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SUMMARY

Clusters, Grids, and peer-to-peer (P2P) networks have emerged as popular paradigms for next generation
parallel and distributed computing. They enable aggregation of distributed resources for solving large-
scale problems in science, engineering, and commerce. In Grid and P2P computing environments, the
resources are usually geographically distributed in multiple administrative domains, managed and owned by
different organizations with different policies, and interconnected by wide-area networks or the Internet.
This introduces a number of resource management and application scheduling challenges in the domain
of security, resource and policy heterogeneity, fault tolerance, continuously changing resource conditions,
and politics. The resource management and scheduling systems for Grid computing need to manage
resources and application execution depending on either resource consumers’ or owners’ requirements,
and continuously adapt to changes in resource availability.

The management of resources and scheduling of applications in such large-scale distributed systems is
a complex undertaking. In order to prove the effectiveness of resource brokers and associated scheduling
algorithms, their performance needs to be evaluated under different scenarios such as varying number of
resources and users with different requirements. In a Grid environment, it is hard and even impossible
to perform scheduler performance evaluation in a repeatable and controllable manner as resources and
users are distributed across multiple organizations with their own policies. To overcome this limitation, we
have developed a Java-based discrete-event Grid simulation toolkit called GridSim. The toolkit supports
modeling and simulation of heterogeneous Grid resources (both time- and space-shared), users and
application models. It provides primitives for creation of application tasks, mapping of tasks to resources,
and their management. To demonstrate suitability of the GridSim toolkit, we have simulated a Nimrod-G
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like Grid resource broker and evaluated the performance of deadline and budget constrained cost- and
time-minimization scheduling algorithms. Copyright  2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The proliferation of the Internet and the availability of powerful computers and high-speed networks
as low-cost commodity components are changing the way we do large-scale parallel and distributed
computing. The interest in coupling geographically distributed (computational) resources is also
growing for solving large-scale problems, leading to what is popularly called the Grid [1] and
peer-to-peer (P2P) computing [2] networks. These enable sharing, selection and aggregation of
suitable computational and data resources for solving large-scale data intensive problems in science,
engineering, and commerce. A generic view of Grid computing environment is shown in Figure 1.
The Grid consists of four key layers of components: fabric, core middleware, user-level middleware,
and applications [3]. The Grid fabric includes computers (low-end and high-end computers including
clusters), networks, scientific instruments, and their resource management systems. The core Grid
middleware provides services that are essential for securely accessing remote resources uniformly
and transparently. The services they provide include security and access management, remote job
submission, storage, and resource information. The user-level middleware provides higher-level tools
such as resource brokers, application development and adaptive runtime environment. The Grid
applications include those constructed using Grid libraries or legacy applications that can be Grid
enabled using user-level middleware tools.

The user essentially interacts with a resource broker that hides the complexities of Grid computing
[4,5]. The broker discovers resources that the user can access using information services, negotiates
for access costs using trading services, maps tasks to resources (scheduling), stages the application
and data for processing (deployment), starts job execution, and finally gathers the results. It is also
responsible for monitoring and tracking application execution progress along with adapting to the
changes in Grid runtime environment conditions and resource failures.

The computing environments comprise heterogeneous resources (PCs, workstations, clusters, and
supercomputers), fabric management systems (single system image OS, queuing systems, etc.) and
policies, and applications (scientific, engineering, and commercial) with varied requirements (CPU,
input/output (I/O), memory and/or network intensive). The users: producers (also called resource
owners) and consumers (also called end-users) have different goals, objectives, strategies, and
demand patterns. More importantly both resources and end-users are geographically distributed with
different time zones. In managing such complex Grid environments, traditional approaches to resource
management that attempt to optimize system-wide measures of performance cannot be employed. This
is because traditional approaches use centralized policies that need complete state information and
a common fabric management policy, or decentralized consensus based policy. In large-scale Grid
environments, it is impossible to define an acceptable system-wide performance matrix and common
fabric management policy. Apart from the centralized approach, two other approaches that are used
in distributed resource management are: hierarchical and decentralized scheduling or a combination
of them [6]. We note that similar heterogeneity and decentralization complexities exist in human
economies where market driven economic models have been used to successfully manage them.
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Figure 1. A generic view of the World-Wide Grid computing environment.

Therefore, in [6–8], we investigated the use of economics as a metaphor for management of resources
in Grid computing environments.

A Grid resource broker, called Nimrod-G [5], has been developed that performs scheduling
of parameter sweep, task-farming applications on geographically distributed resources. It supports
deadline and budget-based scheduling driven by market-based economic models. To meet users’
quality of service requirements, our broker dynamically leases Grid resources and services at runtime
depending on their capability, cost, and availability. Many scheduling experiments have been conducted
on the execution of data-intensive, science applications such as molecular modeling for drug design
under a few Grid scenarios (like 2 h deadline and 10 machines for a single user). The ability to
experiment with a large number of Grid scenarios was limited by the number of resources that were
available in the WWG (World-Wide Grid) testbed [9]. Also, it was impossible to create a repeatable and
controlled environment for experimentation and evaluation of scheduling strategies. This is because
resources in the Grid span across multiple administrative domains, each with their own policies, users,
and priorities.

The researchers and students, investigating resource management and scheduling for large-scale
distributed computing, need a simple framework for deterministic modeling and simulation of
resources and applications to evaluate scheduling strategies. For most who do not have access to
ready-to-use testbed infrastructures, building them is expensive and time consuming. Also, even for
those who have access, the testbed size is limited to a few resources and domains; and testing
scheduling algorithms for scalability and adaptability, and evaluating scheduler performance for
various applications and resource scenarios is harder and impossible to trace. To overcome these
limitations, we provide a Java-based Grid simulation toolkit called GridSim. The Grid computing
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researchers and educators also recognized the importance and the need for such a toolkit for modeling
and simulation environments [10]. It should be noted that this paper has a major orientation towards
Grid, however, we believe that our discussion and thoughts apply equally well to P2P systems since
resource management and scheduling issues in both systems are quite similar.

The GridSim toolkit supports modeling and simulation of a wide range of heterogeneous resources,
such as single or multiprocessors, shared and distributed memory machines such as PCs, workstations,
SMPs, and clusters with different capabilities and configurations. It can be used for modeling and
simulation of application scheduling on various classes of parallel and distributed computing systems
such as clusters [11], Grids [1], and P2P networks [2]. The resources in clusters are located in a single
administrative domain and managed by a single entity, whereas in Grid and P2P systems, resources
are geographically distributed across multiple administrative domains with their own management
policies and goals. Another key difference between cluster and Grid/P2P systems arises from the way
application scheduling is performed. The schedulers in cluster systems focus on enhancing overall
system performance and utility, as they are responsible for the whole system. In contrast, schedulers in
Grid/P2P systems called resource brokers, focus on enhancing performance of a specific application in
such a way that its end-users’ requirements are met.

The GridSim toolkit provides facilities for the modeling and simulation of resources and network
connectivity with different capabilities, configurations, and domains. It supports primitives for
application composition, information services for resource discovery, and interfaces for assigning
application tasks to resources and managing their execution. These features can be used to simulate
resource brokers or Grid schedulers for evaluating performance of scheduling algorithms or heuristics.
We have used the GridSim toolkit to create a resource broker that simulates Nimrod-G for design and
evaluation of deadline and budget constrained scheduling algorithms with cost and time optimizations.

The rest of this paper is organized as follows. Section 2 discusses related work with highlights on
unique features that distinguish our toolkit from other packages. The GridSim architecture and internal
components that make up GridSim simulations are discussed in Section 3. Section 4, discusses how
to build GridSim based scheduling simulations. Sample results of simulation of a resource broker
similar to Nimrod-G with a deadline and budget constrained cost-optimization scheduling algorithm
is discussed in Section 5. The final section summarizes the paper along with suggestions for future
works.

2. RELATED WORK

Simulation has been used extensively for modeling and evaluation of real world systems, from business
process and factory assembly lines to computer systems design. Accordingly, over the years, modeling
and simulation has emerged as an important discipline and many standard and application-specific tools
and technologies have been built. They include simulation languages (e.g. Simscript [12]), simulation
environments (e.g. Parsec [13]), simulation libraries (SimJava [14]), and application specific simulators
(e.g. OMNet++ network simulator [15]). While a large body of knowledge and tools exists, there
are very few tools available for application scheduling simulation in Grid computing environments.
The notable ones are: Bricks [16], MicroGrid [17], SimGrid [18], and our GridSim toolkit.

The Bricks simulation system [16], developed at the Tokyo Institute of Technology in Japan, helps in
simulating client-server like global computing systems that provide remote access to scientific libraries
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and packages running on high-performance computers. It follows centralized global scheduling
methodology as opposed to our work in which each application scheduling is managed by the users’
own resource broker.

