
 1

A Case for Economy Grid Architecture for Service Oriented Grid Computing

Rajkumar Buyya, David Abramson, and Jonathan Giddy

School of Computer Science and Software Engineering
Monash University

 Caulfield Campus, Melbourne, Australia

CRC for Enterpris e Distributed Systems Technology
Monash University

Caulfield Campus, Melbourne, Australia

 Email: {rajkumar, davida, jon}@csse.monash.edu.au

Abstract
Computational Grids are a promising platform for executing
large-scale resource intensive applications. However,
resource management and scheduling in the Grid environment
is a complex undertaking as resources are (geographically)
distributed, heterogeneous in nature, owned by different
individuals or organizations with their own policies, have
different access and cost models, and have dynamically
varying loads and availability. This introduces a number of
challenging issues such as site autonomy, heterogeneous
interaction, policy extensibility, resource allocation or co-
allocation, online control, scalability, transparency, resource
brokering, and “computational economy”.

 A number of Grid systems (such as Globus and Legion)
have addressed many of these issues with exception of a
computational economy. We argue that a computational
economy is required in order to create a real world scalable
Grid because it provides a mechanism for regulating the Grid
resources demand and supply. It offers incentive for resource
owners to be part of the Grid and encourages consumers to
optimally utilize resources and balance timeframe and access
costs. We propose a ‘computational economy framework’ that
builds on the existing Grid middleware systems and offers an
infrastructure for resource management and trading in the
Grid environment. We discuss the usage economic models for
resource trading in the Nimrod/G resource broker and present
deadline and cost-based scheduling experimental results on
the Grid.

1. Introduction

Grid [13] based computational infrastructure is a
promising next generation computing platform for
solving large-scale resource intensive problems. It
couples a wide variety of geographically distributed
computational resources (such as PCs, workstations, and
clusters), storage systems, data sources, databases,
computational kernels, and special purpose scientific
instruments and presents them as a unified integrated
resource. However, including application development,

the management and scheduling of computations in the
Grid environment is a complex undertaking as resources
are geographically distributed, heterogeneous in nature,
owned by different individuals or organizations with
their own policies, have different access cost models
with dynamically varying loads and availability
conditions. A typical market-oriented Grid environment
is shown in Figure 1. It encompasses a wide range of
software technologies from local operating
environments (operating or queuing systems) to global
resource brokers and applications that are designed to
exploit Grid capability. The interactions between these
components must be secure and adapt to the changing
resource status. Internationally, there are many projects
[2][16] actively exploring the design and development
of different Grid system components and services for
secure execution of applications on wide-area resources.

As shown in Figure 1, the users in global Grid
environment essentially interact with a Grid Resource
Broker (GRB) that hides the complexity of resource
management and scheduling. The broker discovers
resources using Grid Information Services (GIS),
negotiates with grid-enabled resources or their agents
for service costs, performs resource selection, maps and
schedules tasks to resources, stages the application and
data for processing on remote resources, and finally
gathers results and hands them to the user. It is also
responsible for monitoring application execution
progress along with managing and adapting to changes
in the Grid environment such as resource failures.

In this paper we identify requirements of users
(resource providers and consumers) in the Grid
economy and various resource management issues that
need to be addressed in realizing such a Grid system.
We briefly discuss popular economic mo dels for
resource trading and present related work that employs
computational economy in resource management. We
propose a scalable architecture and new services for the

 2

Grid that provide mechanisms for addressing user
requirements. The proposed architecture leverages
services offered by the existing Grid systems such as
Globus and offers new core services for resource
trading. We discuss the use of these economic models
and services for developing tools such as the Nimrod/G
resource broker. We discuss a case study consisting of
scheduling a parameter-sweep application on a large
computational Grid spanning four continents and
present some experimental results.

Figure 1: A Generic view of interaction between

players in an Economy Grid.

2. Grid Economy and Resource
Management Issues

The current research and investment into computational
grids is motivated by an assumption that coordinated
access to diverse and geographically distributed
resources is valuable. In this paradigm, we need
mechanisms that allow such coordinated access, but also
sustainable, scalable models and policies that promote
precious Grid resource sharing. Based on the success of
economic institutions in the real world as a sustainable
model for exchanging and regulating resources, goods
and services, we propose a computational economy
framework. Among other things, this framework
provides a mechanism to indicate which users should
receive priority. In [4], we have presented several
arguments in favor of developing Grid architecture for
computational economy and its benefits.

Like all systems involving goals, resources, and
actions, computations can be viewed in economic
terms [51]. With the proliferation of networks, high-end
computing systems architecture has moved from
centralized toward decentralized models of control and
action; use of economic driven market mechanisms
would be a natural extension of this development. The
ability of trade and price mechanisms to combine local

decisions by diverse entities into globally effective
characteristic implies their value for organizing
computations in large systems such as Internet scale
computations Grids.

The two key players in market oriented
computational Grid are resource providers (we refer
hereafter as GSPs—Grid Service Providers) and
resource consumers (we refer hereafter as GRBs —Grid
Resource Broker that acts as a consumer’s software
agent). Both have their own expectations and strategies
for being part of the Grid. In this Grid economy,
resource consumers adopt the strategy of solving their
problems at low cost within a required timeframe and
resource providers adopt the strategy of obtaining best
possible return on their investment. The resource
owners try to maximize their resource utilization by
offering a competitive service access cost in order to
attract consumers. The users (resource consumers) have
an option of choosing the providers that best meet their
requirements. If resource providers have local users,
they will try to recoup the best possible return on
“idle/leftover” resources. In order to achieve this, the
Grid systems need to offer tools and mechanisms that
allow both resource providers and consumers to express
their requirements. The Grid resource consumers
interact with brokers (also called super-schedulers) to
express their requirements such as the budget that they
are willing invest for solving a given problem and a
deadline, a timeframe by which they need results. They
also need capability to trade between these two
requirements and steer the computations accordingly.
The Grid Service Providers need tools for expressing
their pricing policies and mechanisms that help them to
maximize the profit and resource utilization. Various
economic models, ranging from commodity market to
auction-based, can be adopted for deciding pricing
strategies. The Grid infrastructure needs to support these
economic models for resource trading.

To date, individuals or organizations that have
contributed resources to the Grid have been largely
motivated by the public good, prizes, fun, fame, or
collaborative advantage. This is clearly evident from the
construction of private grids (but on volunteer
resources) or research test-beds such as Distributed.net
[9], SETI@Home [20], Condor pool [7], DAS
(Distributed ASCI Supercomputer) [10], GUSTO [14],
and eGrid [11]. Even commercial companies such as
Entropia, ProcessTree, Popular Power, Mojo Nation,
United Devices, and Parabon are exploiting idle CPU
cycles from desktop machines to build a commercial
computational Grid [16]. These companies are able to
develop large-scale infrastructure for Internet computing
and use it for their own financial gain by charging for
access to CPU cycles for their customers without

 3

offering fiscal incentive to all resource contributors. In
the long run, this model is less likely to succeed in
creating a maintainable and sustainable infrastructure.
Therefore, a Grid economy seems a better for model for
managing and handling requirements of both Grid
providers and consumers. It is interesting to note that,
even in electricity Grid, bid-based electricity trading
over the Internet has been adopted to develop
competitive forces in the electricity marketplace [27].

