
73

4
Adaptive Execution of Scientific 
Workflow Applications on Clouds

Rodrigo N. Calheiros, Henry Kasim, Terence Hung, Xiaorong Li, Sifei Lu, 
Long Wang, Henry Palit, Gary Lee, Tuan Ngo, and Rajkumar Buyya

Summary

Many e-science applications can be modeled as workflow applications. In this 
programming model, scientific applications are described as a set of tasks 
that have dependencies between them. Clouds are natural candidates for 
hosting such applications. This is because some of their core characteristics, 
such as rapid elasticity, resource pooling, and pay per use, are well suited to 
the nature of scientific applications that experience variable demand, spikes 
in resource (i.e., of the central processing unit [CPU] or disk) utilization, and 
sometimes, urgency for generation of results. As current workflow manage-
ment systems (WfMSs) cannot support efficient and automated execution of 
workflow in clouds that support adaptive execution, fault tolerance, and data 
privacy, in this chapter we detail the requirements of a WfMS that supports 
these requirements, its architecture, and an application scenario involving 
simulation of Singapore’s public transport system.
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4.1 � Introduction

Many e-science applications can be modeled as workflow applications. In 
this programming model, scientific applications are described as a set of 
tasks that have dependencies between them. Normally, this dependency is 
expressed in the form of input and output (I/O) files. It means that, before 
one task can execute, it needs the tasks it depends on to have completed 
their execution and the files they generate to already be available as input. 
Well-known application domains where workflow applications are used 
include astrophysics, bioinformatics, and disaster modeling and prediction, 
among others.

Scientists have been successfully executing this type of application on 
supercomputers, clusters, and grids. Recently, with the advent of clouds, 
scientists started investigating the suitability of this infrastructure for work-
flow applications.

Clouds are natural candidates for hosting workflow applications. This is 
because some of their core characteristics, such as rapid elasticity, resource 
pooling, and pay per use, are well suited to the nature of scientific applica-
tions that experience variable demand, spikes in resource (i.e., of the central 
processing unit [CPU], disk) utilization, and sometimes, urgency for genera-
tion of results. Furthermore, recent offerings of high-performance cloud com-
puting instances make it even more compelling for scientists to adopt clouds 
as the platform of choice for hosting their scientific workflow applications.

The execution of workflow applications is a demanding task. Tasks, some-
times in the order of hundreds, need to have their execution coordinated. 
They have to be submitted for execution in a specific virtual machine (VM), 
and the required input files need to be made accessible for the application. 
This may require the transfer of huge amounts of data between computing 
hosts. Reception of user input, data transfers, task executions, and VMs can 
fail; in this case, some action has to be carried out to reestablish the execution 
of the application. Examples of such actions are retrying the data transfer, 
rescheduling the task, or starting a new VM to execute the remaining tasks. 
These activities are carried out by software called workflow management 
systems (WfMSs). Examples of well-know, WfMSs are Pegasus [1], Taverna [2], 
Triana [3], and Cloudbus Workflow Engine [4].

At the same pace that infrastructures and platforms evolve, so do the sci-
entific applications using such infrastructures and platforms. The amount of 
data generated by scientific experiments is reaching the order of terabytes per 
day, and huge capacity is required to process this data to enable scientific dis-
coveries. Therefore, WfMSs also need to evolve to support huge data sets and 
the complex analytics required to extract useful insights from the generated 
data. Even more important, if data are continuously generated, WfMSs need 
to support real-time capabilities. This has to be achieved at the same time that 
other nonfunctional requirements, such as data privacy, are enabled.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

el
bo

ur
ne

] 
at

 1
4:

24
 2

6 
Ja

nu
ar

y 
20

15
 



75Adaptive Execution of Scientific Workflow Applications on Clouds

Although this information is truth regardless of the specific infrastruc-
ture hosting the workflow application, even more complexity is added to 
the system when the applications are executed in clouds. This is because 
extra capabilities are required to enable the WfMS to select the right number 
of resources of the right type so that the computational task is performed 
within a user-defined time frame and budget.

As current WfMSs cannot support efficient and automated execution of 
workflow in clouds that support adaptive execution, fault tolerance, and data 
privacy, we developed extensions to a workflow engine [4] to support such 
features. In this chapter, we detail the requirements of such a system, its 
architecture, and the application scenario explored, along with an evaluation 
of the system and a discussion of lessons learned during its development.