The MicroGrid emulator [17], undertaken at the University of California at San Diego (UCSD), is
modeled after Globus [19]. It allows execution of applications constructed using the Globus toolkit in
a controlled virtual Grid emulated environment. The results produced by emulation can be precise, but
modeling numerous applications, Grid environments, and scheduling scenarios for realistic statistical
analysis of scheduling algorithms is time consuming as applications run on emulated resources. Also,
scheduling algorithms, designers generally work with application models instead of constructing
actual applications. Therefore, MicroGrid’s need for an application constructed using Globus imposes
significant development overhead. However, when an actual system is implemented by incorporating
scheduling strategies that are evaluated using simulation, the MicroGrid emulator can be used as a
complementary tool for verifying simulation results with real applications.

The SimGrid toolkit [18], developed at UCSD, is a C language based toolkit for the simulation
of application scheduling. It supports modeling of resources that are time-shared and the load can be
injected as constants or from real traces. It is a powerful system that allows creation of tasks in terms of
their execution time and resources with respect to a standard machine capability. Using SimGrid APIs,
tasks can be assigned to resources depending on the scheduling policy being simulated. It has been used
for a number of real studies, and demonstrates the power of simulation. However, because SimGrid is
restricted to a single scheduling entity and time-shared systems, it is difficult to simulate multiple
competing users, applications, and schedulers, each with their own policies when operating under
a market-like Grid computing environment, without extending the toolkit substantially. Also, many
large-scale resources in the Grid environment are space-shared machines and they need to be supported
in simulation. Hence, our GridSim toolkit extends the ideas in existing systems and overcomes their
limitations accordingly.

Finally, we have chosen to implement GridSim in Java by leveraging SimJava’s [14] basic discrete
event simulation infrastructure. This feature is likely to appeal to educators and students since Java has
emerged as a popular programming language for network computing.

3. GridSim: GRID MODELING AND SIMULATION TOOLKIT

The GridSim toolkit provides a comprehensive facility for simulation of different classes of
heterogeneous resources, users, applications, resource brokers, and schedulers. It can be used to
simulate application schedulers for single or multiple administrative domain distributed computing
systems such as clusters and Grids. Application schedulers in the Grid environment, called resource
brokers, perform resource discovery, selection, and aggregation of a diverse set of distributed resources
for an individual user. This means that each user has his or her own private resource broker and hence
it can be targeted to optimize for the requirements and objectives of its owner. In contrast, schedulers,
managing resources such as clusters in a single administrative domain, have complete control over the
policy used for allocation of resources. This means that all users need to submit their jobs to the central
scheduler, which can be targeted to perform global optimization such as higher system utilization and
overall user satisfaction depending on resource allocation policy or optimize for high priority users.
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3.1. Features

Salient features of the GridSim toolkit include the following.

• It allows modeling of heterogeneous types of resources.
• Resources can be modeled operating under space- or time-shared mode.
• Resource capability can be defined (in the form of MIPS (Million Instructions Per Second) as

per SPEC (Standard Performance Evaluation Corporation) benchmark).
• Resources can be located in any time zone.
• Weekends and holidays can be mapped depending on resource’s local time to model non-Grid

(local) workload.
• Resources can be booked for advance reservation.
• Applications with different parallel application models can be simulated.
• Application tasks can be heterogeneous and they can be CPU or I/O intensive.
• There is no limit on the number of application jobs that can be submitted to a resource.
• Multiple user entities can submit tasks for execution simultaneously in the same resource, which

may be time-shared or space-shared. This feature helps in building schedulers that can use
different market-driven economic models for selecting services competitively.

• Network speed between resources can be specified.
• It supports simulation of both static and dynamic schedulers.
• Statistics of all or selected operations can be recorded and they can be analyzed using GridSim

statistics analysis methods.

3.2. System architecture

We employed a layered and modular architecture for Grid simulation to leverage existing technologies
and manage them as separate components. A multi-layer architecture and abstraction for the
development of GridSim platform and its applications is shown in Figure 2. The first layer is concerned
with the scalable Java interface and the runtime machinery, called JVM (Java Virtual Machine), whose
implementation is available for single and multiprocessor systems including clusters [20]. The second
layer is concerned with a basic discrete-event infrastructure built using the interfaces provided by
the first layer. One of the popular discrete-event infrastructure implementations available in Java is
SimJava [14]. Recently, a distributed implementation of SimJava was also made available. The third
layer is concerned with modeling and simulation of core Grid entities such as resources, information
services, and so on; application model, uniform access interface, and primitives application modeling
and framework for creating higher level entities. The GridSim toolkit focuses on this layer that
simulates system entities using the discrete-event services offered by the lower-level infrastructure.
The fourth layer is concerned with the simulation of resource aggregators called Grid resource brokers
or schedulers. The final layer is focused on application and resource modeling with different scenarios
using the services provided by the two lower-level layers for evaluating scheduling and resource
management policies, heuristics, and algorithms. In this section, we briefly discuss the SimJava model
for discrete events (a second-layer component) and focus mainly on the GridSim (the third layer)
design and implementation. Resource broker simulation and performance evaluation are highlighted in
the next two sections.
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Figure 2. A modular architecture for GridSim platform and components.

3.2.1. SimJava discrete event model

SimJava [14] is a general purpose discrete event simulation package implemented in Java. Simulations
in SimJava contain a number of entities, each of which runs in parallel in its own thread. An entity’s
behaviour is encoded in Java using its body() method. Entities have access to a small number of
simulation primitives:

• sim schedule() sends event objects to other entities via ports;
• sim hold() holds for some simulation time;
• sim wait() waits for an event object to arrive.

These features help in constructing a network of active entities that communicate by sending and
receiving passive event objects efficiently.

The sequential discrete event simulation algorithm, in SimJava, is as follows. A central object
Sim system maintains a timestamp ordered queue of future events. Initially all entities are created and
their body() methods are put in run state. When an entity calls a simulation function, the Sim system
object halts that entity’s thread and places an event on the future queue to signify processing
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the function. When all entities have halted, Sim system pops the next event off the queue, advances the
simulation time accordingly, and restarts entities as appropriate. This continues until no more events are
generated. If the JVM supports native threads, then all entities starting at exactly the same simulation
time may run concurrently.

3.2.2. GridSim entities

GridSim supports entities for simulation of single processor and multiprocessor, heterogeneous
resources that can be configured as time- or space-shared systems. It allows setting of the clock to
different time zones to simulate geographic distribution of resources. It supports entities that simulate
networks used for communication among resources. During simulation, GridSim creates a number of
multi-threaded entities, each of which runs in parallel in its own thread. An entity’s behavior needs to
be simulated within its body() method, as dictated by SimJava.

A simulation environment needs to abstract all the entities and their time-dependent interactions in
the real system. It needs to support the creation of user-defined time-dependent response functions
for the interacting entities. The response function can be a function of the past, current, or both states
of entities. GridSim based simulations contain entities for the users, brokers, resources, information
service, statistics, and network based I/O, as shown in Figure 3. The design and implementation issues
of these GridSim entities are discussed below.

3.2.2.1. User. Each instance of the User entity represents a Grid user. Each user may differ from the
rest of users with respect to the following characteristics:

• types of job created, e.g. job execution time, number of parametric replications, etc.;
• scheduling optimization strategy, e.g. minimization of cost, time, or both;
• activity rate, e.g. how often it creates new job;
• time zone; and
• absolute deadline and budget; or
• D- and B-factors, deadline and budget relaxation parameters, measured in the range [0, 1]

express deadline and budget affordability of the user relative to the application processing
requirements and available resources.

3.2.2.2. Broker. Each user is connected to an instance of the Broker entity. Every job of a user is
first submitted to its broker and the broker then schedules the parametric tasks according to the user’s
scheduling policy. Before scheduling the tasks, the broker dynamically gets a list of available resources
from the global directory entity. Every broker tries to optimize the policy of its user and therefore,
brokers are expected to face extreme competition while gaining access to resources. The scheduling
algorithms used by the brokers must be highly adaptable to the market’s supply and demand situation.

3.2.2.3. Resource. Each instance of the Resource entity represents a Grid resource. Each resource
may differ from the rest of the resources with respect to the following characteristics:

• number of processors;
• cost of processing;
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Figure 3. A flow diagram in GridSim based simulations.

• speed of processing;
• internal process scheduling policy, e.g. time-shared or space-shared;
• local load factor; and
• time zone.

The resource speed and the job execution time can be defined in terms of the ratings of standard
benchmarks such as MIPS and SPEC. They can also be defined with respect to the standard machine.
Upon obtaining the resource contact details from the Grid information service, brokers can query
resources directly for their static and dynamic properties.

3.2.2.4. Grid information service. Providing resource registration services and keeping track of a list
of resources available in the Grid. The brokers can query this for resource contact, configuration, and
status information.
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Figure 4. Entity communication model via its Input and Output entities.

