
1

An Iterative Optimization Framework for Adaptive
Workflow Management in Computational Clouds

LONG WANG1, RUBING DUAN1, XIAORONG LI1, SIFEI LU1, TERENCE HUNG1, RODRIGO CALHEIROS2, AND

RAJKUMAR BUYYA2

1Institute of High Performance Computing, A*STAR, Singapore
2The University of Melbourne, Australia

Abstract—As more and more data can be generated at a faster-
than-ever rate nowadays, it becomes a challenge to processing large
volumes of data for complex data analysis. In order to address
performance and cost issues of big data processing on clouds, we
present a novel design of adaptive workflow management system
which includes an SVM (Support Vector Machine) based prediction
model, workflow scheduler, and iteration controls to optimize the
data processing via iterative workflow tasks. We proposed a new
heuristic algorithm, called Upgrade Fit, which dynamically and
continuously reallocates multiple types of cloud resources to fulfill
the performance and cost requirements. The iterative workflow tasks
can be bursty bags of tasks to be executed repetitively for data
processing. A real application of weather forecast workflow has
been used to evaluate the capability of our system for large volume
image data processing. Experimental system has been set up and
the results indicate that the system can effectively handle multiple
types of cloud resources and optimize the performance iteratively.

I. INTRODUCTION

With the advent of parallel computing and service technologies,
data analysis applications become more and more complex. It
requires sophisticated controls of the parallel tasks and the data
flows to enable big data to be processed on a large pool of
distributed resources. Cloud computing is a scalable, secure
and cost-effective utility that is widely accepted due to its
convenience and pay-as-you-go model. It is characterized by
rapid yet elastic demand pools, which are suitable for data-and
compute-intensive workflow management systems (WfMS) [1].
Different from heterogeneous grid computing environments that
are generally owned by different communities or organization
with varied administration policies and capabilities, cloud com-
puting can provide a scalable and flexible platform to satisfy high
performance computing requirements.

Workflow is concerned with the automation of procedures
whereby files and data are passed between participants accord-
ing to a defined set of rules to achieve an overall goal. A
workflow management system defines, manages, and executes
workflows on computing resources, which should have the ability
to build dynamic applications that orchestrate multiple tasks to
be processed on distributed resources. A workflow is composed
by connecting multiple tasks according to their dependencies.
Workflow structure can be represented as a Direct Acyclic Graph
(DAG) and non-DAG. Non-DAG has the same entities as DAG,

Corresponding author. Tel: +6564191551; Fax: +6564631452;
E-mail: duanr@ihpc.a-star.edu.sg (Rubing Duan).

but expands to one further structure – iteration, which is also
known as loop or cycle. The iteration structure is quite frequently
used in scientific applications, where one or more tasks need to
be executed repeatedly. Iteration is a nature property that is highly
practical in data analysis, and it gives system an opportunity to
gather some related information and optimize resource pool and
scheduling algorithm in term of cost and performance.

In order to execute iterative workflow tasks for data analy-
sis, we proposed a novel workflow management system which
handles diverse computing resources with dynamic resource pro-
visioning strategy to process large volume data and optimize the
performance periodically. We designed a SVM (Support Vector
Machine) based prediction model to model the data-intensive
tasks. Most importantly, we formulate the scheduling problem
as a variation of multi-type bin-packing problem, and proposed a
new approach, called Upgrade Fit algorithm, to extend the exist-
ing capability of workflow management systems to allow iterative
optimization of workflow execution. Experimental results show
that our new algorithm outperforms most existing algorithms in
terms of economic cost and resource efficiency.

To illustrate the ability of our system, we used a weather
forecast application that processes a large amount of radar cloud
image data to analyze rainfall distribution. The workflow is com-
posed of many relational tasks, which repeat over time to extract
information from different data sets. Our proposed framework can
improve the performance of running such data- and compute-
intensive analytic workflow in clouds with less execution time
and lower economic cost.

The rest of this paper is organized as follows: Section II
presents an overview of the architectural design of the work-
flow management system. Section III presents the proposed
approach for cloud resource allocation and workflow scheduling.
Section IV evaluates our methods for a real-world weather
forecasting application executed in a real computational cloud,
and a formal approach to predict workflow performance. We
compare our approach with state-of-the-art and other traditional
approaches in Section V, and finally we conclude in Section VI.

II. SYSTEM AND APPLICATION OVERVIEW

This section provides a comprehensive view of the iterative
workflow management system and an typical iterative application
running on it.

