
Received: 10 November 2016 Revised: 30 January 2017 Accepted: 4 February 2017

R E S E A R C H A R T I C L E

Mitigating impact of short-term overload on multi-cloud web
applications through geographical load balancing

Chenhao Qu1 Rodrigo Neves Calheiros2 Rajkumar Buyya1

1Cloud Computing and Distributed Systems

(CLOUDS) Laboratory, School of Computing

and Information Systems, The University of

Melbourne, VIC, 3010, Australia
2School of Computing, Engineering and

Mathematics, Western Sydney University,

NSW, 2751, Australia

Correspondence

Chenhao Qu, Cloud Computing and

Distributed Systems (CLOUDS) Laboratory,

School of Computing and Information Systems,

The University of Melbourne, Australia.

Email: chenhao.qu@unimelb.edu.au

Summary

Managed by an auto-scaler in the clouds, applications may still be overloaded by sudden flash

crowds or resource failures as the auto-scaler takes time to make scaling decisions and provision

resources. With more cloud providers building geographically dispersed data centers, applica-

tions are commonly deployed in multiple data centers to better serve customers worldwide. In

this case, instead of sufficiently over-provisioning each data center to prepare for occasional over-

loads, it is more cost-efficient to over-provision each data center a small amount of capacity and

to balance the extra load among them when resources in any data center are suddenly saturated.

In this paper, we present a decentralized system that timely detects short-term overload situa-

tions and autonomously handles them using geographical load balancing and admission control

to minimize the resulted performance degradation. Our approach also includes a new algorithm

that optimally distributes the excessive load to remote data centers causing minimum increase

of overall response times. We developed a prototype and evaluated it on Amazon Web Services.

The results show that our approach is able to maintain acceptable quality of service while greatly

increase the number of requests served during overloading periods.

KEYWORDS

auto-scaling, geographical load balancing, multi-cloud, request forwarding, resource overload,

web application

1 INTRODUCTION

Cloud computing continues to gain rapid adoption for hosting web

applications. One of its appealing features is its elasticity, which allows

application providers to dynamically expand or shrink the amount of

resources provisioned to their applications using auto-scaling. How-

ever, detecting workload changes and provisioning enough resources

in the cloud still demand considerable time. Mao and Humphrey1 con-

ducted an experimental study on the Virtual Machine (VM) startup

time of various types of instances in Amazon AWS, Microsoft Azure,

and Rackspace. They found that the booting time ranges from about

50 seconds to more than 900 seconds depending on the sizes, cost

models, and operating systems. This delay in resource provisioning will

result in performance degradation and even unavailability of service

during this period.

In web applications, it is common to observe rapid surges in requests

once in a while. This situation is called flash crowd, and it can occur any

moment with little or no warning. The cloud auto-scaler, in these cases,

cannot timely provision enough resources to deal with these situa-

tions. In addition, sudden failures of either software or virtual machines

can also lead to application overload. Application providers now

deploy web applications on low cost but unreliable cloud resources,

such as spot instances,2,3 which makes the applications more prone

to resource failures. Therefore, solely relying on auto-scaling is not

enough to ensure high performance all the time and certain level of

over-provisioning is necessary for production environments in prepa-

ration for these events.

Cloud providers have established their data centers all over the

world, which enables their customers to deploy their applications in

multiple geographically dispersed regions to better serve the world-

wide population. As multi-cloud deployment is becoming increasingly

popular, we argue that in this type of deployment, when failures hap-

pen, or a flash crowd arrives at a data center, it is better to use the

unused capacities already provisioned in other data centers* to pro-

cess as many exceeding requests as possible through geographical load

*Because load is balanced among all the servers provisioned in a data center, the unused capac-
ities come from the spare processing capabilities in each server instead of from completely idle
servers that are standing by.

Concurrency Computat: Pract Exper. 2017;29:e4126. wileyonlinelibrary.com/journal/cpe Copyright © 2017 John Wiley & Sons, Ltd. 1 of 15
https://doi.org/10.1002/cpe.4126

DOI: 10.1002/cpe.4126

https://doi.org/10.1002/cpe.4126
http://orcid.org/0000-0001-8693-213X
http://orcid.org/0000-0001-9754-6496

2 of 15 QU ET AL.

balancing, instead of processing all the requests locally and degrading

the performance of all the clients served by the regional data center, or

rejecting the exceeding requests directly. This approach is viable as fail-

ures are unlikely to happen simultaneously in multiple data centers and

flash crowds also seldom take place on a global scale at the same time

due to culture and time differences.

A common approach to implement geographical load balancing is

through Domain Name System (DNS) resolution. However, it takes time

to populate the DNS settings across layered DNS servers, which makes

it impossible to react to overload situations timely. Furthermore, it is

also difficult to accurately control the load directed to each data cen-

ter using this technique. Another popular way is to use a centralized

load balancer to distribute load among data centers. Though it allows

fine-grained control over traffic, it introduces extra latencies to all the

requests, which reduces the benefit of deploying the application in

multiple clouds.

In this paper, we present a system that supplements and enhances

state-of-the-art auto-scalers for applications deployed across mul-

tiple data centers. It follows the monitor-analyse-plan-execute loop

architecture commonly adopted by other cloud-based systems.4–6 It

aims to quickly detect and adapt to short-term overloads caused by

resource failures and flash crowds in each data center through geo-

graphical load balancing and admission control before the auto-scaler

finishes provisioning new resources. Different from previous geo-

graphical load balancing solutions, our system relies on decentralized

agents deployed in each data center to implement fast and accu-

rate geographical load balancing. During the overload situations, the

agent deployed in the overloaded data center temporarily forwards

certain amount of excessive requests to other data centers to keep

the predefined service level agreement (SLA) satisfied. Within our

approach lies our proposed overload handling algorithm that optimally

distributes excessive load among data centers have available capac-

ities causing minimum overall increase of latencies. In this way, our

approach only incurs little performance overhead to the forwarded

requests and requests served by the receiving data centers during

the short overloading periods and thus, preserves the benefit of a

multi-cloud deployment. We implemented a prototype and evaluated it

on Amazon Web Services, who offer Infrastructure as a Service (IaaS)

infrastructure in multiple geographically dispersed regions. Results

show that our approach can timely detect short-term overload events

and effectively improve the application performance during resource

contention periods.