An economy approach to grid computing introduces
a number of new issues to be addressed in addition to
those already addressed by existing Grid systems. Grid
toolkits such as Globus [8] have addressed the five
challenging resource management problems introduced
by computational grids: site autonomy, heterogeneous
substrate, policy extensibility, resource allocation or co-
allocation, and online control. In [4], we proposed a
“computational economy” as another key challenging
issue that needs to be addressed for developing a service
oriented Grid. We proposed an economy -based resource
management architecture called GRACE (GRid
Architecture for Computational Economy). The
GRACE architecture is designed in such a way that it
reuses or leverages services supported by the existing
infrastructures (such as Globus [12], Legion [18],
Condor/G [7], QBank [37], and NetCash [39]) as much
as possible. It offers new services that are particularly
missing in them for constructing an economy Grid. The
economy Grid framework needs to provide
infrastructure that offers the following:

• An Information and Market directory for
publicizing Grid entities

• Models for establishing the value of resources
• Resource pricing schemes and publishing

mechanisms
• Economic models and negotiation protocols
• Mediators to act as a regulatory agency for

establishing resource value, currency standards,
and crisis handling.

• Accounting, Billing, and Payment Mechanisms

3. Economy Models and Related Work
A market-based approach in computational system
design has been the topic of research over the years
[19][26][28][40]. Some of these systems have
developed a substantial theoretical foundation but
without large-scale deployment, experimental
validation, and testing. A number of recent systems are
attempting to apply computational economy for Web-
based computing or for cluster-based systems. Research
in the area of artificial intelligence and agents based
computing has explored economy -based approach for
migration of agents and resource allocation. FIPA

(Foundation for Intelligent Physical Agents), a
consortium of the software agents community, has
proposed a specification for agents negotiation [24].

Various economic models for resource trading and
establishing pricing strategies have been proposed
[6][19][27][29][41][42] and they include,

• A Commodity Market (Flat or Demand &
Supply driven pricing) Model

• A Posted Price Model
• A Bargaining Model
• A Tendering/Contract-Net Model
• An Auction Model
• A Bid-based Proportional Resource Sharing

Model
• A Community/Coalition/Bartering Model

In [6], we presented architecture and issues
associated in implementing the above economic models
in the Grid environment. In the context of business
negotiation on the Internet these models have been
discussed in [23]. The resource providers and
consumers can use any one or more of these economic
models or even a combination of them while
establishing access price depending upon their objective
functions. Either the GSP or the GRB can initiate
resource trading and participate in a market like
environment depending on their requirements. In the
commodity market model, resource providers
competitively set the price and advertise their service in
business directory as service providers (see Figure 1).
The pricing scheme can be static or dynamic in nature.
Consumers choose resource providers through cost-
benefit analysis. The posted price model is similar to
commodity market model except that it posts offers long
before scheduling. In the bargaining model, providers
and consumers negotiate for resource access cost and
time that maximizes their objectives. In these three
models other consumers do not influence the price for
access to services. The negotiation happens privately
between a consumer and a provider and there is no way
for a consumer to know how much others value the
resource services. Accordingly, the consumers need to
decide whether to accept/reject offer depending on its
private objective function.

In the Tender/Contract Net model, the consumer
(GRB) invites sealed bids from several GSPs and selects
those bids that offer lowest service cost within their
deadline and budget. In the Auction model, producers
invite bids from many consumers and each bidder is free
to raise their bid accordingly. The auction ends when no
new bids are received. The auction can be performed
through open or closed bidding protocols. In the bid-
based proportional resource-sharing model, the amount
of resource allocated to consumers is proportional to the

 4

value of their bids.

In the Community/Coalition/Bartering model, a
group of individuals can create a cooperative computing
environment to share each other’s resources. Those who
are contributing resources to a common pool can get
access to resources when in need. A sophisticated model
can also be employed for deciding the share of resources
a contributor can obtain and can allow a user to
accumulate credit for future needs. Systems like
Mojonation.net employ this credit-based bartering
model for storage sharing across the community
network. This model works when all participants in the
Grid are both service providers and consumers.

Several research systems (see Table 1) have
attempted to apply the concept of computational
economy for information management, CPU cycles,
Storage, and Network access. They include Mariposa
[19], Mungi [30], Popcorn [33], Java Market [31],
Enhanced MOSIX [32], JaWS [17], Xenoservers [34],
D’Agents [35], Rexec/Anemone [29], Spawn [36], Mojo
Nation [25]. These systems can manage either single or
multiple resources and they are categorized as follows:

• Single Domain Systems: Enhanced MOSIX and
Rexec/Anemone.

• Web-based Systems: Popcorn, Java Market, and
JaWS.

• Agent-based systems: Xenoservers and D’Agents.
• Database/Storage systems: Mariposa and Mungi.

Each of the resource management systems discussed
in Table 1 follows a single model for resource trading.
They have been designed with a specific goal in mind
either for CPU or storage management. In order to use
some of these systems, applications have to be designed
using their proprietary programming models, which is
generally discouraging, as applications need to be
specifically developed for executing on those systems.
Also, resource trading and job management modules
have been developed as integrated monolithic systems.
In our system, we have separated these two concerns
through layered design approach. The resource trading
services are offered as core services and they can be
used by higher-level services/tools such as resource
brokers. Another key advantage of our system (a
combination of GRACE and Nimrod/G) is that it allows
the execution of legacy applications on large wide-area
distributed systems.

4. Grid Architecture for Computational
Economy (GRACE)

A computational economy -based architecture for Grid
resource management is shown in Figure 2. We
generally refer to this architecture as GRACE (Grid
Architecture for Computational Economy). This

architecture is generic enough to accommodate different
economic models used for resource trading for
determining the service access cost. The key
components of Grid include,

• User Applications (sequential, parametric, parallel,
or collaborative applications)

• Higher Level Services and Tools (such as
Resource Brokers or Market oriented
programming environments)

• Middleware (services resource trading and
coupling distributed wide area resources)

• Grid Fabric components including local resource
managers (e.g., Queuing systems)

As mentioned earlier, our goal is to realize this
economy Grid architecture by leveraging existing
infrastructures such as Globus/Legion as much as
possible and develop new services that are particularly
missing in them. Therefore, we mainly focus on two
things: first, develop middleware services for resource
trading using different economic models, second use
these services along with other middleware services in
developing advanced user-centric Grid resource brokers.
Throughout this section, we discuss how we are
realizing our economy Grid vision and show co-
existence of our modules with other systems.