2

Create/Edit	
 Execute	
 Monitor	
 Sta2s2cs	
 Resource	

Control	

Persistence	

DB/Storage	

Workflow	
 Scheduler	
 	

Cloud	
 Resource	
 Pool	

Event	
 Service	

Cloud	
 	

Resource	

Management	
 	
 	

Task	
 Dispatcher	

Applica2on	
 Enabler	
 	

Itera2on	

Control	

Predic2ve	
 analysis	

Fig. 1. System Architecture.

A. System Architecture

The architecture of our workflow management system is de-
picted in Figure 1. The top layer of the architecture acts as
the application tier that enables workflows to be executed by
the middleware of the system. It performs application-specific
activities such as application monitoring and execution, creation
of workflows, resource control, etc. The workflow scheduler
connects the application layer and interacts with the clouds (e.g.,
private/public/hybrid cloud) infrastructure to enable application
execution. This layer includes actual scheduling, iteration con-
trol, predictive analysis, and dispatching of workflow tasks and
management of Cloud resources. Communication among all parts
happens via events, which are managed by the Event Service. The
Workflow Scheduler component extends the Cloudbus Workflow
Engine [1] by adding adaptive computing methods to process
complex analytic workflows.Task Dispatcher submits workflow
tasks to the resources selected by the scheduler. The Iteration
Controller controls each iteration of the workflows. In each iter-
ation, the information about the task execution such as execution
time, execution status, VM (Virtual Machine) type, etc. is sent
back to the system for further analysis. Predictive analysis module
trains the data sets after each iteration and estimates the execution
time of data processing tasks. Hence, our system can learn the
performance model from each iteration.

The Cloud Resource Management layer interacts with the
physical cloud infrastructure and has features such as adaptive
resource allocation and selection of the best resource allocation
to meet the user time and cost requirements. With the design of it-
erative optimization, our system can adjust the resource allocation
by knowing the characteristics and performance of tasks on actual
execution environments, and improve the workflow performance
gradually at runtime.

A schedule of a workflow is an assignment that allocates all
the workflow tasks to cloud resources. With this architecture,
we aim to derive an optimal schedule to achieve the minimum
completion time and economic cost. As the above problem of
mapping tasks onto distributed heterogeneous resources is NP-
complete, we proposed heuristic iterative optimization methods
to solve it, as described in the following section.

Fig. 2. Weather forecast workflow.

B. Weather Forecast Application

As shown in Figure 2, the weather forecast workflow applica-
tion analyzes satellite images, wave data, radar cloud data, and
surface wind data to understand the rainfall distribution over the
time and at different locations. This application is particularly
interesting because it requires several features that must be
supported by a WfMS, e.g., large amount of data in workflows,
integration of sensor data, long-running workflow, etc.

Over a specified period of time (e.g., 1 hour) several different
variables are measured and observed. This data needs to be
collected from the different sources and stored for later access,
which is collected by the task WeatherDataCollection in
Figure 2. The collected data is analyzed and transformed into
a common format (e.g. Fahrenheit to Celsius scale) by the task
DataTransformation. The normalized values are used to
create the current state of the atmosphere. Then, a numerical
weather forecast is made based on mathematical-physical models
by four groups of tasks: WaveData, SurfaceWind, Radar
Cloud, and SatelliteImage. These four groups of tasks
process the collected image data as shown in Figure 3. For
instance, rainfall weather 70km radar image in Figure 3(c) is col-
lected from National Environment Agency (NEA) Singapore, and
shows the rainfall information on 2012 October 9 at 07:10 am.
Data is captured every 5 minutes, and there are 16 GB for 3 years
data. ModelConstruction complements the results of the
numerical models with a statistical interpretation. The numerical
post-processing is done with the task DirectModelOutput:
the numerical results are interpolated for specific geological
locations.

The sizes of these data and image files for each small region
vary from 1397KB to 93KB, and the data generates tens of
thousands of records that represent neighborhood data dependent
on the information included in radar image data. The execution
time in small VM instances with 2 CPU core and 2 GB memory
for single task ranges from 622 seconds to 8 seconds. Since the
execution time of tasks depend on the complexity of collected
data, it is very challenging to schedule large-scale workflows and
manage multiple types of cloud resources.

3

(a) Wave chart. (b) Surface wind chart.

(c) Radar cloud chart. (d) Satellite image.

Fig. 3. Weather forecast application.

