
An Economy-based Algorithm for Scheduling
Data-Intensive Applications on Global Grids

Srikumar Venugopal and Rajkumar Buyya
Grid Computing and Distributed Systems (GRIDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
Email:{srikumar,raj}@cs.mu.oz.au

Abstract— Data Grids have become the de facto platform for
the next generation of eScience experiments that will be carried
out through large collaborations spread around the world. As
the number of entities within a data grid increases, scheduling
of applications in order to make the most efficient use of the
available resources such as computational, storage and network
facilities becomes a challenge. Previous work has suggested
a computational economy metaphor for resource management
within compute and data grids. However, the issue of scheduling
jobs that require distributed data within an economy-baseddata
grid has not been studied in detail so far.

In this paper, we present a model and an algorithm for
economy-based scheduling of distributed data intensive applica-
tions on data grids. The model takes into account the costs and
times for transferring datasets required for a job from diff erent
data hosts to the compute resource on which the job will be
executed and for its processing. The algorithm builds a resource
set for a job that minimizes the cost or time depending on the
user’s preferences. We evaluate the algorithm on a Data Grid
testbed and present the results.

I. I NTRODUCTION

Data-intensive applications in areas such as high-energy
physics, astronomy and bioinformatics are revolutionising
the methodology of scientific computing. Executing these
eScience [1] applications require mechanisms different from
compute-intensive applications because of the requirements for
access, storage and management of large distributed datasets.
Thus, these create an environment in which data is as impor-
tant as computation if not more [2].

Data Grids [3] have evolved to tackle the challenges of
such data-intensive computing environments. Primarily, they
provide mechanisms for replication and a high-speed transport
layer. There are many projects around the world setting up
data grids for specific scientific application domains [4][5][6].
Users, such as scientists, have access to the aggregated com-
putational and data resources within such a grid project.

A. A Case for Economy in Data Grids

A data-intensive computing environment can be perceived
as a real-world economic system wherein there are produc-
ers and consumers of data distributed geographically across
multiple organisations. Producers are entities which generate
the data and control its distribution via mirroring at various
replica locations around the globe. They lay down policies
for replication that are guided by various criteria such as

minimum bandwidth, storage and computational requirements,
data security and access restrictions and data locality issues.
An example of such a system would be the tier-level model
proposed by the MONARC [7] group within CERN for
replicating the data produced by the Large Hadron Collider
(LHC) [8] for use within the ATLAS and CMS collaborations.
The consumers in this system would be the users or, by proxy,
their applications which need to analyse this data to produce
meaningful results. The users may want to investigate specific
datasets out of a set of hundreds and thousands and may have
specific application requirements that need not be fulfilledat
every computational site.

In such large collaborations, there can be a lot of pressure on
the data infrastructure (i.e. network and storage elements). The
pressure becomes more acute when a non-trivial percentage of
the users are interested in the same datasets simultaneously,
thus causing heavy load on the servers on which the requested
datasets and its replicas are hosted and denying service to
requestors of other datasets on those servers. Such an effect
is commonly observed in the Internet and the World Wide
Web [9].

While a robust and adaptive replication mechanism can
alleviate some of the above problems, the same problems
of data access and transfer costs affect the effectiveness and
efficiency of such a mechanism. Pricing resources to reflect
supply and demand in order to regulate their usage has been
explored in previous work [10]. On the consumer side, the
user would specify his deadline for the analysis job, his
budget and his preference for the cheapest or the fastest
processing according to his needs and priorities. While studies
have shown this to be effective for resource management in
computational grids [11], no study has been made so far
on the economic aspects of data processing by scheduling
analysis jobs on various sites with varying execution, transfer
and storage costs. In this paper, we propose a model and an
algorithm for economy-based scheduling within Data Grids.

The rest of this paper is organised as follows. In Section II,
we survey previous work in data grid scheduling and economy-
based replication mechanisms. In Section III, we extend the
notion of user-driven deadline and budget constrained schedul-
ing within computational grids to data grids. In Section IV,
the proposed algorithm is evaluated on a real Grid testbed and
the results are reported. Finally, we conclude our paper and



outline the future work.

