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Abstract— Data Grids have become the de facto platform for minimum bandwidth, storage and computational requirement
the next generation of eSC|e_nce experiments that will be ceed data security and access restrictions and data localibesss
out through large collaborations spread around the world. As An example of such a system would be the tier-level model

the number of entities within a data grid increases, schedihg o
of applications in order to make the most efficient use of the proposed by the MONARC [7] group within CERN for

available resources such as computational, storage and netrk  replicating the data produced by the Large Hadron Collider
facilities becomes a challenge. Previous work has suggeste (LHC) [8] for use within the ATLAS and CMS collaborations.

a computational economy metaphor for resource management The consumers in this system would be the users or, by proxy,
within compute and data grids. However, the issue of schediig e applications which need to analyse this data to preduc
jobs that require distributed data within an economy-baseddata - . . . .
grid has not been studied in detail so far. meaningful results. The users may want to investigate fipeci

In this paper, we present a model and an algorithm for datasets out of a set of hundreds and thousands and may have
economy-based scheduling of distributed data intensive gica- specific application requirements that need not be fulfiiéd
tions on data grids. The model takes into account the costs @n every computational site.
times for transferring datasets required for a jpb from.diff erent In such large collaborations, there can be a lot of pressure o
data hosts to the compute resource on which the job will be the data infrastructure (i.e. network and storage elemerte
executed and for its processing. The algorithm builds a resoce e ™
set for a job that minimizes the cost or time depending on the Pressure becomes more acute when a non-trivial percentage o
user's preferences. We evaluate the algorithm on a Data Grid the users are interested in the same datasets simultapeousl
testbed and present the results. thus causing heavy load on the servers on which the requested
datasets and its replicas are hosted and denying service to
requestors of other datasets on those servers. Such amn effec

Data-intensive applications in areas such as high-eneigycommonly observed in the Internet and the World Wide
physics, astronomy and bioinformatics are revolutiomjsinneb [9].
the methodology of scientific computing. Executing these While a robust and adaptive replication mechanism can
eScience [1] applications require mechanisms differemfr alleviate some of the above problems, the same problems
compute-intensive applications because of the requir&siien of data access and transfer costs affect the effectivemebs a
access, storage and management of large distributed tatagdficiency of such a mechanism. Pricing resources to reflect
Thus, these create an environment in which data is as impsupply and demand in order to regulate their usage has been
tant as computation if not more [2]. explored in previous work [10]. On the consumer side, the

Data Grids [3] have evolved to tackle the challenges efker would specify his deadline for the analysis job, his
such data-intensive computing environments. Primariigyt budget and his preference for the cheapest or the fastest
provide mechanisms for replication and a high-speed t@mspprocessing according to his needs and priorities. Whildistu
layer. There are many projects around the world setting hpave shown this to be effective for resource management in
data grids for specific scientific application domains [i}f computational grids [11], no study has been made so far
Users, such as scientists, have access to the aggregated egmthe economic aspects of data processing by scheduling
putational and data resources within such a grid project. analysis jobs on various sites with varying execution, dfen
and storage costs. In this paper, we propose a model and an
algorithm for economy-based scheduling within Data Grids.

A data-intensive computing environment can be perceivedThe rest of this paper is organised as follows. In Section I,
as a real-world economic system wherein there are produwee survey previous work in data grid scheduling and economy-
ers and consumers of data distributed geographically acrssed replication mechanisms. In Section I, we extend the
multiple organisations. Producers are entities which geee notion of user-driven deadline and budget constrainedddhe
the data and control its distribution via mirroring at varso ing within computational grids to data grids. In Section IV,
replica locations around the globe. They lay down policighe proposed algorithm is evaluated on a real Grid testbdd an
for replication that are guided by various criteria such ake results are reported. Finally, we conclude our paper and