The main contributions of the paper are:

• a system that supplements and enhances state-of-the-art

auto-scalers in handling short-term overload situations for

multi-cloud applications;

• a decentralized load balancing framework across multiple clouds

that detects and handles short-term overload events;

• an optimal load distribution algorithm and admission control mech-

anism that quickly adapts to the overload situations; and

• a prototype implementation of the proposed system evaluated in

Amazon’s IaaS infrastructure across US, Europe, and Asia.

The remainder of the paper is organized as follows. In Section 2,

we illustrate the use case scenarios of our system. We then describe

the multi-cloud deployment model and some assumptions in Section 3.

We explain our proposed system and its implementation in detail in

Section 4. Finally, we compare our approach with related works and

conclude the paper in Section 7.

2 USE CASE SCENARIOS

Our system aims to mitigate performance degradation caused by

short-term overloads that cannot be timely addressed by the cloud

auto-scalers. It is not designed to replace state-of-the-art auto-scalers;

instead, it is complementary to them and it should work cooperatively

with them.

2.1 Resource failures

Resource failures can happen at any time and the failed resources will

become inaccessible immediately, which leaves the auto-scaler no time

to provision new resources without causing performance degradation

during the provision time, if the amount of resource loss is beyond

the locally unused capacity. Such failures can frequently happen and

in large scale if the application is deployed on unreliable resources,

such as spot instances,2 which makes things worse. Spot instances are

resources sold by the cloud providers through an auction-like mecha-

nism. They are significantly cheaper than the corresponding on demand

instances, but they will be terminated by the provider when the market

price exceeds the user bid, thus, causing failures. Besides infrastructure

level, failures can also happen in software level, including the operating

system, the application server, and the application itself. Our system uti-

lizes periodic health checks to detect failures, which is agnostic to the

underlying failure types.

If any failure is detected, the local agent of our system and the

auto-scaler will intervene at the same time. During the failures, the

agent temporarily forwards some requests to other data centers and

enforces admission control if necessary to protect the application

from crashing and maintain acceptable performance; meanwhile, the

auto-scaler restarts the faulty resources or provisions new resources.

When the provision process completes, and there are enough local

resources, the agent then stops geographical load balancing and admis-

sion control.

2.2 Flash crowds

Flash crowds might arrive anytime at any data center. They are difficult

to be managed by the auto-scaler alone due to their unpredictability

and bursty nature. In the case of a flash crowd, widely used commer-

cial auto-scalers, such as Amazon Auto-scaling Service†, launch new

VMs only after the application has experienced high load for a consec-

utive period set by the user, instead of provisioning new resources right

after the detection of application overload. This mechanism is useful

to reduce resource wastage and prevent scaling oscillations,7 as when

the provision completes, the flash crowd might have already passed.

† http://aws.amazon.com/autoscaling/

QU ET AL. 3 of 15

FIGURE 1 A service-oriented social network application

Our system can be an ideal partner of these commercial auto-scalers

as it can help to reduce resource contentions not only during provision

times but during waiting times as well.

3 DEPLOYMENT MODEL AND APPLICATION
REQUIREMENTS

3.1 Deployment model

We assume the target application of our system, including each of

its composing services/components, is deployed in geographically dis-

persed data centers. Furthermore, the application instance deployed in

a data center should be able to communicate with the instances located

in other data centers though network for request forwarding purpose,

which will be explained afterward.

3.2 Application requirements

Our approach requires requests that can be processed by application

replicas deployed in other data centers, which involves 2 important

factors: session continuity and data locality.

Session continuity means that the end user should be able to seam-

lessly interact with the application without losing any internal state

even if different data centers process his requests. Stateless appli-

cations, such as public knowledge services like Wikipedia and search

engine, implicitly satisfy this requirement. For stateful applications,

there are ways to make them geographically stateless, such as push-

ing the states into client side, and session replication across sites‡.

Besides, applications can be divided into multiple stateful and state-

less services following the Service-oriented Architecture.8 Figure 1

‡ http://www.alachisoft.com/ncache/multi-site-dotnet-session-sharing.html

shows an example of a service-oriented social network application.

The application first loads the session data of the user and then

relays the corresponding data to the underlying stateless services

for further processing. The local data center should always serve the

requests for the stateful services. Thus, stateful services cannot be

managed by our approach. For these services, they should be suffi-

ciently over-provisioned in preparation for failures and flash crowds.

While the majority of the underlying stateless services, which consume

the most resources, are eligible to be administrated by our approach.

The second requirement is that persistent data should also be

replicated across multiple data centers either partially or entirely as

requests can be only forwarded to data centers that have the essen-

tial data available. Fortunately, data replication is commonly adopted by

multi-cloud applications nowadays,9,10 and thus, enhances applicability

of our approach in many scenarios.

4 THE PROPOSED APPROACH

4.1 Architecture

Our approach uses a decentralized architecture as shown in Figure 2.

The load balancing agent is co-located with the application/service

load balancer in the corresponding data center to realize fast detec-

tion of overload events and perform quick adaptations. They are fully

connected with each other through network to work cooperatively.

Each agent comprises the monitoring module, which constantly mon-

itors the incoming requests and the status of the available resources

to detect application overload; the communication module, which is in

charge of broadcasting its status to other agents and receiving other

agents’ statuses; and the control module that quickly adapts the appli-

cation/service to the detected overload events.

4 of 15 QU ET AL.

FIGURE 2 Proposed architecture with 3 data centers involved

4.2 Overload detection

Choosing the right performance indicator is critical for the detection

algorithm. There are several potential indicators we can use, such as

request rate (request arrival per second), session creation rate (newly

created sessions per second), and average response time. In some cases,

some indicators cannot truthfully reflect the actual load. For example,

the downstream service in a Service-oriented Architecture applica-

tion is usually called by its upstream service using a persistent session,

therefore, in this case, session creation rate is not suitable to serve

as the overload indicator. In our prototype implementation, we adopt

request rate as the indicator since it is more general purpose than other

indicators. In addition to the incoming load, the agent also needs to

monitor the availability of resources. This can be carried out by periodic

health checks.