III. ITERATIVE OPTIMIZATION

We proposed an iterative optimization method that extends
the existing capability of workflow management based on DAG
processing to allow iterative structures in a workflow application.
It is designed for workflow analytical applications in which
analytic tasks/functions are periodically repeated especially those
with bursty bags of tasks. In order to optimize the performance
and economic cost for such applications, the workflow engine
analyzes historical data, generates performance prediction for
each task, and optimizes accordingly. Hence, the performance
of running the analytic programs can be continuously improved
by adjusting system configurations to meet users requirements.

A. Formulation

The mapping of workflow tasks to cloud resources is a varia-
tion of typical “bin-packing” combinatorial optimization problem
that can be formulated as follows:

Definition III.1 Given a set of computational resources
V {v1, . . . , vK} and a list of N tasks with execution time
t1, . . . , tN . Each type of resources vk has different computing
capability and price – pk. The objective of the scheduling
problem is to find a solution that assigns all tasks to a group
of R resources such that within a fixed makespan m, economic

cost of all tasks F (s) is minimized:

Minimize
s

F (s) =

R∑
i=1

N∑
j=1

tj · pk · xij ,

subject to
N∑
i=1

tj · pk · xij ≤ m, i ∈ {1, . . . , R},

r∑
j=1

xij ≤ 1, j ∈ {1, . . . , N},

xij ∈ {0, 1}, i ∈ {1, . . . , R}, j ∈ {1, . . . , N},
s ∈ S,

(1)

where s is a solution, S is the set of feasible solutions, and F (s)
is the image of s in the multiobjective space and represents the
economic cost objective.

There are many variations of this problem, such as 2D packing,
linear packing, packing by weight, packing by cost, and so on.
In our case, the difference from other variations is that the “bins”
or computational resources are upgradeable. Therefore, the most
important thing to our system is to determine both the number
and the types of computational resources. Since the bin packing
problem is a combinatorial NP-hard problem, it is impossible to
obtain optimal solutions especially for large-scale workflows with
thousands or millions of tasks. In order to solve this problem, we
proposed a new heuristic algorithm called “Upgrade Fit”.

To run the analytics in clouds, we assume there is on demand
resource provisioning and various types of VMs have different
performance and prices. The workflow scheduler determines the
appropriate amount of resources and assigns tasks to suitable
resources to fulfill user requirements. Clouds add extra com-
plexity to the workflow scheduler because the execution time
of tasks noticeably varies when executed on different resources.
Therefore, the cloud workflow scheduler needs to assign tasks and
to find an acceptable compromise between budget expenditure
and execution speedup. Our workflow management system pro-
vides a new iterative mechanism and a new scheduling algorithm
to help users allocate appropriate resources and complete their
applications with less completion time and economic cost.

In what follows, we describe the Upgrade Fit algorithm, as
depicted in Algorithm 1. It consists of three steps:

Step 1. Identify the makespan for some applications.
Suppose there are N tasks, the execution time on type k

VM are tki , i ∈ 1 . . . N, k ∈ 1 . . .K. For the weather forecast
application, the makespan m is a fixed value because the image
data is collected over a specified period of time. However,
for other applications, the longest task dominates the execution
time of the current iteration, which ultimately leads to worse
performance/cost. Therefore, it is neccessary to identify and
minimize the makespan in Step 1.

If a group of random generated tasks in Figure 4(a) is assigned
to the VMs with best price/performance ratio by using First Fit
or Best Fit algorithm [16], as shown in Figure 4(b) and 4(c),
the scheduling time is short but the economic cost is bad. First
Fit and Best Fit are very straightforward greedy approximation
algorithms. For example, First Fit algorithm processes the tasks
in arbitrary order (Figure 4(b) and 4(c)) or in descending order

4

Algorithm 1 Schedule iterative workflows by upgrading VMs
and combining tasks (Upgrade Fit algorithm).