|I. INTRODUCTION

A. A Case for Economy in Data Grids



outline the future work. important limitation to that work is the lack of consideoati
given to data while scheduling jobs on remote resources Thi
paper aims to extend the deadline and budget constrainéd cos
Scheduling data intensive applications over wide-area nehd time minimization algorithms proposed in [18] to data
works has received lot of attention in the recent years. B},[1 grids by removing that limitation.
the authors evaluate various heuristics for parameteegwe
jobs which have files as input. They introduce a new heuristic [1l. SCHEDULING
XSufferagethat takes into account file locality by schedulin%\ Model
jobs to those clusters where the files have already beeh
transferred for a previous job. However, a restriction with Fig. 1 shows a typical data grid environment that is
this work is to limit the source of the files to the host whicltomposed of storage nodes that store the data and compute
submits the jobs for execution. Ranganathan and Foster [t8%ources that run the jobs that analyse the data. It iskpessi
have simulated job scheduling and data scheduling algosiththat the same node may contain both storage and computation
and recommend that it is best to decouple data replicatmn fr capabilities. For example, it could be a supercomputingeren
the job scheduling. In previous work [14], we have proposeuhich has a Mass Storage Facility attached to it. The dataset
an adaptive algorithm that schedules jobs while minimizingay be replicated at various sites within this data grid. We
data transfer. It evaluates all known replica locationshaf t assume that the replication is carried out independentty an
file and submits the job to the compute resource which is dependent on the policies set by the administrators of the
located closest to one of the replica locations. However, $torage resources and/or the producers of data. We alsmassu
all the works presented above, economic costs of transfir dhat the scheduler is able to query a data directory such as
processing of data have not been taken into account whileReplica Catalog [19] or the SRB [20] Metadata Catalog
scheduling. that would contain information about the locations of the
Several research works have explored the use of econodiafasets and their replicas. We associate economic cadts wi
within data driven computing environments. Mariposa [13he access, transfer and processing of data. The processing
was one of the earliest systems that experimented with isnlevied upon by the computational service provider, while
economy paradigm for query processing and storage manaje- transfer cost comes on account of the access cost for the
ment. Within Mariposa, a budget is associated with eachyquestorage node and the cost of transferring datasets from the
and its execution is conducted through a bidding procestorage node to the compute resource through the network.
There is no explicit scheduling within this system. While in We consider a model for scheduling independent jobs on a
our economic model there is a budget associated with eatdta grid. Independent jobs arise in execution models ssch a
job, the job allocation is done by the scheduler which loaks parameter-sweep model of computation. Parameter-sweep ap
the costs associated with using the compute and data resoupdications(PSA) are common within scientific studies angeha
and the user’s deadline and budget and scheduling preferefeen considered as being very suitable for Grid executith [2
More recently, Stockinger et.al. [16] discuss a cost maaiel fbecause jobs have no intercommunication dependencies. We
replicating data within Grid environments with particuan- consider a job as the atomic unit of computation within this
phasis on the CERN LHC experiment requirements. Howevenpdel. The steps for submitting a job to the grid shown
their cost model focuses on system and application depéndienFig. 1 are as follows: The scheduler gathers information
factors while our work focuses on the economic costs of daahout the available compute resources through a resource
processing while taking into account many of the factorqisu@nformation service (1) and about the data through the data
as bandwidth, degree of replication of data and data serdirectory (2). It then makes decision on where to submit
load that they have also considered. In addition, they paxemdhe job based on the availability and cost of the compute
attention to data replication and do not explicitly consithee resource, the minimization preference and the locatiocess
processing requirements of the application. Our focus is and transfer costs of the data required for the job (3). The jo
the latter and we consider replication to be decoupled frois dispatched to selected remote compute resource (4) where
the processing and done independently by the data senviceequests for the dataset from the replica location setebly
providers. the scheduler (5 & 6). After the job has finished processing
In [17], the authors propose an economy-based replicatiff), the results are sent back to the scheduler host or anothe
strategy based on a Vickerey auction to determine the optinséorage resource which then updates the data directomi{&).
replica location to fetch a file that a job has requested. Tipeocess is repeated for all the jobs generated by a PSA.
file is then replicated at the local host so that other reguest We consider, therefore, a set 8f independent joby =
in the future emerging from the vicinity can be fulfilled. The{jq, jo,...,jn} that have to be scheduled i computa-
economic considerations are limited to the data replicaiod tional resourcesR = {ri,r2,...,mar}. Typically, N > M.
the processing costs for the job are not considered in théigssume jobj, (j € J) is scheduled to be executed on
model. computational resource, (r € R) . Each job requires a
Economy-based resource management and schedulingsét F; = {f;1, fj2,..., fjx} of K datasets that are each
computational grids was proposed and evaluated in [18]. Aeplicated on a subset d? data hostd) = {d1,ds,...,dp}.