Figure 2: Abstract Grid Architecture

GRACE provides services that help resource owners
and user-agents maximize their objective functions. The
resource providers can contribute their resource to the
Grid and charge for services. They can use GRACE
mechanisms to define their charging and access policies
and the GRACE resource trader works according to
those policies. The users interact with the Grid by
defining their requirements through high-level tools
such as resource brokers (also known as superschedulers
or metaschedulers). The resource brokers work for the
consumers and attempts to maximize user utility. They
can use GRACE services for resource trading and
identifying GSPs that meets its requirements.

 5

4.1 Grid Resource Broker (GRB)

The resource broker acts as a mediator between the user
and grid resources using middleware services. It is
responsible for resource discovery, resource selection,
binding of software, data, and hardware resources,
initiating computations, adapting to the changes in grid
resources and presenting the grid to the user as a single,
unified resource. The components of resource broker are
the following:

• Job Control Agent (JCA): This is a persistent
control engine responsible for shepherding a job
through the system. It coordinates with schedule
adviser for schedule generation, handles actual
creation of jobs, maintenance of job status,
interacting with clients/users, schedule advisor, and
dispatcher.

• Schedule Advisor (Scheduler): This is responsible
for resource discovery (using grid explorer),
resource selection and job assignment (schedule
generation) so as to ensure that the user requirements
are meet.

• Grid Explorer: This is responsible for resource
discovery by interacting with grid-information
server and identifying the list of authorized
machines, and keeping track of resource status
information.

• Trade Manager (TM): This works under the
direction of resource selection algorithm (schedule
advisor) to identify resource access costs. It uses
market directory services and GRACE negotiation
services for trading with grid service provides (i.e.,
their representative trade servers).

• Deployment Agent (DA): It is responsible for
activating task execution on the selected resource as
per the scheduler’s instruction and periodically
update the status of task execution to JCA.

Our Nimrod/G broker has components that support
similar functions.

4.2 Economy Grid Middleware in Globus
Context

The grid middleware offers services that help in
coupling a grid user and remote resources through a
resource broker or grid enabled application. It offers
core services [2] such as remote process management,
co-allocation of resources, storage access, directory
information, security, authentication, and Quality of
Service (QoS) such as resource reservation for
guaranteed availability and trading for minimizing
computational cost. Many of these services are already
offered by Globus [12] components and they include,
• Resource allocation and process management

(GRAM).

• Resource Co-allocation services (DUROC)
• Unicast and multicast communications services

(Nexus)
• Authentication and related security services (GSI)
• Distributed access to structure and state information

(MDS)
• Status and Health Monitoring components (HBM)
• Remote access to data via sequential and parallel

interfaces (GASS)
• Construction, caching, and location of executables

(GEM)
• Advanced resource reservation (GARA)

We provide comp onents (see Figure 3) that offer
services required for constructing economy Grid and
that can co-exist with systems like Globus:

• A resource broker (e.g., Nimrod/G)
• Various resource trading protocols
• A mediator for negotiating between users and grid

service providers (Grid Market Directory)
• A deal template for specifying resource requirements

and services offers
• A trade server
• A pricing policy specification
• Accounting (e.g., QBank) and payment management

(GBank)
The new middleware services being proposed are

designed to offer low-level services that co-exist with
Globus services and infrastructure. These core services
can be used by higher level services and tools such as
the Nimrod/G Resource Broker that can use various
economic models suitable for meeting user
requirements.

Figure 3 : Economy Grid Components within Globus
context.

The Grid service providers specifically deal with the
following components along with Globus components:

• Trade Server (TS): This is a resource owner agent
that negotiates with resource users and sells access

 6

to resources. It aims to maximize the resource
utility and profit for its owner i.e., earn as much
money as possible. It consults pricing policies
during negotiation and directs the accounting
system for recording resource consumption and
billing the user according to the agreed pricing
policy.

• Pricing Policies : These define the prices that
resource owners would like to charge users. The
resource owners may follow various policies to
maximise their profit and resource utilisation and
the price they charge may vary from time to time
and one user to another user. The pricing can also
be driven by demand and supply like in the real
market environment. That is, in this commodity
market model, pricing is essentially determined by
objective functions of service providers and users.
The pricing policy can also be based on auction. In
this auction based economic model, pricing is
driven by how much users value for the service
and the highest bidder wins the access to Grid
services.

• Resource Accounting and Charging components
(such as GBank along with QBank) are responsible
for recording resource usage and bills the user as
per the usage agreement between resource broker
(TM, a user agent) and trade server (resource
owner agent).

4.3 Grid Open Trading Protocols and Deal
Template

The resource trading protocols define the rules and
format for exchanging commands between a GRACE
client (Trade Manager) and Trade Server. Figure 4
shows a finite state machine representation of multilevel
negotiation protocols that both client and server need to
follow for the bargaining/tender model. In this model,
the Trade Manager (TMs) contacts Trade Server (TSs)
with a request for a quote. The TM specifies resource
requirements in a Deal Template (DT), which can be
represented by a simple structure with its fields
corresponding to deal items or by a “Deal Template
Specification Language”, similar to the ClassAds
mechanism employed by the Condor [7] system. The
contents of DT include, CPU time units, expected usage
duration, storage requirements along with its initial
offer. The TM looks into DT and updates its contents
and sends back to TS. This negotiation between TM and
TS continues until one of them indicates that its offer is
final. Following this, the other party decides whether to
accept or reject the deal. If accepted, then both work as
per the agreement mentioned in the deal. The overhead
introduced by the multilevel point-to-point protocol can

be reduced when resource access prices are announced
through grid information services (e.g., MDS) or market
directory.

Some interaction protocols for a business negotiation
on the Internet have been presented in [23]. This paper
highlights some commonalties in the structure of
different price negotiation mechanisms such as fixed
price sales, auctions, and brokerages. These business
negotiation models and protocols are also applicable for
our resource trading and we have already explored such
models and protocols in our resource management and
scheduling system.

Figure 4: A finite state representation of resource
trading negotiation (for market/bargain model).