FIGURE 3 An example of the dynamically generated HAProxy
configuration

Another important task is to determine the monitoring frequency.

A small monitoring interval enables our approach to timely detect

the changes even in the spikiest workload. However, frequent moni-

toring not only consumes a lot of physical resources, but also causes

more false positives. Such behavior can be observed in our experi-

ments results shown in Figures 10 and 13 with a small amount of

requests being rejected by the admission control approach in the

one server down and 245 reqs/s flash crowd settings. Because by

using our approach, false positives only result in some of the requests

being unnecessarily forwarded to other data centers, instead of being

rejected, we choose to favor sensitivity over accuracy and use a high

monitoring rate of every 2 seconds.

With the indicator chosen, we developed a detection mechanism.

In the first stage, we profile the machine to determine averagely how

many requests per second (c) it can safely handle under the predefined

SLA, such as 90% of requests should be served within 1 second. Sup-

pose the requests arrival is a Poisson process and the data center has

n machines available for serving requests, the datacenter is considered

overloaded when the incoming workload 𝜆 is larger than n ∗ c +
√

n ∗ c

or between n ∗ c and n ∗ c +
√

n ∗ c for consecutively a few monitoring

intervals. The rationality under this approach is that the probability of

the result of a Poisson process deviates beyond its standard deviation√
λ is relatively small, and overload situations often cause much higher

load. In this way, we can reduce the amount of false positives caused

by highly fluctuant workloads. Note that our framework can use other

detection algorithms as well, such as the one proposed by Kamra et al.11

4.3 Overload handling algorithm

When overload is detected, the system needs to distribute as many

excessive requests as possible to other data centers that have available

capacities. Though the response times of the requests that are initially

QU ET AL. 5 of 15

FIGURE 4 The architecture of the benchmark application

served by the receiving data centers will be negatively affected by the

forwarded requests, the SLAs of the receiving data centers can still be

ensured as the amount of requests forwarded by our approach should

never exceed the remaining capacities available. Our software frame-

work is modularized and can use various request distribution algo-

rithms, such as random and greedy algorithms. To get optimal overall

performance, we propose a new distribution algorithm that minimizes

the increase of latencies caused by request forwarding. We define the

observed latency increase as follows:

I(X) =
n∑

i=0

Rwf
i
(xi) −

n∑
i=0

Rbf
i
+

n∑
i=0

F(xi), (1)

where xi is the average amount of requests per second forwarded to

the ith data center, Rwf
i
(xi) is the latencies observed by all the users

originally served by the ith data center with extra xi requests per sec-

ond forwarded to it, Rbf
i

is the total latencies experienced by all the

users originally served by the ith data center without extra requests

forwarded to it, and F(xi) is the total latencies felt by the users whose

requests are forwarded to the ith data center. Since Rbf
i

is constant, the

latency increase minimization problem is equivalent to

minimize
x

n∑
i=0

Rwf
i
(xi) +

n∑
i=0

F(xi)

subject to
∑

xi = N

0 ⩽ xi < Si,

(2)

where N is the average amount of excessive requests per second needs

to be distributed, and Si is the maximum average amount of extra

load per second the ith data center can handle without violating the

local SLA.

We model each remote data center as a M/M/1 - processing sharing

queue. According to Little Law, the average response time of the ith data

center can be represented as:

ri =
1

μi − λi
, (3)

where 𝜇i is the service rates of the ith data center, and 𝜆i is the average

incoming load to the ith data center. Based on Equation (3), Rwf
i
(xi) and

F(xi) can be respectively modeled as

Rwf
i
(xi) =

λi

μi − λi − xi
, (4)

F(xi) = Lixi +
xi

μi − λi − xi
, (5)

where Li is the Round-trip Time (RTT) latency between the ith data

center and the data center sending the forwarding requests. The opti-

mization function then can be formatted as

minimize
x

n∑
i=0

(
μi

μi − λi − xi
+ Lixi − 1

)
. (6)

By removing the constant -1, the optimization problem is transformed

to

minimize
x

n∑
i=0

(
μi

μi − λi − xi
+ Lixi

)

subject to
∑

xi = N

0 ⩽ xi < Si.

(7)

Since Si is smaller than 𝜇i − xi, the optimization function is strictly

convex in the feasible space. Besides, the constraints are also convex.

Therefore, the optimization problem is strictly convex and can be effi-

ciently and optimally solved using existing convex solvers. According

to our experiment results and analysis presented in section 5.8, this

problem can be solved quickly enough within milliseconds scale to sup-

port instant online decisions. Besides, as long as N <
∑n

i Si, the feasible

set is nonempty, and thus, the problem has a unique global optimal

solution since it is strictly convex.

The overall flow of the overload handling algorithm is abstracted in

Algorithm 1. It first checks whether the aggregated available capac-

ities of remote data centers can cater all the excessive load (Line 1)

and rejects the exceeding requests (Line 2) accordingly. After that, it

solves the optimization problem defined in Equation (7) and distributes

excessive requests among remote data centers (Line 5 and Line 6).

Though rare in probability, simultaneous overloads in multiple data

centers can happen. In this case, if the remaining capacities in the rest

data centers still can cope all the excessive requests, our approach will

serve all the requests, as in the worst case, a request would only be for-

warded multiple times due to staled statuses of remote data centers

and finally be served by a data center with available capacity. Other-

wise, all the data centers will be saturated and our approach will apply

admission control to reject the excessive requests in the overloaded

data centers.

6 of 15 QU ET AL.

We treat the network latencies as constants in the optimization

problem. However, they often vary dynamically during runtime. There-

fore, they need to be dynamically monitored and updated. Sometimes,

some data centers can even become disconnected from the network.

In this case, they are temporarily removed from the candidate set for

request forwarding during the downtime.

4.4 Communication protocol

Load balancing agents in each participating data center communi-

cate among themselves to update their real-time statuses, including

their service rate, current load, and available capacity for offloading.