Il. RELATED WORK
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Fig. 1. An economy-based data grid environment

For fjx € Fj, D C D is the set of datahosts from whichAccess_cost(d;;) is the cost of requesting a dataset which
datasetf;, may be obtained. is levied by the data host. It can be an increasing function
Therefore, the time taken to execute the jobs is the sum either the size of the requested dataset or the load on the
of the execution time and the times taken to transfer eachdsta host or both. This cost regulates the size of the dataset
the K files from the respective storage nodes to the compuieing requested and the load which the data host can handle.
node. That is, if the computation time is denotedtpy and Cost_per_unit_size(Linkdjkr) is the cost of transferring a
the transfer time for thé!" datasetf;; is denoted bytys,.» unit_size(eg. MB or GB) of the requested dataset through

then the total time required for executing the jpb the network link between the data host and the compute
K resource. The cost of the link may increase with the Quality
ti=tj + thjkr of Service(QoS) being provided by the network. For example,

1 in a network supporting different channels with differerd$)

as described in [22], the cost of a faster link may be higher
than that of a slower link. Hence, the file is transferredefiast
t,nr = Response_time(d;i) + Size(fjr)/BW (Linka,»)  but at a higher expense. We consider all traffic within a Local

In the above equatior;, is the data host from whicf;;, will Area Network(LAN) to be essentially free, that is, no cost is

be obtained.Response_time(d;;,) is the difference between levied upon them. o _

the time when the request was made and the time when thd "€ model given above is similar to the model described
first byte of thef;, is received at. This is function of the Within [16] with two major differences. One, as stated in
load on the data host. If it is heavily loaded then the respong€ction I, is their focus on data replication and the other
time will be higher.BW (Linkg,,) is the available bandwidth is the fact that they ha_lve considered bandwldth of the LAN in
for the network connection between the data higgtand the their model. We consider the WAN bandwidth and cost as to

be dominant and therefore, we have ignored LAN parameters

where

compute resource. -
To calculate the economic cost of executing the job, wiithin our model. _ _

denote the processing cost of the jplon the compute node We associate two constraints with the schedule, the dead-

r by e;, and cost of transferring the datasgt by ey, line by which the entire set must be executed (denoted by

Therefore, the total execution cost for jglz; is given by ~ TDeadiine) @nd the maximum budgeBudget, for processing
the jobs. The deadline constraint can therefore be exmtésse

e = e 4 Z B terms of job execution time asax(t;) < Tpeadiine, ¥ j € J.
& Twr The budget constraint can be expressed ase; < Budget.

where B. Algorithm

efur = Access_cost(dk) Depending on the user-provided deadline, budget and
+Size(fjx) * Cost_per_unit_size(Linkq,,) scheduling preference, we can have two objective functions

J



viz: by the cost of the network link or the bandwidth between

« Cost minimization We try to execute the jobs in thethe compute resource and the data host depending on the
schedule that causes least expense while keeping fAgimization required. The advantage of this step will be
execution time within the deadline provided. explained shortly.