3.2.2.5. Input and output. The flow of information among the GridSim entities happens via their
Input and Output entities. Every networked GridSim entity has I/O channels or ports, which are
used for establishing a link between the entity and its own Input and Output entities. Note that
the GridSim entity and its Input and Output entities are threaded entities, i.e. they have their own
execution thread with body() method that handles events. The architecture for the entity communication
model in GridSim is illustrated in Figure 4. The use of separate entities for input and output enables
a networked entity to model full duplex and multi-user parallel communications. The support for
buffered input and output channels associated with every GridSim entity provides a simple mechanism
for an entity to communicate with other entities and at the same time enables modeling of the necessary
communications delay transparently.

3.3. Application model

GridSim does not explicitly define any specific application model. It is up to the developers
(of schedulers and resource brokers) to define them. We have experimented with a task-farming
application model and we believe that other parallel application models such as process parallelism,
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Directed Acyclic Graphs (DAGs), divide and conquer etc., described in [21], can also be modeled and
simulated using GridSim.

In GridSim, each independent task may require varying processing time and input files size.
Such tasks can be created and their requirements are defined through Gridlet objects. A Gridlet is a
package that contains all the information related to the job and its execution management details such
as job length expressed in MIPS, disk I/O operations, the size of input and output files, and the job
originator. These basic parameters help in determining execution time, the time required to transport
input and output files between users and remote resources, and returning the processed Gridlets back to
the originator along with the results. The GridSim toolkit supports a wide range of Gridlet management
protocols and services that allow schedulers to map a Gridlet to a resource and manage it throughout
the life cycle.

3.4. Interaction protocols model

The protocols for interaction between GridSim entities are implemented using events. In GridSim,
entities use events for both service request and service delivery. The events can be raised by any entity to
be delivered immediately or with specified delay to other entities or itself. The events that are originated
from the same entity are called internal events and those originated from the external entities are called
external events. Entities can distinguish these events based on the source identification associated with
them. The GridSim protocols are used for defining entity services. Depending on the service protocols,
the GridSim events can be further classified into synchronous and asynchronous events. An event is
called synchronous when the event source entity waits until the event destination entity performs all
the actions associated with the event (i.e. the delivery of full service). An event is called asynchronous
when the event source entity raises an event and continues with other activities without waiting for
its completion. When the destination entity receives such events or service requests, it responds back
with results by sending one or more events, which can then take appropriate actions. It should be noted
that external events could be synchronous or asynchronous, but internal events need to be raised as
asynchronous events only to avoid deadlocks.

A complete set of entities in a typical GridSim simulation and the use of events for simulating
interaction between them are shown in Figures 5 and 6. Figure 5 emphasizes the interaction between
a resource entity that simulates time-shared scheduling and other entities. Figure 6 emphasizes the
interaction between a resource entity that simulates a space-shared system and other entities. In this
section we briefly discuss the use of events for simulating Grid activities.

The GridSim entities (user, broker, resource, information service, statistics, shutdown, and report
writer) send events to other entities to signify the request for service, to deliver results, or to raise
internal actions. Note that GridSim implements core entities that simulate resource, information
service, statistics, and shutdown services. These services are used to simulate a user with application,
a broker for scheduling, and an optional report writer for creating statistical reports at the end of a
simulation. The event source and destination entities must agree upon the protocols for service request
and delivery. The protocols for interaction between the user-defined and core entities are pre-defined.

When GridSim starts, the resource entities register themselves with the Grid Information Service
(GIS) entity, by sending events. This resource registration process is similar to GRIS (Grid Resource
Information Server) registering with GIIS (Grid Index Information Server) in the Globus system.
Depending on the user entity’s request, the broker entity sends an event to the GIS entity, to signify a
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Figure 5. An event diagram for the interaction between a time-shared resource and other entities.

query for resource discovery. The GIS entity returns a list of registered resources and their contact
details. The broker entity sends events to resources with a request for resource configuration and
properties. They respond with dynamic information such as resources cost, capability, availability,
load, and other configuration parameters. These events involving the GIS entity are synchronous in
nature.

Depending on the resource selection and scheduling strategy, the broker entity places asynchronous
events for resource entities in order to dispatch Gridlets for execution—the broker need not wait for a
resource to complete the assigned work. When the Gridlet processing is finished, the resource entity
updates the Gridlet status and processing time and sends it back to the broker by raising an event to
signify its completion.

The GridSim resources use internal events to simulate resource behavior and resource allocation.
The entity needs to be modeled in such a way that it is able to receive all events meant for it. However, it
is up to the entity to decide on the associated actions. For example, in time-shared resource simulations
(see Figure 5) internal events are scheduled to signify the completion time of a Gridlet, which has the
smallest remaining processing time requirement. Meanwhile, if an external event arrives, it changes
the share resource availability for each Gridlet, which means the most recently scheduled event may
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not necessarily signify the completion of a Gridlet. The resource entity can discard such internal
events without processing. The use of internal events for simulating resources is discussed in detail
in Section 3.5.

3.5. Resource model—simulating multitasking and multiprocessing

In the GridSim toolkit, we can create Processing Elements (PEs) with different speeds (measured
in either MIPS or SPEC-like ratings). Then, one or more PEs can be put together to create a
machine. Similarly, one or more machines can be put together to create a Grid resource. Thus,
the resulting Grid resource can be a single processor, shared memory multiprocessors (SMP), or a
distributed memory cluster of computers. These Grid resources can simulate time- or space-shared
scheduling depending on the allocation policy. A single PE or SMP-type Grid resource is typically
managed by time-shared operating systems that use a round-robin scheduling policy (see Figure 9)
for multitasking. The distributed memory multiprocessing systems (such as clusters) are managed by
queuing systems, called space-shared schedulers, that execute a Gridlet by running it on a dedicated
PE (see Figure 12) when allocated. The space-shared systems use resource allocation policies such as
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first-come-first-served (FCFS), back filling, shortest-job-first-served (SJFS), and so on. It should also
be noted that resource allocation within high-end SMPs could also be performed using the space-shared
schedulers.

Multitasking and multiprocessing systems allow concurrently running tasks to share system
resources such as processors, memory, storage, I/O, and network by scheduling their use for very short
time intervals. A detailed simulation of scheduling tasks in the real systems would be complex and time
consuming. Hence, in GridSim, we abstract these physical entities and simulate their behavior using
process oriented, discrete event ‘interrupts’ with a time interval as large as the time required for the
completion of the smallest remaining-time job. The GridSim resources can send, receive, or schedule
events to simulate the execution of jobs. It schedules self-events for simulating resource allocation
depending on the scheduling policy and the number of jobs in the queue or in execution.

Let us consider the following scenario to illustrate the simulation of Gridlets execution and
scheduling within a GridSim resource. A resource consists of two shared or distributed memory
PEs each with a MIPS rating of 1, for simplicity. Three Gridlets that represent jobs with processing
requirements equivalent to 10, 8.5, and 9.5 MI (million instructions) arrive in simulation times 0, 4,
and 7, respectively. The way GridSim schedules jobs to PEs is shown schematically in Figure 9 for
time-shared resources and Figure 12 for space-shared resources.

3.5.1. Simulation of scheduling in time-shared resources

The GridSim resource simulator uses internal events to simulate the execution and allocation of PEs’
share to Gridlet jobs. When jobs arrive, time-shared systems start their execution immediately and
share resources among all jobs. Whenever a new Gridlet job arrives, we update the processing time of
existing Gridlets and then add this newly arrived job to the execution set. We schedule an internal event
to be delivered at the earliest completion time of the smallest job in the execution set. It then waits for
the arrival of events.

A complete algorithm for simulation of time-share scheduling and execution is shown in Figure 7.
If a newly arrived event happens to be an internal event whose tag number is the same as the most
recently scheduled event, then it is recognized as a job completion event. Depending on the number
of Gridlets in execution and the number of PEs in a resource, GridSim allocates the appropriate PE
share to all Gridlets for the event duration using the algorithm shown in Figure 8. It should be noted
that Gridlets sharing the same PE would get an equal amount of PE share. The completed Gridlet is
sent back to its originator (broker or user) and removed from the execution set. GridSim schedules
a new internal event to be delivered at the forecasted earliest completion time of the remaining
Gridlets.

Figure 9 illustrates the simulation of the time-share scheduling algorithm and the Gridlets’ execution.
When Gridlet1 arrives at time 0, it is mapped to PE1 and an internal event to be delivered at time 10 is
scheduled since the predicted completion time is still 10. At time 4, Gridlet2 arrives and it is mapped
to PE2. The completion time of Gridlet2 is predicted as 12.5 and the completion time of Gridlet1 is
still 10 since both of them are executing on different PEs. A new internal event is scheduled, which
will still be delivered at time 10. At time 7, Gridlet3 arrives, which is mapped to PE2. It shares the PE
time with Gridlet2. At time 10, an internal event is delivered to the resource to signify the completion
of Gridlet1, which is then sent back to the broker. At this moment, as the number of Gridlets is equal
the number of PEs, they are mapped to different PEs. An internal event to be delivered at time 14 is
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Algorithm: Time-Shared Grid Resource Event Handler()
1. Wait for an event
2. If the external and Gridlet arrival event, then:

BEGIN /*a new job arrived*/
a. Allocate PE Share for Gridlets Processed so far
b. Add arrived Gridlet to Execution Set
c. Forecast completion time of all Gridlets in Execution Set
d. Schedule an event to be delivered at the smallest completion time

END
3. If event is internal and its tag value is the same as the recently scheduled internal event tag,

BEGIN /*a job finish event*/
a. Allocate PE Share for Gridlets Processed so far
b. Update finished Gridlet’s PE and Wall clock time parameters and send it back to the

broker
c. Remove finished Gridlet from the Execution Set and add to Finished Set
d. Forecast completion time of all Gridlets in Execution Set
e. Schedule an event to be delivered at the smallest completion time

END
4. Repeat the above steps until the end of simulation event is received

Figure 7. An event handler for simulating time-shared resource scheduling.