4.2 � Workflow Applications

The workflow programming model is undoubtedly one of the most promi-
nent programming models in e-science, being used in a range of domains, 
including bioinformatics, astrophysics, and disaster modeling, to name a 
few. In this model, one application (job) is composed of a number of tasks 
that have execution dependencies between them. Typically, the dependency 
is related to I/O: One task depends on the output of another (or other) task(s) 
as its input; therefore, it cannot be executed until such data are available 
(normally, after the execution of the original task is completed).

Variations of the model exist in which the workflow also contains condi-
tional branches (i.e., particular tasks that compose the workflow may or may 
not be executed depending on the results of previous tasks), loops (for which 
execution of specific sections of the workflow is repeated), and when tasks 
are allowed to start execution before predecessors complete execution.

Without loss in generality, a workflow application can be formally rep-
resented by a directed acyclic graph (DAG) whose vertices represent tasks 
and the directed edges represent the dependencies between tasks: An edge 
A →  B indicates that task B depends on task A for its execution. Such a 
representation of workflow applications is also known as DAG. A simple 
workflow is depicted in Figure 4.1.

Traditionally, workflow applications have been extensively deployed in 
high-performance infrastructures such as supercomputers and clusters [5]. 
When deployed on such infrastructures, emphasis was given in reducing the 
execution time of the workflow by optimizing the utilization of the resources 
available for the workflow. When grids became available, they were also 
used for workflow execution [6, 7]. This added complexity to the schedul-
ing process because it was possible that resources available for execution 
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76 Cloud Computing with e-Science Applications

were distributed, and thus data movement across wide distances might be 
necessary. Even in this case, focus was still on execution time minimization.

Cloud computing adds a new dimension for workflow execution related 
to the financial cost of using a virtually infinite amount of resources for 
workflow execution. This means that the only limitations to the available 
resources, and consequently the improvements in execution time, are the 
available budget for workflow execution and the structure of the workflow itself, 
which determines the maximum amount of tasks that can be executed in 
parallel in the infrastructure. Clouds also brought other challenges for work-
flow management and execution. They are discussed in the next section.

4.3 � Requirements for Adaptive Execution 
of Workflows on Clouds

Although modern WfMSs already support clouds as the platform support-
ing the execution of workflow applications, many desirable features are still 
absent in the WfMSs. This is because current WfMSs for clouds are derived 
from projects in the area of grid computing. Therefore, many of their fea-
tures are optimized for grids and thus are unable to obtain the most key 
aspects of clouds, such as rapid elasticity.

In this sense, clouds add extra complexity to WfMSs because the amount of 
resources that WfMSs can provision for executing the workflow is virtually 
infinite, as long as there is budget available to spend on the workflow execu-
tion process. Thus, different from existing algorithms and approaches that 
operated with the goal of obtaining the most from the resources available for 
the application, cloud-enabled WfMSs can assume that the main restriction 
of the system is the budget rather than resources, and its goal is balancing 
utilization, cost, and reduction of execution time [8].

FIGURE 4.1
Graphical representation of a simple scientific workflow.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

el
bo

ur
ne

] 
at

 1
4:

24
 2

6 
Ja

nu
ar

y 
20

15
 



77Adaptive Execution of Scientific Workflow Applications on Clouds

Li et al. [8] also identified the following requirements for cloud-enabled 
workflows:

	 1.	Dynamic resource provisioning and deadlines: This is the capability 
of acquiring and releasing resources as required to accommodate 
the tasks of the workflow and to enable their completion within a 
user-specified deadline. This is an important feature because it 
enables execution of mission-critical workflow applications that need 
to be completed before the deadline for the computation to have 
value. An example of such mission-critical workflows is disaster 
management workflows. Consider, for example, the architecture 
depicted in Figure 4.2. A disaster management workflow application 
suite may support management of many types of natural disasters, 
such as floods, cyclones, and bushfires. When one such disaster 
strikes, the corresponding management application needs to be 
executed in public and private clouds to provide information that 
will be used by disaster mitigation and rescue teams. If the applica-
tion takes too long to execute, the teams will not have time to act 
based on the information provided, which results in wasted time 
(and money) invested in the execution of the workflow in the cloud 
and even further losses in terms of lives and property damage that 
would have been prevented if the rescue and mitigation teams had 
access to the information in appropriate time.