II. RELATED WORK

Scheduling data intensive applications over wide-area net-
works has received lot of attention in the recent years. In [12],
the authors evaluate various heuristics for parameter-sweep
jobs which have files as input. They introduce a new heuristic,
XSufferage, that takes into account file locality by scheduling
jobs to those clusters where the files have already been
transferred for a previous job. However, a restriction within
this work is to limit the source of the files to the host which
submits the jobs for execution. Ranganathan and Foster [13]
have simulated job scheduling and data scheduling algorithms
and recommend that it is best to decouple data replication from
the job scheduling. In previous work [14], we have proposed
an adaptive algorithm that schedules jobs while minimizing
data transfer. It evaluates all known replica locations of the
file and submits the job to the compute resource which is
located closest to one of the replica locations. However, in
all the works presented above, economic costs of transfer and
processing of data have not been taken into account while
scheduling.

Several research works have explored the use of economy
within data driven computing environments. Mariposa [15]
was one of the earliest systems that experimented with an
economy paradigm for query processing and storage manage-
ment. Within Mariposa, a budget is associated with each query
and its execution is conducted through a bidding process.
There is no explicit scheduling within this system. While in
our economic model there is a budget associated with each
job, the job allocation is done by the scheduler which looks at
the costs associated with using the compute and data resources
and the user’s deadline and budget and scheduling preference.

More recently, Stockinger et.al. [16] discuss a cost model for
replicating data within Grid environments with particularem-
phasis on the CERN LHC experiment requirements. However,
their cost model focuses on system and application dependent
factors while our work focuses on the economic costs of data
processing while taking into account many of the factors such
as bandwidth, degree of replication of data and data server
load that they have also considered. In addition, they pay more
attention to data replication and do not explicitly consider the
processing requirements of the application. Our focus is on
the latter and we consider replication to be decoupled from
the processing and done independently by the data service
providers.

In [17], the authors propose an economy-based replication
strategy based on a Vickerey auction to determine the optimal
replica location to fetch a file that a job has requested. The
file is then replicated at the local host so that other requests
in the future emerging from the vicinity can be fulfilled. The
economic considerations are limited to the data replication and
the processing costs for the job are not considered in their
model.

Economy-based resource management and scheduling in
computational grids was proposed and evaluated in [18]. An

important limitation to that work is the lack of consideration
given to data while scheduling jobs on remote resources. This
paper aims to extend the deadline and budget constrained cost
and time minimization algorithms proposed in [18] to data
grids by removing that limitation.

III. SCHEDULING

A. Model

Fig. 1 shows a typical data grid environment that is
composed of storage nodes that store the data and compute
resources that run the jobs that analyse the data. It is possible
that the same node may contain both storage and computation
capabilities. For example, it could be a supercomputing center
which has a Mass Storage Facility attached to it. The datasets
may be replicated at various sites within this data grid. We
assume that the replication is carried out independently and
is dependent on the policies set by the administrators of the
storage resources and/or the producers of data. We also assume
that the scheduler is able to query a data directory such as
a Replica Catalog [19] or the SRB [20] Metadata Catalog
that would contain information about the locations of the
datasets and their replicas. We associate economic costs with
the access, transfer and processing of data. The processingcost
is levied upon by the computational service provider, while
the transfer cost comes on account of the access cost for the
storage node and the cost of transferring datasets from the
storage node to the compute resource through the network.

We consider a model for scheduling independent jobs on a
data grid. Independent jobs arise in execution models such as
parameter-sweep model of computation. Parameter-sweep ap-
plications(PSA) are common within scientific studies and have
been considered as being very suitable for Grid execution [21]
because jobs have no intercommunication dependencies. We
consider a job as the atomic unit of computation within this
model. The steps for submitting a job to the grid shown
in Fig. 1 are as follows: The scheduler gathers information
about the available compute resources through a resource
information service (1) and about the data through the data
directory (2). It then makes decision on where to submit
the job based on the availability and cost of the compute
resource, the minimization preference and the location, access
and transfer costs of the data required for the job (3). The job
is dispatched to selected remote compute resource (4) where
it requests for the dataset from the replica location selected by
the scheduler (5 & 6). After the job has finished processing
(7), the results are sent back to the scheduler host or another
storage resource which then updates the data directory(8).This
process is repeated for all the jobs generated by a PSA.