1: Input: Task ti, i ∈ 1..N in workflow G
Output: Task distribution and VM allocation

2: Schedule each task ti on a VM, and identify tmax

3: Step 1: identify the makespan m for this iteration, and for
some applications m is a constant

4: if m is not set then
5: while tmax changes to a new task do
6: for all vi in available VMs sorted by type do
7: compute marginal utility Uk+1 by applying Eq. 2
8: if Uk+1 ≤ 0 then
9: upgrade the VM for tmax to new type vi

10: end if
11: end for
12: end while
13: m = tmax

14: end if
15: while No more optimization can been done do
16: Step 2: Upgrade VMs by combining tasks (vertical opti-

mization)
17: mct = dpk+1/pke+ 1 // #Minimum Combined Tasks
18: while at least mct tasks can be combined do
19: if

∑x
1 t

k+1
i < m then

20: upgrade one VM from vk to vk+1 and remove other
mct− 1 VMs

21: combine these mct tasks
22: end if
23: end while
24: Step 3: Minimize #VMs by using Best Fit (horizontal

optimization)
25: while More tasks can be combined do
26: places a task in the fullest VM that still has room
27: end while
28: end while

(Figure 4(d) and 4(e)). For each task, it attempts to place the task
in the first bin that can accommodate the item. If no bin is found,
it opens a new bin and puts the item within the new bin.

We iteratively decrease the execution time of the longest task
by upgrading VM until the total cost for the whole iteration
cannot be reduced. Our approach calculates marginal utility by
the following equation:

Uk+1 = (N − 1) ·m′ · pk +m′ · pk+1 −N · pk ·m, (2)

where pk is the price of VM vk, vi+1 is the upgraded type of VM
vi, m is the execution time of the longest task before upgrading
the VM type vi to vi+1, m′ is the execution time of the longest
tasks after upgrading. In our case, marginal utility means the
additional benefit or cost that a consumer derives from buying
an upgraded unit of cloud service. U ≤ 0 means there is no cost
increment, and we can safely upgrade the VM for the longest
task continuously until U > 0.

Step 2. Vertical optimization: upgrade VMs and combine
tasks. After upgrading the VM types for the longest tasks, the
allocated resources become heterogeneous and the execution time

(a) Example input (81 tasks).

(b) First Fit algorithm (48 CPU).

(c) Best Fit algorithm (48 CPU).

(d) First Fit on descending order input(46 CPU).

(e) Best Fit on descending order input (46 CPU).

(f) Upgrade Fit on descending order input (2× 22 CPU).

Fig. 4. Scheduling example (X axis – CPUs (bins), Y axis – Execution time). A
simple example that illustrates the situation where Upgrade Fit outperforms other
algorithms. The bars in (f) are two times wider because these bars are execution
time on dual-core VMs, but the bars in other sub-figures are the execution time
on single-core VMs. In this simple case, we only have 2 types of VMs and can
upgrade once. In a real case, Upgrade Fit can upgrade VMs multiple times.

also varies from task to task. If the selected mct tasks are
combined and one VM that is used to run the mct tasks is
upgraded from vk to vk + 1, then other lower level (mct − 1)
VMs can be removed to decease the cost without increasing the
current makespan. The minimum number of combined task mct
is determined by the following equation:

mct = dpk+1/pke+ 1 (3)

In commercial clouds like Amazon EC2, the price of the upper
level resources is usually twice that for lower level resources,
as shown in Table I. Our proposed algorithm combines the mct
tasks, removes mct− 1 VMs with smaller type vk, and upgrades

5

(a) 4 types of workflows (X axis –
Tasks, Y axis – Execution time).

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

Type1 Type2 Type3 Type4

E
c
o
n
o
m

ic
 c

o
s
t
(Q

u
a
n
ta

)

Workflow types

Update Fit
First Fit
Best Fit

Worst Fit

(b) Schedule comparison of 4 types of workflows.

Fig. 5. Four different types of workflows illustrate that Upgrade Fit outperforms
other algorithms in most cases.

one VM from vk to vk+1. This step is repeated until there is no
VM upgrade for any mct tasks.

Step 3. Horizontal optimization: minimize the number of
VMs by using the Best Fit algorithm. As a sequel to the vertical
optimization in Step 2, most of the larger tasks are merged and
some VMs are upgraded to upper level. There are only some
smaller tasks left for further optimization. Hence, in this step
the algorithm simply uses the Best Fit algorithm to minimize
the number of VMs. Step 2 and Step 3 are repeated until there
is no optimization to be done. Figure 4(f) shows the scheduling
result of our Upgrade Fit algorithm, which improves the existing
algorithms in Figure 4(d) and 4(e) from 46 compute units to 44
compute units.

The time complexity of the Upgrade Fit algorithm is O(N ·
(logN)2) and the space complexity is O(N), where N is the
number of tasks. Other bin-packing algorithms such as Best
Fit and First Fit has the same space complexity, but their time
complexity is O(N · logN). The algorithm execution time for
different algorithm is shown in Figure 6. Although the algorithm
execution time of Upgrade Fit is longer than others, it is still
acceptable and practical compared with the execution time of all
workflow tasks.