Algorithm: PE Share Allocation(Duration)
BEGIN

1. Identify total MI per PE for the duration and the number of PEs that process one extra Gridlet
TotalMIperPE = MIPSRatingOfOnePE()*Duration
MinNoOfGridletsPerPE = NoOfGridletsInExec / NoOfPEs
NoofPEsRunningOneExtraGridlet = NoOfGridletsInExec % NoOfPEs

2. Identify maximum and minimum MI share that Gridlet get in the Duration
If(NoOfGridletsInExec <= NoOfPEs), then:

MaxSharePerGridlet = MinSharePerGridlet = TotalMIperPE
MaxShareNoOfGridlets = NoOfGridletsInExec

Else /* NoOfGridletsInExec > NoOfPEs */
MaxSharePerGridlet = TotalMIperPE/MinNoOfGridletsPerPE
MinSharePerGridlet = TotalMIperPE/(MinNoOfGridletsPerPE+1)
MaxShareNoOfGridlets = (NoOfPEs - NoOfPEsRunningOneExtraGridlet)* MinNoOfGridletsPerPE

END

Figure 8. PE share allocation to Gridlet in time-shared GridSim resource.

scheduled to indicate the predicted completion time of Gridlet2. As simulation proceeds, an internal
event is delivered at time 14 and Gridlet2 is sent back to the broker. An internal event to be delivered
at time 18 is scheduled to indicate the predicted completion time of Gridlet3. Since there were no
other Gridlets submitted before this time, the resource receives an internal interrupt at time 18, which
signifies the completion of Gridlet3. A schematic representation of the Gridlets’ arrival, internal events
delivery, and sending them back to the broker is shown in Figure 5. Detailed statistical data on the
arrival, execution start, finish, and elapsed time of all Gridlets are shown in Table I.
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Figure 9. Modeling time-shared multitasking and multiprocessing based on an event scheme.

Table I. A scheduling statistics scenario for time- and space-shared resources in GridSim.

Time-shared resource Space-shared resource

Gridlet Length Arrival Start Finish Elapsed Start Finish Elapsed
number (MI) time time time time time time time

(a) (s) (f ) (f − a) (s) (f ) (f − a)

G1 10 0 0 10 10 0 10 10
G2 8.5 4 4 14 10 4 12.5 8.5
G3 9.5 7 7 18 11 10 19.5 12.5
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Algorithm: Space-Shared Grid Resource Event Handler()
1. Wait for an event and Identify Type of Event received
2. If it external and Gridlet arrival event, then:

BEGIN /* a new job arrived */
• If the number of Gridlets in execution are less than the number of PEs in the resource, then

Allocate PE to the Gridlet() /* It should schedule an Gridlet completion event */
• If not, Add Gridlet to the Gridlet Submitted Queue

END
3. If event is internal and its tag value is the same recently scheduled internal event tag,

BEGIN /* a job finish event */
• Update finished Gridlet’s PE and Wall clock time parameters and send it back to the

broker.
• Set the status of PE to FREE.
• Remove finished Gridlet from the Execution Set and add to the Finished Set.
• If Gridlet Submitted Queue has Gridlets in waiting, then

Choose the Gridlet to be Processed() /* e.g., first one in Q if FCFS policy is used */
Allocate PE to the Gridlet() /* It should schedule a Gridlet completion event */

END
4. Repeat above steps until end of simulation event is received

Figure 10. An event handler for simulating space-shared resource scheduling.

3.5.2. Simulation of scheduling in space-shared resources

The GridSim resource simulator uses internal events to simulate the execution and allocation of PEs
to Gridlet jobs. When a job arrives, space-shared systems start its execution immediately if there is
a free PE available, otherwise, it is queued. During the Gridlet assignment, job-processing time is
determined and the event is scheduled for delivery at the end of the execution time. Whenever a Gridlet
job finishes, an internal event is delivered to signify the completion of the scheduled Gridlet job. The
resource simulator then frees the PE allocated to it and checks if there are any other jobs waiting in the
queue. If there are jobs waiting in the queue, then it selects a suitable job depending on the policy and
assigns it to the PE which is free.

A complete algorithm for simulation of space-share scheduling and execution is shown in Figure 10.
If a newly arrived event happens to be an internal event whose tag number is the same as the most
recently scheduled event, then it is recognized as a Gridlet completion event. If there are Gridlets in the
submission queue, then depending on the allocation policy (e.g. the first Gridlet in the queue if FCFS
policy is used), GridSim selects a suitable Gridlet from the queue and assigns it to the PE or a suitable
PE if more than one PE is free. See Figure 11 for an illustration of the allocation of PEs to Gridlets.
The completed Gridlet is sent back to its originator (broker or user) and removed from the execution
set. GridSim schedules a new internal event to be delivered at the completion time of the scheduled
Gridlet job.

Figure 12 illustrates simulation of the space-shared scheduling algorithm and Gridlet execution.
When Gridlet1 arrives at time 0, it is mapped to PE1 and an internal event to be delivered at time 10 is
scheduled since the predicted completion time is still 10. At time 4, Gridlet2 arrives and it is mapped to
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Algorithm: Allocate PE to the Gridlet(Gridlet gl)
BEGIN

1. Identify a suitable Machine with Free PE
2. Identify a suitable PE in the machine and Assign to the Gridlet
3. Set Status of the Allocated PE to BUSY
4. Determine the Completion Time of Gridlet and Set and internal event to be delivered at the

completion time
END

Figure 11. PE allocation to the Gridlets in the space-shared GridSim resource.
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Figure 12. Modeling space-shared multiprocessing based on an event scheme.
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PE2. The completion time of Gridlet2 is predicted as 12.5 and the completion time of Gridlet1 is still
10 since both of them are executing on different PEs. A new internal event to be delivered at time 12.5
is scheduled to signify the completion of Gridlet2. At time 7, Gridlet3 arrives. Since there is no free PE
available on the resource, it is put into the queue. The simulation continues, i.e. the GridSim resource
waits for the arrival of a new event. At time 10 a new event is delivered which happens to signify the
completion of Gridlet1, which is then sent back to the broker. It then checks to see if there are any
Gridlets waiting in the queue and chooses a suitable Gridlet (in this case Gridlet2, based on FCFS
policy) and assigns the available PE to it. An internal event to be delivered at time 19.5 is scheduled
to indicate the completion time of Gridlet3 and then waits for the arrival of new events. A new event
is delivered at the simulation time 12.5, which signifies the completion of Gridlet2, which is then
sent back to the broker. There is no Gridlet waiting in the queue, so it proceeds without scheduling
any events and waits for the arrival of the next event. A new internal event arrives at the simulation
time 19.5, which signifies the completion of Gridlet3. This process continues until resources receive
an external event indicating the termination of simulation. A schematic representation of the arrival
of the Gridlets, internal events delivery, and sending them back to the broker is shown in Figure 6.
A detailed statistical data on the arrival, execution start, finish, and elapsed time of all Gridlets are
shown in Table I.

For every Grid resource, the non-Grid (local) workload is estimated based on typically observed load
conditions depending on the time zone of the resource. The network communication speed between a
user and the resources is defined in terms of a data transfer speed (baud rate).