We consider, therefore, a set ofN independent jobsJ =
{j1, j2, . . . , jN} that have to be scheduled onM computa-
tional resourcesR = {r1, r2, . . . , rM}. Typically, N ≫ M .
Assume job j, (j ∈ J) is scheduled to be executed on
computational resourcer, (r ∈ R) . Each job requires a
set Fj = {fj1, fj2, . . . , fjK} of K datasets that are each
replicated on a subset ofP data hosts,D = {d1, d2, . . . , dP }.



Fig. 1. An economy-based data grid environment

For fjk ∈ Fj , Djk ⊆ D is the set of datahosts from which
datasetfjk may be obtained.

Therefore, the time taken to execute the jobs is the sum
of the execution time and the times taken to transfer each of
the K files from the respective storage nodes to the compute
node. That is, if the computation time is denoted bytjr and
the transfer time for thekth datasetfjk is denoted bytfjkr,
then the total time required for executing the jobj,

tj = tjr +

K
∑

k=1

tfjkr

where

tfjkr = Response time(djk) + Size(fjk)/BW (Linkdjkr)

In the above equation,djk is the data host from whichfjk will
be obtained.Response time(djk) is the difference between
the time when the request was made and the time when the
first byte of thefjk is received atr. This is function of the
load on the data host. If it is heavily loaded then the response
time will be higher.BW (Linkdjkr) is the available bandwidth
for the network connection between the data hostdjk and the
compute resourcer.

To calculate the economic cost of executing the job, we
denote the processing cost of the jobj on the compute node
r by ejr and cost of transferring the datasetfj by efjkr.
Therefore, the total execution cost for jobj,ej is given by

ej = ejr +

K
∑

k=1

efjkr

where

efjkr = Access cost(djk)

+Size(fjk) ∗ Cost per unit size(Linkdjkr)

Access cost(djk) is the cost of requesting a dataset which
is levied by the data host. It can be an increasing function
on either the size of the requested dataset or the load on the
data host or both. This cost regulates the size of the dataset
being requested and the load which the data host can handle.
Cost per unit size(Linkdjkr) is the cost of transferring a
unit size(eg. MB or GB) of the requested dataset through
the network link between the data host and the compute
resource. The cost of the link may increase with the Quality
of Service(QoS) being provided by the network. For example,
in a network supporting different channels with different QoS
as described in [22], the cost of a faster link may be higher
than that of a slower link. Hence, the file is transferred faster
but at a higher expense. We consider all traffic within a Local
Area Network(LAN) to be essentially free, that is, no cost is
levied upon them.

The model given above is similar to the model described
within [16] with two major differences. One, as stated in
Section II, is their focus on data replication and the other
is the fact that they have considered bandwidth of the LAN in
their model. We consider the WAN bandwidth and cost as to
be dominant and therefore, we have ignored LAN parameters
within our model.

We associate two constraints with the schedule, the dead-
line by which the entire set must be executed (denoted by
TDeadline) and the maximum budget,Budget, for processing
the jobs. The deadline constraint can therefore be expressed in
terms of job execution time asmax(tj) ≤ TDeadline, ∀ j ∈ J .
The budget constraint can be expressed as

∑

J ej ≤ Budget.

B. Algorithm

Depending on the user-provided deadline, budget and
scheduling preference, we can have two objective functions,



viz:
• Cost minimization We try to execute the jobs in the

schedule that causes least expense while keeping the
execution time within the deadline provided.

• Time minimization Here, the jobs are executed in the
fastest time possible with the budget for the execution
acting as the constraint.

It is obvious that in both cases the same algorithm can
be applied to solve the different objective functions. We,
therefore, introduce a greedy algorithm to schedule the set
of jobs. This algorithm is based on the Min-Min heuristic
discussed in [23].

The listing for the algorithm is given in Figure 2.The
scheduling algorithm consists of two parts, one is the mapping
of the jobs to the resources (lines 10-27) and the second is the
actual dispatching of the jobs to the resources itself(lines 30-
48). The mapping part deals with creating a set of resources
consisting of one compute node and one data host each for
every dataset required by the job. That is, for each jobj,
we create aresource setSj = {rj , dj1, dj2, . . . , djK} that
represents the compute and data resources to be accessed by
the job in execution. In the dispatching part, we ensure thatthe
deadline and budget constraints on the schedule are enforced
while submitting the jobs to the remote resources.

JU , JA, JC and JF are subsets ofJ consisting of jobs
in Unsubmitted, Active, Completed and Failed states
respectively. A job can be in only one of these states at a
time. The scheduling algorithm completes when all jobs are
either inCompleted or Failed states.

