
73

4
Adaptive Execution of Scientific
Workflow Applications on Clouds

Rodrigo N. Calheiros, Henry Kasim, Terence Hung, Xiaorong Li, Sifei Lu,
Long Wang, Henry Palit, Gary Lee, Tuan Ngo, and Rajkumar Buyya

Summary

Many e-science applications can be modeled as workflow applications. In this
programming model, scientific applications are described as a set of tasks
that have dependencies between them. Clouds are natural candidates for
hosting such applications. This is because some of their core characteristics,
such as rapid elasticity, resource pooling, and pay per use, are well suited to
the nature of scientific applications that experience variable demand, spikes
in resource (i.e., of the central processing unit [CPU] or disk) utilization, and
sometimes, urgency for generation of results. As current workflow manage-
ment systems (WfMSs) cannot support efficient and automated execution of
workflow in clouds that support adaptive execution, fault tolerance, and data
privacy, in this chapter we detail the requirements of a WfMS that supports
these requirements, its architecture, and an application scenario involving
simulation of Singapore’s public transport system.

CONTENTS

Summary... 73
4.1	 Introduction... 74
4.2	 Workflow Applications..75
4.3	 Requirements for Adaptive Execution of Workflows on Clouds........... 76
4.4	 Case Study... 79
4.5	 System Architecture...83
4.6	 Discussion and Lessons Learned...84
4.7	 Related Work...85
4.8	 Conclusions and Future Work..86
References.. 87

74 Cloud Computing with e-Science Applications

4.1 � Introduction

Many e-science applications can be modeled as workflow applications. In
this programming model, scientific applications are described as a set of
tasks that have dependencies between them. Normally, this dependency is
expressed in the form of input and output (I/O) files. It means that, before
one task can execute, it needs the tasks it depends on to have completed
their execution and the files they generate to already be available as input.
Well-known application domains where workflow applications are used
include astrophysics, bioinformatics, and disaster modeling and prediction,
among others.

Scientists have been successfully executing this type of application on
supercomputers, clusters, and grids. Recently, with the advent of clouds,
scientists started investigating the suitability of this infrastructure for work-
flow applications.

Clouds are natural candidates for hosting workflow applications. This is
because some of their core characteristics, such as rapid elasticity, resource
pooling, and pay per use, are well suited to the nature of scientific applica-
tions that experience variable demand, spikes in resource (i.e., of the central
processing unit [CPU], disk) utilization, and sometimes, urgency for genera-
tion of results. Furthermore, recent offerings of high-performance cloud com-
puting instances make it even more compelling for scientists to adopt clouds
as the platform of choice for hosting their scientific workflow applications.

The execution of workflow applications is a demanding task. Tasks, some-
times in the order of hundreds, need to have their execution coordinated.
They have to be submitted for execution in a specific virtual machine (VM),
and the required input files need to be made accessible for the application.
This may require the transfer of huge amounts of data between computing
hosts. Reception of user input, data transfers, task executions, and VMs can
fail; in this case, some action has to be carried out to reestablish the execution
of the application. Examples of such actions are retrying the data transfer,
rescheduling the task, or starting a new VM to execute the remaining tasks.
These activities are carried out by software called workflow management
systems (WfMSs). Examples of well-know, WfMSs are Pegasus [1], Taverna [2],
Triana [3], and Cloudbus Workflow Engine [4].

At the same pace that infrastructures and platforms evolve, so do the sci-
entific applications using such infrastructures and platforms. The amount of
data generated by scientific experiments is reaching the order of terabytes per
day, and huge capacity is required to process this data to enable scientific dis-
coveries. Therefore, WfMSs also need to evolve to support huge data sets and
the complex analytics required to extract useful insights from the generated
data. Even more important, if data are continuously generated, WfMSs need
to support real-time capabilities. This has to be achieved at the same time that
other nonfunctional requirements, such as data privacy, are enabled.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

el
bo

ur
ne

]
at

 1
4:

24
 2

6
Ja

nu
ar

y
20

15

75Adaptive Execution of Scientific Workflow Applications on Clouds

Although this information is truth regardless of the specific infrastruc-
ture hosting the workflow application, even more complexity is added to
the system when the applications are executed in clouds. This is because
extra capabilities are required to enable the WfMS to select the right number
of resources of the right type so that the computational task is performed
within a user-defined time frame and budget.