4.4 Pricing, Accounting, and Payment
Mechanisms

In a computational economy Grid environment, both
resource owners and users want to maximize their
benefits. As there will be many GSPs offering similar
services, they need to have competitive pricing structure
in order to attract users, efficiently utilize resources, and
maximize profit. The resources consumed by the user
applications need to be accounted and charged. Various
payment mechanisms need to be supported. The users
can purchase resource access credits in advance or pay-
after-usage. Each GSP can maintain this by using
systems like QBank or there can be global Grid-wide
bank called that mediates payment for services accessed
by the user. Figure 5 shows various components at GSP
node and their interactions during resource trading,
consumption, metering (measuring), billing, and
payment handling.
How to determine the Price?
A simple pricing scheme is a fixed price model, but this
does not work when the users demand QoS. This

 7

requirement changes between applications and across
time. The demand/supply and QoS driven pricing
schemes have been investigated by many researchers in
the context of software Agents [21][22]. The pricing
schemes based on various parameters can be developed
and they include,

• A flat price model (the same cost for applications
and no QoS like in today’s Internet [44])

• Usage timing (peak, off-peak, lunch time like
pricing telephone services)

• Usage period and duration (short/long)
• Demand and supply (e.g., Smale model [46])
• Foresight-based [21] (i.e., an ability to model and

predict responses by competitors)
• Loyalty of Customers (like Airlines favoring

frequent flyers!)
• Historical data
• Advance agreement/contract with service provides
• Calendar based
• Bulk Purchase
• Voting in which trade unions decide pricing

structure
• Resource capability as benchmarked in the capital

market
• Application areas in which academic R&D or public

good applications can be offered at cheaper rate
compared to commercial applications.

Figure 5: An Interaction between GSP resource

management components.

 In [22], five different provider pricing strategies,
ranging widely from ones that require perfect
knowledge and unlimited computational power to ones
that require very little knowledge or computational
capability, are employed in two different buyer
populations, namely quality-sensitive and price sensitive
buyers. The resulting collective dynamics have been
investigated using a combination of analysis and
simulation. In a population of quality-sensitive buyers,

all pricing strategies lead to a price equilibrium
predicted by a game-theoretic analysis. However, in a
population of price-sensitive buyers, most pricing
strategies lead to large-amplitude cyclical price wars.
These pricing strategies and issues are also applicable to
the Grid and strategies need to be designed such that the
resource providers benefit through efficient resource
utilization and consumers will have the ability to trade-
off between cost and timeframe in the Grid marketplace.
Service items to be Charged and Accounted

User applications have different resource requirements
depending on computations performed and algorithms
used in solving problems. Some applications can be
CPU intensive while others can be I/O intensive or a
combination. For example, in CPU intensive
applications it may be sufficient to charge only for CPU
time whilst offering free I/O operations. This scheme
cannot be applied for I/O intensive applications.
Therefore, consumption of the following resources need
to be accounted and charged:

• CPU - User time (consumed by user App.) and
System time (consumed while serving user App.)

• Memory
• Maximum resident set size - page size
• Amount of memory used
• Page faults
• Storage used
• Network activity
• Signals received, context switches
• Software and Libraries accessed (particularly

required for the emerging ASP world).
Access to each these entities can be charged
individually or in combination. Combined pricing
schemes need to have a costing matrix that takes a
request for multiple resources in pricing. An economic
model proposed by Smale [46] allows formulation of
such pricing schemes for resource allocation.
Payment Mechanisms
A computational economy Grid needs to support various
payment mechanisms. They include:

• Prepaid – Pay and use in which users need to buy
credits in advance from GSPs or Grid Bank

• Use and pay later
• Pay as you go
• Grants based

Each GSP can bill their users directly and handle all
payment processing issues themselves. This method
introduces a great burden for both providers and users in
a large-scale Grid environment. This can be simplified
by having mediators like a Grid-wide Bank. The users
can inform GSPs about their Grid Bank account details
for which they can charge directly or users can pay by
other electronic cash systems. This can be achieved by

 8

using digital currency mechanisms such as:

• NetCheque: [38] - Users registered with NetCheque
accounting servers can write electronic cheques and
send them to service providers. When deposited, the
balance is transferred from sender to receiver
account automatically.

• NetCash [39] - This supports anonymity and it uses
the NetCheque system to clear payments between
currency servers.

• Paypal [47] – This is an example of credit-card
based automated mediator for payments processing.

Such electronic payment mechanisms satisfy the diverse
requirements of service providers and their users. We
are still investigating mechanisms for integrating such
systems in our economy grid infrastructure.

4.5 System Prototype & Demo Experience

A prototype implementation of the Nimrod/G resource
brokering and trading mechanisms has been
demonstrated during the HPDC 2000 conference in
Pittsburgh. In this parameter study experiment, we have
been able to perform scheduling of parametric
computations over Grid resources in Australia (Monash
University Linux cluster and Solaris workstation) and
the United States (DOE Argonne National Laboratories
SGI/IRIX, IBM SP2, and Sun HPC machines, USC/ISI
SGI-IRIX machine, and University of Virginia Linux
cluster). These Unix-class HPC machines were Grid
enabled by using Globus, Legion, and Condor/G system
services. The modular or component-oriented
architecture of Nimrod/G [3] resource broker allowed us
to develop mechanisms for scheduling computations
over resources enabled by these Grid middleware
services (with minimal effort). The users prepare their
application for parameter studies using Nimrod as usual
[1]. The resulting parameter-sweep application can be
executed on the Grid by submitting it to the Nimrod/G
engine that mediates between the scheduler and
deployment modules. The Nimrod/G scheduler uses
directory services like the Globus MDS for resource
discovery and the GRACE trading services for
establishing an access price. Depending on the user
preferences such as deadline, budget, and optimization
parameters, Nimrod selects the best scheduling
algorithm [5] for generating the schedule and assigning
jobs to suitable resources. The Deployment Agent (DA)
selects the right service module (Globus
GASS/GEM/GRAM, Legion, or Condor/G) depending
on the resource type for staging job/application and data
on (remote) Grid resources, initiate computations and
monitor their progress. As the performance of the Grid
resources is not static, Nimrod/G performs rescheduling
when scheduling event is raised. When job execution is
finished, the DA gathers results from resources to the

user space. During HPDC 2000 Demo, we started an
experiment on our Solaris workstation in Australia from
Pittsburgh and connected to the Nimrod/G engine for
computational monitoring and steering. Using this
remote steering client, we have been able to change
deadline and budget to trade-off cost vs. timeframe for
online demonstration of Grid marketplace dynamics.

Nimrod/G keeps record of all resource utilization and
agreed pricing for resource access for accounting
purpose. This information is useful for resource
consumers for computational steering and verifying
discrepancies in GSP billing statement and the actual
amount of consumption. Resource provider can keep a
record of resource consumption and bill/charge the user
according to the agreed pricing.

5. Resource Trading and Scheduling
Experimentation

In our previous experiments (performed on GUSTO
test bed in 1999 [1]), the resource prices were hardwired
into a file owned by the user. It was up to the user to
ensure the prices in this file reflected the actual prices
for each resource, and they were fixed for the entire
duration of the experiment. This meant that the user
needed to set the price to the highest price for a resource
to ensure that their budget was not exceeded. This
limitation is overcome by using GRACE resource-
trading services. The Nimrod/G scheduler has been
modified to use services of Grid Trade Servers running
on each (gatekeeper) resource for establishing
resource/service price. In order to test the operation of
the Grid Trade Server, we performed an experiment by
implementing the Posted Price Market Model for the
Nimrod/G resource broker. A Grid testbed (shown in
Figure 6) containing computational resources across
four continents has been used in this experiment.