In our prototype, this is implemented through a broadcasting proto-

col. It makes each agent broadcast its status when its service rate has

changed, its load has varied beyond a predefined percentage, or some

time has elapsed since the last broadcast. Compared to a strategy

that broadcasts only in a particular time interval, it not only confines

the data error but also makes the system more robust when over-

load events happen simultaneously in multiple data centers, though

such case is expected to be rare. Considering the situation that one

agent detects the local application is in an overload condition, accord-

ing to the protocol, it will immediately inform other agents that there

is no available unused capacity offered by it, instead of waiting until

the scheduled broadcasting time. This method prevents the agent in

another data center that happens to be overloaded as well to for-

ward requests to the overloaded data center, leading it to more severe

resource congestion or triggering cascading request forwarding, which

will incur unnecessary extra latencies.

It is inevitable that sometimes data are not updated timely and

causes requests being forwarded to an already saturated data cen-

ter. In this case, instead of directly rejecting excessive requests in the

receiving data center, a cascading request forwarding will be triggered,

if it believes there are extra capacities available in other data centers.

Because the data center does not distinguish whether a request is orig-

inally submitted to it or is forwarded to it by another data center, the

forwarded requests this time are formed by a mixture of requests sub-

mitted originally to it and requests that have been forwarded once.

However, because it is unlikely that more than one data center fall into

overloaded situations nearly at the same time, such scenarios will cause

limited impact.

4.5 Prototype implementation and deployment

Since target of the proposed approach is to detect and handle appli-

cation overload as soon as possible, it is preferable to develop it

as a part of the load balancer so that it can react instantaneously

after the detection of the overload events. However, state-of-the-art

load balancers, such as HAProxy 1.6§, do not support to program

such complex configuration. Therefore, we implemented the agent

as a separate program. Fortunately, as some of the load balancers

already have built-in monitoring and health check tools, we still

can use them to ease the implementation and deployment of our

approach.

The implementation follows the architecture shown in Figure 2. In

the implementation, we use HAProxy 1.6 as the load balancer and rely

on it to monitor the performance indicators and check the machines’

health. The agent is written as a separate Java application. Its moni-

toring module periodically fetches the monitored information through

HAProxy’s stats console in Comma Separated Values format. Then it

extracts the required performance indicators and health statuses of

the attached servers and passes them to the overload detector. The

overload detector then uses the overload detection algorithm to judge

whether the system is overloaded. In the case that application overload

is detected, the control module configures the load balancer to adapt to

the load based on the proposed overload handling algorithm. The Java

agent program should be collocated with the HAProxy load balancer to

minimize network latency.

Both request forwarding and admission control are implemented by

dynamically changing the configuration of the HAProxy load balancer.

In detail, the control module dynamically generates a new configura-

tion file for the HAProxy when it is necessary to perform changes during

runtime. The configuration change is performed through a script, which

automatically reloads the new configuration to the running HAProxy

process.

The request forwarding mechanism is implemented by dynamically

adding the IP addresses of the load balancers located in the remote

data centers to the local load balancer’s configuration file as normal

servers. The number of forwarded requests is dynamically adjusted by

assigning relative weights to the servers and remote data centers using

the weighted round robin algorithm supported by HAProxy. The rela-

tive weights are obtained through solving the load distribution problem

defined in Equation (7) using the primal-dual interior-point method

built in the JOptimizer¶ solver.

We take advantage of the Access Control List (ACL) mechanism in

HAProxy to implement admission control. It is traditionally used to

define the white list and black list of IP addresses to prevent abusing.

Our agent uses it in a different manner. We define an ACL as a Bernoulli

trial instead of a fixed list. In this way, the coming request will be served

if the random test result is successful; otherwise, it will be rejected

by the load balancer. Note that in a production environment, instead

of directly rejecting requests; a better approach is to allow the load

balancer to reply a customized error page or a default page, which is

already supported by HAProxy.

§ http://www.haproxy.org/
¶ http://www.joptimizer.com/

QU ET AL. 7 of 15

FIGURE 5 The experimental testbed

Figure 3 shows an example of the dynamically generated HAProxy

configuration by our system. In line 31, it defines an ACL called moni-

toring, which is used to prevent monitoring requests issued by the Java

agent co-located in the same machine to be rejected by the admission

control mechanism. Lines 32 and 33 specify the admission control con-

figuration in which the load balancer will randomly drop 33 out of 250

incoming requests. The servers starts with “local” locate in the current

data center. They are health checked every 2000 ms as shown in the

configuration, and the load balancer talks to these servers through their

internal IPs. The last 2 lines specify the request forwarding settings

to the remote data centers located in Ireland and Tokyo. They receive

forwarded requests through the public IPs of their load balancers.

The communication module and its protocol are implemented by

Java socket over persistent Transmission Control Protocol connections.

Each Java agent constantly maintains a connection to all the other

known agents and continually listens to the updates sent by them.

5 PERFORMANCE EVALUATION

We evaluated our prototype implementation on Amazon Web Ser-

vices IaaS infrastructure located in North Virginia, Ireland, and Tokyo.

We first introduce the benchmark application and the experimental

testbed. After that, we describe the workloads we used for experi-

ments. Finally, we explain each experiment and present the results.

5.1 Benchmark application

We used the Wikibench benchmark tool12 as the testing application.

The benchmark tool consists of 3 components:

FIGURE 6 Cumulative distribution functions of the profiling tests
with different average workload rates

• A stateless web application server installed with the MediaWiki‖

application — an open source version of Wikipedia.

• A MySQL database loaded with the English Wikipedia pages by Jan-

uary 2008.

• A client driver that mimics the behavior of users by sending requests

to the MediaWiki server according to the given workload.

The reason we chose this benchmark is that it is stateless, which fits

our prerequisite. Because our focus is on the application tier, to allow

deploying a cluster of application servers, we put an HAProxy load bal-

ancer before the servers and changed the frontend configuration of the

MediaWiki application servers to the IP address of the load balancer.

‖https://www.mediawiki.org

8 of 15 QU ET AL.

As stated before, the load balancing agent is deployed along with the

HAProxy load balancer on the same machine. Figure 4 demonstrates

the architecture of the benchmark application.