« Time minimization Here, the jobs are executed in the In the mapping section, we try to build the resource $get
fastest time possible with the budget for the executiddy selecting a data resource for each dataset required fgtthe
acting as the constraint. and a compute resource, optimally situated from the sealecte

It is obvious that in both cases the same algorithm Céﬁlta resources, for executin_g the job. .The_ best way to gotabou
be applied to solve the different objective functions. Wéhis would be to try all possible combinations of compute and
therefore, introduce a greedy algorithm to schedule the §&tt@ resources till we reach at the right combination. This,
of jobs. This algorithm is based on the Min-Min heuristidloWeVer, increases the worst-case running time of the mgppi
discussed in [23]. loop to the exponential order df .

The listing for the algorithm is given in Figure 2.The We, therefore, decrease the complexity by making a greedy
scheduling algorithm consists of two parts, one is the nrappichoice at each step within the mapping section. For a job, we
of the jobs to the resources (lines 10-27) and the seconeis tigrate through the list of datasets it requires. For eatasi,
actual dispatching of the jobs to the resources itself§liae- We Select the best data host to retreive the file from in terims o
48). The mapping part deals with creating a set of resourca&cess cost or response time depending on the minimization

consisting of one compute node and one data host each #plied (line 13). Then, for a selected data resource, wesgho
every dataset required by the job. That is, for each job the best compute resource based on the cost of the network

we create aresource setS; = {r;,d;1,d;o,...,d;x} that ©OF the available bandwidth to the resource (line 14). Sihee t

represents the compute and data resources to be accesseifif compute resources has already been sorted for eaah da
the job in execution. In the dispatching part, we ensurettieat 'esource, we only have to take the first element of the sorted

deadline and budget constraints on the schedule are edforgl- However, this may not be the best or even close to it for
while submitting the jobs to the remote resources. the entire resource set including the data hosts selectéfaein

Ju, Ja, Jo and Jp are subsets off consisting of jobs Previous iterations. Therefore, we create two resource Set
in Unsubmitted, Active, Completed and Failed states andsj, the former with the current selected compute and data
respectively. A job can be in only one of these states atr@sources and the latter with the current selected dataneso

time. The scheduling algorithm completes when all jobs al!t with the compute resource selected in the previouicera
either in Completed or Failed states. (lines 15 - 22) . Then, we compare the two sets on the basis of

We introduce a variablé/in which allows us to change the expected cost or execution time and select the resoetce s

the decision variables depending on the minimization chos@hich gives us the minimum value (line 23). This procedure
within the algorithm. We define a functiofy,.;, that returns €nsures that the choice of compute resource we make with the

the smallest value withird depending on the minimization current dataset does not worsen the optimality with resfpect
applied. Formally, the other datasets and that the resource set selected atdhe e

_ of each iteration is better than that selected in all previou
min(CVar, A)

k : iterations.

fmin(Min,CVar, TVar, A) = i MZ;Z; C‘jt In the dispatching section, we first sort all the job in the
_min(T'Var, A) ascending order of the value of the minimization function fo
if Min = Time

their respective combinations. Then, starting with theviath
Here, CVar and TVar represents variables deal with costhe least cost or least execution time, we submit the jobs to
and time respectivelynin(CVar, A) andmin(TVar, A) will  the compute resources selected for them in the mapping step.
return the element of A with the smallest value@¥ ar and For cost minimization, we see if the deadline is violated by
TVar respectively. Hence, by changing the value Mdfin  checking whether the current tin¥e(,,,--.»:) plus the expected
we can determine what objective function the algorithm wikxecution time exceed®$peqaiine (line 35). If so, the job
minimize. Consequenthy/in is a parameter to the schedulinggoes back into the unsubmitted list in the expectation that t
function. next iteration will produce a better combination Biudget is