As current WfMSs cannot support efficient and automated execution of
workflow in clouds that support adaptive execution, fault tolerance, and data
privacy, we developed extensions to a workflow engine [4] to support such
features. In this chapter, we detail the requirements of such a system, its
architecture, and the application scenario explored, along with an evaluation
of the system and a discussion of lessons learned during its development.

4.2 � Workflow Applications

The workflow programming model is undoubtedly one of the most promi-
nent programming models in e-science, being used in a range of domains,
including bioinformatics, astrophysics, and disaster modeling, to name a
few. In this model, one application (job) is composed of a number of tasks
that have execution dependencies between them. Typically, the dependency
is related to I/O: One task depends on the output of another (or other) task(s)
as its input; therefore, it cannot be executed until such data are available
(normally, after the execution of the original task is completed).

Variations of the model exist in which the workflow also contains condi-
tional branches (i.e., particular tasks that compose the workflow may or may
not be executed depending on the results of previous tasks), loops (for which
execution of specific sections of the workflow is repeated), and when tasks
are allowed to start execution before predecessors complete execution.

Without loss in generality, a workflow application can be formally rep-
resented by a directed acyclic graph (DAG) whose vertices represent tasks
and the directed edges represent the dependencies between tasks: An edge
A → B indicates that task B depends on task A for its execution. Such a
representation of workflow applications is also known as DAG. A simple
workflow is depicted in Figure 4.1.

Traditionally, workflow applications have been extensively deployed in
high-performance infrastructures such as supercomputers and clusters [5].
When deployed on such infrastructures, emphasis was given in reducing the
execution time of the workflow by optimizing the utilization of the resources
available for the workflow. When grids became available, they were also
used for workflow execution [6, 7]. This added complexity to the schedul-
ing process because it was possible that resources available for execution

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

el
bo

ur
ne

]
at

 1
4:

24
 2

6
Ja

nu
ar

y
20

15

76 Cloud Computing with e-Science Applications

were distributed, and thus data movement across wide distances might be
necessary. Even in this case, focus was still on execution time minimization.

Cloud computing adds a new dimension for workflow execution related
to the financial cost of using a virtually infinite amount of resources for
workflow execution. This means that the only limitations to the available
resources, and consequently the improvements in execution time, are the
available budget for workflow execution and the structure of the workflow itself,
which determines the maximum amount of tasks that can be executed in
parallel in the infrastructure. Clouds also brought other challenges for work-
flow management and execution. They are discussed in the next section.

4.3 � Requirements for Adaptive Execution
of Workflows on Clouds

Although modern WfMSs already support clouds as the platform support-
ing the execution of workflow applications, many desirable features are still
absent in the WfMSs. This is because current WfMSs for clouds are derived
from projects in the area of grid computing. Therefore, many of their fea-
tures are optimized for grids and thus are unable to obtain the most key
aspects of clouds, such as rapid elasticity.

In this sense, clouds add extra complexity to WfMSs because the amount of
resources that WfMSs can provision for executing the workflow is virtually
infinite, as long as there is budget available to spend on the workflow execu-
tion process. Thus, different from existing algorithms and approaches that
operated with the goal of obtaining the most from the resources available for
the application, cloud-enabled WfMSs can assume that the main restriction
of the system is the budget rather than resources, and its goal is balancing
utilization, cost, and reduction of execution time [8].

FIGURE 4.1
Graphical representation of a simple scientific workflow.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

el
bo

ur
ne

]
at

 1
4:

24
 2

6
Ja

nu
ar

y
20

15

77Adaptive Execution of Scientific Workflow Applications on Clouds

Li et al. [8] also identified the following requirements for cloud-enabled
workflows:

