300 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2021

Web Service Interaction Modeling and
Verification Using Recursive
Composition Algebra

Gopal N. Rai*”, G. R. Gangadharan

and Rajkumar Buyya

, Senior Member, IEEE, Vineet Padmanabhan,

, Fellow, IEEE

Abstract—The design principle of composability among Web services is one of the most crucial reasons for the success and popularity
of Web services. However, achieving error-free automatic Web service composition is still a challenge. In this paper, we propose a
recursive composition based modeling and verification technique for Web service interaction. The application of recursive composition
over a Web service with respect to a given set of Web services yields a recursive composition interaction graph (RCIG). In order to
capture the requirement specifications of a Web service interaction scenario, we propose recursive composition specification language
(RCSL) as a requirement specification language. Further, we employ the proposed RCIG as an interpretation model to interpret the
semantics of a RCSL formula. Our verification technique is based on the generation and analysis of all possible interaction patterns.
Performance evaluation results, provided in this paper, show that our proposition is implementable for the real world applications. The
key advantages of the proposed approach are: (i) it does not require explicit system modeling as in model checking based approaches,
(ii) it captures primitive characteristics of Web service interaction patterns, such as recursive composition, sequential and parallel flow,

etc, and (jii) it supports automatic composition of services.

Index Terms—Web service composition, web service interaction, recursive composition, interaction modeling, interaction verification

1 INTRODUCTION

EB services are distributed and independent software
modules which communicate with each other through
the exchange of messages based on the XML standards [1].
Web services are categorized into basic and composite [2].
A basic Web service is self-contained and independent
whereas a composite Web service is dependent on other Web
services and based on the requirements, forms composition
out of available services. In the context of Web services, two
types of composition are possible: linear composition and
recursive composition [1], [3]. In linear composition, the con-
stituent Web services are only basic Web services, whereas in
recursive composition, the constituent Web services could be
basic as well as composite. The notion of recursive composi-
tion requires special attention [4] in the verification process as
it is not easily tractable with classical modeling and verifica-
tion schemes such as model checking and Petri net.
Modeling and verification of Web service interaction is
a well-explored research area. Various solutions that are

e G.N. Rai is with Madanapalle Institute of Technology and Science,
Madanapalle, Andhra Pradesh 517325, India.
E-mail: gopalnrai@gmail.com.

e G.R. Gangadharan is with the IDRBT, Hyderabad, Telangana 500028,
India. E-mail: geeyaar@gmail.com.

e V. Padmanabhan is with the University of Hyderabad, Hyderabad, Telan-
gana 500046, India. E-mail: vineetcs@uohyd.ernet.in.

e R. Buyya is with the University of Melbourne, Melbourne, Parkville, VIC
3010, Australia. E-mail: rbuyya@unimelb.edu.au.

Manuscript received 1 Aug. 2017; revised 30 Nov. 2017; accepted 22 Dec.
2017. Date of publication 4 Jan. 2018; date of current version 3 Feb. 2021.
(Corresponding author: G.R. Gangadharan.)

Digital Object Identifier no. 10.1109/TSC.2018.2789454

proposed for modeling and verification of Web service
interactions can be classified as: aspect-based: modeling [5],
[6], [7], verification [8], [9], modeling and verification [10],
[11]; target-based: BPEL [12], [13], WSDL [11], [14]; and
approach-based: model-based [15], [16], Petri net based [7],
[17], process algebra based [18], artificial intelligence (AI)
planning based [6], [19], logic based [20]. Although the
existing solutions are promising, core techniques adopted
in the solutions do not capture all the required characteris-
tics of Web service interaction verification as they were
proposed natively for different scenarios and applications.
Key issues associated with Web service interaction model-
ing and verification, focused in this paper, are described
as follows: If we model a Web service interaction scenario
using a generic interaction model [21], [22], it may not be
suitable because a Web service cannot interact with all
other available Web services as invoking a service is condi-
tional (based on input and output messages compatibility
of caller and callee Web services). Further, unlike a generic
interaction model, in a Web service interaction model, a
participant may be dependent on other participants for its
replies. A message sequence chart (MSC) is one of the popu-
lar and classical generic interaction modeling techniques.
MSCs have also been used for the verification purpose
[16], [23], [24]. However, MSCs do not capture the primi-
tive characteristics of Web service interaction patterns
such as parallel and sequential interaction flows initiated
at a time by a service.

WS-BPEL defines a model for describing the behavior of
a business process based on interactions between the

1939-1374 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on February 06,2021 at 01:10:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0232-321X
https://orcid.org/0000-0003-0232-321X
https://orcid.org/0000-0003-0232-321X
https://orcid.org/0000-0003-0232-321X
https://orcid.org/0000-0003-0232-321X
https://orcid.org/0000-0002-0764-2650
https://orcid.org/0000-0002-0764-2650
https://orcid.org/0000-0002-0764-2650
https://orcid.org/0000-0002-0764-2650
https://orcid.org/0000-0002-0764-2650
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
mailto:
mailto:
mailto:
mailto:

RAIET AL.: WEB SERVICE INTERACTION MODELING AND VERIFICATION USING RECURSIVE COMPOSITION ALGEBRA 301

process and its partners [25]. In order to realize an auto-
matic and dynamic Web service composition, a feasible way
is to generate a composite service or a BPEL file automati-
cally and on the fly as per requirement. However, automatic
generation of BPEL is not feasible unless we have a tech-
nique for automatic knowledge extraction about Web serv-
ices. For a service, its WSDL document [26] is a source to
extract the knowledge about the service, but a WSDL file
does not provide underlying implementation details and
logic. Due to the lack of this knowledge, the complete and
comprehensive verification of Web service interaction is not
possible [27]. WSDL and BPEL documents consist of several
built-in features. If these built-in features are richer, the
accompanying coding or logic effort for the verification pro-
cess becomes less. If a verifier could know interaction pat-
terns in advance, it would be easy to find out the possible
undesired interaction patterns. In a composition hierarchy,
composite services may exist at several levels. In order to
support the full automation, no composite service should be
bound with the constituent services before run-time [2].

The Kripke model has been a prominent model to interpret
formulas written in temporal logics, thus comprises funda-
mental part of model checking [28]. In a model checking based
verification technique, a set of labelled transition rules gov-
erns the transitions from one world (Kripke node) to another.
However, in the context of Web services, the underlying phi-
losophy of a transition from one service to another is different
than the model checking. For instance, in the context of Web
service interaction, the communication messages are consid-
ered as propositions [10]. The truth value of a message infers
whether the message is communicated or not. Once truth
value for a message is set ‘true’, it cannot be altered to ‘false’
at a subsequent time instance. Moreover, model checking
does not support modeling subtleties regarding Web service
interaction such as automatic discovery of Web services [29].