	 2.	Adaptive task/workflow/user scheduling: This relates to the capability 
of reacting to conditions faced during workflow execution to main-
tain the balance between cost, utilization, and execution time. In the 
context of this requirement, a change in conditions means adapting 
to changes in user requirements at runtime (e.g., increased/reduced 
budget, increased/reduced application deadline).

	 3.	Fault tolerance: This is the capacity to automatically react to changes 
in the available number of resources or tasks to be processed 
because of failures and the capability to adapt to situations if the 
performance delivered by cloud resources is below that contracted 
or historically observed.

	 4.	Security-conscious data migration and data privacy: Given that the data 
being processed by the WfMS can be sensitive, mechanisms for pro-
tection of the data, either during transfer or once stored in a public 
cloud, must be available. The applied method should also enable 
auditing of accesses and modifications in the data.

	 5.	Application management: This requirement involves the capability to 
collect and process information about the system status and moni-
tor the platform and the application in real time. This requirement 
also includes a capacity for presentation of comprehensive informa-
tion to users about the resources (utilization, performance, etc.) and 
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FIGURE 4.2
Architecture for workflow-enabled disaster management applications.
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79Adaptive Execution of Scientific Workflow Applications on Clouds

tasks so the cost-benefit analysis of utilization of the cloud can be 
undertaken and the utilization of cloud computing for workflows 
can be justified.

These requirements were addressed while we developed an adaptive 
system for execution of a workflow for agent-based simulation in hybrid 
clouds. The application is detailed next.

4.4 � Case Study

A city is sustainable only if it can accommodate economic and population 
growth while ensuring the well-being of its people and environment [9]. There-
fore, reaching sustainability becomes harder when the growth of a population 
is high or when the growth occurs in areas of high density, such as Singapore.

Singapore’s land area has increased from 581 km2 in the 1960s to 716 km2 
in 2012; its population in the same period has grown from 1.6 million to 
5.3 million [10]. To maintain reasonably good economic growth, the Singapore 
government has projected a need for the population to reach 6.9 million by 
2030. However, the land area is only slated to grow to about 800 km2 in the 
same period. The disparity in the growth rate of population versus land area 
means that there is increasing strain on space and the service infrastruc-
ture. It is crucial for the planning agencies to adopt a scientific approach to 
understanding the urban fabric and how it can adapt to social, economic, 
and environmental changes.

One key aspect to improve the quality of living of city inhabitants is public 
transport. There is a need for efficient transport covering the biggest exten-
sion of the city as possible and running with enough frequency so people are 
motivated to use it rather than using cars. In this sense, Singapore’s public 
transport network is ranked among the best in the world. Its Mass Rapid 
Transit (MRT) train network comprises 102 stations distributed over four 
main lines, with a total of almost 150 km of rail lines. It currently serves 
around 2.5 million commuters per day, which represents more than 75% of 
the total public transport users [11].

The number of commuters and the high frequency of trains (running in 
intervals as short as 90 seconds) make it a complex system. Furthermore, 
even a minimal disruption in the operation of one train can cascade over 
several lines, affecting hundreds of thousands of commuters.

This complex and sensitive system will be subject to even further pressure 
as the population increases. Therefore, tools are needed to help planners 
evaluate the effects that disruptions would have over the whole system.
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80 Cloud Computing with e-Science Applications

This fact motivated us to adopt a data-driven approach to understanding the 
dynamics of the public transport system in Singapore. To achieve that, a scal-
able complex system modeling for a sustainable city (S3) has been developed 
to study how the city will behave under different planning scenarios.

The goal of S3 is to provide insights to users on what-if scenarios for a 
day-to-day public transport system by leveraging on a synthetic journey 
function that generates agent-based models for public transport dynamics 
simulation. This insight will provide information on the future public trans-
port infrastructure preparedness to handle the growing population and the 
preparedness for emergencies in cases of breakdowns in the public trans-
port system.

Scaling areas that we address in this context are (1) the extract-transform-
load (ETL) or preprocessing that is required to train the synthetic journey 
function that generates the agent-based model; (2) the agent-based generation 
required to generate millions of agents that represent the increasing popula-
tion and public transport infrastructure; and (3) the large-scale agent-based 
simulation that is required to handle, track, and process each of the agents 
and to support complex interactions between agents to provide insight on 
what-if scenarios for the public transportation system in Singapore.

