing. ACM Trans. Internet Technol. (TOIT) 21
(2), 1–22.

onmez, C., Ozgovde, A., Ersoy, C., 2018. Edgecloudsim: AN environment for per-
formance evaluation of edge computing systems. Trans. Emerg. Telecommun.
Technol. 29 (11), e3493.

he World Economic Forum, 2019. How much data is generated each day?.
https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-
each-day-cf4bddf29f/ (Online; accessed 29 August 2021).

oosi, A.N., Mahmud, R., Chi, Q., Buyya, R., 2019. Management and orchestration
of network slices in 5G, fog, edge, and clouds. Fog Edge Comput.: Princ.
Paradig. 8, 79–96.

ei, J., Cao, S., Pan, S., Han, J., Yan, L., Zhang, L., 2020. SatEdgeSim: A
toolkit for modeling and simulation of performance evaluation in satellite
edge computing environments. In: Proceedings of the 12th International
Conference on Communication Software and Networks (ICCSN), pp. 307–313.

u, X., Liu, Q., Luo, Y., Peng, K., Zhang, X., Meng, S., Qi, L., 2019. A computation
offloading method over big data for IoT-enabled cloud-edge computing.
Future Gener. Comput. Syst. 95, 522–533.

oon, S., Byun, S., Jung, K., 2018. Multimodal speech emotion recognition using
audio and text. In: Proceedings of the IEEE Spoken Language Technology
Workshop (SLT). IEEE, pp. 112–118.
17
Redowan Mahmud is currently working as a Postdoc-
toral Fellow (Cloud, Systems and Security Discipline,
Level B) in the School of Computing Technologies, STEM
College, RMIT University. He received PhD from the
School of Computing and Information Systems, the Uni-
versity of Melbourne, in 2020 and completed B.Sc. from
Department of Computer Science and Engineering, Uni-
versity of Dhaka, Bangladesh. Previously, Dr. Mahmud
served at the University of Melbourne as a Research
Associate in Computing and Information Systems and
Monash University as a Research Assistant in Infor-

ation Technology. To date, he has supervised eight industry-intern projects
ith Red Cross Lifeblood and Happsa Group Pty Ltd. His primary research
reas are Fog/Edge computing, Internet of Things, Software-defined networking,
nd Mobile cloud computing. Dr. Mahmud is one of the main contributors of
he iFogSim simulator, FogBus framework and Con-Pi software systems, used
xtensively for resource management research in Fog/Edge computing.

Samodha Pallewatta is a Ph.D. student at the Cloud
Computing and Distributed Systems (CLOUDS) Lab-
oratory, Department of Computing and Information
Systems,the University of Melbourne, Australia. Her
research interests encompass Fog Computing, Internet
of Things (IoT) and Distributed Systems. She is one of
the contributors of the iFogSim simulator, used exten-
sively for resource management research in Fog/Edge
computing.

Mohammad Goudarzi is working towards the Ph.D.
degree at the Cloud Computing and Distributed Sys-
tems (CLOUDS) Laboratory, Department of Computing
and Information Systems, the University of Melbourne,
Australia. He was awarded the Melbourne International
Research Scholarship (MIRS) supporting his studies.
He is also selected as the high-talented PhD student
in the University of Melbourne, and is awarded the
Rowden-White scholarship. His research interests in-
clude Internet of Things (IoT), Fog/Edge Computing,
Distributed Systems, and Machine Learning. He is one

of the contributors of the iFogSim simulator, and also among the contributors
of the FogBus2 framework, a distribtued and containerized framework used
extensively for large-scale resource management research in Cloud/Fog/Edge
computing.

Dr. Rajkumar Buyya is a Redmond Barry Distinguished
Professor and Director of the Cloud Computing and
Distributed Systems (CLOUDS) Laboratory at the Uni-
versity of Melbourne, Australia. He has authored over
625 publications and seven text books including ‘‘Mas-
tering Cloud Computing’’ published by McGraw Hill,
China Machine Press, and Morgan Kaufmann for Indian,
Chinese and international markets respectively. He is
one of the highly cited authors in computer science
and software engineering worldwide (h-index=154,
g-index=322, 124,500+ citations).

http://refhub.elsevier.com/S0164-1212(22)00086-3/sb27
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb27
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb27
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb28
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb28
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb28
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb28
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb28
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb28
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb28
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb29
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb29
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb29
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb29
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb29
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb31
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb31
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb31
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb31
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb31
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb32
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb32
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb32
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb32
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb32
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb32
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb32
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb33
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb33
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb33
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb33
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb33
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb34
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb34
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb34
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb34
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb34
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb35
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb35
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb35
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb35
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb35
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb35
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb35
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb36
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb36
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb36
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb36
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb36
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb36
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb36
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb37
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb37
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb37
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb37
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb37
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb37
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb37
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb38
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb38
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb38
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb38
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb38
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb39
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb39
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb39
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb39
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb39
https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/
https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/
https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb41
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb41
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb41
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb41
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb41
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb43
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb43
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb43
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb43
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb43
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb44
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb44
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb44
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb44
http://refhub.elsevier.com/S0164-1212(22)00086-3/sb44

	iFogSim2: An extended iFogSim simulator for mobility, clustering, and microservice management in edge and fog computing environments
	Introduction
	Related work
	IFogSim2 components
	Mobility
	Clustering
	Microservices

	Performance evaluation
	Case study 1: Audio Translation Service (ATS)
	Application model
	Simulation environment
	Comparing policies
	Results

	Case study 2: Cardiovascular Health Monitoring (CHM)
	Application model
	Simulation environment
	Comparing policies
	Results

	Case study 3: Crowd-sensed Data Collection (CDC)
	Application model
	Simulation environment
	Comparing simulators
	Results

	Conclusions and future work
	Software Availability
	CRediT authorship contribution statement
	Declaration of competing interest
	References