5.2 Experimental testbed

We set up the experimental testbed in 3 data centers owned by

Amazon Web Services: US-east1 North Virginia, EU-West1 Ireland, and

AP-Northeast1 Tokyo. Table 1 lists the RTT latencies between North

Virginia and the other 2 data centers tested using ping. In the experi-

ments, we needed to emulate resource failures and flash crowds in one

data center. We chose North Virginia data center as the data center that

experienced failures and flash crowds. Besides serving their loads, the

other 2 data centers accepted loads directed from North Virginia data

center when overload occurred to it.

The detailed experimental testbed is illustrated in Figure 5. In each

data center, we deployed one client driver using m4.xlarge instance,

and one HAProxy server along with the load balancing agent running

on an m4.large instance. We respectively launched 8 and 4 m3.medium

instances in Tokyo and Ireland acting as application servers. The

Virginia data center, in the meantime, is equipped with 7 application

instances. Besides, to ensure that the data layer did not become the bot-

tleneck, we launched different numbers of database instances to cope

the load in each data center.

5.3 Workload

We used synthetic workloads generated according to real requests

submitted to English language edition of Wikipedia in September13 to

test our system. We first performed profiling tests to determine on

average how many requests one m3.medium application server can

handle without violating the SLA and its service rate. We defined the

TABLE 1 Latencies between data centers in milliseconds

Ireland Tokyo

N. Virginia 76.3 167.2

FIGURE 7 The workloads with flash crowds range from 117% to
183% of the normal load

SLA as 90% requests should be replied within 1 second. We assume the

workload arrival is a Poisson process and follows the exponential distri-

bution, which is indicated by the literature.14 This can be justified by the

fact that each request is submitted independently and occurrence of

each request does not affect the probability that a second request will

occur. Base on this assumption, we respectively created 3 workloads

with an average rate of 30, 35, and 40 requests/s.

Figure 6 depicts the cumulative distribution functions (CDF) of the

response times obtained from the profiling tests. It shows that 35

requests/s is the largest amount of workload an m3.medium instance

can handle without violating the SLA. Furthermore, we respectively cal-

culated the service rates of the 3 tests according to Equation 3. Then

we averaged them to obtain the estimated service rate for one instance,

which is 41 requests/s.

In the following experiments, we assigned 35 requests/s unused

capacities in Virginia and Ireland, and 70 requests/s unused capaci-

ties in Tokyo. According to the profiling results and the capacity set-

ting, we generated synthetic workloads for the following experiments.

We first generated the background workloads for the Ireland and

Tokyo data centers, respectively, with average incoming rates of 105

requests/s and 210 requests/s. To test performance of the approach

during resource failures in North Virginia data center, we generated a

workload with average request rate of 210 requests/s. For flash crowds

cases, we created 4 workloads with different levels of flash crowds as

shown in Figure 7. Each workload experiences a total 5 minutes of flash

crowd. The peaks of the flash crowd range from 117% to 183% of the

normal load. All the workloads last for 15 minutes and suffer either

server failures or flash crowds starting from the 300s time point for

300 seconds. We particularly chose the length of 300 seconds because

it is the default value of the waiting time for server booting in Amazon

Auto-scaling Service. In this way, we can emulate the situations that

a commercial auto-scaler solely manages the application and demon-

strate its resulted application performances during the overloading

periods.

5.4 Benchmarks

To test the performance of our prototype, we compare our approach

with the following 2 benchmarks:

• Request queueing: The first benchmark queues up all the requests in

the local servers and imposes no admission control when the appli-

cation is overloaded. It mimics the situation that the auto-scaler is

booting new servers while the requests are queued up in the local

servers.

• Admission control: The second benchmark directly imposes admis-

sion control when the application is overloaded. It emulates the

case that the auto-scaler asks the load balancer to reject excessive

requests while it is booting new servers.

To test the performance of the request forwarding algorithm, we

compare with the following greedy algorithm:

• Greedy: it always forwards possibly maximum amount of exces-

sive requests to the data center with largest available capacity one

by one.

QU ET AL. 9 of 15

FIGURE 8 Cumulative distribution functions of the North Virginia data center during the failing periods with different approaches

5.5 Performance under resource failures

In the first set of experiments, we performed tests using our approach

and the benchmarks in resource failure situations. In the experiments,

we purposely removed some machines from the load balancer at 300s

time point to create synthetic failures and then added them back to the

load balancer after 5 minutes to mimic recovery from failures.

We ran our approach with 2 configurations. In the first configu-

ration, we only used the unused capacity in the Ireland data center.

In the second configuration, we considered unused capacity in both Ire-

land and Tokyo data centers. Figure 8 shows the CDFs of our approach

and the 2 benchmark approaches respectively during the failing periods

under different numbers of server failures**.

** In the reported results, rejected requests are not counted in the CDF graphs.

Without proper overload handling mechanisms, the application in

the North Virginia data center suffered severe performance degrada-

tion when requests were queued up and it became completely unre-

sponsive in the case of 5 server failures. If we added simple admission

control mechanism, the application performance was able to be main-

tained within acceptable level at the cost of rejecting plenty incoming

requests. As shown in Figure 8, we can observe 1 and 2 shoulders

in the CDFs of the 2 settings. This phenomenon was caused by

the increased network latencies incurred by the request forwarding

mechanism. In our experiments, though request forwarding increased

the latencies of some requests, it did not result in the SLAs being

violated. Comparing to the queuing delays when no overload han-

dling mechanism is in place, the additional network latencies incurred

by request forwarding are still acceptable as long as the latencies

between data centers are moderate. Our overload handling algorithm

10 of 15 QU ET AL.

FIGURE 9 Cumulative distribution functions of the data centers receiving forwarded requests during the failing periods

is encouraged to forward requests to data centers that are close to

the originating data center as it aims to minimize the overall latency

increase.

In addition to the failing data center, we also evaluated the per-

formances of data centers that received the forwarded requests.

Figure 9 presents the CDFs of the data centers receiving the forwarded

requests when failures were happening in the North Virginia data cen-

ter. In all cases, the SLA was strictly honored because of the constraints

on amount of forwarded requests the remote data centers can serve in

the optimization problem.