We tackled the large-scale computation requirements by designing 
agent-based complex system modeling supported by an adaptive cloud 
WfMS  [12] for workflow scheduling and handling big data and dynamic 
resource scaling on public and private clouds.

The S3 application has three phases: preprocessing, data analysis, and 
agent-based simulation. Figure  4.3 shows our S3 application architecture, 
which comprises an adaptive cloud WfMS, ETL or preprocessing algorithm, 
data analysis algorithm, and agent-based simulation.

ETL or preprocessing. The synthetic data set for the application is 
based on the studies of trends and random sampling of daily public 
commuters’ activities in Singapore. It consists of 1-second time gran-
ularities for 7 days’ duration with approximately 3 million journeys 
per day. Based on the synthetic data set, we extract and transform the 
data for travel duration for each origin-station to destinations-station 
(OD-pair) of 90 x 90 by three different route choices. The order of 
complexity in this phase is O(n2), where n represents the number 
of stations.

Data analysis. The objective of this phase is to understand commuter 
demand and, based on data analysis results, create or improve the 
journey function of all possible OD pairs, possible routes for each 
OD pair, and temporal travel demand. The order of complexity in 
this phase is also O(n2), where n represents the number of stations.
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S3: architecture, concepts, and technologies.
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82 Cloud Computing with e-Science Applications

Agent-based simulation. In this phase, we simulate the actions and 
interactions of autonomous agents. This agent-based simulation con-
sists of agent granularity, adaptive agent process, decision-making 
heuristics, and agent interactions. Agent granularity refers to the 
number of agents specified at various scales. The adaptive agents pro-
cess refers to the action that an agent takes when a situation occurs 
(redefining the decision-making heuristics). Decision-making heuris-
tics refer to rules or behaviors of an agent. Agent interaction refers to 
the complexity of communications or interactions between agents.

There are three types of agents in the S3 application: commuters, stations, 
and trains. Each of these agents has its own attributes, adaptive agent pro-
cess, decision-making process, and agent interactions, as summarized in 
Table 4.1. The order of complexity in this phase is O(n3) due to the interac-
tions between agents on simulation time interval or O(tn2), where n repre-
sents the number of agents and t represents the simulation time steps.

Data requirements. The size and quantity of the data set that is generated 
is large. The size of the data can easily take up a few gigabytes each day. 
For example, the data set consists of 7 days of public transportation 
journeys for each individual, with approximately 3 million journeys 
per day. As for the agent-based simulation, we simulate the growing 
population as 6.9 million. This translates into approximately 14 mil-
lion journeys (travel and return) performed for each simulated day.

Computation requirements. For agent-based simulation, millions of 
agents are created to simulate the future infrastructure and dynam-
ics of the transportation system in Singapore. In total, the system 
manages 7 million agents that have their own attributes, adaptive 
agent process, decision-making process, and interactions with other 
agents. Furthermore, there is complexity of agent interactions and 
tracking for the simulation interval at 1-second granularity.

TABLE 4.1

Agent-Based Simulation Characteristics

Commuter Agents Station Agents Train Agents

Agent granularity 6.9 million agents 90 agents Approximately 200 
agents

Attributes 12 attributes 9 attributes 16 attributes
Adaptive agent 
process

1 adaptive process — 2 adaptive processes

Decision-making 
heuristics

5 decision-making 
heuristics

2 decision-making 
heuristics

5 decision-making 
heuristics

Agent interactions •	Station
•	Train

•	Commuter
•	Train

•	Commuter
•	Station
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83Adaptive Execution of Scientific Workflow Applications on Clouds

To support not only these requirements for data and computation but also 
the requirements listed in the previous section, we proposed and developed 
a workflow middleware whose architecture is described next.

4.5 � System Architecture

The requirements presented previously are addressed by software middle-
ware comprising a WfMS augmented with capabilities for data analytics 
integrated as a second layer above the WfMS. The overall organization of 
the system is depicted in Figure 4.3. It shows the S3 application architecture, 
which consists of the adaptive cloud WfMS, the ETL or preprocessing algo-
rithm, the data analysis algorithm, and the agent-based simulation.

Cloud WfMS system. The cloud WfMS is responsible for workflow 
scheduling, big data handling, and dynamic resource scaling on 
hybrid clouds. The Cloud WfMS comprises the workflow engine, 
task dispatcher, and resource management. The workflow sched-
uling coordinates the execution of tasks, handles communication 
between components, implements the scheduling algorithm, and 
manages the execution of applications on distributed resources. The 
task dispatcher component submits tasks to resources for execu-
tion. The resource management component interacts with the cloud 
infrastructure to enable resource allocation.