	 1.	Dynamic resource provisioning and deadlines: This is the capability
of acquiring and releasing resources as required to accommodate
the tasks of the workflow and to enable their completion within a
user-specified deadline. This is an important feature because it
enables execution of mission-critical workflow applications that need
to be completed before the deadline for the computation to have
value. An example of such mission-critical workflows is disaster
management workflows. Consider, for example, the architecture
depicted in Figure 4.2. A disaster management workflow application
suite may support management of many types of natural disasters,
such as floods, cyclones, and bushfires. When one such disaster
strikes, the corresponding management application needs to be
executed in public and private clouds to provide information that
will be used by disaster mitigation and rescue teams. If the applica-
tion takes too long to execute, the teams will not have time to act
based on the information provided, which results in wasted time
(and money) invested in the execution of the workflow in the cloud
and even further losses in terms of lives and property damage that
would have been prevented if the rescue and mitigation teams had
access to the information in appropriate time.

	 2.	Adaptive task/workflow/user scheduling: This relates to the capability
of reacting to conditions faced during workflow execution to main-
tain the balance between cost, utilization, and execution time. In the
context of this requirement, a change in conditions means adapting
to changes in user requirements at runtime (e.g., increased/reduced
budget, increased/reduced application deadline).

	 3.	Fault tolerance: This is the capacity to automatically react to changes
in the available number of resources or tasks to be processed
because of failures and the capability to adapt to situations if the
performance delivered by cloud resources is below that contracted
or historically observed.

	 4.	Security-conscious data migration and data privacy: Given that the data
being processed by the WfMS can be sensitive, mechanisms for pro-
tection of the data, either during transfer or once stored in a public
cloud, must be available. The applied method should also enable
auditing of accesses and modifications in the data.

	 5.	Application management: This requirement involves the capability to
collect and process information about the system status and moni-
tor the platform and the application in real time. This requirement
also includes a capacity for presentation of comprehensive informa-
tion to users about the resources (utilization, performance, etc.) and

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

el
bo

ur
ne

]
at

 1
4:

24
 2

6
Ja

nu
ar

y
20

15

78
C

loud C
om

puting w
ith e-Science A

pplications

Cyclone
Management

Bushfire
Management

Enact Adaptive
Workflows

Find/Interrogate/
Prepare Data

Prepare
Workflows

Data Exposure
and Analysis

Cloud
Storage

Public and
Private Clouds

Intermediate
Storage

Interactive 3D
GIS Visualization

System Status
Information

Disaster Management Workflow Applications Suit

Data movement
services

Data

Flood
Management

FIGURE 4.2
Architecture for workflow-enabled disaster management applications.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

el
bo

ur
ne

]
at

 1
4:

24
 2

6
Ja

nu
ar

y
20

15

79Adaptive Execution of Scientific Workflow Applications on Clouds

tasks so the cost-benefit analysis of utilization of the cloud can be
undertaken and the utilization of cloud computing for workflows
can be justified.

These requirements were addressed while we developed an adaptive
system for execution of a workflow for agent-based simulation in hybrid
clouds. The application is detailed next.

4.4 � Case Study

A city is sustainable only if it can accommodate economic and population
growth while ensuring the well-being of its people and environment [9]. There-
fore, reaching sustainability becomes harder when the growth of a population
is high or when the growth occurs in areas of high density, such as Singapore.

Singapore’s land area has increased from 581 km2 in the 1960s to 716 km2
in 2012; its population in the same period has grown from 1.6 million to
5.3 million [10]. To maintain reasonably good economic growth, the Singapore
government has projected a need for the population to reach 6.9 million by
2030. However, the land area is only slated to grow to about 800 km2 in the
same period. The disparity in the growth rate of population versus land area
means that there is increasing strain on space and the service infrastruc-
ture. It is crucial for the planning agencies to adopt a scientific approach to
understanding the urban fabric and how it can adapt to social, economic,
and environmental changes.

One key aspect to improve the quality of living of city inhabitants is public
transport. There is a need for efficient transport covering the biggest exten-
sion of the city as possible and running with enough frequency so people are
motivated to use it rather than using cars. In this sense, Singapore’s public
transport network is ranked among the best in the world. Its Mass Rapid
Transit (MRT) train network comprises 102 stations distributed over four
main lines, with a total of almost 150 km of rail lines. It currently serves
around 2.5 million commuters per day, which represents more than 75% of
the total public transport users [11].