We introduce a variableMin which allows us to change
the decision variables depending on the minimization chosen
within the algorithm. We define a functionfmin that returns
the smallest value withinA depending on the minimization
applied. Formally,

fmin(Min, CV ar, TV ar, A) =















min(CV ar, A)
if Min = Cost
min(TV ar, A)

if Min = T ime

Here, CV ar and TV ar represents variables deal with cost
and time respectively.min(CV ar, A) andmin(TV ar, A) will
return the element of A with the smallest value ofCV ar and
TV ar respectively. Hence, by changing the value ofMin
we can determine what objective function the algorithm will
minimize. Consequently,Min is a parameter to the scheduling
function.

At every polling interval, we update the performance data of
the compute resources by taking into account the jobs that have
been completed or failed since the last polling interval. Based
on this, we compute theAvgComputationT ime required for
a job at each server. Since within a set, the jobs are similar to
each other in terms of processing requirements, we can safely
assume that the average computation time holds true for the
remaining unsubmitted jobs. For each data resource, we update
the network conditions between itself and the computational
resources. Then, we sort the computational resources either

by the cost of the network link or the bandwidth between
the compute resource and the data host depending on the
minimization required. The advantage of this step will be
explained shortly.

In the mapping section, we try to build the resource setSj

by selecting a data resource for each dataset required by thejob
and a compute resource, optimally situated from the selected
data resources, for executing the job. The best way to go about
this would be to try all possible combinations of compute and
data resources till we reach at the right combination. This,
however, increases the worst-case running time of the mapping
loop to the exponential order ofK .

We, therefore, decrease the complexity by making a greedy
choice at each step within the mapping section. For a job, we
iterate through the list of datasets it requires. For each dataset,
we select the best data host to retreive the file from in terms of
access cost or response time depending on the minimization
applied (line 13). Then, for a selected data resource, we choose
the best compute resource based on the cost of the network
or the available bandwidth to the resource (line 14). Since the
list of compute resources has already been sorted for each data
resource, we only have to take the first element of the sorted
list. However, this may not be the best or even close to it for
the entire resource set including the data hosts selected inthe
previous iterations. Therefore, we create two resource sets, Sj

andS′

j , the former with the current selected compute and data
resources and the latter with the current selected data resource
but with the compute resource selected in the previous iteration
(lines 15 - 22) . Then, we compare the two sets on the basis of
the expected cost or execution time and select the resource set
which gives us the minimum value (line 23). This procedure
ensures that the choice of compute resource we make with the
current dataset does not worsen the optimality with respectto
the other datasets and that the resource set selected at the end
of each iteration is better than that selected in all previous
iterations.

In the dispatching section, we first sort all the job in the
ascending order of the value of the minimization function for
their respective combinations. Then, starting with the jobwith
the least cost or least execution time, we submit the jobs to
the compute resources selected for them in the mapping step.
For cost minimization, we see if the deadline is violated by
checking whether the current time(TCurrent) plus the expected
execution time exceedsTDeadline (line 35). If so, the job
goes back into the unsubmitted list in the expectation that the
next iteration will produce a better combination. IfBudget is
exceeded by the current job then we stop dispatching any more
jobs and return to the main loop since the rest of the jobs in the
list will have higher cost (lines 36-37). For time minimization,
we check if the budget spent (including the budget for all the
jobs previously submitted in current iteration) plus the budget
for the current job exceedsBudget. If the deadline is violated
by the current job then we stop dispatching and return to the
main loop.

We analyse the worst-case complexity of the mapping loop
as follows: The data resource selection step isO(P ) since



while J 6= JC ∪ JF OR Tcurrent < TDeadline OR Budget spent < Budget do1
UpdateBudget spent by taking into account the jobs completed in the last interval;2
for eachr ∈ R do3

On the basis of jobs completed in last polling interval, compute job limit andAvgCompletionT ime for every server;4
end5
for eachd ∈ D do6