Figure 6: Global Economy Grid (EcoGrid) Testbed.

 9

Resources selected for this experiment from the
testbed are shown in Table 2. To test the Grid Trade
Server with the current scheduler, we ran an experiment
entirely during peak time and the same experiment
entirely during off-peak time. It is important to note
access price variations during peak and off-peak times
and also time difference between Australia and US. The
access price is expressed in Grid units (G$) per CPU
second.

We selected 5 systems (shown in Table 2) from the
testbed, each effectively having 10 nodes available for
our experiment. Monash University has a 60-processor
Linux cluster running Condor, which was reduced to 10
available processors for the experiment. Similarly, a 96-
node SGI at Argonne National Laboratory (ANL) was
made to provide 10 nodes by using Condor glidein to
add 10 processors to the Condor pool. An 8-node Sun at
Argonne and a 10-node SGI at the Information Sciences

Graph 1: Computational Scheduling during Australian Peak (or US off-peak) Time.

0

2

4

6

8

10

12

0 1 3 4 6 8 9 10 12 14 15 17 19 20 21 22 24 25 27 28 30 31 33 34 36 37 38 40 41 43 44 46 47 49 51 52 54

Time (minutes)

Jo
b

s

Linux cluster - Monash (20) Sun - ANL (5) SP2 - ANL (5) SGI - ANL (15) SGI - ISI (10)

Graph 2: Computational Scheduling during Australian Off-peak (or US peak) Time.

0

2

4

6

8

10

12

0 3 4 7 8 10 13 15 17 19 21 23 26 28 31 32 35 37 39 41 43 46 48 50 53 55 57 60

Time (minutes)

Jo
bs

Linux cluster - Monash (5) Sun - ANL (10) SP2 - ANL (10) SGI - ANL (15) SGI - ISI (20)

 10

Institute (ISI) of the University of Southern California
were accessed using Globus directly. Argonne’s 80-
node SP2 was also accessed directly through Globus.
We relied on its high workload to limit the number of
nodes available to us. We assigned artificial-cost (access
price per second) for each of those resources depending
on their relative capability. This is achieved by setting
resource cost database, which is maintained on each of
the resources by their owners. The resource cost
database contains access cost (price) that they like to
charge to all their grid users at different times of the
day. The access price is generally various from users to
users and time to time. The resource broker negotiates
with trading servers for establishing access price using
resource trading services (APIs) provided by the
GRACE infrastructure.

We performed an experiment of 165 jobs. Each job
was a CPU-intensive task of approximately 5 minutes
duration. The experiment was run twice, once during the
Australian peak time, when the US machines were in
their off-peak times, and again during the US peak,
when the Australian machine was off-peak. The
experiments were configured to minimise the cost,
within one-hour deadline. This requirement instructs the
Nimrod/G broker to use “Cost-Optimization Scheduling
algorithm” [5] in scheduling over the grid.

The number of jobs in execution/queued on resources
(Y-axis) at different times (X-axis) during the
experimentation is shown in Graph 1 and Graph 2. The
results for the Australian peak experiment (Graph 1)
show the expected typical results. After an initial
calibration phase, the jobs were distributed to the
cheapest machines for the remainder of the experiment.
This characteristic of the scheduler is clearly visible in
the Graphs 1 and 2. During Australian peak experiment,
after calibration period, the scheduler excluded the
usage of Australian resources as they were expenses and
scheduler predicted that it could still meet the deadline
using cheaper resources from US resources, which are
in off-peak time phase. However, during Australia off-
peak experiment, the scheduler never excluded the
usage of Australian resources and in fact, it excluded the
usage of some of the US resources as they were
expensive at that time due to US in peak-time phase and
their resources were expensive comparatively. The
results for the US peak experiment (Graph 2) are
somewhat more interesting. When the Sun becomes
temporarily unavailable, the SP2, at the same cost, was
also busy, so a more expensive SGI is used to keep the
experiment on track to complete before the deadline.

When the scheduling algorithm tries to minimize the
cost, the total cost Australian peak time experiment is
471205 units and the off-peak time is 427155 units. The
result is that costs were quite low in both cases. An

experiment using all resources without the cost
optimization algorithm during the Australian peak cost
686960 units for the same workload. The cost difference
indicates a saving in computational cost and it is
certainly a successful measure of our budget and
deadline-driven scheduling on the grid.

Graph 3: No. of Resources in use @ AU Peaktime.

Graph 4: Cost of Resources in use @AU Peaktime.

The number of computational nodes (CPUs) in use at
different times during the execution of scheduling
experimentation at Australian peak-time is shown in
Graph 3. It can be observed that in the beginning of the
experiment (calibration phase), scheduler had no precise
information related to job consumption rate for
resources, hence it tried to use as many resources as
possible to ensure that it can meet deadline. After
calibration phase, scheduler predicated that it could
meet the deadline with fewer resources and stopped
using more expensive nodes. However, whenever
scheduler senses difficulty in meeting the deadline by
using the resources currently in use, it includes
additional resources. This process continues until

0

5

10

15

20

25

30

35

40

0 3 8 11 15 19 22 26 30 33 37 40 44 48 52

Time (in min.)

R
es

ou
rc

es
 (

N
o.

 o
f

C
P

U
s)

 in
 U

se

0

50

100

150

200

250

300

350

400

450

500

0 3 6 9 12 15 19 21 24 27 30 33 36 38 41 44 47 51 54

Time (in min.)

C
o

st
 o

f R
es

o
u

rc
es

 in
 U

se

 11

deadline is meet and at the same time it ensures that the
cost of computation is within a given budget.

The total cost of resource (sum of the access price for
all resources) in use at different times during the
execution of scheduling experimentation at Australian
peak-time is shown in Graph 3. It is interesting to
observe the pattern of variation of cost during
calibration phase is similar to that of number of
resources in use. However, this is not the same as
experiment progresses and in fact the cost of resources
decreases almost linearly even thought resources in use
does not decline at that rate. The reason for this
behavior is that a large number of resources that the
scheduler selected were from off-peaktime zone (i.e.,
US was in off-peak time when Australia was in Peak
hours) as they were cheaper. Another reason is that the
EconomyGrid testbed contains more US resources
compared to Australian resources.

Graph 5: No. of Resources in use @ AU Off-peaktime.

Graph 6: Cost of Resources in use @AU Off-Peaktime.