The number of commuters and the high frequency of trains (running in
intervals as short as 90 seconds) make it a complex system. Furthermore,
even a minimal disruption in the operation of one train can cascade over
several lines, affecting hundreds of thousands of commuters.

This complex and sensitive system will be subject to even further pressure
as the population increases. Therefore, tools are needed to help planners
evaluate the effects that disruptions would have over the whole system.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

el
bo

ur
ne

]
at

 1
4:

24
 2

6
Ja

nu
ar

y
20

15

80 Cloud Computing with e-Science Applications

This fact motivated us to adopt a data-driven approach to understanding the
dynamics of the public transport system in Singapore. To achieve that, a scal-
able complex system modeling for a sustainable city (S3) has been developed
to study how the city will behave under different planning scenarios.

The goal of S3 is to provide insights to users on what-if scenarios for a
day-to-day public transport system by leveraging on a synthetic journey
function that generates agent-based models for public transport dynamics
simulation. This insight will provide information on the future public trans-
port infrastructure preparedness to handle the growing population and the
preparedness for emergencies in cases of breakdowns in the public trans-
port system.

Scaling areas that we address in this context are (1) the extract-transform-
load (ETL) or preprocessing that is required to train the synthetic journey
function that generates the agent-based model; (2) the agent-based generation
required to generate millions of agents that represent the increasing popula-
tion and public transport infrastructure; and (3) the large-scale agent-based
simulation that is required to handle, track, and process each of the agents
and to support complex interactions between agents to provide insight on
what-if scenarios for the public transportation system in Singapore.

We tackled the large-scale computation requirements by designing
agent-based complex system modeling supported by an adaptive cloud
WfMS [12] for workflow scheduling and handling big data and dynamic
resource scaling on public and private clouds.

The S3 application has three phases: preprocessing, data analysis, and
agent-based simulation. Figure 4.3 shows our S3 application architecture,
which comprises an adaptive cloud WfMS, ETL or preprocessing algorithm,
data analysis algorithm, and agent-based simulation.

ETL or preprocessing. The synthetic data set for the application is
based on the studies of trends and random sampling of daily public
commuters’ activities in Singapore. It consists of 1-second time gran-
ularities for 7 days’ duration with approximately 3 million journeys
per day. Based on the synthetic data set, we extract and transform the
data for travel duration for each origin-station to destinations-station
(OD-pair) of 90 x 90 by three different route choices. The order of
complexity in this phase is O(n2), where n represents the number
of stations.

Data analysis. The objective of this phase is to understand commuter
demand and, based on data analysis results, create or improve the
journey function of all possible OD pairs, possible routes for each
OD pair, and temporal travel demand. The order of complexity in
this phase is also O(n2), where n represents the number of stations.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

el
bo

ur
ne

]
at

 1
4:

24
 2

6
Ja

nu
ar

y
20

15

81
A

daptive Execution of Scientific W
orkflow

 A
pplications on C

louds

Synthetic
data set

ETL or Pre-
processing Data Analysis

Agent-Based Simulation

Set up RTS
network structure

3000 agents90 agents

Create stationsCreate
commuters

Commuters decide:
journey and route

Done
End

Check and
update stations

Forward train,
check status

for tr in
travelling trains

Board/alight
passengers

t = 604800 seconds

for t in
range (open, close)

Check and
update

commuters

Dispatch train

Dispatch
new train?

Yes

YesNo

No

tr on
station?

for I in train
lines

Set up OD pairs and
possible routes

Create trains

6.9 millions agents
Create agents

Synthetic
journey function

Cloud Workflow Management System

FIGURE 4.3
S3: architecture, concepts, and technologies.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

el
bo

ur
ne

]
at

 1
4:

24
 2

6
Ja

nu
ar

y
20

15

82 Cloud Computing with e-Science Applications

Agent-based simulation. In this phase, we simulate the actions and
interactions of autonomous agents. This agent-based simulation con-
sists of agent granularity, adaptive agent process, decision-making
heuristics, and agent interactions. Agent granularity refers to the
number of agents specified at various scales. The adaptive agents pro-
cess refers to the action that an agent takes when a situation occurs
(redefining the decision-making heuristics). Decision-making heuris-
tics refer to rules or behaviors of an agent. Agent interaction refers to
the complexity of communications or interactions between agents.