3.6. GridSim Java package design

A class diagram hierarchy of the GridSim package, represented using unified modeling language
(UML) notation, is shown in Figure 13. The specification of each class contains up to three parts:
attributes, methods, and internal classes. In the class diagram, attributes and methods are prefixed with
characters ‘+’, ‘-’, and ‘#’, indicating access modifiers public, private, and protected, respectively.
The GridSim package implements the following classes.

class gridsim.Input: this class extends the eduni.simjava.Sim entity class. It defines a port
through which a simulation entity receives data from the simulated network. It maintains an
event queue to serialize the data-in-flow and delivers to its parent entity. Simultaneous inputs
can be modeled using multiple instances of this class.

class gridsim.Output: this class is very similar to the gridsim.Input class and it defines a port
through which a simulation entity sends data to the simulated network. It maintains an event
queue to serialize the data-out-flow and delivers to the destination entity. Simultaneous outputs
can be modeled by using multiple instances of this class.

class gridsim.GridSim: this is the main class of the GridSim package that must be extended
by GridSim entities. It inherits event management and threaded entity features from the
eduni.simjava.Sim entity class. The GridSim class adds networking and event delivery features,
which allow synchronous or asynchronous communication for service access or delivery.
All classes that extend the GridSim class must implement a method called ‘body()’, which
is automatically invoked since it is expected to be responsible for simulating entity behavior.
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Figure 13. A class hierarchy diagram of the GridSim package.
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The entities that extend the GridSim class can be instantiated with or without networked I/O
ports. A networked GridSim entity gains communication capability via the objects of GridSim’s
I/O entity classes, gridsim.Input and gridsim.Output classes. Each I/O entity will have a unique
name assuming each GridSim entity that the user creates has a unique name. For example, a
resource entity with the name ‘Resource2’ will have an input entity whose name is prefixed with
‘Input ’, making the input entity’s full name ‘Input Resource2’, which is expected to be unique.
The I/O entities are concurrent entities, but they are visible within the GridSim entity and are
able to communicate with other GridSim entities by sending messages.

The GridSim class supports methods for simulation initialization, management, and flow
control. The GridSim environment must be initialized to set-up the simulation environment
before creating any other GridSim entities at the user level. This method also prepares the
system for simulation by creating three GridSim internal entities—GridInformationService,
GridSimShutdown, and GridStatistics. As explained in Section 3.2, the GridInformationService
entity simulates the directory that dynamically keeps a list of resources available in the Grid.
The GridSimShutdown entity helps in wrapping up a simulation by systematically closing all
the opened GridSim entities. The GridStatistics entity provides standard services during the
simulation to accumulate statistical data. Invoking the GridSim.Start () method starts the Grid
simulation. All the resource and user entities must be instantiated in between invoking the above
two methods.

The GridSim class supports static methods for sending and receiving messages between entities
directly or via network entities, managing and accessing handles to various GridSim core entities,
and recording statistics.

class gridsim.PE: this is used to represent CPU/PE, the capability of which is defined in terms
of MIPS rating.

class gridsim.PEList: maintains a list of PEs that make up a machine.

class gridsim.Machine: represents a uniprocessor or shared memory multiprocessor machine.

class gridsim.MachineList: an instance of this class simulates a collection of machines. It is
up to the GridSim users to define the connectivity among the machines in a collection. Therefore,
this class can be instantiated to model simple LAN to cluster to WAN.

class gridsim.ResourceCharacteristics: this represents static properties of a resource
such as resource architecture, OS, management policy (time- or space-shared), cost, and time
zone at which the resource is located along resource configuration.

class gridsim.GridResource: extends the GridSim class and gains communication and
concurrent entity capability. An instance of this class simulates a resource with properties defined
in an object of the gridsim.ResourceCharacteristics class. The process of creating
a Grid resource is as follows: first create PE objects with a suitable MIPS/SPEC rating, second
assemble them together to create a machine. Finally, group one or more objects of the machine to
form a resource. A resource having a single machine with one or more PEs is managed as a time-
shared system using a round-robin scheduling algorithm. A resource with multiple machines is
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treated as a distributed memory cluster and is managed as a space-shared system using FCFS
scheduling policy or its variants.

class gridsim.GridSimStandardPE: defines MIPS rating for a standard PE or enables the
users to define their own MIPS/SPEC rating for a standard PE. This value can be used for creating
PEs with relative MIPS/SPEC rating for GridSim resources and creating Gridlets with relative
processing requirements.

class gridsim.ResourceCalendar: this class implements a mechanism to support modeling
a local load on Grid resources that may vary according to the time zone, time, weekends, and
holidays.

class gridsim.GridInformationService: a GridSim entity that provides Grid resource
registration, indexing and discovery services. The Grid resources register their readiness to
process Gridlets by registering themselves with this entity. GridSim entities such as the resource
broker can contact this entity for resource discovery service, which returns a list of registered
resource entities and their contact address. For example, scheduling entities use this service for
resource discovery.

class gridsim.Gridlet: this class acts as job package that contains job length in MI, the
length of input and output data in bytes, execution start and end time, and the originator of
the job. Individual users model their application by creating Gridlets for processing them on
Grid resources assigned by scheduling entities (resource brokers).

class gridsim.GridletList: can be used to maintain a list of Gridlets and support methods
for organizing them.

class gridsim.GridSimTags: contains various static command tags that indicate a type of
action that needs to be undertaken by GridSim entities when they receive events. The different
types of tags supported in GridSim along with comments indicating possible purpose are shown
in Figure 14.

class gridsim.ResGridlet: represents a Gridlet submitted to the resource for processing.
It contains a Gridlet object along with its arrival time and the ID of the machine and the PE
allocated to it. It acts as a placeholder for maintaining the amount of resource share allocated at
various times for simulating time-shared scheduling using internal events.

class gridsim.GridStatistics: this is a GridSim entity that records statistical data reported
by other entities. It stores data objects with their label and timestamp. At the end of simulation,
the user-defined report-writer entity can query recorded statistics of interest for report generation.

class gridsim.Accumulator: the objects of this class provide a placeholder for maintaining
statistical values of a series of data added to it. It can be queried for mean, sum, standard
deviation, and the largest and smallest values in the data series.

class gridsim.GridSimShutdown: this is a GridSim entity that waits for termination of all
user entities to determine the end of simulation. It then signals the user-defined report-writer
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public class GridSimTags {
public static final double SCHEDULE_NOW = 0.0; // 0.0 indicates NO delay
public static final int END_OF_SIMULATION = -1;
public static final int INSIGNIFICANT = 0; // ignore tag
public static final int EXPERIMENT = 1; // User <-> Broker
public static final int REGISTER_RESOURCE = 2; // GIS -> ResourceEntity
public static final int RESOURCE_LIST = 3; // GIS <-> Broker
public static final int RESOURCE_CHARACTERISTICS = 4; // Broker <-> ResourceEntity
public static final int RESOURCE_DYNAMICS = 5; // Broker <-> ResourceEntity
public static final int GRIDLET_SUBMIT = 6; // Broker -> ResourceEntity
public static final int GRIDLET_RETURN = 7; // Broker <- ResourceEntity
public static final int GRIDLET_STATUS = 8; // Broker <-> ResourceEntity
public static final int RECORD_STATISTICS = 9; // Entity -> GridStatistics
public static final int RETURN_STAT_LIST = 10; // Entity <- GridStatistics
public static final int RETURN_ACC_STATISTICS_BY_CATEGORY = 11;
public static final int DEFAULF_BAUD_RATE = 9600; // Default Baud Rate for entities

}

Figure 14. Global tags in the GridSim package.

entity to interact with the GridStatistics entity to generate a report. Finally, it signals the end of
simulation to other GridSim core entities.

class gridsim.GridSimRandom: this class provides static methods for incorporating
randomness in data used for any simulation. Any predicted/estimated data, e.g. number of
Gridlets used by an experiment, execution time and output size of a Gridlet etc., need to
be mapped to real-world data by introducing randomness to reflect the uncertainty that is
present in the prediction/estimation process and the randomness that exists in the nature itself.
The execution time of a Gridlet on a particular resource, for example, can vary depending on the
local load, which is not covered by the scope of the GridSim to simulate.

The real (d, fL, fM) method of this class maps the predicted/estimated value d to a random real-
world value between (1−fL)×d and (1+fM)×d , using the formula d×(1−fL+(fL+fM)×rd)

where 0.0 � fL, fM � 1.0 and rd is a uniformly distributed double value between 0.0 and 1.0.
This class also maintains different values of fL and fM factors for different situations to represent
the different levels of uncertainty involved.

4. BUILDING SIMULATIONS WITH GridSim

To simulate Grid resource brokers using the GridSim toolkit, the developers need to create new entities
that exhibit the behavior of Grid users and scheduling systems. The user-defined entities extend the
GridSim base class to inherit the properties of concurrent entities capable of communicating with
other entities using events. The detailed steps involved in modeling resources and applications, and
simulating brokers using the GridSim toolkit are discussed below. We then present the simulation
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of a Nimrod-G like resource broker that implements deadline and budget constrained scheduling
algorithms.

4.1. A recipe for simulating application scheduling

In this section we present high-level steps, with sample code clips, to demonstrate how GridSim can
be used to simulate a Grid environment to analyze scheduling algorithms.

• First, we need to create Grid resources of different capabilities and configurations (a single or
multiprocessor with time/space-shared resource manager) similar to those present in the WWG
testbed [8]). We also need to create users with different requirements (application and quality of
service requirements). A sample code for creating a Grid environment is given in Figure 15.

• Second, we need to model applications by creating a number of Gridlets (that appear similar
to Nimrod-G jobs) and define all parameters associated with jobs as shown in Figure 16.
The Gridlets need to be grouped together depending on the application model.