Furthermore, comparing to just using admission control, our

approach was able to increase the number of served requests. Figure 10

lists the proportions of the admitted requests during the failing periods

in the corresponding experiments. It shows that the power of request

forwarding depends on the amount of unused capacity available

in other data centers. As shown in Figure 10, the configuration utiliz-

ing capacity of both Ireland and Tokyo data centers can serve more

requests than the configuration that just used capacity in the Ireland

data center. When applying admission control only, a small portion

of requests was rejected when one server was down even though

the local capacity should be able to handle it, which was caused by

false alarms generated by the overloading detector. While using our

approach, these requests were still served by remote data centers.

5.6 Performance under flash crowds

We tested our system under flash crowd situations using the workloads

depicted in Figure 7. We used the same settings of section 5.5. The

resulted CDFs for the baselines and our approach for North Virginia

data center that was under flash crowds are delineated in Figure 11.

QU ET AL. 11 of 15

FIGURE 10 Percentage of admitted requests during the failing periods

The corresponding CDFs for the receiving data centers are presented

in Figure 12. The percentages of admitted requests during the flash

crowd periods are compared in Figure 13.

The experiments show similar results as the experiments in resource

failure situations. Nevertheless, the impact of short-term overload on

the application performance in the flash crowd experiments is not as

severe because the extra load can be directed to more servers. For the

same reason, more percentages of requests are served by the applica-

tion.

5.7 Performance of the request forwarding

algorithm

We used the same testing platform to evaluate our request forward-

ing algorithm (specified as Min Latency Increase in the results), except

we used a workload with 70 requests/s for the North Virginia data cen-

ter and considered all those requests were excessive requests need to

be forwarded. In this way, we can eliminate the impact of the requests

served by the North Virginia data center, which is not in our optimiza-

tion target, to the results.

Figure 14 shows the results of our algorithm compared to the Greedy

algorithm for the aggregated requests of the forwarded requests

and the requests originally served by the remote data centers. Our

algorithm is able to outperform the Greedy algorithm in our experimen-

tal setting, because the Greedy approach overlooks the longer network

distance traveled by the forwarded requests.

5.8 Algorithm scalability

Our system requires efficient solution for the workload distribution

problem during runtime. In this experiment, we illustrate that this

problem can be tackled very fast by a convex solver even when a large

number of data centers are involved.

Since the input to the problem consists of the statuses of the data

centers, the latencies to the data centers, and the amount of the exces-

sive load, the algorithm complexity is dominated by the number of

involved data centers. We randomly generated 100 problems with spe-

cific numbers of data centers ranging from 10 to 50 and measured their

running time on a desktop equipped with 8 core CPUs and 16 GB of

RAM. Results are presented in Figure 15. Even in the worst case with

50 data centers, the runtime was below 35 ms, which is acceptable for

making real-time decisions. In reality, the deployment usually involves

less than a handful data centers, and the algorithm imposes negligible

overhead in these cases.

6 RELATED WORK

6.1 Overload management

There have been plenty of work that aims to tackle overloads caused

by failures and flash crowds using cloud resources. However, all of them

differ from our work in their target or approaches.

The approach that is commonly adopted by the industry and is inten-

sively researched is auto-scaling.7 It relies on dynamically provision

new resources to meet the resource scarcity. Some of the auto-scaling

works have been focusing on how to predict the future workloads

and provision enough resources in advance.15–22 Other approaches

provision resources reactively either after detecting the overload

events23,24 or the usage has reached certain threshold.2

As stated before, resource failures and some flash crowds are

often unpredictable, and it takes the auto-scaler considerable time1

to provision new resources. Therefore, an auto-scaler alone can-

not adequately deal with these situations. Our work can fill in this

gap for multi-cloud applications by supplementing and enhancing

state-of-the-art auto-scaling solutions.

In the previous work, we proposed an auto-scaler using unreli-

able spot instances for web applications.2 It relies on sufficiently

over-provision the application to counter the terminations of spot

instances. Our new system can be an ideal partner for it. By working

cooperatively with the proposed system, the spot-based auto-scaler

12 of 15 QU ET AL.

FIGURE 11 Cumulative distribution functions of the North Virginia data center during the flash crowds with different approaches

can either reduce the amount of over-provisioned resources to reach

the same level of protection or elevate the reliability of the application

using the same amount of over-provisioned resources.

Cloud burst is a term often used in hybrid cloud settings referring

to dynamically provisioning resources in cloud either to accelerate exe-

cution or to handle flash crowds when the local facility is saturated.

Many systems have been proposed to realize this vision.25–28 In a sense,

they are similar to our work as they also forward requests to remote

data centers. Except that, they are more close to the auto-scaling

approaches as their major focus is on how to provision and deprovision

resources in clouds to meet the workload demand while our system

aims to manage short-term workload distribution.

Another possible method to reduce the impact of overload is to

enforce admission control. Chen et al.29 proposed a flash crowd detec-

tion and mitigation system based on application-level measurements

and admission control. In addition to protecting the application server

from crashing, their target also covers protecting the network from

being congested. However, in clouds, since the provider offers strong

data center network and high incoming and outgoing bandwidth,

this is not a concern. Different to their system, our approach uses

both request forwarding and admission control as the last line of

defense to protect the application from performance degradation

and crashing.

Chandra and Shenoy30 researched using dynamic resource alloca-

tion among different applications in a data center to cope with flash

crowds. Different to them, our work addresses the overload manage-

ment problem from an application provider’s perspective instead of

from an infrastructure provider’s angle. Regarding applications that are

composed of multiple components, Gandhi et al31 and Klein et al32

explored borrowing resources from components that have available

QU ET AL. 13 of 15

FIGURE 12 Cumulative distribution functions of the data centers receiving forwarded requests during the flash crowds

capacity or can be terminated temporarily to support the core services

under flash crowds.