There are three types of agents in the S3 application: commuters, stations,
and trains. Each of these agents has its own attributes, adaptive agent pro-
cess, decision-making process, and agent interactions, as summarized in
Table 4.1. The order of complexity in this phase is O(n3) due to the interac-
tions between agents on simulation time interval or O(tn2), where n repre-
sents the number of agents and t represents the simulation time steps.

Data requirements. The size and quantity of the data set that is generated
is large. The size of the data can easily take up a few gigabytes each day.
For example, the data set consists of 7 days of public transportation
journeys for each individual, with approximately 3 million journeys
per day. As for the agent-based simulation, we simulate the growing
population as 6.9 million. This translates into approximately 14 mil-
lion journeys (travel and return) performed for each simulated day.

Computation requirements. For agent-based simulation, millions of
agents are created to simulate the future infrastructure and dynam-
ics of the transportation system in Singapore. In total, the system
manages 7 million agents that have their own attributes, adaptive
agent process, decision-making process, and interactions with other
agents. Furthermore, there is complexity of agent interactions and
tracking for the simulation interval at 1-second granularity.

TABLE 4.1

Agent-Based Simulation Characteristics

Commuter Agents Station Agents Train Agents

Agent granularity 6.9 million agents 90 agents Approximately 200
agents

Attributes 12 attributes 9 attributes 16 attributes
Adaptive agent
process

1 adaptive process — 2 adaptive processes

Decision-making
heuristics

5 decision-making
heuristics

2 decision-making
heuristics

5 decision-making
heuristics

Agent interactions •	Station
•	Train

•	Commuter
•	Train

•	Commuter
•	Station

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

el
bo

ur
ne

]
at

 1
4:

24
 2

6
Ja

nu
ar

y
20

15

83Adaptive Execution of Scientific Workflow Applications on Clouds

To support not only these requirements for data and computation but also
the requirements listed in the previous section, we proposed and developed
a workflow middleware whose architecture is described next.

4.5 � System Architecture

The requirements presented previously are addressed by software middle-
ware comprising a WfMS augmented with capabilities for data analytics
integrated as a second layer above the WfMS. The overall organization of
the system is depicted in Figure 4.3. It shows the S3 application architecture,
which consists of the adaptive cloud WfMS, the ETL or preprocessing algo-
rithm, the data analysis algorithm, and the agent-based simulation.

Cloud WfMS system. The cloud WfMS is responsible for workflow
scheduling, big data handling, and dynamic resource scaling on
hybrid clouds. The Cloud WfMS comprises the workflow engine,
task dispatcher, and resource management. The workflow sched-
uling coordinates the execution of tasks, handles communication
between components, implements the scheduling algorithm, and
manages the execution of applications on distributed resources. The
task dispatcher component submits tasks to resources for execu-
tion. The resource management component interacts with the cloud
infrastructure to enable resource allocation.

Preprocessing and data analysis. This component is responsible
for managing preprocessing and data analysis activities that
are required to train the synthetic journey function that gener-
ates the synthetic journey. It tackles the scalability challenge by
dynamically scaling up the number of VM instances; thus, the pre-
processing processes are executed in parallel. Since this is a compu-
tationally intensive task with a long duration and the total number
of origin-station and destination-station pairs is large (composed
of more than 8,000 pairs), VM instances are pooled from a hybrid
cloud where each VM instance processes the travel duration for
each origin-station and destination-station pair.

Agent-based simulation. There are three phases of agent-based simu-
lation: agent creation, attribute definition, and simulation execution.
Our module is able to scale the process of agent-based generation
in orders of magnitude of up to millions of agents. Further in this
chapter, we demonstrate the process for 6.9 million commuter agents,
90 station agents, and 200 train agents. The activities of the process
of simulation execution are (1) time series simulation with 1-second

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

el
bo

ur
ne

]
at

 1
4:

24
 2

6
Ja

nu
ar

y
20

15

84 Cloud Computing with e-Science Applications

intervals; (2) tracking of each agent, which includes checking and
updating each agent’s state; (3) a decision-making process for each
agent (e.g., dispatch the train at simulation time t); (4) adaptive agent
process that allows agents to adapt to different situations (e.g., when
a train arrives at a station, commuter agents need to board or leave
the train); (5) interactions between agents (e.g., communication
between train agents and station agents when the train arrives at the
station, communication between commuter agents and train agents
when the commuter boards the train) and management of tasks and
data flows on the hybrid cloud utilizing the cloud WfMS.