For the completeness of the algorithm evaluation and the uni-
versality of the experimental results, we tested these algorithms
for four different types of workflow iterations that have different
completion time distributions for tasks, as shown in Figure 5(a).
For instance, the workflow type 4 is the most difficult one to
be scheduled, since most tasks of this type have long completion
time that is close to the makespan of the whole iteration. Upgrade
Fit can effectively schedule this type of workflow iteration by

 10

 100

 1000

 10000

 100000

500 1000 2000 4000 8000 16000

T
im

e
(m

s
)

Number of tasks

Upgrade Fit
First Fit
Best Fit

Worest Fit

Fig. 6. Algorithm execution time.

Name Virtual Memory Comp. HDD $/hour $/Unit
Cores (GB) Unit (GB) /hour

m1.micro 1 0.5 0.5 100 0.160 0.020
m1.mini 1 1 1 200 0.160 0.040

m1.medium 1 3.75 2 410 0.160 0.080
m1.large 2 7.5 4 850 0.320 0.080
m1.xlarge 4 15 8 1690 0.640 0.080
m2.xlarge 4 34.2 13 850 0.900 0.069
c1.xlarge 8 7 20 1690 0.660 0.033

cc1.4xlarge 8 23 33.5 1690 1.300 0.039
cc1.8xlarge 2× 8 60.5 88 3370 2.400 0.027

TABLE I
PRICING OF EXPERIMENTAL CLOUD.

upgrading VMs. In this case, Upgrade Fit achieve less cost than
other algorithms by at least 30%. In all other cases, Upgrade Fit
outperforms the other three algorithms in terms of economic cost
with fixed makespan.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

We conducted extensive experiments to examine the perfor-
mance of our proposed system in terms of processing time, eco-
nomic cost, and resource efficiency in clouds. The experimental
testbed is composed of heterogeneous resource in a private Cloud.
It includes m1.micro (0.5 compute unit), m1.mini (1 compute
unit), m1.medium (2 compute units), m1.large (4 compute units)
and some m1.xlarge VM instances with Linux CentOS 5.8, as
shown in Table I. One compute unit provides the equivalent CPU
capacity of a 1.5 GHz 2007 Opteron or 2007 Xeon processor.

The metrics we used to evaluate our system are makespan, cost,
and efficiency. We adopt the price policy of EC2 to calculate the
cost. For example, the price of a medium instance was twice
of a small instance, as shown in Table I. Makespan/completion
time is the duration to complete the workflow task, and cost is
the expense for running the tasks using computer resources. We
define efficiency as ratio of the speed to the cost of running the
application:

Efficiency =
1

Makespan · Cost
(4)

In Table II, we provide the runtime from an execution of a
weather forecast workflow on the cloud. We provide the total
sizes (i.e. the sum of the sizes of all files) of input and output
consumed and generated by each job. Note that the same input
data item may be consumed by multiple jobs.

6

Executed on Virtual Machine with 2 CPU at 2.4 Ghz processor

Job Meaning Count Runtime Inputs Outputs
Mean(m) Variance Mean(MB) Variance Mean(MB) Variance

WeatherDataCollection Data prepare 24 5.00 2.00 575.34 30.75 0.00 0.00
DataTransformation Data transformation 24 5.00 2.00 0.00 0.00 575.34 30.75

RadarCloud Data Analysis 720 33.07 39.64 575.34 30.75 0.00 0.00
ModelConstruction Model Construction 24 2.00 2.00 0.00 0.00 0.00 0.00
DirectModelOutput Model Output 24 2.00 2.00 0.00 0.00 1.80 1.98

TABLE II
WEATHER FORECAST WORKFLOW EXECUTION PROFILE.

 0

 10

 20

 30

 40

 50

 60

 70

 80

50 100 200 400 800 1200 2000

T
ra

in
in

g
 T

im
e
 (

s
e
c
o
n
d
s
)

Training Samples

SVM Reg
Linear Reg

RBF Network
Least Mean Square

Multilayer Perceptron
Gaussian Processes

(a) Training time.

 0

 5

 10

 15

 20

 25

 30

 35

50 100 200 400 800 1200 2000

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

(s
e
c
o
n
d
s
)

Training Samples

SVM Reg
Linear Reg

RBF Network
Least Mean Square

Multilayer Perceptron
Gaussian Processes

(b) Mean absolute error.