Update the network values within each data host;7
Sort Rd in the ascending order off(Min, Cost(Linkdr), 1/BW (Linkdr));8

end9
for j ∈ JU do10

Sj , S′

j
← {};11

for fj ∈ Fj do12
d← fmin(Min, Cost(dfj

), Response(dfj
), Dfj

);13
r ← r1dfj

∈ Rdfj
;14

if Sj = {} then15
Sj ← Sj ∪ {r, d};16
S′

j
← Sj ;17

end18
else19

Sj ← (Sj − {rprev}) ∪ {r, d};20
S′

j
← S′

j
∪ {d};21

end22
Sj ← fmin(Min, ej , tj , {Sj , S′

j
});23

S′

j
← Sj ;24

rprev ← r ∈ Sj ;25
end26

end27
Sort JU in the ascending order offmin(Min, ej , tj , J);28
Expected Budget = Budget spent;29
for j ∈ JU do30

Take the next jobj ∈ JU in sorted order;31
r ← r ∈ Sj ;32
if Alloc Job(r) < Job Limit(r) then33

if Min = Cost AND (TCurrent + tj) < TDeadline then34
if (Expected Budget + ej) ≤ Budget then submit j to r;35
elsestop dispatching and exit to main loop36

end37
if Min = T ime AND Expected Budget + ej ≤ Budget then38

if (TCurrent + tj) < TDeadline then submit j to r;39
elsestop dispatching and exit to main loop40

end41
Expected Budget = Expected Budget + ej ;42
Removej from JU ;43
IncrementAlloc Job(r);44

end45
end46
Wait for the duration of the polling interval;47

end48

Fig. 2: Pseudo-code for Economy-based Scheduling of Data Intensive Applications

there can be maximum ofP data hosts for any file. Therefore,
for N jobs, the worst-case complexity of the mapping loop is
O(NKP ).

IV. EXPERIMENTS AND RESULTS

We have implemented the scheduling algorithm presented in
Section III within the Gridbus Broker [14]. We have conducted
empirical evaluation of the algorithm using an experimental
setup modified from the one used for evaluation in [14] .
The testbed resources used in our experiments is detailed
in Table I. The broker itself was extended to consider the
price of transferring data over network links between the
compute resources and the data hosts while scheduling jobs.
In our experiments, although we have artificially assigned data
transmission costs shown in Table III, they can be linked to

0

20

40

60

80

100

120

140

belle.cs.mu.oz.au

belle.anu.edu.au

belle.cs.adelaide.edu.au

fleagle.ph.unimelb.edu.au

belle.physics.usyd.edu.au

Data Hosts

N
u

m
b

er
 o

f 
R

eq
u

es
ts

Fig. 3. Access distribution of jobs against data hosts



TABLE I

RESOURCES WITHINBELLE TESTBED USED FOR EVALUATION AND THEIR COSTING

Organization Resource details Role Cost (G$/CPUsec) TotalJobs
Executed

Time Cost

Dept. of Computer
Science, University of
Melbourne

belle.cs.mu.oz.au
4 Intel 2.6 GHz CPU, 2 GB
RAM, 70 GB HD, Linux

Broker Host, Data
Host, Compute
resource, NWS
Server

6 94 2

School of Physics,
University of
Melbourne

fleagle.ph.unimelb.edu.au
1 Intel 2.6 Ghz CPU, 512 MB
RAM, 70 GB HD, Linux

Replica Catalog
host, Data host,
NWS sensor

N.A. (Not used as a
compute resource)

– –

Dept. of Computer
Science, University of
Adelaide

belle.cs.adelaide.edu.au
4 Intel 2.6 GHz CPU, 2 GB
RAM, 70 GB HD, Linux

Data host, NWS
sensor

N.A. (Not used as a
compute resource)

– –

Australian National
University, Canberra

belle.anu.edu.au
4 Intel 2.6 GHz CPU, 2 GB
RAM, 70 GB HD, Linux

Data Host, Com-
pute resource, NWS
sensor

6 2 4

Dept of Physics, Uni-
versity of Sydney

belle.physics.usyd.edu.au
4 Intel 2.6 GHz CPU(1 avail), 2
GB RAM, 70 GB HD, Linux

Data Host, Com-
pute resource, NWS
sensor

2 119 2

Victorian Partnership
for Advanced Com-
puting, Melbourne

brecca-2.vpac.org
180 node cluster (only head node
utilised)

Compute resource,
NWS sensor

4 0 27

0

20

40

60

80

100

120

140

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Polling Interval (every 40s)

N
u

m
b

er
 o

f 
jo

b
s

belle.cs.mu.oz.au belle.anu.edu.au belle.physics.usyd.edu.au brecca-2.vpac.org

(a) cost minimization scheduling

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Polling Intervals(every 40s)

N
u

m
b

er
 o

f 
Jo

b
s

belle.cs.mu.oz.au belle.anu.edu.au belle.physics.usyd.edu.au brecca-2.vpac.org

(b) time minimization scheduling

Fig. 4. Cumulative number of jobs completed vs time for economy scheduling in data grids.