In order to overcome the mentioned problems, in this
paper, we employ our previously proposed algebraic model
for Web services namely, the Recursive Composition Algebra
(RCA) [14] (with several modifications). This paper proposes a
complete framework for modeling and verification of the Web
service interaction and makes the following key contributions:

e A recursive composition based modeling technique
for the Web service interaction: This technique gen-
erates a recursive composition interaction graph (RCIG)
that works as an interpretation model. We studied
the feasibility for implementability of the RCIG and
found that it is completely implementable in the
real-time scenarios.

e A requirement specification language: We propose a
specification language namely, recursive composition
specification language (RCSL) that is expressive enough
to capture requirements of Web service interaction
scenarios and completely interpretable on the RCIG
model.

e A verification technique: We propose a verification
technique based on the possible trace phenomenon
and outline the fundamental differences with possible
world phenomenon. This verification technique employs
RCIG as its interpretation model and RCSL as its speci-
fication language.

We implemented our proposed framework of Web service
interaction modeling and verification using Java program-
ming language. Given a set of WSDL documents of candi-
date services, the framework accepts the following inputs:

e An input message (/,) or a service name (w;) or an
input-service tuple ((w;, I,))

e A specification formula (¢) written in RCSL
Provision of an input (I, or w; or (w;, I,,)) generates a RCIG
(say M) for interactive trace visualization and performance
analysis, whereas provision of a RCSL formula (say ¢)
triggers verification process (M [¢) along with trace visu-
alization. If model A does not satisfy ¢ (M ¥ ¢), counter
trace (T) is also generated. In the implementation, a RCIG is
generated automatically using GraphViz tool by invoking
the system level commands internally.

The rest of the paper is organized as follows. Section 2
presents our proposed algebraic modeling of Web service
interaction. Formation of recursive composition interaction
graph and its implementation are discussed in Section 3.
Verification approach based on possible trace phenomenon
is described in Section 4. Section 5 provides implementation
details and feasibility analysis of the RCIG. Section 7 investi-
gates the relevant works followed by the advantages and
limitations of our proposed approach with possible future
works in Section 8.

2 ALGEBRAIC MODELING OF WEB SERVICE
COMPOSITION

In this section, we present complete description of modified
RCA with its algebraic properties and computability analy-
sis. In comparison to the previous version of RCA [14], cur-
rent version consists of two key modifications: (1) A single
composition operation instead of previously defined two
composition operations and (2) Introduction of a term
service-input tuple and based on it, we redefine the operators:
conditional successor, restrictive successor, and recursive
composition.

Let W = {wy, wa, w3, ..., wy, €} be a finite set of available
Web services, where € represents an empty Web service. An
empty Web service does not invoke any service or perform
any activity. On the basis of our proposition, we define a
Web service w; € W as follows:

Definition 2.1 (Basic Web service). A Web service w; € W is
a 3-tuple (I, R, Rl), where I = {I,,... I,}, p € Nisa finite set
of input messages, that w; accepts. R = {Ry,..., Ry}, ¢ € Nis
a finite set of response messages, that w; produces. Rl is a service
logic that maps an input message from I to the output messages
in R(RIC I x R). w;.I, w;.R, and w;.RI are referred as the set
of input messages, the set of response messages, and the relation
from w;.I to w;.R in w;.

For a Web service, the set of input messages, the set of
output messages, and relation from input message set to
output message set are static and available in the respective
WSDL document. We define a composite service as follows:

Definition 2.2 (Composite Web service). A composite Web
service w; € W is a 3-tuple (I, F, Rl), where I = {I;,... I,},
p €N is a finite set of input messages, that w; accepts.
F={F,...,F,;}, q € Nisa finite set of forward messages, that

Authorized licensed use limited to: University of Melbourne. Downloaded on February 06,2021 at 01:10:08 UTC from IEEE Xplore. Restrictions apply.

302 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2021

w; produces. Rl is a service logic that maps an input message from
I to a set of forward messages in F' (Rl C I x 28). w;. I, w;.F,
and w;. Rl are referred as the set of input messages, the set of for-
ward messages, and the relation (called as service logic) from w;.I
to w; Fin wj.
2.1 Operators (Successor, Composition, and
Recursive Composition)

Definition 2.3 (Absolute successor). Let - be a symbol to
represent the successor operator. = maps an element of the VW
to an element of the power set of the set W (=: W — 2"V).
Given a composite Web service w; € W, S C W is a set of
successor services for w; if and only if VYw; € S,3F; €
w; wi FyNw; I # (.

The absolute successor (in short, successor) operator (:-)
is an unary operator that provides services directly invok-
able by a composite service (we call them as successor serv-
ices). The successor operator works only for a composite
service as a basic service does not call other services for
composition. If a service w; € W invokes a service w; € W,
then w; € (> w;). If w; is not known in advance, we write
= w; = {w;+1} unless stated otherwise. If the service w;
directly invokes a set of services (say {wi,...,w;} CW)
then = w; = {wy,...,w}. If the service w; does not invoke
any service from the set W, then > w; = 0.

The composition of services (say, n no. of services) is the
aggregation of facilities provided by the n services as a sin-
gle service. Composability of a service with another service
is decided by successor relation. Given a composite service
w; and its successor service w;, w; is always composable
with w;. Let ‘®” be a symbol that represents the service com-
position. We define composition of services as follows:

Definition 2.4 (Service composition). Given two Web serv-
ices wi,w; € W : w; € (> w;), composition of w; and w; (rep-
resented as w; & w;) yields a composite Web service wy, € W
such that 3m € w;.I ((w;.Rl(m) = n) A (n € w;.I)) —
((m € wp.I) A ((wg.Rl(m) C w;.RI(n))).

A WSDL document of a composite service just provides
the information on how it gets composed when required.
The structural definition of a composite service, provided in
its intermediate representation form (see Section 3.2),
decides whether a composition would be treated as parallel
or sequential.

Definition 2.5 (Service-input tuple). A tuple (w;,I,) is
called as a service-input tuple if and only if w; € W and
Ip cw;.1.

Definition 2.6 (Service-response tuple). A tuple (w;, R,) is
called as a service-response tuple if and only if w; € W and
Rq € w;.R.

A service-input tuple is possible for basic and composite
services whereas service-response tuple is possible only for
basic services. A service-message tuple is a common name
for both service-input and service-response tuples. (w;, m)
is a representation for service-message tuple.