Preprocessing and data analysis. This component is responsible 
for managing preprocessing and data analysis activities that 
are required to train the synthetic journey function that gener-
ates the synthetic journey. It tackles the scalability challenge by 
dynamically scaling up the number of VM instances; thus, the pre-
processing processes are executed in parallel. Since this is a compu-
tationally intensive task with a long duration and the total number 
of origin-station and destination-station pairs is large (composed 
of more than 8,000 pairs), VM instances are pooled from a hybrid 
cloud where each VM instance processes the travel duration for 
each origin-station and destination-station pair.

Agent-based simulation. There are three phases of agent-based simu-
lation: agent creation, attribute definition, and simulation execution. 
Our module is able to scale the process of agent-based generation 
in orders of magnitude of up to millions of agents. Further in this 
chapter, we demonstrate the process for 6.9 million commuter agents, 
90 station agents, and 200 train agents. The activities of the process 
of simulation execution are (1) time series simulation with 1-second 
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84 Cloud Computing with e-Science Applications

intervals; (2) tracking of each agent, which includes checking and 
updating each agent’s state; (3) a decision-making process for each 
agent (e.g., dispatch the train at simulation time t); (4) adaptive agent 
process that allows agents to adapt to different situations (e.g., when 
a train arrives at a station, commuter agents need to board or leave 
the train); (5) interactions between agents (e.g., communication 
between train agents and station agents when the train arrives at the 
station, communication between commuter agents and train agents 
when the commuter boards the train) and management of tasks and 
data flows on the hybrid cloud utilizing the cloud WfMS.

A discussion of the implementation aspects of the architecture and its 
performance is presented next.

4.6 � Discussion and Lessons Learned

The agent-based simulation is based on three phases: create agents, define 
attributes, and run the simulation. To test the scalability of the model, 
we evaluated two different setups. The first one uses the ZeroMQ (ZMQ) 
technology [13] in our hybrid cloud. ZMQ is a low-latency asynchronous 
message-passing library that is used in scalable distributed or concurrent 
applications. The second one is a hybrid cloud test bed. The private cloud 
component of the hybrid cloud is composed of 64 cores (hyperthreaded) and 
a 2.2-GHz processor with 128 GB of memory. On top of this infrastructure, 
we deployed 50 VMs, with each VM an Ubuntu 12.04 with 1 core and 4 GB of 
memory. The public cloud is composed of 1,000 Amazon EC2 small instances 
(1 core with 1 ECU and 1.7 GB of memory).

Scaling of the “create agents” and “define attributes” phases is achieved 
through the division of the workload, with each process handling a group 
of agents. For example, in a simulation with 7 million commuters running 
on an infrastructure containing 1,000 VMs, creation of commuter agents was 
split among the VMs in such a way that each VM handled the creation of 
7,000 agents.

On the “run simulation” phase, we experienced the execution of the sim-
ulation on a time-based simulation with 1-second intervals and tracking, 
checking, and updating of each agent’s states. The scale method in this case 
delegates each VM to handle a group of agents. When the ZMQ push-pull 
method is used, one of the VMs acts as the head node that is in charge of 
distributing the tasks to all the worker VMs and controlling the timekeep-
ing process of the simulation. The timekeeping process consists of sending a 
message to each worker to inform them of the current simulation time so that 
workers can start the simulation of events scheduled for such a given time.
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85Adaptive Execution of Scientific Workflow Applications on Clouds

However, we noticed that the time-based simulation has limited scalabil-
ity. When executed in a private cloud of 50 VMs, it took 35,248 seconds to 
complete the 2 million commuters’ agent-based simulation. This happened 
because there were dependencies in t + 1 with time t (i.e., simulation at time 
t needs to be completed before simulation of time t + 1 starts). Because of this 
issue, we replaced the time-based simulation with an event-based simulation.

In event-based simulation, the model handles the agents’ interactions, such 
as boarding of commuters, unboarding of commuters, train arrivals at sta-
tions, and train departures from stations. On the back end, the workload is 
distributed via a similar method to other phases (each process handles a 
group of agents). With this new technique, the execution time of the simula-
tion in the same private cloud was completed in 1,818 seconds for the same 
2-million-commuter agent-based simulation, an improvement of 19 times 
over the original technique.