At every polling interval, we update the performance data eikceeded by the current job then we stop dispatching any more
the compute resources by taking into account the jobs that hgobs and return to the main loop since the rest of the jobsen th
been completed or failed since the last polling intervakdh list will have higher cost (lines 36-37). For time minimiizat,
on this, we compute thdvgComputationTime required for we check if the budget spent (including the budget for all the
a job at each server. Since within a set, the jobs are singilarjbbs previously submitted in current iteration) plus theldpet
each other in terms of processing requirements, we carysafi@r the current job exceedBudget. If the deadline is violated
assume that the average computation time holds true for thethe current job then we stop dispatching and return to the
remaining unsubmitted jobs. For each data resource, weteipdaain loop.
the network conditions between itself and the computationa We analyse the worst-case complexity of the mapping loop
resources. Then, we sort the computational resourcesr eithe follows: The data resource selection stegig?) since



while J # Jo U Jg OR Teurrent < Theadliine OR Budget_spent < Budget do
Update Budget_spent by taking into account the jobs completed in the last interva
for eachr € R do
On the basis of jobs completed in last polling interval, categob_limit and AvgCompletionTime for every server,;

for eachd € D do
Update the network values within each data host;

1
2
3
4
5 end
6
7
8 Sort Ry in the ascending order of(Min, Cost(Linkg,.),1/BW (Linkg,));
9

end
10 for j € Jy do
11 Sj s S; — {}’
12 for f; € F; do
13 d — fmin(Min, Cost(dy, ), Response(dy,), Dy, );
14 rerldfjeRdfj;
15 if S; = {} then
- Sj 55 U{r,d};
! S5 < 5ji
18 end
19 else
20 SJ; - (S;J — {rprev}) U{r,d};
" Sj = Sj U {d);
22 end
23 Sj <—f7rLi7L(M’in,ej7tj’{Sj’s;});
24 S;. — Sj;
% Tprev < T € Sj;
26 end
27 end

28 Sort Jy in the ascending order of,,in (Min, ej,t;, J);
29 FExpected_Budget = Budget_spent;
30 for j € Jy do

31 Take the next jobj € Jy; in sorted order;

32 r«res;;

33 if Alloc_Job(r) < Job_Limit(r) then

34 if Min = Cost AND (Tourrent + t5) < Theadiine then

35 if (Expected_Budget 4 e;) < Budget then submitj to 7;
36 elsestop dispatching and exit to main loop

37 end

38 if Min = Time AND Exzpected_Budget + e; < Budget then
39 if (Tcurrent +1t5) < Theadiine then submitj to r;

40 elsestop dispatching and exit to main loop

41 end

42 Expected_Budget = Expected_Budget + e;,

43 Removej from Jy;

44 IncrementAlloc_Job(r);

45 end

46 end

47 Wait for the duration of the polling interval;

48 end

Fig. 2: Pseudo-code for Economy-based Scheduling of Data Ineerspplications

there can be maximum d? data hosts for any file. Therefore, 140

for N jobs, the worst-case complexity of the mapping loop is ol —
O(NKP).

100 - | [

IV. EXPERIMENTS AND RESULTS

We have implemented the scheduling algorithm presented in
Section Il within the Gridbus Broker [14]. We have condutte

80

60

Number of Requests

empirical evaluation of the algorithm using an experimenta 0

setup modified from the one used for evaluation in [14] . 2]

The testbed resources used in our experiments is detailed . ﬂ m

in Table I. The broker itself was extended to consider the e ew® e
price of transferring data over network links between the pote R

Data Hosts

compute resources and the data hosts while scheduling jobs.
In our experiments, although we have artificially assignatd Fig. 3. Access distribution of jobs against data hosts
transmission costs shown in Table Ill, they can be linked to




TABLE |
RESOURCES WITHINBELLE TESTBED USED FOR EVALUATION AND THEIR COSTING

Organization Resource details Role Cost (G$/CPUsec) Totdls
Executed
Time Cost
Dept. of Computer belle.cs.mu.oz.au Broker Host, Data 6 94 2
Science, University of 4 Intel 2.6 GHz CPU, 2 GB Host, Compute
Melbourne RAM, 70 GB HD, Linux resource, NWS
Server