Definition 2.7 (Conditional successor). A conditional suc-
cessor (=) accepts the input in the form of service-input tuple
format and produces the output either in the form of service-

input tuple (w;,I,) or in the form of service-response tuple
(wi, Ry). Given a tuple (w;, I,), (w;, m) is a conditional succes-
sor of (w;, I,) (written as: (wj,m) € (=c (w;,1,))) if and
only if w; € (= w;) and m € w;.RI(I,).

Let (w;,m,) and (wj, m,) be two service-message tuples
such that their composition ((w;, m,) ® (w;, my)) is possible.
Then, “(w;,m,) & (w;,m,)" represents a composition chain
that could participate in further composition processes as a
single service. However, only the end elements of a compo-
sition chain participates in further composition process. If a
service-message tuple (w;,m,) composes with (w;, m,)
and (w,,m,) in parallel, it is represented by the means of
two separate composition chains: (w;, m,) ® (w;, m,) and
(wi, my) & (wi, m,). A composition chain grows further with
the attachment of other composable service-message tuples.
However, a composition with an empty service results as a
tuple itself without any change ((w;,mp) ® €= (w;, mp)).
The conditional successor for a tuple with an empty second
field (input message is not specified) behaves as an absolute
successor, indicating that the service-message tuple can be
replaced with the service name only. A conditional succes-
sor operator is a special case of restrictive successor opera-
tor (>pr) representing that Domain(>r) = Domain(>) and
Range(>-p) C Range(>-¢). We define a restrictive successor
operator as follows.

Definition 2.8 (Restrictive successor). Let (w;,I,) ®

(wj, 1) & - - & (wy, I;) be a composition chain and (w,, I,.) be
a service-input tuple then (w,, I,) is a restrictive successor of
(wi, I) ® (wj, Ig) © - - - @ (wy, I5) if and only if the following
two conditions hold.

1) (w,, I.) is a conditional successor of the composition
chain (w;, I,) & (w;, 1) & - - & (wy, I;) (written as
(wT, T) (o (wi, L) @ (w],l YD B <w7,,lg>))

2) (wy, I,) is not a constituent member of the composition
chain (w;, I,) ® (wj,I;) ® - - - ® (wy, I,) (written as
(wa, I) & {(wi, I), <wj7]q>’ - (wn, L) }).

The empty first field or second field in the input argu-
ment of a restrictive successor is a special case and is treated
as follows:

=) = =g {{wi, [), (wi, L),,

where {I, 5, ...,

<wi’]P>}7 (1)

=g (w;,

L), (wj, L), ...,

where {w;, wj,...,w} € Wsuchthat I, € w;. [, w;.I,... w.1.

Let ‘®” be a symbol to represent recursive composition.
To define recursive composition, we use restrictive succes-
sor operator () and composition operator (4) as supple-
mentary operators (defined earlier in this section).

R <_7Ip> ="Rr {<'LU1', <w17]p>}7 (2)

Definition 2.9 (Recursive composition). Recursive compo-
sition for a given service-input tuple (w;, I,), where I, € w; is
defined as follows:

<wi7]>;

R » if =p (w;,I,) =0
®<wi’lp>:{®{<wi,1p> f

® (=g (wZ,Ip>)} otherwise. @)

Authorized licensed use limited to: University of Melbourne. Downloaded on February 06,2021 at 01:10:08 UTC from IEEE Xplore. Restrictions apply.

RAIET AL.: WEB SERVICE INTERACTION MODELING AND VERIFICATION USING RECURSIVE COMPOSITION ALGEBRA 303

Successor operator and recursive composition operator
are having equal precedence. They possess higher prece-
dence over the composition operator.

Various flavors of Web service algebras [17], [18], [30],
[31], [32] are available in the literature. The RCA differs
from these algebras in consideration of recursive composi-
tion and its applicability to the well-known problem of Web
service interaction verification.

3 RECURSIVE COMPOSITION INTERACTION GRAPH

3.1 RCIG Formation

Given a set of Web services)V and an input argument such
as a message (I,,) or a service (w;) or a service-message tuple
(w;, I,,), the application of recursive composition forms a
graph. We call it as a recursive composition interaction graph
(see Definition 3.1).

Definition 3.1 (Recursive composition interaction
graph). A RCIG is a tuple (V, E) where V is a set of nodes
(either in service-input format or in service-response format) and
E is a set of directed edges. An edge connects a node with a set
of nodes (E:V — 2V) such that following condition holds
E(v;) = U,where v; € Vand U C V iff Yv; € U : v; € =5 (v;).

In the literature, interactions among services are defined
and handled in many ways [10], [12], [33] based on their
modeling approaches. In our context, we use the term Trace to
name an interaction pattern from the RCIG, and we represent
it using the letter 7. We formally define a trace as follows:

Definition 3.2 (Trace). A trace T is a RCIG such that a node in
the graph can have only one child utmost.

Let W be a set of Web services, w; € W, and 7, =
{Tv,Th,...,T,} represents a set which contains all the traces
generated by applying the recursive composition on w;.
Similarly, 7, represents a set that contains all the traces
generated by applying the recursive composition on /,. For
the sake of convenience, we always extract traces from left
to right in a RCIG. We follow the concept of trace, mainly,
while studying behavioral equivalence of services.

Subtrace. Let T; and T be two traces. Let IV; and N; be the
set of nodes in 7; and T,, respectively. Let R; and R; be the
relations that map a node to another in 7; and 7;. Then T;is
a subtrace of T; (represented as T; C T;) if and only if
N; C Nyjand R; C R;.

There are two types of traces based on the termination
condition as follows:

Definition 3.3 (Open Trace). An open trace is a trace that
ends with a service-input tuple.

Definition 3.4 (Closed Trace). A closed trace is a trace that
ends with a service-response tuple.

For a given set of Web services JV and an input message
I, if T}, consists an open trace, it implies that adequate can-
didate services are not available in W to compute all the
possibilities. Since an open trace is a faulty trace, it is not
desirable in service composition scenarios.

There are three types of RCIG based on its formation
style: service-driven, message-driven, and service-message
driven. In a service-driven RCIG, a service name is the

generator of the graph. The root node consists of the service
name and is preceded by service-message tuples. For
instance, let w; be a service name that forms a root node.
Then, all immediate nodes are of the form (w;, I,,), where
I, € w;.I. In a message-driven RCIG, a message name (say,
I,) is the generator of the graph. The root node consists of
the message name and is preceded by service-message
tuples such that all immediate nodes (after root node) are
restrictive successor of the I,,. In a service-message driven
RCIG, a service-message tuple (say, (w;, I,,)) is the generator
of the graph. The root node consists of the service-message
tuple and is preceded by service-message tuples such that
all immediate nodes (after root node) are restrictive succes-
sor of the previous node.