Similar behavior did not occur in scheduling
experiment conducted during Australian off-peak time

(see Graph 5 and 6). The variation pattern of total
number of resources in use and their total cost is similar
due to the fact that the larger numbers of US resources
were available cheaply. Although the scheduler has used
Australian resources throughout the experiment (see
Graph 2), the scheduler had to depend on US resources
to ensure that the deadline is meet even if resources
were expensive.

6. Conclusion and Future Work
We have discussed motivations for creating an economy
Grid and issues involved in the development of resource
management systems driven by computational
economy. We proposed Grid Architecture for
Computational Economy (GRACE) framework that
takes benefits of existing middleware services and tools
and offers new services that are essential for realizing a
real world Grid. We briefly discussed economy models
for resource trading in the Grid. They include
commodity market, posted prices, bargaining, tendering,
auction, proportional resource sharing or shareholder,
and community/coalition/bartering models. We
discussed the usage of resource trading in Grid
brokering for posted price economic model and
presented preliminary experimental results. The
computational economics driven brokering system can
be applied to peer-to-peer computing [48] applications
that enable content sharing. Systems like Napster[49] or
Gnutella [50] could use infrastructure that is similar to
GRACE for encouraging people to share files, contents,
or music in larger scale by providing them economic
incentive. The brokering systems like Nimrod/G can
discover the best content provider that meets consumers
QoS requirements.

A computational economy approach for Grid
resource management requires extensive exploration.
For example, currently our Nimrod/G scheduler does
not allow changes in the price of resources once initial
scheduling decisions are made. That is, in scheduling
the remaining jobs over the resources within the
remaining budget, the scheduler makes significant
assumptions about the future price of the resources. In
addition, the scheduler uses the current price to calculate
the cost of jobs that have completed in the past. Hence,
using the current scheduler in a system where price
varies over time makes the cost estimations
meaningless, and the budget cannot be guaranteed. In
order to overcome this limitation, we are currently
investigating new scheduling algorithms that not only
adapt to dynamic changing in resource conditions
during runtime, but also to changes to access prices
even during the execution of jobs. We will also be
investigating new economic models such Auctions and
Contract Net protocols for resource allocation. We

0

5

10

15

20

25

30

0 4 7 10 14 17 21 25 29 32 36 40 43 47 51 55 59

Time (in min.)

R
es

o
u

rc
es

 (N
o

. o
f C

P
U

s)
 in

 U
se

0

50

100

150

200

250

300

350

0 4 7 10 14 17 21 25 29 32 36 40 43 47 51 55 59

Time (in min.)

C
o

st
 o

f
R

es
o

u
rc

es
 in

 U
se

 12

expect that economy driven approach to resource
management and scheduling will make a great impact
on the eventual success and widespread adoption of the
Grid in day-to-day computational activities.

Acknowledgements
The work is funded through Monash University,
Distributed Systems Technology Centre (DSTC), IEEE
Computer Society, Centre for Distributed Systems and
Software Engineering (DSSE), and the Australian
Government research grants and scholarships. The
computational resources that are part of the
EconomyGrid testbed are owned or provided by
Monash University, Argonne National Laboratories
(USA), University of Southern California’s Information
Sciences Institute (USA), University of Virginia (USA),
Tokyo Institute of Technology (Japan), Electrotechnical
Laboratory (Japan), ZIB/Freie Universität Berlin
(Germany), University of Paraborn (Germany),
University of Cardiff (UK), University of Lecce (Italy),
CERN, (Switzerland), Porzan Supercomputing Centre
(Poland), and CNUCE-Institute of the Italian National
Research Council. We would like to thank our
colleagues from these organizations for providing
access to their supercomputing resources.

References
[1] Abramson, D., Giddy, J., and Kotler, L., High

Performance Parametric Modeling with Nimrod/G:
Killer Application for the Global Grid?, International
Parallel and Distributed Processing Symposium (IPDPS
2000), Cancun, Mexico, May 2000,

[2] Baker M., Buyya R., Laforenza D., The Grid:
International Efforts in Global Computing, Intl.
Conference on Advances in Infrastructure for Electronic
Business, Science, and Education on the Internet
(SSGRR 2000), Italy, 2000.

[3] Buyya, R., Abramson, D., and Giddy, J., Nimrod/G: An
Architecture for a Resource Management and Scheduling
System in a Global Computational Grid, 4th International
Conference on High Performance Computing in Asia-
Pacific Region (HPC Asia 2000), Beijing, China.

[4] Buyya, R., Abramson, D., and Giddy, J., An Economy
Driven Resource Management Architecture for Global
Computational Power Grids, The 7th International
Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 2000), Las Vegas,
USA, June 26-29, 2000.

[5] Buyya, R., Abramson, D., and Giddy, J., An Evaluation
of Economy-based Resource Trading and Scheduling on
Computational Power Grids for Parameter Sweep
Applications, The 2nd International Workshop on Active
Middleware Services (AMS 2000), August 1, 2000,
Pittsburgh, USA (Kluwer Academic Press).

[6] Buyya, R., Abramson, D., and Giddy, J., Stockinger H.,
Economic Models for Resource Trading in a Service
Oriented Grid Computing Environments , Monash
University, http://www.buyya.com/ecogrid/, Oct 2000 (in
publication).

[7] J. Basney and M. Livny, "Deploying a High Throughput
Computing Cluster", in High Performance Cluster
Computing, R. Buyya, Editor, Vol. 1, Prentice Hall PTR,
May 1999, http://www.cs.wisc.edu/condor/

[8] Czajkowski K., Foster I., Karonis N., Kesselman C.,
Martin S., Smith W., and Tuecke S., A Resource
Management Architecture for Metacomputing Systems,
IPPS/SPDP '98 Workshop on Job Scheduling Strategies
for Parallel Processing, 1998.

[9] Distributed.Net – http://www.distributed.net/
[10] H.E. Bal et al.: "The distributed ASCI supercomputer

project", ACM Special Interest Group, Operating
Systems Review, Vol. 34, No. 4, October 2000.
http://www.cs.vu.nl/das/

[11] European Grid (eGrid) and Application Testbeds –
http://www.egrid.org, Nov. 2000.

[12] Foster I. and Kesselman C., Globus: A Metacomputing
Infrastructure Toolkit, International Journal of
Supercomputer Applications, 11(2): 115-128, 1997.
(http://www.globus.org)

[13] Foster, I., and Kesselman, C. (editors), The Grid:
Blueprint for a New Computing Infrastructure, Morgan
Kaufmann Publishers, USA, 1999.

[14] Globus Testbeds - http://www-fp.globus.org/testbeds/
[15] Global Grid Forum - http://www.gridforum.org/
[16] R. Buyya, Grid Computing Info Centre (Grid Infoware) –

http://www.gridcomputing.com, 2000.
[17] Spyros Lalis and Alexandros Karipidis, An Open Market-

Based Framework for Distributed Computing over the
Internet, First IEEE/ACM International Workshop on
Grid Computing (GRID 2000), Dec. 2000, Bangalore,
India: Springer Verlag, Germany.