 0

 20

 40

 60

 80

 100

 120

 140

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9

T
1
0

T
1
1

T
1
2

T
1
3

T
1
4

T
1
5

T
1
6

T
1
7

T
1
8

T
1
9

T
2
0

T
2
1

T
2
2

T
2
3

T
2
4

T
2
5

T
2
6

T
2
7

T
2
8

T
2
9

T
3
0

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Tasks

Actual
Prediction

(c) Prediction Accuracy.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A
c
c
u
ra

c
y

Interation

Prediction with loop back
Prediction without loop back

(d) Prediction with and without loopback.

Fig. 7. Experiments on performance prediction.

B. Predictive Analysis

Predicting the execution time of workflow tasks always is a
big challenge. We compared some existing prediction methods
such as linear regression, RBF Network, Least mean square,
multilayer perceptron, and Gaussian processes. Support Vector
Machines (SVM) [4] is a supervised learning algorithm that
analyze data and recognize patterns used for regression analysis.
SVM performs well on data sets that have many attributes, even
if there are just a few samples on which to train the model.
More importantly, SVM has the advantage of learning to ignore
irrelevant factors and requires fewer parameters to be tuned
to achieve similar accuracy [8]. Figure 7(a) shows that SVM
is reasonably fast for practical size of iterative workflow. In
Figure 7(b), we can find that the mean absolute error of SVM is
the smallest compared with other predictive methods. Based on
above facts, we choose SVM as our prediction model to estimate
execution time of task.

We collected the weather forecast data from April to May 2011
to train the model and predict the rainfall distribution in June
2011. In order to evaluate the accuracy, we define the prediction

accuracy as

Accuracy =

(
1− |ta − tp|

ta

)
× 100%, (5)

where ta and tp are the actual completion time and predicted
completion time, respectively.

Figure 7(c) shows the predicted values of the completion time
of 30 tasks in the workflow and the actual completion time. We
obtained good prediction in this use case with average prediction
accuracy of 80.65%.

In order to further improve the prediction accuracy, we im-
plemented the SVM with loop back mechanism that uses the
new generated data to train the predictive model. Loop back is
one benefit of our iterative workflow structure, where in every
loop, it is possible to re-train our prediction model, adjust model
parameter, make it more dynamic to deal with exceptional data.
Figure 7(d) shows that the prediction with loop back is able to
improve the accuracy substantially compared to the prediction
without loop back. For example, from iteration 17 to 24, the
improvement is up to 50%. In the real working scenario, the

7

 0

 5000

 10000

 15000

 20000

 25000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
c
o
n
o
m

ic
 c

o
s
t
(Q

u
a
n
ta

)

Iteration

Upgrade Fit
First Fit
Best Fit

Worest Fit

Fig. 8. Economic cost of different algorithms.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
P

U
 t
im

e
 (

s
e
c
o
n
d
s
)

Iteration

Upgrade Fit
First Fit
Best Fit

Worest Fit

Fig. 9. CPU time of different algorithms.

prediction needs to be fast and efficient. We implemented our
SVM model using the Weka [17] library on a machine with
Intel Core Duo processor, 2.93GHz, and 2GB of RAM. The
training time takes quite small amount of time with 0.11, 0.11 and
0.14 seconds for 60*24, 120*24, 200*24 records, respectively.
It means the size of dataset will not affect the training time
significantly, which is important for us to re-train the predictive
model by adding new generated data iteratively.

C. Real Application

Figure 8, 9 and 10 compare the cost, CPU time and effi-
ciency of different algorithms under heterogeneous computing
environments, respectively. In all cases, the cost of Upgrade Fit
is better than others because it can effectively utilize multiple
types of resources. Other three algorithms simply schedule all
tasks onto the resources with the best price/performance ratio.
Intuitively, we intend to think that the resources with the best
price/performance ratio should be able to generate good results.
However, in Figure 8, we can see that our proposed Upgrade Fit
can reduce the economic cost by more than 50% for iteration 7, 8,
10, 11, 18, 19, and 20. Hence, we can safely say that scheduling
all tasks onto the resources with the best price/performance ratio
does not result in the minimum cost. The proposed iterative
workflow scheduling method, Upgrade Fit, also has less CPU
time and higher efficiency than Best Fit, First Fit and Worst
Fit. Upgrade Fit can adjust the resource allocation according to
various conditions, and it determines the suitable types as well
as the number of the VMs to run the tasks iteratively. However,
Best Fit, First Fit, and Worst Fit are not designed to schedule
iterative workflows to upgradeable resources.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
ff
ic

ie
n
c
y

Iteration

Upgrade Fit
First Fit
Best Fit

Worest Fit

Fig. 10. Efficiency of different algorithms.