3.2 Implementation of the RCIG

A WSDL document is the description of a Web service, writ-
ten in XML format. A WSDL document consists of the follow-
ing elements: (definition), (types), (message), (operation),
(portType), (binding), (port), and (service). Listing 1 depicts
an abstract structural view of a WSDL document. The
(portType) element combines multiple message elements to
form a complete one-way or round-trip operation. WSDL sup-
ports four basic patterns of operations as: one-way, request-
response, solicit-response, and notification. In order to sup-
port verification of completely automated and dynamic Web
service composition, we use an intermediate representation
(see Listing 2) that is derived from an existing WSDL structure
with the following minor modifications in the (operation) ele-
ment of the WSDL document. Except the (operation) element,
the remaining structure of WSDL is not altered.

Basic and composite services differ in their actions that
they take upon reception of an input message to fulfill the
request. A basic service computes the output itself for an
input message whereas a composite service relies on others.

Listing 1. WSDL document structure

1 <portType name . . .>%*

2 <operationname. . .>

3 <input message . . . />
4 <output message . . . />
5 </operation>

6 </portType>

Listing 2. Intermediate representation

1 <portType name . . .>*
2 <operationname . . .>
3 <input message . .. />
4 <forward . . .>*

5 <sequential ... />*
6 </forward>

7 <responsemessage . . . />
8 </operation>

9 </portType>

In the case of a basic service, we adopt the similar structure of
a classical WSDL document. However, instead of input-out-
put set of messages, we propose the input-response set of
messages in the (operation) element. In the case of a

Authorized licensed use limited to: University of Melbourne. Downloaded on February 06,2021 at 01:10:08 UTC from IEEE Xplore. Restrictions apply.

304 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2021

Travel_Booking

TA, Travel_Booking

s2 829

TA, City_Name

S30

832
TA, Car_Avail?
EQ, City_Name

S33
S28 831
S34
(FB, thh(ﬁNo) (EQ, WealherﬁCondi(ion)

835
TA, Car_Book
S36

TA, Flight_Avail?

S3

FB, Flight_Avail?

(FB, thht_Yes)
S5

TA, Flight_Book
S6

S39

CB, Car_No

Fig. 1. A partial RCIG generated by the input Travel_Booking.

composite service, within the (operation) element, an (
input) element is preceded by a number of (forward) ele-
ments and each (forward) element consists (sequential)
elements. A (sequential) element is a text element that con-
sists a message that has to be forwarded to other services.
All (forward) elements corresponding to an input message,
get triggered in parallel and all sequential messages within
a (forward) element get triggered successively in the order
in which they appear. (forward) element is not a text ele-
ment whereas (input) and (sequential) elements are text
elements. The purpose of a forward message is to discrimi-
nate streams of parallel flows from each other. Throughout
the paper, in our examples, wherever it is required to pro-
vide a WSDL document for a service, we provide a fraction
(only (portType) element) of that WSDL document to
avoid unnecessary complex details and to support better
understandability.

Now, rest of this section presents an implementation
(using Java) for formation of recursive composition interac-
tion graph by means of a classical travel agency scenario.
Let W= TA, HB, FB, CB, EQ, and Null be a finite set of
Web services. TA, HB, FB, CB, EQ, and Null are the
abbreviations for services: travel agency, hotel booking, flight
booking, car booking, Enquiry and Null, respectively. TA is a
composite service, FB, HB, CB, and EQ are basic services,
and Null is an empty service.

Let W and (Travel_Booking) be the input arguments to
construct a RCIG. The RCIG (the partial depiction of the
RCIG is provided as Fig. 1) shows all the possible intera-
ction patterns in W ftriggered by the input message
Travel_Booking. The algorithm creates a root node (sp)
labeled with the input argument Travel_Booking. Further, it
searches existence of the input argument Travel_Booking in
the input set of available services and Travel_Booking is
found only in T'A. On reception of this input, T'A initiates
three parallel traces considering s; as the parent node. These
three traces begin with forwarding three messages:
Flight_Avail?, City_-Name, and Car_Avail?. These traces pro-
ceed further and stop when they map to a service-response
tuple. Once a service-response tuple appears in a trace con-
trol goes back to TA and next sequential message get
triggered. For instance, s, is a service-response tuple that
comes in the path of trace 7. Once s, is encountered, control
goes back to T'A and triggers next sequential message

(Flight_Book). In this way, it proceeds until all sequential
messages from all the forward elements in T'A get exhausted.

4 WEB SERVICE INTERACTION SPECIFICATION AND
VERIFICATION

The requirements of Web service interaction are classified into
functional and non-functional [9]. A functional requirement
describes the behavior of the system as it relates to the sys-
tem’s functionality. A non-functional requirement elaborates
a performance characteristic of the system such as efficiency,
privacy, maintainability, etc. In this paper, we exclusively
focus on functional requirements. Our proposed verification
technique verifies both aspects of functional requirements:
safety properties (describe what must not happen) and liveness
properties (describe what must happen) [34], [35].

Throughout the paper, M represents an interpretation
model and s;, where ¢ € N, represents ith node or ith state
(depending on the context) in M. The logical statement
M, sy | ¢ infers that a state sy in the model M satisfies the
requirement specification ¢. Messages with similar name
can exist in several Web services. While referring a message
in particular, a service name is used as prefix and to refer a
message in general, a message name itself appears without
any prefix. Specifications are written using both the schemes
as per requirement. For instance, let ¢ = w;.m, — m, be a
specification formula. In ¢, w;.m,, refers a message m,, in w;
and m, is a message name in general. The specification for-
mula ¢ infers that if m,, is triggered from the service w; then m,
will be triggered eventually.

4.1 Model for Interpretation of Semantics of
Specification Formula

The proposed recursive composition interaction graph is
employed as a model for interpreting requirement specifica-
tions formula. The interaction between two Web services
can be anticipated very easily with the help of RCIG as it
explores all possible interactions. A RCIG is a graph and
each branch from the root to a terminal node is considered
as a trace. An interaction pattern evolves with time. How-
ever, time ordering cannot be established between two
nodes that belong to two different traces in a RCIG.

In the context of Web service interaction, the communica-
tion messages are considered as propositions [10]. The truth
value of a message infers whether the message is communi-
cated or not. For instance, if w;.Ip = T, then the Web service
w; has communicated the message I,, otherwise not. In a
trace, once truth value for a message is set to “true”, it can-
not be altered to “false” at a subsequent time step.