School of Physics, fleagle.ph.unimelb.edu.au Replica Catalog N.A. (Not used as a - -
University of 1 Intel 2.6 Ghz CPU, 512 MB host, Data host, compute resource)
Melbourne RAM, 70 GB HD, Linux NWS sensor
Dept. of Computer belle.cs.adelaide.edu.au Data host, NWS N.A. (Not used as a - -
Science, University of 4 Intel 2.6 GHz CPU, 2 GB sensor compute resource)
Adelaide RAM, 70 GB HD, Linux
Australian  National belle.anu.edu.au Data Host, Com- 6 2 4
University, Canberra 4 Intel 2.6 GHz CPU, 2 GB pute resource, NWS

RAM, 70 GB HD, Linux sensor
Dept of Physics, Uni- belle.physics.usyd.edu.au Data Host, Com- 2 119 2
versity of Sydney 4 Intel 2.6 GHz CPU(1 avall), 2 pute resource, NWS

GB RAM, 70 GB HD, Linux sensor
Victorian Partnership brecca-2.vpac.org Compute resource, 4 0 27
for Advanced Com- 180 node cluster (only head node NWS sensor
puting, Melbourne utilised)
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Fig. 4. Cumulative number of jobs completed vs time for ecopscheduling in data grids.

TABLE 1l TABLE Il
AVERAGE AVAILABLE BANDWIDTH BETWEEN DATA HOSTS AND NETWORK COSTS BETWEENDATA HOSTS AND COMPUTERESOURCES(IN
COMPUTERESOURCES AS REPORTED BWWS(IN MBPS) G$/MB)
UniMelb  ANU UniSyd VPAC UniMelb  ANU UniSyd VPAC
Compute CS Physics Compute CS Physics
Data Data
ANU 6.99 10000 10.242 6.33 ANU 34.0 0 31.0 38.0
Adelaide CS 3.45 1.68 2.29 6.05 Adelaide CS 36.0 34.0 31.0 33.0
UniMelb Physics 41.05 6.53 2.65 20.57 UniMelb Physics 40.0 32.0 39.0 35.0
UniMelb CS 10000 6.96 477 36.03 UniMelb CS 0 30.0 36.0 33.0

UniSyd Physics 4,78 12.57 10000 2.98 UniSyd Physics 33.0 35.0 0 37.0




TABLE IV
SUMMARY OF EVALUATION RESULTS

Scheduling strategy Total Compute Data Total

Time Cost Cost Cost

Taken (G$) (G$) (G9%)

(mins.)
Cost minimization 80 31198.27 39126.65 70324.93
Time Minimization 54 76054.90 43821.64 119876.55

Number of Jobs

Number of Jobs

Data Cost(G$)

Compute Cost(G$)

(a) cost minimization scheduling

Fig. 5.

Compute Cost(G$)

(b) time minimization scheduling

Distribution of jobs against compute and data costs

real costs as prescribed by ISPs (Internet Service Prajider
We have used NWS (Network Weather Service) [24] for
measuring the network bandwidths between the computationa
and the data sites. A number of the data hosts were also func-
tioning as compute resources. The average available bdtidwi
between the compute resources and the data hosts is given in
Table Il. The network bandwidth between a data host and a
compute resource located on the same resource was set to an
arbitrarily high value (10000 Mbps) within the broker ane th
network transmission cost in this case was set to zero. There
was no access cost specified for the data hosts within this
evaluation. The response time for the data hosts was also not
taken into account within this evaluation as the data wete no
replicated and there was no choice between data hosts for a
single dataset.