• Then, we need to create a GridSim user entity that creates and interacts with the resource broker
scheduling entity to coordinate execution experiment. It can also directly interact with GIS and
resource entities for Grid information and submitting or receiving processed Gridlets. However,
for modularity sake, we encourage the implementation of a separate resource broker entity by
extending the GridSim class.

• Finally, we need to implement a resource broker entity that performs application scheduling
on Grid resources. A sample code for implementing the broker is shown in Figure 17. First,
it accesses the GIS, and then inquires for resource capability including cost. Depending
on the processing requirements, it develops a schedule for assigning Gridlets to resources
and coordinates the execution. The scheduling policies can be systems-centric like those
implemented in many Grid systems such as Condor, or user-centric like the Nimrod-G broker’s
quality of service driven application scheduling algorithms [7].

4.2. Economic Grid resource broker simulation

We used the GridSim toolkit to simulate the Grid environment and a Nimrod-G like deadline and
budget constrained scheduling system called the economic Grid resource broker. The simulated Grid
environment contains multiple resources and user entities with different requirements. The users create
an experiment that contains application specification (a set of Gridlets that represent application jobs
with different processing) and quality of service requirements (deadline and budget constraints with
optimization strategy). We created two entities that simulate the users and the brokers by extending
the GridSim class. When simulated, each user entity having its own application and quality of service
requirements creates its own instance of the broker entity for scheduling Gridlets on resources.

4.2.1. Broker architecture

The broker entity architecture along with its interaction flow diagram with other entities is shown in
Figure 18. The key components of the broker are the experiment interface, resource discovery and
trading, the scheduling flow manager backed with scheduling heuristics and algorithms, the Gridlets
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public static void CreateSampleGridEnvironement(int no_of_users, int no_of_resources,
double B_factor, double D_factor, int policy, double how_long, double seed) {
Calendar now = Calendar.getInstance();

String ReportWriterName = "MyReportWriter";
GridSim.Init(no_of_users, calender, true, eff, efp, ReportWriterName);

String[] category = {"*.USER.TimeUtilization", "*.USER.GridletCompletionFactor",
"*.USER.BudgetUtilization"};

// Create Report Writer Entity and category indicates types of information to be recorded.
new ReportWriter(ReportWriterName, no_of_users, no_of_resources, ReportFile, category,

report_on_next_row_flag);

// Create Resources
for(int i=0; i<no_of_resources; i++) {

// Create PEs
PEList peList = new PEList();
for(int j=0; j<(i*1+1); j++)

peList.add(new PE(0, 100));

// Create machine list
MachineList mList = new MachineList();
mList.add(new Machine(0, peList));

// Create a resource containing machines
ResourceCharacteristics resource = new ResourceCharacteristics("INTEL", "Linux",

mList, ResourceCharacteristics.TIME_SHARED, 0.0, i*0.5+1.0);
LinkedList Weekends = new LinkedList();
Weekends.add(new Integer(Calendar.SATURDAY));
Weekends.add(new Integer(Calendar.SUNDAY));
LinkedList Holidays = new LinkedList(); // no holiday is set!

// Setup resource as simulated entity with a name (e.g. "Resource_1").
new GridResource("Resource_"+i, 28000.0, seed, resource,

0.0, 0.0, 0.0, Weekends, Holidays);
}
Random r = new Random(seed);
// Create Application, Experiment, and Users
for(int i=0; i<no_of_users; i++)
{
Random r = new Random(seed*997*(1+i)+1);
GridletList glList = Application1(r); // it creates Gridlets and returns their list
Experiment expt = new Experiment(0, glList, policy, true, B_factor, D_factor);
new UserEntity("U"+i, expt, 28000.0, how_long, seed*997*(1+i)+1, i, user_entity_report);

}
// Perform Simulation
GridSim.Start();

}

Figure 15. A sample code segment for creating Grid resource and user entities in GridSim.
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Gridlet gl = new Gridlet(Gridlet_id, Gridlet_length, GridletFileSize,
GridletOutputSize);

Figure 16. The Gridlet method in GridSim.

dispatcher, and the Gridlets receptor. The following high-level steps describe the functionality of the
broker components and their interaction.

1. The user entity creates an experiment that contains an application description (a list of Gridlets
to be processed) and user requirements to the broker via the experiment interface.

2. The broker resource discovery and trading module interacts with the GridSim GIS entity to
identify contact information of resources and then interacts with resources to establish their
configuration and access cost. It creates a broker resource list that acts as a placeholder for
maintaining resource properties, a list of Gridlets committed for execution on the resource, and
the resource performance data as predicted through the measure and extrapolation methodology.

3. The scheduling flow manager selects an appropriate scheduling algorithm for mapping Gridlets
to resources depending on the user requirements. Gridlets that are mapped to specific resource
are added to the Gridlets list in the broker resource.

4. For each of the resources, the dispatcher selects the number of Gridlets that can be staged for
execution according to the usage policy to avoid overloading resources with single user jobs.

5. The dispatcher then submits Gridlets to resources using the GridSim asynchronous service.
6. When the Gridlet processing completes, the resource returns it to the broker’s Gridlet receptor

module, which then measures and updates the runtime parameter, resource or MI share available
to the user. It aids in predicting the job consumption rate for making scheduling decisions.

7. Steps 3–6 continue until all the Gridlets are processed or the broker exceeds deadline or budget
limits. The broker then returns updated experimental data along with processed Gridlets back to
the user entity.

A class diagram hierarchy of the Grid broker package built using the GridSim toolkit is shown in
Figure 19. The Grid broker package implements the following key classes.

class Experiment: acts as a placeholder for representing simulation experiment configuration
that includes synthesized application (a set of Gridlets stored in GridletList) and user
requirements such as D and B factors or deadline and budget constraints, and optimization
strategy. It provides methods for updating and querying the experiment parameters and status.
The user entity invokes the broker entity and passes its requirements via the experiment object.
On receiving an experiment from its user, the broker schedules Gridlets according to the
optimization policy set for the experiment.

class UserEntity: a GridSim entity that simulates the user. It invokes the broker and passes the
user requirements. When it receives the results of application processing, it records parameters
of interest with the gridsim.Statistics entity. When it has no more processing requirements, it
sends the END OF SIMULATION event to the gridsim.GridSimShutdown entity.
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class Broker extends GridSim {
private Experiment experiment;
private LinkedList ResIDList;
private LinkedList BrokerResourceList;

public Broker(String name, double baud_rate)
{
super(name, baud_rate);
GridletDispatched = 0;
GridletReturned = 0;
Expenses = 0.0;
MaxGridletPerPE = 2;

}

... // Gridlet scheduling flow code at the Grid Resource Broker level

public void body() {

Sim_event ev = new Sim_event();
// Accept User Commands and Process
for( sim_get_next(ev); ev.get_tag()!=GridSimTags.END_OF_SIMULATION; sim_get_next(ev))
{

experiment = (Experiment) ev.get_data();
int UserEntityID = ev.get_src();

// Record Experiment Start Time.
experiment.SetStartTime();

// Set Gridlets’ OwnerID as this BrokerID so that Resources knows where to return them.
for(int i=0; i<experiment.GetGridletList().size(); i++)

((Gridlet) experiment.GetGridletList().get(i)).SetUserID(get_id());

// RESOURCE DISCOVERY
ResIDList = (LinkedList) GetGridResourceList();

// RESOURCE TRADING and SORTING
// SCHEDULING
while (glFinishedList.size() < experiment.GetGridletList().size())
{

if((GridSim.Clock()>=experiment.GetDeadline())||(Expenses>=experiment.GetBudget()) )
break;

scheduled_count = ScheduleAdviser();
dispatched_count = Dispatcher();
received_count = Receiver();

// Heurisitics for deciding hold condition
if(dispatched<=0 && received<=0 && glUnfinishedList.size()>0)
{

double deadline_left = experiment.GetDeadline()-GridSim.Clock();
GridSimHold(Math.max(deadline_left*0.01, 1.0));

}
}

}
... // Code for actual scheduling policy
... // Code for dispatch policy

}
}

Figure 17. A sample code segment for creating a Grid resource broker in GridSim.
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Figure 18. Economic-based Grid resource broker architecture and its interaction with other entities.

class Broker: a GridSim entity that simulates the Grid resource broker. On receiving an
experiment from the user entity, it carries out resource discovery, and determines deadline and
budget values based on D and B factors, and then proceeds with scheduling. It schedules Gridlets
on resources depending on user constraints, optimization strategy, and cost of resources and
their availability. When it receives the results of application processing, it records parameters
of interest with the gridsim.Statistics entity. When it has no more processing requirements, it
sends the END OF SIMULATION event to the gridsim.GridSimShutdown entity. The interaction
between the broker and other GridSim entities is shown in Figure 5 for time-shared resources
and Figure 6 for space-shared resources.