V. RELATED WORK

Workflow System is concerned with the automation of pro-
cesses in which tasks are structured based on their control and
data dependency. There are some existing workflow systems,
such as DAGMan [14], GridFlow [3], Cloudbus [1], Triana [15],
ASKALON [9], Pegasus [7], etc. Most workflow management
systems support only DAG-based applications.

DAGMan [14] developed by the Condor project allows
scheduling of Grid workflow applications using opportunistic
techniques such as matchmaking based on resource offers, re-
source requests, and cycle stealing with no support for advanced
optimization heuristics. Our system proposed a new heuristics
with dynamical prediction and optimization at runtime.

The Grid Application Development Software (GrADS) project
[10] developed techniques for scheduling MPI, iterative, master-
slave, and workflow applications. Workflow scheduling is ap-
proached by adapting Max-Min, Min-Min, and Suffrage heuris-
tics originally developed for throughput scheduling of indepen-
dent tasks. We proposed in this paper an approach that proves
to be more effective for the class of workflows with iterative
activities.

The scheduler in Cloudbus [1] provides just-in-time mappings
using grid/cloud economy mechanisms. It makes scheduling
decisions on where to place jobs in grids or clouds depending
on the computational resources characteristics and users’ Quality
of Service (QoS) requirements. Our system supports multi-type
adaptive resource allocation.

Pegasus [7], [11] is a workflow manger developed by the
University of Southern California. Pegasus performs a mapping
from an abstract workflow to the set of available Grid resources,
and generates an executable workflow. Our system is integrated
with dynamic prediction mechanism that can collect and make
prediction at runtime with aggregated data.

Triana [15] provides a visual programming interface with func-
tionality represented by units. Triana clients such as Triana GUI
can log into a Triana Controlling Service (TCS), remotely build
and run a workflow and then visualize the result on their device.
Our system supports the public cloud services like Amazon EC2
and is extensible to other services.

ASKALON [9] is a cloud/grid application development and
computing environment developed by the University of Inns-
bruck, Austria. ASKALON provides a new hybrid approach for
scheduling workflow applications on the Grid through dynamic
monitoring and steering combined with a static optimization [5].

8

The performance estimation of the workflow is conducted based
on a combination of historical data obtained from a training
phase and analytical modeling [8]. The main difference between
ASKALON and our system is that they are using different
prediction model and algorithms.

Other related works such as by M. Rahman et al. [13] pro-
posed a workflow management system for deploying workflow
application on virtualized environments which is able to utilize
resources from public clouds. However, it does not try to optimize
the resource. Our proposed method leverages the flexibility of
cloud to reduce the VMs to lowest level and to maximize the
performance at the same time.

There are some works try to find technology to determine the
right amount of resources required for execution of workflow.
Eun-Kyu Byun et al. [2] introduced a Balanced Time Scheduling
method to estimate the minimum resources required to execute
a workflow within a user-specified finish time. From the users’
point of view, before they submit a workflow to a system, the
user is not always aware of the completion time, especially when
the workflow is executed for the first time. Our system provides
a solution to use less resources to finish a workflow at reasonable
time line.

Ashish Nagavaram et al. [6] present another dynamic resource
allocation mechanism by using the elasticity of cloud computing.
They monitor the entire workflow execution, and the system
automatically decides to add or release resources through calcu-
lating two parameters. However, they only consider homogeneous
resources. Our system can leverage heterogeneous resources to
adaptively execute a workflow.

Oprescu et al. [12] proposed an algorithm to minimize com-
pletion time while respecting an upper bound for the budget.
Their problem formulation is based on the classic Bounded
Knapsack Problem (BKP), and they solve the problem using
a classic dynamic programming. In contrast, our Upgrade Fit
algorithm minimizes the economic cost after minimizes the upper
bound for the completion time, i.e. our algorithm optimizes both
performance and economic cost. We assume a more realistic
economic model for resource utilization, and successfully utilize
the characteristic of this model to minimize cost by upgrading
resources.