4.2 Specification Language
In order to specify the requirements regarding Web services
interactions, we propose a specification language recursive
composition specification language.

Definition 4.1 (Syntax of RCSL). RCSL has the following
syntax given in Backus-Naur form:

pu=T|LIpl(=)[(@Nd)|(@VE)|(d—¢)|(¢U
¢) | Ag | E,

where p is any propositional atom from some set of atoms and
each occurrence of ¢ to the right of ::= stands for any already

Authorized licensed use limited to: University of Melbourne. Downloaded on February 06,2021 at 01:10:08 UTC from IEEE Xplore. Restrictions apply.

RAIET AL.: WEB SERVICE INTERACTION MODELING AND VERIFICATION USING RECURSIVE COMPOSITION ALGEBRA 305

constructed formula. T and L are well formed formulas “the
tautology” and “the falsum” respectively. -, A, V, and — are
sentential connectives and be used in their usual meaning. U is
a temporal modality called until. A and E are path quantifiers.
A stands for all paths and E stands for at least one path.

Negation symbol ‘= binds most tightly. Next in the order
comes U that binds more tightly than v and A, and the latter
two bind more tightly than —. Though RCSL consists of the
constructs from both LTL and CTL, neither RCSL C LTL nor
RCSL CCTL. Let M =(S,—,L) be a RCSL model,
T =s0,...,8, bea trace in M, and n(T) is a collection of all
nodes in a trace T. s; = p means that a node s; consists of the
proposition p. The satisfaction relation = (explaining whether
T satisfies a RCSL formula) is defined as follows:

1) T T (T isalways true).

2) T F¥ L (Lisalways false).

3) Tkpifisien(T):s; Ep

4) TE-¢iff TEg

5) TEQAGIT =G andT = ¢,

6) TV iffT ¢ orT F g,

7). TEG —¢iffsiis;en(T): (sikE ¢ A sjl=dy) A
(i <J)

8) T E ¢ U, iff ¢y is a negative literal of the form —p
and ((si,s; €n(T) :s;i Ep)A(sjE¢y)) =i > j

9) TEAIfT E ¢ foralli > 1

10) T E E¢, iff T; = ¢, thereexistsi > 1

Difference between temporal logic and RCSL. Temporal logic is
a formal system for reasoning about time whereas RCSL rea-
sons about possible Web service interaction patterns and veri-
fies whether an interaction pattern is possible to be formed or
not with the available services. There is a fundamental differ-
ence in motivation for utilizing any of them. The specification
requirements are the key factors to opt a language. In linear
temporal logic, there is an implicit universal quantification
over the computations—the paths in state space. RCSL uses
both universal and existential quantifiers explicitly, but does
not use temporal operators X (next), F' (finally), and G (glob-
ally). RCSL does not require X, F', and G because its interpre-
tation model RCIG is a finite and acyclic graph where no
proposition can be false at later stage once it becomes true. In
branching-time temporal logic, universal and existential
quantifiers are used as explicit prefixes to the temporal opera-
tors and use combination of temporal operators with quanti-
fiers such as AF, AG, etc., whereas RCSL does not require the
combination of temporal operators with quantifiers.

4.3 Verification Technique

Algorithm 1 initiates the verification process. It accepts a tuple
as an input argument that consists of a set of Web services
(say, W) and a requirement specification formula (say, ¢) writ-
ten in RCSL. W is an online Web service repository available
on a specific url address and ¢ is provided by a verifier. Once
¢ is available, Algorithm 1 calls Algorithm 2 by passing ¢ as
an argument. Algorithm 2 parses ¢, and correspondingly it
generates an abstract syntax tree (written as Fy) if given for-
mula is free from syntax errors. Word token in Algorithm 2
represents a sequence of characters that can be treated as a
single logical entity. Typical tokens are: 1) identifiers 2) key-
words 3) operators 4) special symbols, and 5) constants.

Algorithm 1. INTERACTION VERIFICATION(W, ¢)

Input: W (a set of Web services), ¢ (a specification formula)
Output: W= por W E ¢
: Py < REQSPECPARSING(¢))
FLAG « TRUE
: Integer ¢, j,p,t
wj.I : set of all input messages in w;
A, - set of atoms in ¢
: forall o; € A, do
for all w; € Wdo
if a; € wJI then
I, p O
M «— RCIGForMATION (W, 1,,)
formed by RCIGFOrMATION algorithm
11: for all trace T; € M do
12: FLAG « INTERPRETATION(F, T})
Algorithm 3
13: end for
14: end if
15: end for
16: end for
17: if FLAG = TRUE then
18: WE¢ > available services satisfy the specification
formula
19: else
20 WE9
specification formula
21: end if

> calling Algorithm 2

N N A R o

—_

> M is a model

>calling

> available services do not satisfy the

Further, Algorithm 1 collects all the atoms from ¢ in the
set A, and observes whether an atom (say, «;) belongs to an
input set of a service from the set W. If «; is found in the
input set of a service, Algorithm 1 invokes RCIGFORMATION
algorithm by supplying arguments W and I,. After com-
pleting the processing of the input arguments, RCIGForMA-
TION algorithm provides a RCIG model M rooted at I,.
Then, Algorithm 1 extract the traces 7; (¢t € N) from the
model M one by one and calls Algorithm 3 for further proc-
essing by passing the arguments Py and 7;. Then, Algorithm
3 interprets Py on the provided trace 7; and results as TRUE
or FALSE, based on its computation. In case, if the result is
TRUE, trace T; is a witness example, otherwise trace 7} is a
counter example. Algorithm 3 decomposes the AST P, in
subtrees recursively and divide also the trace 7; recursively
corresponding to subtrees until unit-level-subtrees (smallest
non-trivial subtrees) are achieved. Now, the function
PInterpretation(subtree, trace) in Algorithm 3 interprets the
unit-level-subtrees over corresponding dividend of the
trace. Once these subtrees are satisfied in the trace, satisfac-
tion of the higher level subtrees will be investigated in bot-
tom to top fashion.

Example 4.1. Let the RCIG depicted in Fig. 1 be an interpre-
tation model M and ¢, (see Eq. (4)) be a requirement spec-
ification formula which, formally, states that in all the
traces, if flight is available and booking is requested, then
either flight must be booked or hotel must not be booked
until flight is booked

¢1 =A((Flight_Yes N\ Flight_Book) — (Flight_Booked

4
V (mHotel_Booked U (Flight_Booked)))). @

Authorized licensed use limited to: University of Melbourne. Downloaded on February 06,2021 at 01:10:08 UTC from IEEE Xplore. Restrictions apply.