TABLE II

AVERAGE AVAILABLE BANDWIDTH BETWEEN DATA HOSTS AND

COMPUTERESOURCES AS REPORTED BYNWS(IN MBPS)

Compute

Data

UniMelb
CS

ANU UniSyd
Physics

VPAC

ANU 6.99 10000 10.242 6.33

Adelaide CS 3.45 1.68 2.29 6.05

UniMelb Physics 41.05 6.53 2.65 20.57

UniMelb CS 10000 6.96 4.77 36.03

UniSyd Physics 4.78 12.57 10000 2.98

TABLE III

NETWORK COSTS BETWEENDATA HOSTS ANDCOMPUTERESOURCES(IN

G$/MB)

Compute

Data

UniMelb
CS

ANU UniSyd
Physics

VPAC

ANU 34.0 0 31.0 38.0

Adelaide CS 36.0 34.0 31.0 33.0

UniMelb Physics 40.0 32.0 39.0 35.0

UniMelb CS 0 30.0 36.0 33.0

UniSyd Physics 33.0 35.0 0 37.0



TABLE IV

SUMMARY OF EVALUATION RESULTS

Scheduling strategy Total
Time
Taken
(mins.)

Compute
Cost
(G$)

Data
Cost
(G$)

Total
Cost
(G$)

Cost minimization 80 31198.27 39126.65 70324.93

Time Minimization 54 76054.90 43821.64 119876.55

20

10
0

18
0

26
0

34
0

42
0

50
0

58
0

66
0

74
0

82
0

90
0

98
0

20

200

380

560

740
920

0

5

10

15

20

25

30

35

N
u

m
b

er
 o

f 
Jo

b
s

Compute Cost(G$)

D
at

a 
C

o
st

(G
$)

(a) cost minimization scheduling

20

10
0

18
0

26
0

34
0

42
0

50
0

58
0

66
0

74
0

82
0

90
0

98
0

20

200

380

560

740

920

0

5

10

15

20

25

30

35

40

N
u

m
b

er
 o

f 
Jo

b
s

Compute Cost(G$)

D
at

a 
C

o
st

(G
$)

(b) time minimization scheduling

Fig. 5. Distribution of jobs against compute and data costs

real costs as prescribed by ISPs (Internet Service Providers).
We have used NWS (Network Weather Service) [24] for
measuring the network bandwidths between the computational
and the data sites. A number of the data hosts were also func-
tioning as compute resources. The average available bandwidth
between the compute resources and the data hosts is given in
Table II. The network bandwidth between a data host and a
compute resource located on the same resource was set to an
arbitrarily high value (10000 Mbps) within the broker and the
network transmission cost in this case was set to zero. There
was no access cost specified for the data hosts within this
evaluation. The response time for the data hosts was also not
taken into account within this evaluation as the data were not
replicated and there was no choice between data hosts for a
single dataset.

There were 100 datasets or files, of size 30 MB each,
divided equally between the five data hosts listed in Table I.
These were not replicated and thus, each dataset was uniquely
hosted. We have used a synthetic application calleddatacalc
for the evaluation. This program requests the data from the
remote data host specified by the resource broker, executes
some calculations and produces a small output file (of the order
of KB). Each job, consisting of a instance of the application,
required 3 datasets out of the 100 and there were 125 jobs
in total. These data sets were specified through Logical File
Names (LFNs) within a replica catalog and were resolved to
the actual physical locations by the broker at runtime. Fig.
3 gives the distribution of the number of requests for data
made by the jobs versus the data hosts. The distribution is
the same for both cost and time minimization. The datasets
were transferred in sequence, that is, the transfer of one dataset
was started after the previous had completed. The computation
times for the jobs were randomly distributed within 60-120
seconds.