A discussion of the implementation aspects of the architecture and its
performance is presented next.

4.6 � Discussion and Lessons Learned

The agent-based simulation is based on three phases: create agents, define
attributes, and run the simulation. To test the scalability of the model,
we evaluated two different setups. The first one uses the ZeroMQ (ZMQ)
technology [13] in our hybrid cloud. ZMQ is a low-latency asynchronous
message-passing library that is used in scalable distributed or concurrent
applications. The second one is a hybrid cloud test bed. The private cloud
component of the hybrid cloud is composed of 64 cores (hyperthreaded) and
a 2.2-GHz processor with 128 GB of memory. On top of this infrastructure,
we deployed 50 VMs, with each VM an Ubuntu 12.04 with 1 core and 4 GB of
memory. The public cloud is composed of 1,000 Amazon EC2 small instances
(1 core with 1 ECU and 1.7 GB of memory).

Scaling of the “create agents” and “define attributes” phases is achieved
through the division of the workload, with each process handling a group
of agents. For example, in a simulation with 7 million commuters running
on an infrastructure containing 1,000 VMs, creation of commuter agents was
split among the VMs in such a way that each VM handled the creation of
7,000 agents.

On the “run simulation” phase, we experienced the execution of the sim-
ulation on a time-based simulation with 1-second intervals and tracking,
checking, and updating of each agent’s states. The scale method in this case
delegates each VM to handle a group of agents. When the ZMQ push-pull
method is used, one of the VMs acts as the head node that is in charge of
distributing the tasks to all the worker VMs and controlling the timekeep-
ing process of the simulation. The timekeeping process consists of sending a
message to each worker to inform them of the current simulation time so that
workers can start the simulation of events scheduled for such a given time.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

el
bo

ur
ne

]
at

 1
4:

24
 2

6
Ja

nu
ar

y
20

15

85Adaptive Execution of Scientific Workflow Applications on Clouds

However, we noticed that the time-based simulation has limited scalabil-
ity. When executed in a private cloud of 50 VMs, it took 35,248 seconds to
complete the 2 million commuters’ agent-based simulation. This happened
because there were dependencies in t + 1 with time t (i.e., simulation at time
t needs to be completed before simulation of time t + 1 starts). Because of this
issue, we replaced the time-based simulation with an event-based simulation.

In event-based simulation, the model handles the agents’ interactions, such
as boarding of commuters, unboarding of commuters, train arrivals at sta-
tions, and train departures from stations. On the back end, the workload is
distributed via a similar method to other phases (each process handles a
group of agents). With this new technique, the execution time of the simula-
tion in the same private cloud was completed in 1,818 seconds for the same
2-million-commuter agent-based simulation, an improvement of 19 times
over the original technique.

We further scaled the agent-based simulation by executing it on 1,000 VMs.
In this case, the agent-based simulation completed in 434 seconds for simula-
tion of 2 million commuters and 963 seconds for 7 million commuters. This
demonstrated that the three phases of our approach are scalable and suitable
for execution on elastic cloud platforms.

To summarize, we gave preference to the cloud-enabled WfMS over the
ZMQ system because of the following reasons: (1) It enabled more efficient
management of the highly distributed data required by the agent-based
simulation workflow; (2) it better automated the workflow process for data
analytics with multiobjective optimization of performance and budget;
and (3) it enabled dynamic resource allocation for adaptive services with
fault tolerance.

4.7 � Related Work

Given the importance of workflow applications for the scientific community,
many scientific workflow platforms were developed to explore scientific
computational platforms such as grids. As cloud platforms became popular
among the scientific community, WfMSs where enhanced to support them.