306 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2021

so s2 s3 s4 s5 s18 s19 s24

Fig. 3. A trace from the RCIG in Fig. 1.

Fig. 4. Subtree decomposition of the AST given in Fig. 2.

Now, a verifier has to verify the model M against the for-
mula ¢,. According to the verification technique, traces in
model M are considered one by one for verification. Let us
consider that a trace 7; (shown in Fig. 3) from the model M
(T}, = s, ..., s21) has to be verified against ¢;. The AST (7,)
for ¢, is given in Fig. 2.

According to Algorithm 1, P, gets recursively decom-
posed in its respective subtrees recursively until unit-level-
subtrees are achieved (see Fig. 4) (further no decomposi-
tion is possible). Initially, P, is decomposed into subtrees:
ST1 and ST2. ST1 is decomposed into ST11 and ST12 that
are unit-level-subtrees. Therefore, they cannot be decom-
posed further. ST2 is further decomposed into: ST21 and
ST22 and so on. Once the given formula ¢ is completely
decomposed in its constituent unit-level-subtrees, decom-
position process stops.

Now, ST1 — ST2 will be interpreted on the trace T;.
The subtree ST'1 represents a subformula Flight_Yes A
Flight_Book that is satisfied in the subtrace sy, ..., ss5. Then,
we divide the trace T; into subtraces: sy,...,ss and s7,...,
s94. After this, the subtree ST72 := ST21V ST22 (Flight_
BookedV (~Hotel_Booked U Flight_Booked)) gets interpreted
over subtrace s7,...,So4. Since the subtrace satisfies ST21,
ST?2 == ST21V ST22 becomes satistied. Consequently, the
requirement specification ¢, = (Flight_Yes A Flight_Book) —
(Elight_Booked V (—~Hotel_Booked U Flight_Booked)) is satis-
fied in the trace 7;. In the similar way, we check satisfiability
of ¢, over every trace in the model M and find satisfied.
Hence, M = ¢,.

Algorithm 2. REQSPECPARSING(¢)

Input: ¢: a requirement specification formula written in
RCSL

Output: P: an abstract syntax tree for ¢

1: int¢ =0

2: String Id; < NULL

3: String Token <+ NULL

4: String nextToken < NULL

5: String prevIoken <+ NULL

6: for all Token € ¢ do

7: TokenSet «— Token

8: end for

9: Token « TokenSet(i)

10: while |TokenSet| # 1 AND Token # Id do
11: if Token ='—" then

12: if nextToken ='(’ then

13: PARENTHESIS(nextToken)

14: else

15: Id; < nextToken

16: Replace nextToken with Id; in ¢
17: end if

18: Replace ‘—Id;" with “Id;+" in ¢

19: 1—1i+1

20: else if Token = ‘(" then
21: while nextToken = ‘(" do

22: Token «— nextToken
23: end while
24: PARENTHESIS(Token)

25: else if Token = ‘U’ then
26: Func(Token)

27: else if Token = 'V’ then
28: Func(Token)

29: else if Token = ‘A’ then
30: Func(Token)

31: else if Token = ‘=’ then
32: Func(Token)

33: else if Token = ‘p’ then
34: Id; < “p’

35: Replace ‘p” with ‘Id;” in ¢

> pis a proposition

36: 1—1+1

37: elseif Token = Id then

38: Skip > move to next token
39: endif

40: end while
41: function PARENTHESIS (Value)
42: String Token «— Value

43: repeat
44: Premp < Token
45: Token «— nextToken

46: until Token #)’

47: Premp < Token

48: Replace ¢y, with Id; in ¢

49: i+—i+1

50: end function

51: function Func (Token)

52: Id; « prevloken Token nextToken

53: Replace prevIoken Token nextToken with ‘Id;” in ¢
54: i+—i+1

55: end function

56: AST(Id;_y) > print the abstract syntax tree for ¢

Authorized licensed use limited to: University of Melbourne. Downloaded on February 06,2021 at 01:10:08 UTC from IEEE Xplore. Restrictions apply.

RAIET AL.: WEB SERVICE INTERACTION MODELING AND VERIFICATION USING RECURSIVE COMPOSITION ALGEBRA

Algorithm 3. INTERPRETATION(F, T')

Input: Py (parse tree) and 7 (trace)
Output: TRUE or FALSE

1:
2:
3:
4:
5:
6.
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:
21:
22:
23:

24:
25:
26:
27:
28:
20:
30:
31:
32:
33:

34:
35:
36:
37:
38:
39:
40:
41:
42:

43:
44.
45:
46:
47.
48:
49:
50:
51:
52:
53:
54:
55:
56:

Root < Root(Py)
LST — Le ftSubTree(Py)
RST «— RightSubTree(Py)
if Root ¢ {—,A\,V,—,U} then
if PINTERPRETATION(Root, T') = TRUE then
Return TRUE
else
Return FALSE
end if
else if Root = ‘~’ then
if PINTERPRETATION(LST, T') = TRUE then
Return FALSE
else
Return TRUFE
end if
else if Root = ‘A’ then
if INTERPRETATION (LST,T) = TRUE AND
INTERPRETATION (RST,T') = TRUE then
Return TRUFE
else
Return FALSE
end if
else if Root = 'V’ then
if INTERPRETATION (LST,T) = TRUE OR INTERPRETATION
(RST,T) = TRUE then
Return TRUE
else
Return FALSE
end if
else if Root = “ — ' then
FLAG «— FALSE

Temp « ()
TTem[} — @
for all node n € T do
Temp-n [> Concatenating n to the existing sequence

of nodes in Temp
if INTERPRETATION (LST,n) = TRUE then
FLAG — TRUE
BREAK
end if
end for
TTemp — {T - Temp}
if INTERPRETATION (RST, T'ernp) = TRUE then
Return TRUE
else if FLAG = FALSE AND INTERPRETATION
(RST, Trepp) = FALSE then
Return TRUE
else
Return FALSE
end if
else if Root = ‘U then
FLAG — FALSE
Temp «— 0
for all node n € T do
Temp -n
if INTERPRETATION (LST’, Temp) = FALSE then
FLAG «— FALSE
BREAK
end if
end for