The experiments were carried out on 29th November 2004
between 6:00 p.m. and 10:00 p.m. AEDT. The deadline and
budget values for both cost and time minimization were
2 hours and 500,000 G$ respectively. Table IV shows the
summary of the results that were obtained. The average costs
per job incurred during cost and time minimization are 562.6
G$ and 959 G$ with standard deviations of 113 and 115
respectively. Mean wall clock time taken per job(including
computation and data transfer time) was 167 secs for cost min-
imization and 135 secs for time minimization with standard
deviations 16.7 and 19 respectively.

As expected, cost minimization scheduling produces min-
imum computation and data transfer expenses whereas time
minimization completes the experiments in the least time.
The graphs in Figs. 4(a) and 4(b) show the number of
jobs completed versus time for the two scheduling strategies
for data grids. Since the computation time was dominant,
within cost minimization, the jobs were executed on the least
economically expensive compute resource. This can be seen in
Fig. 4(a) where the compute resource with the least cost per
CPU sec, the resource at University of Sydney, was chosen
to execute 95% of the jobs. Since a very relaxed deadline



was given, no other compute resource was engaged by the
scheduler as it was confident that the least expensive resource
alone would be able to complete the jobs within the given
time. Within time minimization (Fig. 4(b)), the jobs were
dispatched to the compute resources which promised the least
execution time even if they were expensive as long as the
expected cost for the job was less than the budget per job.
Initially, the scheduler utilised two of the faster resources,
the University of Melbourne Computer Science(UniMelb CS)
resource and the VPAC resource. However, as seen from
Fig. 3, 26.67% of the requests for datasets were directed to the
UniMelb CS resource. A further 6.67% were directed to the
resource in UniMelb Physics. Hence, any jobs requiring one
of the datasets located on either of the above resources were
scheduled at the UniMelb CS resource because of the low
data transfer time. Also, the UniMelb CS resource had more
processors. Hence, a majority of the jobs were dispatched to
it within time minimization.

Figs. 5(a) and 5(b) show the distribution of the jobs with
respect to the compute and data costs. For cost minimization,
95% of the jobs have compute costs less than or equal to 400
G$ and data costs between 250 G$ to 350 G$. In contrast,
within time minimization, 91% of the jobs are in the region
of compute costs between 500 G$ to 700 G$ and data costs
between 300 G$ to 400 G$. Thus, it can be inferred that
the broker utilized the more expensive compute and network
resources to transfer data and execute the jobs within time
minimization as more jobs are in the region of high compute
costs and medium data costs.

V. CONCLUSION AND FUTURE WORK

We have presented here an economy-based model for ex-
ecuting jobs on data grids which takes in to account both
processing and data transfer costs. We have discussed an
algorithm which greedily creates a resource set, consisting
of both compute and data resources, that promises the least
cost or least time depending on the minimisation chosen.
We have evaluated the algorithm on a Data Grid testbed
and presented the empirical results. The results show that
the algorithm utilizes the available resources to minimiseits
objective function by building resource sets incrementally. It
does so without involving the complexity of checking every
possible combination of resources.

We plan to conduct further evaluations to conclusively state
that the algorithm minimizes its objective functions. We also
plan to evaluate the algorithm with a testbed with replicated
data along with specifying access costs for the data hosts.

REFERENCES

[1] T. Hey and A. E. Trefethen, “The UK e-Science Core Programme and the
Grid,” Journal of Future Generation Computer Systems(FGCS), vol. 18,
no. 8, pp. 1017–1031, 2002.

[2] R. Moore, C. Baru, R. Marciano, A. Rajasekar, and M. Wan,The Grid:
Blueprint for a New Computing Infrastructure. Morgan Kaufmann,
1998, ch. 5, ”Data Intensive Computing”, pp. 105–131.

[3] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, andS. Tuecke, “The
data grid: Towards an architecture for the distributed management and
analysis of large scientific datasets,”Journal of Network and Computer
Applications, vol. 23, no. 3, pp. 187–200, 2000.

[4] Particle Physics Data Grid (PPDG). [Online]. Available:
http://www.ppdg.net/

[5] European Union Data Grid. [Online]. Available: http://www.eu-
datagrid.org/

[6] The Belle Data Grid Project. [Online]. Available:
http://epp.ph.unimelb.edu.au/epp/grid/presentation/project1.html

[7] MONARC Project, CalTech. Accessed Nov 2004. [Online]. Available:
http://monarc.cacr.caltech.edu/

[8] P. Lebrun, “The Large Hadron Collider, A Megascience Project,” in
38th INFN Eloisatron Project Workshop on Superconducting Materials
for High Energy Colliders, Erice, Italy, October 1999.