Pegasus [1] offers a set of tools for different aspects of execution and man-
agement of workflow applications and platforms. It implements application
programming interfaces (APIs) for diverse programming languages, supports
submission of workflows via web portals, and integrates with external tools. On
its back end, it supports multiple cloud providers and scientific infrastructures.

Taverna [2] is another widely adopted workflow engine that can explore
both grid and cloud platforms. Applications running on the platform can
be deployed in many modes, including “server mode,” by which it supports
requests from many users to execute remote workflow applications.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

el
bo

ur
ne

]
at

 1
4:

24
 2

6
Ja

nu
ar

y
20

15

86 Cloud Computing with e-Science Applications

The Cloudbus Workflow Engine incorporates a market-oriented utility
computing model that supports grids, desktops, and clouds. It supports the
concept of InterCloud for allocation and management of resources for execu-
tion of workflow applications [1].

Kim et al. [14] proposed a WfMS able to deploy workflows in hybrid infra-
structures composed of TeraGrid nodes and Amazon EC2 resources. Our
proposed system, on the other hand, can also leverage resources from private
and public cloud providers.

Gogouvitis et al. [15] proposed a WfMS for deploying workflow applica-
tions on virtualized environments that is able to utilize resources from
public clouds. However, it has no dynamic provisioning capabilities to speed
application execution and to meet real-time application performance require-
ments as does our approach.

Fernandez et al. [16] proposed a cloud WfMS that applies a concept called
chemical programming for the application scheduling. The system, however,
does not offer dynamic resource provisioning capabilities and autonomic
self-healing features.

CometCloud [17] is a more recent tool that implements an infrastructure
for autonomic management of workflow applications on clouds.

4.8 � Conclusions and Future Work

Clouds became a powerful platform for e-research as they enable scientists to
have access to elastic, cost-effective, and virtually infinite computing power.
Because clouds provide their users the view of infinite computing capac-
ity, the real limitations on the scalability of the applications lie in the avail-
able budget for cloud usage and limitations in the applications themselves.
Therefore, it is important that scientific application developers enable their
applications to get the most from the cloud.

In this chapter, we discussed recent trends for execution of workflows in clouds.
The architecture we presented is composed of a platform layer and an applica-
tion layer. The platform layer enables operations such as dynamic resource pro-
visioning, autonomic scheduling of applications, fault tolerance, security, and
privacy in data access. The features enabled by this layer can be explored by
virtually any application that can be described as scientific workflow.

In the application layer, we discussed a data analytics application enabling
simulation of the public transport system of Singapore and the effect of
abnormal events in the transport network. The application consists of an
agent-based simulation of the public transport system of Singapore, and it
allows evaluation of effects of incidents (such as train delays) in the flow of
passengers in the country.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

el
bo

ur
ne

]
at

 1
4:

24
 2

6
Ja

nu
ar

y
20

15

87Adaptive Execution of Scientific Workflow Applications on Clouds

As future work, we plan to extend our platform to support a disaster deci-
sion support system (DDSS). The principles presented in this chapter will
be further expanded so the DDSS will provide a dashboard for the strategic,
tactical, and operational decisions arising during disaster mitigation. It will
be integrated with a range of modeling and simulation tools to provide opti-
mization models with up-to-date situational awareness and predictions to
provide recommendations to authorities. This extension will support not
only workflow applications but also other programming models suitable
for clouds, such as MapReduce. Ideally, the platform will support not only
applications that are entirely described as one of these models but also com-
plex applications that are composed of diverse subcomponents that may be
developed as different programming models.

References

	 1.	 Deelman, E., Singh, G., Su, M., et al. 2005. Pegasus: a framework for mapping com-
plex scientific workflows onto distributed systems. Scientific Computing 13:219–237.

	 2.	 Oinn, T., Greenwood, M., Addis, M., et al. 2006. Taverna: lessons in creating
a workflow environment for the life sciences. Concurrency and Computation:
Practice and Experience 18:1067–1100.

	 3.	 Taylor, I., Shields, M., Wang, I., et al. 2007. The Triana Workflow Environment:
Architecture and Applications. In Workflows for E-Science, ed. I. J. Taylor,
E. Deelman, D. B. Gannon, et al., 320–339. London: Springer.