class BrokerResource: acts as a placeholder for the broker to maintain a detailed record on the
resources it uses for processing user applications. It maintains resource characteristics, a list of
Gridlets assigned to the resource, the actual amount of MIPS available to the user, and a report on
the Gridlets processed. These measurements help in extrapolating and predicating the resource
performance from the user point of view and aid in scheduling jobs dynamically at runtime.

class ReportWriter: a user-defined, optional GridSim entity which is meant for creating a
report at the end of each simulation by interacting with the gridsim.Statistics entity. If the user
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Figure 19. A class hierarchy diagram of the Grid broker using the GridSim package.
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Algorithm: DBC Scheduling with Cost Optimization()
1. RESOURCE DISCOVERY: Identify resources that can be used in this execution with

their capability through the Grid Information Service.
2. RESOURCE TRADING: Identify cost of each of the resources in terms of CPU cost per

second and capability to be delivered per cost-unit.
3. If the user supplies D and B factors, then determine the absolute deadline and budget

based on the capability and cost of resources and user’s requirements.
4. SORT resources by increasing order of cost.
5. SCHEDULING: Repeat while there exist unprocessed jobs in application job list with a

delay of scheduling event period or occurrence of an event AND the time and process
expenses are within deadline and budget limits:

[SCHEDULE ADVISOR with Policy]
a. For each resource predict and establish the job consumption rate or the available

resource share through measure and extrapolation.
b. For each resource based on its job consumption rate or available resource share,

predict and establish the number of jobs a resource can process by the deadline.
c. For each resource in order:

i. If the number of jobs currently assigned to a resource is less than the
predicted number of jobs that a resource can consume, assign more jobs
from unassigned job queue or from the most expensive machines based
on job state and feasibility. Assign job to a resource only when there is
enough budget available.

ii. Alternatively, if a resource has more jobs than it can complete by the
deadline, move those extra jobs to unassigned job queue.

[DISPATCHER with Policy]
d. The dispatcher takes care of submission of jobs to remote machines with

submission and resource policy and constraints depending on resource type (time
or space shared).

Figure 20. DBC scheduling with cost optimization.

does not want to create a report, then he or she can pass ‘null’ as the name of the ReportWriter
entity. Note that users can choose any name for the ReportWriter entity and for the class name
since all entities are identified by their name defined at the runtime.

4.2.2. Deadline and budget constrained cost optimization scheduling algorithm

We have simulated deadline and budget constrained (DBC) scheduling algorithms, cost optimization,
time optimization, and none optimization, presented in [7]. We have also proposed a new scheduling
algorithm, called cost–time optimization [22], which is a variant of cost and time optimization
algorithms and simulated its performance.

The steps for implementing DBC cost optimization scheduling algorithms within economic broker
simulator are shown in Figure 20. This algorithm attempts to process jobs as economically as
possible within the deadline and budget. The results of the simulation are discussed in the next
section.
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4.2.3. Determining the deadline and budget

A D factor close to 1 signifies the user’s willingness to set a highly relaxed deadline, which is sufficient
to process an application even when only the slowest resources are available. Similarly a B factor close
to 1 signifies that the user is willing to spend as much money as required, even when only the most
expensive resource is used. The user jobs are scheduled on the Grid through its own broker. The broker
uses these factors in determining the absolute deadline (see Equation (1)) and budget (see Equation (2))
values for a given execution scenario at runtime as follows.

Computing the deadline:

Deadline = TMIN + DFACTOR × (TMAX − TMIN) (1)

where TMIN is the time required to process all the jobs, in parallel, giving the fastest resource the
highest priority; TMAX is the time required to process all the jobs, serially, using the slowest resource.
An application with DFACTOR < 0 would never be completed. An application with DFACTOR � 1
would always be completed as long as some resources are available throughout the deadline.

Computing the budget:

Budget = CMIN + BFACTOR × (CMAX − CMIN) (2)

where CMIN is the cost of processing all the jobs, in parallel within deadline, giving the cheapest
resource the highest priority; CMAX is the cost of processing all the jobs, in parallel within deadline,
giving the most costly resource the highest priority. An application with BFACTOR < 0 would never be
completed. An application with BFACTOR � 1 would always be completed as long as some resources
are available throughout the deadline.

5. SCHEDULING SIMULATION EXPERIMENTS

To simulate application scheduling in GridSim environment using the economic Grid broker requires
the modeling and creation of GridSim resources and applications that model jobs as Gridlets. In this
section, we present resource and application modeling along with the results of experiments with
quality of services driven application processing.

5.1. Resource modeling

We modeled and simulated a number of time- and space-shared resources with different characteristics,
configurations, and capabilities from those in the WWG testbed. We have selected the latest CPU
models AlphaServer ES40, Sun Netra 20, Intel VC820 (800EB MHz, Pentium III), and SGI Origin
3200 1X 500 MHz R14k released by their manufacturers Compaq, Sun, Intel, and SGI, respectively.
The processing capability of these PEs in simulation time units is modeled after the base value of SPEC
CPU (INT) 2000 benchmark ratings published in [23]. To enable the users to model their application
processing requirements, we assumed the MIPS rating of the PEs to be the same as the SPEC rating.

Table II shows characteristics of resources simulated and their PE cost per time unit in G$ (Grid
dollar). These simulated resources resemble the WWG testbed resources used in processing parameter
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Table II. WWG testbed resources simulated using GridSim.

Simulated resource
characteristics: Equivalent A PE Resource

Resource name vendor, resource type, resource in WWG SPEC/MIPS manager Price MIPS
in simulation node OS, No. of PEs (hostname, location) rating type (G$/PE time unit) per G$

R0 Compaq, AlphaServer, grendel.vpac.org, 515 Time-shared 8 64.37
CPU, OSF1, 4 VPAC, Melbourne,

Australia

R1 Sun, Ultra, Solaris, 4 hpc420.hpcc.jp, 377 Time-shared 4 94.25
AIST, Tokyo, Japan

R2 Sun, Ultra, Solaris, 4 hpc420-1.hpcc.jp 377 Time-shared 3 125.66
AIST, Tokyo, Japan

R3 Sun, Ultra, Solaris, 2 hpc420-2.hpcc.jp 377 Time-shared 3 125.66
AIST, Tokyo, Japan

R4 Intel, Pentium/VC820, barbera.cnuce.cnr.it, 380 Time-shared 2 190.0
Linux, 2 CNR, Pisa, Italy

R5 SGI, Origin 3200, onyx1.zib.de, 410 Time-shared 5 82.0
IRIX, 6 ZIB, Berlin, Germany

R6 SGI, Origin 3200 Onyx3.zib.de, 410 Time-shared 5 82.0
IRIX, 16 ZIB, Berlin, Germany

R7 SGI, Origin 3200, mat.ruk.cuni.cz, 410 Space-shared 4 102.5
IRIX, 6 Charles U., Prague,

Czech Republic

R8 Intel, Pentium/VC820, marge.csm.port.ac.uk, 380 Time-shared 1 380.0
Linux, 2 Portsmouth, U.K.

R9 SGI, Origin 3200, green.cfs.ac.uk, 410 Time-shared 6 68.33
IRIX, 4 (accessible) Manchester, U.K.

R10 Sun, Ultra, Solaris, 8 pitcairn.mcs.anl.gov, 377 Time-shared 3 125.66
ANL, Chicago, U.S.A.

sweep application using the Nimrod-G broker [24]. The PE cost in G$/unit time does not necessarily
reflect the cost of processing when PEs have different capabilities. The brokers need to translate the
cost into G$ per MI (million instructions) for each resource. Such translation helps in identifying the
relative cost of resources for processing Gridlets on them.

5.2. Application modeling

We have modeled a task farming application that consists of 200 jobs. In GridSim, these jobs are
packaged as Gridlets whose contents include the job length in MI, the size of the job input and output
data in bytes, along with various other execution related parameters when they move between the
broker and resources. The job length is expressed in terms of the time it takes to run on a standard
resource PE with a SPEC/MIPS rating of 100. Gridlets processing time is expressed in such a way that
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Figure 21. Number of Gridlets processed for different budget limits with a fixed deadline for each.

they are expected to take at least 100 time units with a random variation of 0–10% on the positive side
of the standard resource. That means the Gridlet job length (processing requirements) can be at least
10 000 MI with a random variation of 0–10% on the positive side. This 0–10% random variation in the
Gridlet job length is introduced to model heterogeneous tasks similar to those present in the real world
parameter sweep applications.

5.3. DBC scheduling experiments with cost-optimization—for a single user

In this experiment, we performed scheduling experiments with different values of DBCs for a single
user. The deadline is varied in simulation time from 100 to 3600 in steps of 500. The budget is varied
from G$ 5000 to 22 000 in steps of 1000. For this scenario, we performed scheduling simulation
for the DBC cost-optimization algorithm. The number of Gridlets processed, the deadline utilized,
and the budget spent for different scheduling scenario is shown in Figures 21–24. From Figure 21,
it can be observed that for a tight deadline (e.g. 100 time units), the number of Gridlets processed
increases as the budget value increases. This is because, when a higher budget is available, the broker
leases expensive resources to process more jobs within the deadline. Alternatively, when scheduling
with a low budget value, the number of Gridlets processed increases as the deadline is relaxed (see
Figure 22).