There were 100 datasets or files, of size 30 MB each,
divided equally between the five data hosts listed in Table I.
These were not replicated and thus, each dataset was uniquel
hosted. We have used a synthetic application callathcalc
for the evaluation. This program requests the data from the
remote data host specified by the resource broker, executes
some calculations and produces a small output file (of therord
of KB). Each job, consisting of a instance of the application
required 3 datasets out of the 100 and there were 125 jobs
in total. These data sets were specified through Logical File
Names (LFNs) within a replica catalog and were resolved to
the actual physical locations by the broker at runtime. Fig.
3 gives the distribution of the number of requests for data
made by the jobs versus the data hosts. The distribution is
the same for both cost and time minimization. The datasets
were transferred in sequence, that is, the transfer of ciasela
was started after the previous had completed. The compuntati
times for the jobs were randomly distributed within 60-120
seconds.

The experiments were carried out on 29th November 2004
between 6:00 p.m. and 10:00 p.m. AEDT. The deadline and
budget values for both cost and time minimization were
2 hours and 500,000 G$ respectively. Table IV shows the
summary of the results that were obtained. The average costs
per job incurred during cost and time minimization are 562.6
G$ and 959 G$ with standard deviations of 113 and 115
respectively. Mean wall clock time taken per job(including
computation and data transfer time) was 167 secs for cost min
imization and 135 secs for time minimization with standard
deviations 16.7 and 19 respectively.

As expected, cost minimization scheduling produces min-
imum computation and data transfer expenses whereas time
minimization completes the experiments in the least time.
The graphs in Figs. 4(a) and 4(b) show the number of
jobs completed versus time for the two scheduling strasegie
for data grids. Since the computation time was dominant,
within cost minimization, the jobs were executed on thetleas
economically expensive compute resource. This can be seen i
Fig. 4(a) where the compute resource with the least cost per
CPU sec, the resource at University of Sydney, was chosen
to execute 95% of the jobs. Since a very relaxed deadline



was given, no other compute resource was engaged by tf# Particle Physics Data Grid (PPDG). [Online]. Available
scheduler as it was confident that the least expensive meesour_ http://www.ppdg.net

. o 5] E Union Data Grid. [Online]. Available: httpalkw.eu-
alone would be able to complete the jobs within the g|ver§] d;{ggﬁﬂrg, nion Data Grid. [Online]. Avallable e

time. Within time minimization (Fig. 4(b)), the jobs were [6] The Belle Data  Grid Project.  [Online].  Available:
dispatched to the compute resources which promised the leag Nttp:/epp.ph.unimelb.edu.au/epp/grid/presentatiajéctl.htmi

. . . . /] MONARC Project, CalTech. Accessed Nov 2004. [Onlinejafable:
execution time even if they were expensive as long as the' . imonarc.cacr.caltech.edu/

expected cost for the job was less than the budget per jofs] P. Lebrun, “The Large Hadron Collider, A Megascience jétt’ in
Initially, the scheduler utilised two of the faster resmsc 38th INFN Eloisatron Project Workshop on Superconductingtévials

. . . . for High Energy Colliders Erice, ltaly, October 1999.
the University of Melbourne Computer Science(UniMelb CS)[Q] R. M;’hajan gsy M. Be”f,vin 3 Fl)éyd 3. loannidis. V. Bar. and

resource and the VPAC resource. However, as seen from S. Shenker, “Controlling high bandwidth aggregates in teevork,”
Fig. 3, 26.67% of the requests for datasets were directdubto {  Computer Communications Revievol. 3, July 2002.

. . 10] R. Buyya, J. Giddy, and D. Abramson, “A case for economiy grchi-
UniMelb CS resource. A further 6.67% were directed to tHe tecture for service-oriented grid computing,”106th IEEE International

resource in UniMelb Physics. Hence, any jobs requiring one Heterogeneous Computing Workshop (HCW 2001), In conjumatiith
of the datasets located on either of the above resources W?A{f IPDPS 2001 San Francisco, California, USA, April 2001.

. 11] R. Buyya, J. Giddy, and D. Abramson, “An evaluation obecmy-
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