We further scaled the agent-based simulation by executing it on 1,000 VMs. 
In this case, the agent-based simulation completed in 434 seconds for simula-
tion of 2 million commuters and 963 seconds for 7 million commuters. This 
demonstrated that the three phases of our approach are scalable and suitable 
for execution on elastic cloud platforms.

To summarize, we gave preference to the cloud-enabled WfMS over the 
ZMQ system because of the following reasons: (1) It enabled more efficient 
management of the highly distributed data required by the agent-based 
simulation workflow; (2) it better automated the workflow process for data 
analytics with multiobjective optimization of performance and budget; 
and (3) it enabled dynamic resource allocation for adaptive services with 
fault tolerance.

4.7 � Related Work

Given the importance of workflow applications for the scientific community, 
many scientific workflow platforms were developed to explore scientific 
computational platforms such as grids. As cloud platforms became popular 
among the scientific community, WfMSs where enhanced to support them.

Pegasus [1] offers a set of tools for different aspects of execution and man-
agement of workflow applications and platforms. It implements application 
programming interfaces (APIs) for diverse programming languages, supports 
submission of workflows via web portals, and integrates with external tools. On 
its back end, it supports multiple cloud providers and scientific infrastructures.

Taverna [2] is another widely adopted workflow engine that can explore 
both grid and cloud platforms. Applications running on the platform can 
be deployed in many modes, including “server mode,” by which it supports 
requests from many users to execute remote workflow applications.
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86 Cloud Computing with e-Science Applications

The Cloudbus Workflow Engine incorporates a market-oriented utility 
computing model that supports grids, desktops, and clouds. It supports the 
concept of InterCloud for allocation and management of resources for execu-
tion of workflow applications [1].

Kim et al. [14] proposed a WfMS able to deploy workflows in hybrid infra-
structures composed of TeraGrid nodes and Amazon EC2 resources. Our 
proposed system, on the other hand, can also leverage resources from private 
and public cloud providers.

Gogouvitis et al. [15] proposed a WfMS for deploying workflow applica-
tions on virtualized environments that is able to utilize resources from 
public clouds. However, it has no dynamic provisioning capabilities to speed 
application execution and to meet real-time application performance require-
ments as does our approach.

Fernandez et al. [16] proposed a cloud WfMS that applies a concept called 
chemical programming for the application scheduling. The system, however, 
does not offer dynamic resource provisioning capabilities and autonomic 
self-healing features.

CometCloud [17] is a more recent tool that implements an infrastructure 
for autonomic management of workflow applications on clouds.

4.8 � Conclusions and Future Work

Clouds became a powerful platform for e-research as they enable scientists to 
have access to elastic, cost-effective, and virtually infinite computing power. 
Because clouds provide their users the view of infinite computing capac-
ity, the real limitations on the scalability of the applications lie in the avail-
able budget for cloud usage and limitations in the applications themselves. 
Therefore, it is important that scientific application developers enable their 
applications to get the most from the cloud.

In this chapter, we discussed recent trends for execution of workflows in clouds. 
The architecture we presented is composed of a platform layer and an applica-
tion layer. The platform layer enables operations such as dynamic resource pro-
visioning, autonomic scheduling of applications, fault tolerance, security, and 
privacy in data access. The features enabled by this layer can be explored by 
virtually any application that can be described as scientific workflow.

In the application layer, we discussed a data analytics application enabling 
simulation of the public transport system of Singapore and the effect of 
abnormal events in the transport network. The application consists of an 
agent-based simulation of the public transport system of Singapore, and it 
allows evaluation of effects of incidents (such as train delays) in the flow of 
passengers in the country.
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As future work, we plan to extend our platform to support a disaster deci-
sion support system (DDSS). The principles presented in this chapter will 
be further expanded so the DDSS will provide a dashboard for the strategic, 
tactical, and operational decisions arising during disaster mitigation. It will 
be integrated with a range of modeling and simulation tools to provide opti-
mization models with up-to-date situational awareness and predictions to 
provide recommendations to authorities. This extension will support not 
only workflow applications but also other programming models suitable 
for clouds, such as MapReduce. Ideally, the platform will support not only 
applications that are entirely described as one of these models but also com-
plex applications that are composed of diverse subcomponents that may be 
developed as different programming models.
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