307

57: if FLAG # FALSE then

58: Return FALSE

59: else if INTERPRETATION (RST, Temp) = TRUE then
60: Return FALSE

61: else

62: Return TRUE
63: end if

64: end if

65: function PINTERPRETATION(p, T)
66: FLAG «— FALSE
67: forall noden € T do

68: if p € L(n) then [> L(n) means label of node n
69: FLAG «— TRUE

70: BREAK

71: end if

72: end for

73: if FLAG = TRUFE then
74: Return TRUE

75: else
76: Return FALSE
77: end if

78: end function

5 IMPLEMENTATION AND ANALYSIS

5.1 Implementation

In this section, we describe a prototype implementation of
our proposed approach for verifying the specifications writ-
ten in the RCSL against the set of available Web services.
The implementation and experiments conducted have
shown that the ideas proposed in this paper are realizable
using existing technologies. Fig. 5 shows the high-level
architecture of our prototype system, which has been imple-
mented in Java and is based on technologies such as XML,
SOAP, and WSDL. Fig. 5 consists of four modules namely,
specification formula parsing, RCIG and trace generation,
intermediate form conversion, and semantical interpreta-
tion. All modules are detailed as follows:

(1) Specification formula parsing: This module receives a
requirement specification formula from the verifier
and processes it using Algorithm 2. Syntax checking
is performed at first. Thereafter, it makes an abstract
syntax tree (AST) out of the given formula. Gener-
ated AST is decomposed into its constituent subtrees
until unit-level-subtrees are achieved. Finally, unit-
level-subtrees are provided to the module semantical
interpretation.

Intermediate form conversion: This module also
receives the specification formula and discovers the
set of relevant services from the available ones.
Then, it retrieves their WSDL documents and makes
duplicate (local) copy of WSDL documents and
modifies them by adding two tags: sequential and
parallel. Modified WSDL documents work as inter-
mediate representation and are provided to the mod-
ule RCIG and trace generator for further processing.
RCIG and trace generation: This module receives the
set of modified WSDL documents along with an
input (a service-input tuple or a message name or a
service name). The input is provided by Algorithm 1.

2)

3)

Authorized licensed use limited to: University of Melbourne. Downloaded on February 06,2021 at 01:10:08 UTC from IEEE Xplore. Restrictions apply.

308

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2021

Online Web Service Repository (collection

of WSDL documents for all available services)

specification

Discovery of Relevant Services
Based on Specification
Formulas (Alg. 1)

formulas

(written in
RCSL)

intermediate

representation RCIG Generator
of services in (Algorithm 1 & 2)
XML

RCI

Semantical interpretation

1

' L]
' 1]
' L]
L] L] L]
' Vo
L] L] L]
' Vo
L] L] L]
1 Vo
1 1 [[[
' ' ' Vo
[] ¥ [[[
' ' ' Vo
'
N ' I
[] ¥ [[[
' ' ' Vo
[] ¥ [[[
' L] L] 1] 1]
']] []
' L] L] 1] 1]
'
! , WSDL documents XML Parser and ' -
F , ~ Intermediate ' , -
[l ¥ S~ [[]
: : Form Converter : P
' ' formula ' Optimizer o
L] I i1 L]
N ' ! discovered related services ' (removes redundant .
] ¥ H [[]
i N H ' traces) o
' ! \ ' L emmem-mes-s--es-ssssssssssssssssssssssses======- ! '
' . . 4 H
' H Abstract Syntax Tree ! Intermediate form conversion ' ; E
'
v Generator (Alg. 4) H ' y v
' ! eeeesess '
' ' H ' H ' o
]] '] R 1]
Opt d
P . ; >(Verification (Algorithm 3) \< : : primiae I
P y ! : L) ! ; RCIGS b
'
Lo nsT A v : : o
' ' H ' H ' o
] ')]]]
H H : H Semantic Interpretion of a Unit-level-subtree on a Trace E H H '
'
' : ' ' (Algorithm 5) : ! Tr:.ace Extractlor I
! ! Subtree H ' : ! (using depth-first v
I Decomposition ' : | : ! traversal) I
I (Algorithm 4) : : , ' v
[H ! H ' Vo
: : : : Yes : : : :
N : ' : ' y I
[H ! H ' o
' ' unit-level ' ' : ! set of Vo
: : parse trees : witness examples ILl counter examples ISI : e : :
1 ' 1] 1]
v ' : o
'
'
'
'
'

Graphical User Interface for Web Service Interaction Verification

Requirements Verifi

Specifications

Fig. 5. High-level architecture of implementation.

Once an input and the set of modified WSDL docu-
ments are available, it forms a RCIG. Further, it opti-
mizes the generated RCIG by removing redundant
subtraces and supplies the traces to the module
semantical interpretation.

Semantical interpretation: This module verifies whether
a given trace interprets the semantics of a given sub-
tree (subformula). If the trace interprets the semantics,
the module produces the witness example, otherwise,
the module produces the counter example.

In addition to automation, our implementation also
supports dynamic availability of services. A Web service
verification framework where the verifier has to decide the

4

Authorized licensed use limited to: University of Melbourne. Downloaded on

!

er

participant services in advance (with or before specifying
the requirement) does not support dynamic availability of
services. However, in our approach, a specification formula
can be written with or without explicitly mentioning the
participant service names. In the case, if service names are
not explicit, relevant services are discovered based on the
propositions in the formula. Initially, if required, the verifier
has to specify only the addresses of local or global service
repositories. Later, while verification, our implementation
discovers relevant services and checks current availability
of services each time verification query is submitted. In
other words, our implementation periodically checks the
availability of the services in the given online Web service

February 06,2021 at 01:10:08 UTC from IEEE Xplore. Restrictions apply.

RAIET AL.: WEB SERVICE INTERACTION MODELING AND VERIFICATION USING RECURSIVE COMPOSITION ALGEBRA 309

repositories. If any change occurs in availability at a later
stage (for instance, during realization of a composition
plan), the plan will be updated with the change and
updated plan will be shown to the user.

Also, our implementation features a user interface that
supports a wide range of features such as editing and track-
ing of the modeled system, writing requirements specifica-
tions in RCSL, adding new services in repository by
specifying their addresses, checking syntax, and starting
verification. Furthermore, our proposed verification frame-
work is fully capable to verify other systems that behave
similarly to the Web service system (such as multi-agent
system), provided that their system description is in desired
XML format and requirement specifications are written in
the RCSL.

5.2 Performance Analysis of RCIG

The order of a graph (the total number of nodes in a graph
(|G(V)])) generated by a technique is an important criteria
to determine the feasibility for real world implementability
of a technique. The computational resources such as time
and space are directly proportional to the number of nodes.
In this section, we analyze how the cardinality of forward,
sequential, and response messages in services affect the
order of a RCIG.