[18] S. Chapin, J. Karpovich, A. Grimshaw, The Legion
Resource Management System, Proceedings of the 5th
Workshop on Job Scheduling Strategies for Parallel
Processing, April 1999. (http://legion.virginia.edu/)

[19] M. Stonebraker, R. Devine, M. Kornacker, W. Litwin, A.
Pfeffer, A. Sah, C. Staelin, An Economic Paradigm for
Query Processing and Data Migration in Mariposa,
Proceedings of 3rd International Conference on Parallel
and Distributed Information Systems, Austin, TX, USA,
28-30 Sept. 1994. Los Alamitos, CA, USA: IEEE
Comput. Soc. Press, 1994.

[20] SETI@Home – http://setiathome.ssl.berkeley.edu/
[21] Gerald J. Tesauro and Jeffrey O. Kephart, Foresight-

based pricing algorithms in an economy of software
agents, First International Conference on Information and
Computation Economies, Charleston, South Carolina,
October, 1998. http://www.ibm.com/iac/papers/ice98_fs/

[22] Jakka Sairamesh and Jeffrey O. Kephart, Price Dynamics
of Vertically Differentiated Information Markets , First

 13

International Conference on Information and
Computation Economies, Charleston, South Carolina,
October, 1998.

[23] Manoj Kumar and Stuart I. Feldman, Business
negotiations on the Internet, Technical Report, IBM
Institute of Advanced Commerce - March 11, 1998,
http://www.ibm.com/iac/tech-paper.html

[24] Foundation for Intelligent Physical Agents (FIPA),
http://www.fipa.org/, 2000.

[25] Mojo Nation - http://www.mojonation.net/, Nov. 2000.
[26] Reid Smith and Randall Davis, The Contract Net

Protocol: High Level Communication and Control in a
Distributed Problem Solver , IEEE Transactions on
Computers, Vol. C-29, No. 12, Dec. 1980.

[27] ISO New England Inc., Electricity Trading Over the
Internet Begins in Six New England States, Holyoke,
Massachusetts, http://www.iso-ne.com/ , Business Wire,
http://industry.java.sun.com/javanews/stories/story2/0,10
72,15093,00.html

[28] R. Cocchi, S. Shanker, D. Estrin, and L. Zhang, Pricing in
Computer Networks: Motivation, Formulation, and
Example, IEEE/ACM Transactions on Networking, Vol.
1, No. 6, Dec. 1993.

[29] Brent Chun and David Culler, Market-based proportional
resource sharing for clusters, Technical report,
University of California, Berkeley, September 1999.

[30] Heiser G, Lam F, and Russell SM, Resource
Management in the Mungi Single-Address-Space
Operating System, Proceedings of Australasian Computer
Science Conference, Perth Australia, Feb. 1998,
Springer-Verlag, Singapore, 1998.

[31] Yair Amir, Baruch Awerbuch and R. Sean Borgstrom, A
Cost-Benefit Framework for Online Management of a
Metacomputing System, Proceedings of first International
Conference on Information and Computational Economy,
Charleston, Oct. 1998.

[32] Amir Y., Awerbuch B., Barak A., Borgstrom R.S. and
Keren A., An Opportunity Cost Approach for Job
Assignment in a Scalable Computing Cluster, IEEE Tran.
Parallel and Distributed Systems, Vol. 11, No. 7, July
2000.

[33] Noam Nisan, Shmulik London, Ori Regev, Noam
Camiel, Globally Distributed computation over the
Internet - The POPCORN project, International
Conference on Distributed Computing Systems
(ICDCS’98) 1998. Also a poster in WWW6 - Sixth
International World Wide Web Conference, Santa-Clara
in Aprill 1997. (http://www.cs.huji.ac.il/~popcorn/)

[34] Dickon Reed, Ian Pratt, Paul Menage, Stephen Early,
Neil Stratford, Xenoservers; Accounted execution of
untrusted code, Hot topics in Operating Systems, 1999.
http://www.cl.cam.ac.uk/Research/SRG/netos/xeno/

[35] Jonathan Bredin and David Kotz and Daniela Rus, Utility
Driven Mobile-Agent Scheduling, Technical Report PCS-

TR98-331, Dept. of Computer Science, Dartmouth
College, October 3, 1998.

[36] C. Waldspurger, T. Hogg, B. Huberman, J. Kephart, and
W. Stornetta, Spawn: A Distributed Computational
Economy, IEEE Transactions on Software Engineering,
Vol. 18, No. 2, Feb. 1992.

[37] Scott Jackson, QBank: A Resource Management Package
for Parallel Computers, Pacific Northwest National
Laboratory, Washington, USA, 2000.

[38] B. Clifford Neuman and Gennady Medvinsky,
Requirements for Network Payment: The NetCheque
Perspective, Proceedings of IEEE COMPCON'95:
Technologies for the Information Superhighway, San
Francisco, USA, March 1995.

[39] Gennady Medvinsky and B. Clifford Neuman, NetCash:
A design for practical electronic currency on the Internet.
Proceedings of 1st the ACM Conference on Computer
and Communication Security, November 1993.

[40] A. Lazar and N. Semret, Auctions for Network Resource
Sharing, TR 468-97-02, Columbia University, Feb. 1997.

[41] Tuomas Sandholm, Distributed Rational Decision
Making, Multiagent Systems (G. Weiss, editor), The MIT
Press, 2000.

[42] Michael Huhns and Larry Stephens, Mutiagent Systems
and Societies of Agents, Multiagent Systems (G. Weiss,
editor), The MIT Press, 2000.

[43] John Brooke, Martyn Foster, Stephen Pickles, Keith
Taylor, and Terry Hewitt, Mini-Grids: Effective Test-beds
for Grid Application, Proceedings of the First IEEE/ACM
International Workshop on Grid Computing (GRID
2000), Dec. 17, 2000, Bangalore, India: Springer Verlag
Press, Germany.

[44] Lee McKnight and Jahangir Boroumand, Pricing Internet
Services: Approaches and Challenges, IEEE Computer,
Feb. 2000.

[45] Lee McKnight and Jahangir Boroumand, Pricing Internet
Services: After Flat Rate, MIT/Tufts Internet QoS
Workshop, Dec. 1999.

[46] S. Smale, Dynamics in general equilibrium theory,
American Economic Review, Vol. 66, No. 2, 284-294pp,
May 1976.

[47] Paypal – http://www.paypall.com, 2000.
[48] Bob Knighten, Peer to Peer Computing Working Group,

Intel Developer's Forum, August 24, 2000,
http://www.peer-to-peerwg.org

[49] Napster - http://www.napster.com/
[50] Gnutella - http://gnutella.wego.com/
[51] M. Miller and K. Drexler, Markets and Computation:

Agoric Open Systems, The Ecology of Computation, B.
Huberman (editor), Elsevier Science Publishers, The
Netherlands, 1998.