[9] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker, “Controlling high bandwidth aggregates in the network,”
Computer Communications Review, vol. 3, July 2002.

[10] R. Buyya, J. Giddy, and D. Abramson, “A case for economy grid archi-
tecture for service-oriented grid computing,” in10th IEEE International
Heterogeneous Computing Workshop (HCW 2001), In conjunction with
IPDPS 2001, San Francisco, California, USA, April 2001.

[11] R. Buyya, J. Giddy, and D. Abramson, “An evaluation of economy-
based resource trading and scheduling on computational power grids
for parameter sweep applications,” inThe Second Workshop on Active
Middleware Services (AMS 2000), Pittsburgh, USA, 2000.

[12] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman, “Heuristics
for Scheduling Parameter Sweep Applications in Grid environments,”
in 9th Heterogeneous Computing Systems Workshop (HCW 2000),
Cancun,Mexico, 2000.

[13] K. Ranganathan and I. Foster, “Decoupling Computationand Data
Scheduling in Distributed Data-Intensive Applications,”in Proceedings
of the 11th IEEE Symposium on High Performance Distributed Com-
puting (HPDC), Edinburgh, Scotland, July 2002.

[14] S. Venugopal, R. Buyya, and L. Winton, “A Grid Service Broker for
Scheduling Distributed Data-Oriented Applications on Global Grids,”
in Proceedings of the 2nd Workshop on Middleware in Grid Computing
(MGC 04) : 5th ACM International Middleware Conference (Middleware
2004), Toronto, Canada, October 2004.

[15] M. Stonebraker, R. Devine, M. Kornacker, W. Litwin, A. Pfeffer, A. Sah,
and C. Staelin, “An Economic Paradigm for Query Processing and Data
Migration in Mariposa,” inProceedings of 3rd International Conference
on Parallel and Distributed Information Systems, Austin, TX, USA,
Sept. 28-30 1994.

[16] H. Stockinger, K. Stockinger, E. Schikuta, and I. Willers, “Towards a
cost model for distributed and replicated data stores,” in9th Euromicro
Workshop on Parallel and Distributed Processing PDP 2001. Mantova,
Italy: IEEE Computer Society Press, February 2001.

[17] W. H. Bell, D. G. Cameron, R. Carvajal-Schiaffino, A. P. Millar,
K. Stockinger, and F. Zini, “ Evaluation of an Economy-BasedFile
Replication Strategy for a Data Grid,” inProceedings of the 3rd
IEEE/ACM International Symposium on Cluster Computing andthe
Grid, 2003 (CCGrid 2003), Tokyo, Japan, May 2003.

[18] R. Buyya, “Economic-based Distributed Resource Management and
Scheduling for Grid Computing,” Ph.D. dissertation, Monash University,
Australia, 2002.

[19] S. Vazhkudai, S. Tuecke, and I. Foster, “Replica selection in the globus
data grid,” in Proceedings of the First IEEE/ACM International Con-
ference on Cluster Computing and the Grid (CCGRID 2001), Brisbane,
Australia, May 2001.

[20] C. Baru, R. Moore, A. Rajasekar, and M. Wan, “The sdsc storage
resource broker,” inProcs. of CASCON’98, Toronto, Canada, Nov 1998.

[21] D. Abramson, J. Giddy, and L. Kotler, “High PerformanceParametric
Modeling with Nimrod/G: Killer Application for the Global Grid?” in
IPDPS’2000, Cancun, Mexico, 2000.

[22] T. Hui and C. Tham, “Reinforcement learning-based dynamic bandwidth
provisioning for quality of service in differentiated services networks,”
in Proceedings of IEEE International Conference on Networks (ICON
2003), Sydney, Australia, Sept.-Oct. 2003.

[23] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.Freund,
“Dynamic Mapping of a Class of Independent Tasks onto Heterogeneous
Computing Systems,”Journal of Parallel and Distributed Comput-
ing(JPDC), vol. 59, pp. 107–131, Nov 1999.

[24] R. Wolski, N. Spring, and J. Hayes, “The network weatherservice: A
distributed resource performance forecasting service formetacomput-
ing,” Journal of Future Generation Computing Systems, vol. 15, pp.
757–768, 1999.