6.2 Geographical load balancing

Geographical load balancing has been introduced to tackle different

challenges. Commercial DNS Load Balancer, such as Amazon Route

53†† enables application providers to direct their customers to differ-

ent data centers according to their location and other factors, such as

energy consumption and carbon footprint.33 However, such technique

is not suitable to our needs as it takes time to populate the DNS settings

across layered DNS servers and it is impossible to realize fine-grained

control over the traffic flow.

††https://aws.amazon.com/route53/

Centralized geographical load balancing solutions gather all the user

requests and then distribute them among data centers. They are largely

developed for saving energy and carbon footprint.34,35 This architec-

ture is also not applicable to reach our goal as it incurs extra network

latency to every request and reduces the benefit of using a multi-cloud

deployment.

Grozev and Buyya36 proposed an approach that dispatches users

to the underlying data centers at the entry point of the application

framework according to the regulation requirements and the available

resources in each data center. As the client only talks to the entry point

at the start of the session, its impact on user experience is minimized

compared to the centralized solutions. On the other side, this approach

limits its capability to control the load on each data center accurately.

Our solution is different to the methods as mentioned earlier.

We adopt a decentralized architecture composed of individual load

14 of 15 QU ET AL.

FIGURE 13 Percentage of admitted requests during the flash crowd periods

FIGURE 14 The performance of algorithms on the aggregated
requests

FIGURE 15 Measured running time for solving the workload
distribution problem

balancing agents deployed in each participating data center to balance

the extra load. The agent is only activated temporarily when overload

occurs; hence, requests under normal situations can always be served

by the closest data centers, and no extra network latency is introduced.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a system that supplements and enhances

state-of-the-art auto-scalers for applications deployed in multiple

clouds. It is capable of quickly react to short-term overloads occurred

to any participating data center by temporarily forwarding the exces-

sive requests to data centers with available capacities according to

our proposed optimal workload distribution algorithm, and enforcing

admission control as the last line of defense. The system adopts a

decentralized architecture that deploys a load balancing agent within

each data center. The agent monitors the local application, detects

overload events, and quickly adapts to them according to real-time

resource availability in other data centers to minimize their impact

on the application performance. We implemented a prototype of the

system and evaluated it across AWS’s US, Europe, and Asia data cen-

ters. The obtained results show that our approach can quickly detect

overload situations caused by either resource failures or flash crowds

and is effective in improving application performance during resource

contention periods.

In the future, we plan to develop more accurate overload detectors

and apply it to our approach. We will also explore how to directly return

forwarded requests to users to reduce the latency cost of request for-

warding. The last but not least, it is important to have a global capacity

plan deciding how much resources should be over-provisioned in each

data center at runtime when using our approach to minimize the overall

resource cost.

ACKNOWLEDGMENTS

We thank Adel Nadjaran Toosi, Xunyun Liu, Yaser Mansouri, and

Minxian Xu for their valuable comments and suggestions in improving

the quality of the paper. This work is partially supported by an ARC

Future Fellowship project.

QU ET AL. 15 of 15

REFERENCES

1. Mao M, Humphrey M. A performance study on the vm startup time in
the cloud. Proceedings of 2012 IEEE 5th International Conference on Cloud
Computing (CLOUD), Honolulu, Hawaii; June 2012:423–430.

2. A reliable and cost-efficient auto-scaling system for web applications
using heterogeneous spot instances. Journal of Network and Computer
Applications. 2016;65: 167–180.

3. Amazon. Amazon spot fleet api. https://aws.
amazon.com/blogs/aws/new-resource-oriented-bidding-for-ec2-spot
-instances/; 2016. Accessed February 2017.

4. Pandey S, Voorsluys W, Niu S, Khandoker A, Buyya R. An autonomic
cloud environment for hosting {ECG} data analysis services. Future
Generation Computer Systems. 2012;28(1): 147–154.

5. Montes J, Sánchez A, Pérez MS. Riding out the storm: how to deal with
the complexity of grid and cloud management. Journal of Grid Comput-
ing. 2012;10(3): 349–366.

6. Zeng J, Plale B. Multi-tenant fair share in nosql data stores. 2014
IEEE International Conference on Cluster Computing (CLUSTER), Madrid;
September 2014:176–184.

7. Lorido-Botran T, Miguel-Alonso J, Lozano J. A review of auto-scaling
techniques for elastic applications in cloud environments. Journal of
Grid Computing. 2014;12(4): 559–592.

8. Wilder B. Cloud Architecture Patterns: Using Microsoft Azure: Sebastopol,
California: O’Reilly Media, Inc; 2012.

9. DeCandia G, Hastorun D, Jampani M, et al. Dynamo: amazon’s highly
available key-value store. ACM SIGOPS Operating Systems Review
,Stevenson, Washington, USA, vol. 41. ACM; 2007:205–220.

10. Nishtala R, Fugal H, Grimm S, et al. Scaling memcache at facebook. Pro-
ceedings the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13) Lombard, IL, USA; 2013:385–398.

11. Kamra A, Misra V, Nahum EM. Yaksha: A self-tuning controller for man-
aging the performance of 3-tiered web sites. Proceedings of the Twelfth
IEEE International Workshop on Quality of Service (IWQoS), Montreal,
Canada; 2004:47–56.

12. van Baaren EJ. Wikibench: A distributed, wikipedia based web applica-
tion benchmark. Master’s thesis, VU University Amsterdam, 2009.

13. van Baaren EJ. Wikipedia access trace. http://www.wikibench.eu/?
page_id=60; 2015. Accessed February 2017.

14. Chlebus E, Brazier J. Nonstationary poisson modeling of web browsing
session arrivals. Inf Process Lett. 2007;102(5): 187–190.

15. Lassettre E, Coleman DW, Diao Y, et al. Dynamic Surge Protection: An
Approach to Handling Unexpected Workload Surges with Resource Actions
that have Lead Times. Berlin, Heidelberg: Springer Berlin Heidelberg;
2003;82–92.

16. Jiang J, Lu J, Zhang G, Long G. Optimal cloud resource auto-scaling
for web applications. Proceedings of 2013 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid) , Delft, Nether-
lands. IEEE; 2013:58–65.