All in all, our system has a more realistic cloud model and can
effectively schedule bags of tasks onto multi-type cloud resources
based on iteratively improved prediction.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the interesting and important new
problem of dynamically resource provisioning for compute- and
data-intensive workflows in clouds. The goal of this work is to
minimize the economic cost and makespan of periodic bursty
bags of tasks for data processing.

A new system and a solution algorithm are developed to
support dynamic cloud resource allocation and task assignment
in public clouds. Specifically, our model considers selection of
a proper mix of multi-type computing resources such that per-
formance and cost requirements for a given number of tasks are
satisfied. We proposed an iterative workflow scheduling method
that extends the existing capability of workflow management from

DAG to non-DAG processing so as to handle periodic bursty bags
of tasks in the workflow, which have become increasing important
in modern workflow management systems.

Experimental results indicate that our proposed algorithm is
effective and efficient in solving problems of a practical size.
In order to optimize the performance for such applications,
the workflow engine analyzes the record of each iterative run,
generates the predictive model of performance of each task, and
optimizes performance and economic cost accordingly. Hence,
the performance of iterative workflow applications can be contin-
uously improved by adjusting the resource allocation to minimize
the execution time and cost. In the future, we plan to investi-
gate the reliability issues in the iterative workflow management
systems and explore new fault tolerance methods which can
further improve the system by adapting the resource allocation
accordingly.

REFERENCES

[1] Rajkumar Buyya, Suraj Pandey, and Christian Vecchiola. Cloudbus toolkit
for market-oriented cloud computing. In CloudCom, 2009.

[2] Eun-Kyu Byun, Yang-Suk Kee, Jin-Soo Kim, and Seungryoul Maeng.
Cost optimized provisioning of elastic resources for application workflows.
Future Generation Comp. Syst., 27(8), 2011.

[3] Junwei Cao, Stephen A. Jarvis, Subhash Saini!, and Graham R. Nudd.
GridFlow: Workflow Management for Grid Computing. In Proceedings
of the 3rd International Symposium on Cluster Computing and the Grid
(CCGrid 2003)), Tokyo, Japan, May 2003. IEEE Computer Sociery Press.

[4] Corinna Cortes and Vladimir Vapnik. Support-vector networks. In Machine
Learning, pages 273–297, 1995.

[5] Rubing Duan, Radu Prodan, and Thomas Fahringer. Run-time optimization
for grid workflow applications. In 7th IEEE/ACM International Conference
on Grid Computing (GRID 2006), Barcelona, Spain, September 28th-29th
2006.

[6] Ashish Nagavaram et al. A cloud-based dynamic workflow for mass
spectrometry data analysis. In eScience, 2011.

[7] Ewa Deelman et. al. Mapping abstract complex workflows onto grid
environments. Journal of Grid Computing, LNCSD9, ISSN 1570-7873, 1:25–
39, 2003.

[8] Rubing Duan et al. A hybrid intelligent method for performance modeling
and prediction of workflow activities in grids. In IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing, 2009.

[9] Thomas. Fahringer. ASKALON - A Programming Environment and Tool
Set for Cluster and Grid Computing. http://dps.uibk.ac.at/askalon, Institute
for Computer Science, University of Innsbruck.

[10] Chuang Liu, Lingyun Yang, Ian Foster, and Dave Angulo. Design and
Evaluation of a Resource Selection Framework for Grid Applications. In
HPDC-11, the Symposium on High Performance Distributed Computing,
Scotland, 2002.

[11] Maciej Malawski, Gideon Juve, Ewa Deelman, and Jarek Nabrzyski. Cost-
and deadline-constrained provisioning for scientific workflow ensembles
in iaas clouds. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’12, 2012.

[12] Ana-Maria Oprescu and Thilo Kielmann. Bag-of-tasks scheduling under
budget constraints. In Proceedings of the 2010 IEEE Second International
Conference on Cloud Computing Technology and Science, CLOUDCOM
’10, 2010.

[13] Mustafizur Rahman, Xiaorong Li, and Henry Novianus Palit. Hybrid
heuristic for scheduling data analytics workflow applications in hybrid cloud
environment. In IPDPS Workshops, 2011.

[14] The Condor Team. Dagman (directed acyclic graph manager).
http://www.cs.wisc.edu/condor/dagman/.

[15] The triana project. http://www.trianacode.org/about.
[16] V.V. Vazirani. Approximation Algorithms. Springer, 2004.
[17] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning

Tools and Techniques (Second Edition). Morgan Kaufmann, 2005.