The impact of budget for different values of deadline is shown in Figure 23. In cost optimization
scheduling, for a larger deadline value (see time utilization for deadline of 3600), the increase in budget
value does not have much impact on resource selection. This trend can also be observed from the budget
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spent for processing Gridlets with different deadline constraints (see Figure 24). When the deadline is
too tight (e.g. 100), it is likely that the complete budget is spent for processing Gridlets within the
deadline.

Figures 25–27 show the selection of resources for processing Gridlets for different budget values
with a fixed deadline of 100, 1100, and 3100 (low, medium, and high deadline values), respectively.
It can be observed that when the deadline is low, the economic broker also leases expensive resources
to process Gridlets whenever the budget permits (see Figure 25). In this, all resources have been used
depending on the budget availability. When the deadline is increased to a high value (a medium deadline
of 1100), the broker processes as many Gridlets as possible on cheaper resources by the deadline (see
Figure 26) and utilizes expensive resources if required. When the deadline is highly relaxed (a high
deadline of 3100), the broker allocated Gridlets to the cheapest resource since it was able to process all
Gridlets within this deadline (see Figure 27). In all three diagrams (Figures 25–27), the left most solid
curve marked with the label ‘All’ in the resources axis represents the aggregation of all resources and
shows the total number of Gridlets processed for the different budgets.

Let us now take a microscopic look at the allocation of resources at different times during the
scheduling experimentation. Figures 28 and 30 show a trace of leasing resources at different times
during the scheduling experiment for processing Gridlets for different budget values with a fixed
deadline of 100 and 3100 (low and high deadline values), respectively. It can be observed that when
the deadline value is low, the economic broker also leases expensive resources to process Gridlets
whenever the budget permits. The broker had to allocate powerful resources even if they are expensive
since the deadline is too tight (see Figure 28 for Gridlets completed and Figure 29 for budget spent in
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processing). But this is not the case when the deadline is highly relaxed (see Figure 30)—the broker
leased just one resource, which happened to process all Gridlets within the given deadline. From the
diagrams (Figures 28 and 29), it can be observed that the resource R7 has processed more Gridlets than
the resource R6, but had to spent more budget on the resource R6 since it is more expensive than the
resource R7.

A trace of the number of Gridlets committed to resources at different times depending on their
performance, cost, and the user constraints (deadline and budget) and requirements (cost-optimization)
is shown in Figures 31 and 32 for deadline values of 100 and 1100 time units, respectively. In both
graphs it can be observed that the broker committed Gridlets to expensive resources only when
required. The broker committed as many Gridlets as the cheaper resources could consume by the
deadline. The remaining Gridlets were assigned to expensive resources. The broker used expensive
resources in the beginning and continued to use cheaper resources until the end of the experiment.
This ability of the economic Grid broker to select resources dynamically at runtime demonstrates its
adaptive capability driven by the user’s quality of service requirements.
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Figure 32. Trace of the number of Gridlets committed to resources for a
medium deadline and high budget constraints.

5.4. DBC scheduling experiments with cost-optimization—for multiple users

In the second experiment, we explored distributed economic scheduling for a varying number of users
competing for the same set of resources. All users are modeled to have similar requirements to enable
comparison among them and understand the overall scenario. Each user application contains 200
Gridlets with small variation as explained in the application modeling section. We modeled a varying
number of users in series from 1, 10, 20, and so on up to 100, each with their own broker scheduling
Gridlets on simulated WWG testbed resources (listed in Table II). We explored the scheduling of
Gridlets for different budget values varied from 5000 to 22 000 in steps of 1000. For this scenario, we
performed two scheduling experiments with two different values of deadline for the DBC constrained
cost minimization algorithm.

5.4.1. User deadline: 3100 time units

The number of Gridlets processed, the average time at which the simulation is stopped, and the budget
spent for different scheduling scenarios for each user with a deadline constraint of 3100 time units is
shown in Figures 33–35. From Figure 33, it can be observed that as the number of users competing for
the same set of resources increases, the number of Gridlets processed for each user decreases because
they have a tight deadline. Where there are few users (e.g. 1 or 10 users in this case), they are able
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Figure 33. Number of Gridlets processed for each user when a varying
number of users are competing for resources.
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Figure 34. The average time at which the user experiment is terminated with a varying number of
users competing for resources. When there are large numbers of users arriving at different times, they
are likely to impact on the schedule and the execution time of jobs already deployed on resources.
The broker waiting for the return of the jobs that are deployed on resources leads to the termination

time exceeding the soft deadline unless the execution of jobs is cancelled immediately.
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Figure 35. The average budget spent by each user for processing Gridlets.
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Figure 36. Number of Gridlets processed for each user when a varying number
of users are competing for resources.
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Figure 37. The average time at which the user experiment is terminated with a
varying number of users competing for resources.

50
0080

0011
00

0

14
00

0

17
00

0

20
00

0

1
102030405060708090

10
0

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Budget  spent
(by each user)

Budget

Users [Deadline=10000]

1

10

20

30

40

50

60

70

80

90

100

Figure 38. The average budget spent by each user for processing Gridlets.
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to process all jobs in most cases when the budget is increased. Figure 34 shows the time at which the
broker terminated the processing of Gridlets. When a large number of users are competing (e.g. 100) for
resources, it can be observed that the broker exceeded the deadline. This is because the broker initially
planned scheduling Gridlets for the period of the deadline, but that schedule had to be terminated
because competing users had already occupied the high resource share well before the recalibration
phase (the first establishment of the amount of resource share available to the user, which of course
can change). Figure 35 shows the average budget spent by each user for processing the Gridlets shown
in Figure 33, which is also clear from the graphic similarity between the two diagrams when a large
number of users are competing for resources.

5.4.2. User deadline: 10 000 time units

The number of Gridlets processed, the average time at which the simulation is stopped, and the
budget spent for different scheduling scenarios for each user with a deadline constraint of 10 000 time
units is shown in Figures 36–38. In this experiment, the number of Gridlets processed for each user
improved substantially due to the relaxed deadline constraint compared to the previous experiment
(see Figures 33 and 36). As the number of users competing for resources increased, the number of
Gridlets processed for each user decreased. However, when the budget was increased, the number of
Gridlets processed increased. Unlike the previous experiment, the broker is able to learn and make
better predictions on the availability of resource share and the number of Gridlets that can be finished
before the deadline. As the deadline was sufficient enough to revisit the past scheduling decisions, the
broker was able to ensure that the experiment is terminated within the deadline for most of the time
(see Figure 37). The average budget spent by each user for processing Gridlets is shown in Figure 38,
which is also clear from the graphic similarity between Figures 36 and 38 when a large number of users
are competing for resources.

6. CONCLUSION AND FUTURE WORK

We discussed an object-oriented toolkit, called GridSim, for resource modeling and scheduling
simulation. GridSim simulates time- and space-shared resources with different capabilities, time zones,
and configurations. It supports different application models that can be mapped to resources for
execution by developing simulated application schedulers. We have discussed the architecture and
components of the GridSim toolkit along with steps involved in creating GridSim based application-
scheduling simulators.

The implementation of the GridSim toolkit in Java is an important contribution since Java provides a
rich set of tools that enhance programming productivity, application portability, and a scalable runtime
environment. As the JVM is available for single, multiprocessor shared or distributed machines such as
clusters, GridSim scales with them due to its concurrent implementation. Also, we were able to leverage
the existing basic discrete-event infrastructure from SimJava while implementing the GridSim toolkit.

We have developed a Nimrod-G like economic Grid resource broker simulator using GridSim
and evaluated a number of scheduling algorithms based on deadline and budget based constraints.
This helped us in evaluating performance and scalability of our scheduling policies with different
Grid configurations such as varying the number of resources, capability, cost, users, and processing
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requirements. The results are promising and demonstrate the suitability of GridSim for developing
simulators for scheduling in parallel and distributed systems.

A better network model is required to support the application model with tasks collaborating and
exchanging partial results among themselves in a P2P fashion. Future work focuses on strengthening
the network model by supporting various types of networks with different static and dynamic
configurations and cost-based quality of services. The resource models need to be enhanced by
interfacing with off-the-shelf storage I/O simulators. We have created a resource model for advance
reservation and we will be implementing its scheduling simulation. To enable simulation of Grid
resource management and scheduling with economic models such as tenders and auctions [24], we
plan to integrate or support the FIPA (Foundation for Intelligent Physical Agents) standards [25] based
interaction protocol infrastructure and extend the resource model to support them, along with quality
of service guarantees. Efforts are currently underway, to develop and simulate an economic-based
scheduler for single administrative domain resources such as clusters.

SOFTWARE AVAILABILITY

The GridSim toolkit software with source code can be downloaded from the project Web site:
http://www.buyya.com/gridsim/.
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