17. Roy N, Dubey A, Gokhale A. Efficient autoscaling in the cloud using
predictive models for workload forecasting. Proceedings of 2011 IEEE
International Conference on Cloud Computing (CLOUD), Washington, DC,
USA. IEEE; 2011:500–507.

18. Jingqi Y, Chuanchang L, Yanlei S, Zexiang M, Junliang C. Workload
predicting-based automatic scaling in service clouds. Proceedings of
2013 IEEE Sixth International Conference on Cloud Computing (CLOUD),
Santa Clara, California; 2013:810–815.

19. Islam S, Keung J, Lee K, Liu A. Empirical prediction models for adap-
tive resource provisioning in the cloud. Future Gener Comput Syst.
2012;28(1): 155–162.

20. Wei F, ZhiHui L, Jie W, ZhenYin C. Rpps: A novel resource prediction
and provisioning scheme in cloud data center. Proceedings of 2012 IEEE
Ninth International Conference on Services Computing (SCC), Honolulu,
Hawaii, USA; 2012:609–616.

21. Herbst NR, Huber N, Kounev S, Amrehn E. Self-adaptive workload
classification and forecasting for proactive resource provisioning. Con-
currency Computat: Pract Exper. 2014;26(12): 2053–2078.

22. Dutta S, Gera S, Akshat V, Viswanathan B. Smartscale: Automatic appli-
cation scaling in enterprise clouds. Proceedings of 2012 IEEE 5th Interna-
tional Conference on Cloud Computing (CLOUD), Honolulu, Hawaii, USA;
2012:221–228.

23. de Paula Junior U, Drummond LMA, de Oliveira D, Frota Y, Barbosa
VC. Handling flash-crowd events to improve the performance of web
applications. Proceedings of the 30th Annual ACM Symposium on Applied
Computing. ACM, New York, NY, USA; 2015:769–774.

24. Gandhi A, Dube P, Karve A, Kochut A, Zhang L. Adaptive, model-driven
autoscaling for cloud applications. Proceedings of the 11th International
Conference on Autonomic Computing (ICAC 14). USENIX Association,
Philadelphia, PA; June 2014:57–64.

25. Björkqvist M, Chen LY, Binder W. Cost-driven service provisioning in
hybrid clouds. Proceedings of 2012 5th IEEE International Conference
on Service-Oriented Computing and Applications (SOCA), Taipei, Taiwan;
2012:1–8.

26. Javadi B, Abawajy J, Buyya R. Failure-aware resource provisioning
for hybrid cloud infrastructure. J Parallel Distrib Comput. 2012;72(10):
1318–1331.

27. Yipei N, Bin L, Fangming L, Jiangchuan L, Bo L. When hybrid cloud meets
flash crowd: Towards cost-effective service provisioning. Proceedings of
2015 IEEE Conference on Computer Communications (INFOCOM), Hong
Kong, China; 2015:1044–1052.

28. Zhang H, Jiang G, Yoshihira K, Chen H, Saxena A. Intelligent work-
load factoring for a hybrid cloud computing model. Proceedings of 2009
World Conference on Services ,Los Angeles, CA; 2009:701–708.

29. Chen X, Heidemann J. Flash crowd mitigation via adaptive admission
control based on application-level observations. ACM Transac Internet
Technol. 2005;5(3): 532–569.

30. Chandra A, Shenoy P. Effectiveness of dynamic resource allocation
for handling internet flash crowds. TR03-37, Department of Computer
Science, University of Massachusetts, USA; 2003.

31. Gandhi A, Zhu T, Harchol-Balter M, Kozuch MA. SOFTScale:
Stealing Opportunistically for Transient Scaling. Proceedings of
ACM/IFIP/USENIX 13th International Middleware Conference, Montreal,
QC, Canada, December 3-7, 2012. Springer Berlin Heidelberg, 2012,
142–163

32. Klein C et al. Brownout: Building more robust cloud applications. Pro-
ceedings of the 36th International Conference on Software Engineering,
ICSE 2014. ACM, New York, NY, USA; 2014:700–711.

33. Liu Z, Lin M, Wierman A, Low S, Andrew LLH. Greening geographical
load balancing. IEEE/ACM Trans Netw. 2015;23(2): 657–671.

34. Zhang Y, Wang Y, Wang X. Greenware: Greening cloud-scale data
centers to maximize the use of renewable energy. Proceedings of
ACM/IFIP/USENIX 12th International Middleware Conference, Lisbon,
Portugal. Springer; 2011:143–164.

35. Nadjaran Toosi A, Buyya R. A fuzzy logic-based controller for cost and
energy efficient load balancing in geo-distributed data centers. Pro-
ceedings of 8th IEEE/ACM International Conferencce on Utility and Cloud
Computing (UCC) , Limassol, Cyprus. IEEE; 2015: 186–194.

36. Grozev N, Buyya R. Multi-cloud provisioning and load distribution
for three-tier applications. ACM Trans Auton Adapt Syst. 2014;9(3):
13:1–13:21.

How to cite this article: Qu C, Calheiros RN, Buyya R.

Mitigating impact of short-term overload on multi-cloud

web applications through geographical load balanc-

ing. Concurrency Computat: Pract Exper. 2017;29:e4126.

https://doi.org/10.1002/cpe.4126

https://aws.
amazon.com/blogs/aws/new-resource-oriented-bidding-for-ec2-spot
-instances/
http://www.wikibench.eu/?page_id=60
http://www.wikibench.eu/?page_id=60
https://doi.org/10.1002/cpe.4126

	Mitigating impact of short-term overload on multi-cloud web applications through geographical load balancing
	Abstract
	Introduction
	Use Case Scenarios
	Resource failures
	Flash crowds

	Deployment Model and Application Requirements
	Deployment model
	Application requirements

	The Proposed Approach
	Architecture
	Overload detection
	Overload handling algorithm
	Communication protocol
	Prototype implementation and deployment

	Performance Evaluation
	Benchmark application
	Experimental testbed
	Workload
	Benchmarks
	Performance under resource failures
	Performance under flash crowds
	Performance of the request forwarding algorithm
	Algorithm scalability

	Related Work
	Overload management
	Geographical load balancing

	Conclusions and Future Work
	References