	 4.	 Pandey, S., Karunamoorthy, D., and Buyya, R. 2011. Workflow engine for
clouds. In Cloud Computing: Principles and Paradigms, ed. R. Buyya, J. Broberg,
and A. Goscinski, 321–344. New York: Wiley.

	 5.	 Kwok, Y., and Ahmad, I. 1999. Static scheduling algorithms for allocating
directed task graphs to multiprocessors. ACM Computing Surveys 3:406–471.

	 6.	 Yu, J., Buyya, R., and Ramamohanarao, K. 2008. Workflow scheduling algorithms
for grid computing. In Metaheuristics for Scheduling in Distributed Computing
Environments, ed. F. Xhafa and A. Abraham, 173–214. Berlin: Springer.

	 7.	 Hirales-Carbajal, A., Tchernykh, A., Yahyapour, R., et al. 2012. Multiple work-
flow scheduling strategies with user run time estimates on a grid. Journal of Grid
Computing 10:325–346.

	 8.	 Li, X., Calheiros, R., Lu, S., et al. 2012. Design and development of an adap-
tive workflow-enabled spatial-temporal analytics framework. In Proceedings of
the 2012 IEEE International Workshop on Scalable Computing for Big Data Analytics
(SC-BDA 2012), 862–867. Piscataway, NJ: IEEE Computer Society.

	 9.	 Bryan, L. 2010. The social and psychological issues of high-density city space.
In Designing High-Density Cities for Social and Environmental Sustainability, ed.
E. Ng, 285–292. London: Earthscan.

	 10.	 Singapore Department of Statistics. 2013. Singapore in figures 2013. http://www.
singstat.gov.sg/Publications/publications_and_papers/reference/sif2013.pdf.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

el
bo

ur
ne

]
at

 1
4:

24
 2

6
Ja

nu
ar

y
20

15

http://www.singstat.gov.sg
http://www.singstat.gov.sg

88 Cloud Computing with e-Science Applications

	 11.	 Singapore Land Transport and Authority. 2013. Singapore land transport in brief
2013. http://www.lta.gov.sg/content/dam/ltaweb/corp/PublicationsResearch/
files/FactsandFigures/Stats_in_Brief_2013.pdf.

	 12.	 Rahman, M., Li, X., and Veeravalli, B. 2012. Hybrid heuristic for scheduling data
analytics workflow applications in hybrid cloud environments. In Proceedings of
the 2011 IEEE Symposium on Parallel and Distributed Processing Workshops and PhD
Forum (IPDPSW’11), 966–974. Piscataway, NJ: IEEE Computer Society.

	 13.	 Hintjens, P. 2013. ZeroMQ: Messaging for Many Applications. Sebastopol, CA: O’Reilly.
	 14.	 Kim, H., el-Khamra, Y., Rodero, I., et al. 2011. Autonomic management of applica-

tion workflows on hybrid computing infrastructure. Scientific Computing 19:75–89.
	 15.	 Gogouvitis, S., Konstanteli, K., Waldschmidt, S., et al. 2012. Workflow manage-

ment for soft real-time interactive applications in virtualized environments.
Future Generation Computer Systems, 28:193–209.

	 16.	 Fernandez, H., Tedeschi, C., and Priol, T. 2011. A chemistry-inspired workflow
management system for scientific applications in clouds. In Proceedings of the
Seventh International Conference on e-Science (e-Science’11), 39–46. Piscataway, NJ:
IEEE Computer Society.

	 17.	 Kim, H., el-Khamra, Y., Rodero, I., et al. 2011. Autonomic management of appli-
cation workflows on hybrid computing infrastructure. Scientific Programming
19:75–89.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

el
bo

ur
ne

]
at

 1
4:

24
 2

6
Ja

nu
ar

y
20

15

http://www.lta.gov.sg
http://www.lta.gov.sg

	Adaptive Execution of Scientific Workflow Applications on Clouds
	Summary
	4.1 �Introduction
	4.2 �Workflow Applications
	4.3 �Requirements for Adaptive Execution of Workflows on Clouds
	4.4 �Case Study
	4.5 �System Architecture
	4.6 �Discussion and Lessons Learned
	4.7 �Related Work
	4.8 �Conclusions and Future Work
	References