 14

SYSTEM NAME ECONOMY MODEL PLATFORM

COMMENTS

Mariposa [19]
(UC Berkeley)

Bidding (Tendering/
ContractNet). Pricing based on
load and historical info.

Distributed
database.

It supports budget-based query
processing and storage
management.

Mungi [30]
(UNSW, Sydney)
(It is a single-address-
space operating system)

Commodity market (renting
storage space that increases as
available storage runs low,
forcing users to release
unneeded storage.)

Storage servers.

It supports storage objects based
on bank accounts from which rent
is collected for the storage
occupied by objects. .

Popcorn [33]
(Hebrew Uni., Israel)

Auction. (Highest bidder gets
access to resource and it
transfers credits from buyer to
the seller account.)

Web browsers.
(Popcorn based
parallel code run
within a browser
of CPU cycles
seller.)

Popcorn API-based parallel
applications need to specify a
budget for processing each of its
modules.

Java Market [31]
(John Hopkins Uni)

QoS based computational
market. (The resource owner
receives f(j, t) award for
completing f in time t.)

Web browsers.
(JavaMarket runs
standard Java
Applets within a
browser).

One can sell CPU cycles by
pointing Java-enabled browser to
Portal & allow execution of
Applets.

Enhanced MOSIX [32]
(Hebrew Uni., Israel)

Commodity market (resource
cost of each node is known)

Clusters of
computers (Linux
PCs)

It supports process migration such
that overall cost of job execution
is kept low.

JaWS [17]
(Uni. of Crete, Greece)

Bidding (Tendering) Web browsers It is similar to Popcorn.

Xenoservers [34]
(University of
Cambridge)

Bidding (Proportional
resource sharing) Single computer

Accounted execution of untrusted
code.

D’Agents [35]
(Dartmouth College)

Bidding (Proportional
resource sharing)

Single computer
or Mobile Agents

Agents bid function is
proportional to benefit.

Rexec/Anemone [29]
(UC Berkeley)

Bidding/Auction (for
proportional resource sharing)

Clusters
(A market-based
Cluster Batch
Queue System)

Users assign utility value to their
application and system allocates
resources proportionally.

Mojo Nation [25]

(Autonomous Zone
Industries, CA)

A Credit-based partnership
and/or bartering model.
(Contributors earn credits by
sharing storage and spend
them when required)

Network storage.

It is a content-sharing community
network. It combines marketplace
and bartering approach for
file/resource sharing.

Spawn [36]
(Xerox PARC)

Second-price Auction (uses
sponsorship model for funding
money to each task depending
on some requirements)

Network on
workstations.
Each WS
executes a single
task per time slice

It supports execution of
concurrent program expressed in
the form of hierarchy of processes
that expand and shrink size
depending on the resource cost.

Supercomputing centers
[43] (e.g., Uni. of
Manchester computing
services for academic
research)

Commodity market and
priority-based model (they
charge for CPU, memory,
storage, and human support
services)

MPPs, Crays, and
Clusters, and
Storage servers.

Any application can use this
service and QoS is proportional to
user priority and scheduling
mechanisms.

Table 1: A computational economy based resource management systems.

 15

Resource Type &
Size (No. of nodes)

Organization &
Location

Grid Services
and Fabric

Price @ AU
peak time

Price @ AU
off peak time.

Linux cluster (60
nodes)

Monash, Australia Globus/Condor 20 5

IBM SP2 (80 nodes) ANL, Chicago, USA Globus/LL 5 10
Sun (8 nodes) ANL, Chicago, USA Globus/Fork 5 10

SGI (96 nodes) ANL, Chicago, USA Globus/Condor-G 15 15

SGI (10 nodes) ISI, Los Angeles, USA Globus/Fork 10 20

Table 2: A Sample of Economy Grid Testbed Resources used in the experiment. Price is G$ per CPU sec.

Rajkumar Buyya is a Doctoral
Candidate at the School of
Computer Science and Software
Engineering, Monash University,
Melbourne, Australia. He was
awarded Dharma Ratnakara
Memorial Trust Gold Medal for his
academic excellence during 1992 by

Mysore and Kuvempu Universities. He has authored
three books Microprocessor x86 Programming,
Mastering C++, and Design of PARAS Microkernel .
He has edited a popular two volumes book on High
Performance Cluster Computing published by Prentice
Hall, USA. He also edited proceedings of six
international conferences and served as guest editor for
major research journals. He has contributed to the
development of system software for PARAM
supercomputers produced by the Centre for
Development of Advanced Computing (C-DAC),
India. At Monash University, he is conducting R&D on
next generation Internet/Grid computing technologies
and its applications. Rajkumar is a speaker in the IEEE
Computer Society Chapter Tutorials Program and Co-
founder/Chair of the IEEE Computer Society Task
Force on Cluster Computing (TFCC). He has organised
and chaired IEEE/ACM international conferences in
the area of Cluster and Grid Computing. He has
lectured on advanced technologies such as Parallel,
Distributed and Multithreaded Computing, Internet and
Java, Cluster Computing, and Java for High
Performance Computing in many international
conferences and institutions.

David Abramson is a professor and
the Head of the School of Computer
Science and Software Engineering
(CSSE) at Monash University,
Melbourne, Australia. He has been
involved in computer architecture
and high performance computing
research since 1979. Previous to

joining Monash University in 1997, he has held

appointments at Griffith University, CSIRO, and
RMIT. At CSIRO he was the program leader of the
Division of Information Technology High Performance
Computing Program, and was also an adjunct
Associate Professor at RMIT in Melbourne. He was
also a program manager in the Co-operative Research
Centre for Intelligent Decisions Systems. Abramson is
currently project leader in the Co-operative Research
Centre for Distributed Systems Nimrod Project. He is
also Chief Investigator in the following ARC funded
research projects: Guard - A Relative Debugger and a
Software Environment for Building High Performance
Optimising Decision Support Systems from
Computational Models. Abramson has chaired a
number of international conferences, including the
prestigious ACM International Symposium on
Computer Architecture in 1992. He has published over
100 papers and technical documents. He has given
seminars and received awards around Australia and
internationally and has received over $1 million in
research grants. He is a co-founder of Active Tools
P/L, a company that was established to commercialise
the Nimrod project.

Jon Giddy is a Research Scientist
at the Distributed Systems
Technology Centre (DSTC),
Monash University, Melbourne,
Australia. He holds BSc honours
in Computer Science from the

University of Wollongong. He worked on a number of
DSTC funded projects—Security Unit at the
Queensland University of Technology and Tools Unit
at the Griffith University. In the context of Nimrod
project, he is involved in design and development of
number of software tools for high performance
distributed computing. He enjoys programming in
Python!