5.2.1 Experimental Setup

Let us consider a set of three services (W := wy,ws, w,),
where w; and w, are composite services and w, is a basic
service. All three services accept only one input message:
Hotel_Avail. The composite services (w; and w,) forward
the input message to other services, whereas, the basic ser-
vice (w,), upon reception of this message, replies with the
available hotel booking options. Initially, each service con-
sists of only one output message (“output message” repre-
sents to (forward), (sequential), and (response) elements).
As per the requirement of experiment, we gradually
increase the number of forward, sequential, and response
messages in the services. At any stage of experiment, all out-
put messages in w; are parallel to each other, all output
messages in w, are sequential to each other, and all output
messages in w, are only response messages. We assume that
wy can invoke only w, and w, can invoke only w,. Since w,
is a basic service, it cannot invoke any service. This assump-
tion facilitates us with a hierarchical invocation system of
services that prevents redundancy while performing recur-
sive composition out of wy, w,, and w,. All observations are
taken by providing the input (wy, Hotel_Avail) to the RCIG
construction process. The number of nodes are counted for
the unfolded form of the RCIG without applying any heu-
ristic to reduce the number of nodes.

5.2.2 Experimental Evaluation

There are three types of elements in the candidate services:
(forward), (sequential), and (response). Observations are
taken for the total number of nodes by increasing an ele-
ment type. In order to support symmetrical growth, we
assume that a (forward) element can be increased only in
wy, a (sequential) element can be increased only in w,, and a
(response) element can be increased only in w,. The

TABLE 1
Effect of Increasing Response Messages
on the Order of the RCIG

Messages # Nodes Messages # Nodes
1Res 1Seq 1Fwd 5 1Res 4Seq 4Fwd 50
2Res 1Seq 1Fwd 6 2Res 4Seq 4Fwd 242
3Res 1Seq 1Fwd 7 3Res 4Seq 4Fwd 802
4Res 15Seq 1Fwd 8 4Res 4Seq 4Fwd 2,042
5Res 1Seq 1Fwd 9 5Res 4Seq 4Fwd 4,370
6Res 15eq 1Fwd 10 6Res 45eq 4Fwd 8,290
1Res 2Seq 2Fwd 14 1Res 55eq 5Fwd 77
2Res 2Seq 2Fwd 26 2Res 5Seq 5Fwd 622
3Res 25eq 2Fwd 42 3Res 55eq 5Fwd 3,027
4Res 25eq 2Fwd 62 4Res 5Seq 5Fwd 10,231
5Res 25eq 2Fwd 86 5Res 55eq 5Fwd 24,524
6Res 2Seq 2Fwd 114 6Res 55eq 5Fwd 62,202
1Res 35eq 3Fwd 29 1Res 6Seq 6Fwd 110
2Res 3Seq 3Fwd 86 2Res 6Seq 6Fwd 1,514
3Res 35eq 3Fwd 197 3Res 65eq 6Fwd 10,922
4Res 3Seq 3Fwd 380 4Res 6Seq 6Fwd 49,142
5Res 35eq 3Fwd 653 5Res 65eq 6Fwd 164,054
6Res 3Seq 3Fwd 1,034 6Res 65eq 6Fwd 447,890

minimum threshold for the count of all element types is one
and maximum threshold is six. The maximum threshold is
set to six, that is sufficiently large to capture and observe
the patterns of the growth of order of the RCIG. For taking
the observations, we increase the count for an element type
while keeping the count for other element types as constant
at a pre-specified value.

Following are the three sets of observations correspond-
ing to the increment of response elements, sequential ele-
ments, and forward elements respectively. Three keywords
are used in the observation tables: Res, Seq, and Fwd. These
keywords stand for (response), (sequential), and (forward)
elements respectively. A number that precedes an element
keyword is the count for that element in the respective ser-
vice. For instance, ‘4Res 5Seq 6Fwd’ indicates that there
are four response elements in w,, five sequential elements
in wy, and six forward elements in wy. Table 1 depicts the
various observations taken for total number of nodes with
respect to the increment in (forward), (sequential), and
(response) elements.

Effect of Increasing Response Messages on the Order of the
RCIG. From Table 1, we extract the various observations
taken for total number of nodes with respect to the incre-
ment in (response) elements while the count of (forward)
and (sequential) elements are kept constant at the values 1,
2,3, 4,5, and 6. Based on the extracted values, Fig. 6 (split
into two parts for better visibility) depicts six curves namely
SeqlFwdl, Seq2fwd2, Seq3Fwd3, Seq4Fwd4, Seq5Fwd5,
and Seq6Fwd6. Nature of the curves in Fig. 6 are linear and
polynomial. Seq1Fwd1 is a line (y = x + 4). Seq2Fwd2 is a
polynomial of degree 2; Seq3Fwd3 and Seq4Fwd4 are poly-
nomials of degree 3; Seq5Fwd5 and Seq6Fwdé6 are polyno-
mials of degree 4.

Effect of Increasing Sequential Messages on the Order of the
RCIG. From Table 1, we extract the various observations
taken for total number of nodes with respect to the incre-
ment in (sequential) elements while forward and response
elements are kept constant at the values 1, 2, 3, 4, 5, and 6.

Authorized licensed use limited to: University of Melbourne. Downloaded on February 06,2021 at 01:10:08 UTC from IEEE Xplore. Restrictions apply.

310 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2021

Effect of Response Messages on the Order of the RCIG

S —o— Seq1Fwd1 X
S 7 —4— Seq2Fwd2 :
—*— Seq3Fwd3
o
S 4
©
o) x
ER s
© ©
s
“
o
=
So .
6% X
g -
< X
. A----""" A
B L a----mAT
- A----- a--
o - é' === [¢] o o o o
T T T T T T
1 2 3 4 5 6
No. of Response Messages
Effect of Response Messages on the Order of the RCIG
—— SeqdFwd4 L
© —— Seq5Fwd5 :
2 —&— Seq6Fwd6
(]
<
wv
(=]
? 4
LR
o
4
Q
=
= O
o ? N
s :
53
o =
0
o
?
2
-v
.| -7
. ---v7
= e -
% d @ PRSI, a ______ 8 P o
© T T T T T T
1 2 3 4 5 6

No. of Response Messages

Fig. 6. Effect of increasing response messages on the order of the RCIG.

Based on the extracted values, Fig. 7 depicts six curves
namely ReslFwdl, Res2Fwd2, Res3Fwd3, Res4Fwd4,
Res5Fwd5, and Res6Fwd6. Nature of the curves in Fig. 7 are
linear and polynomial. Res1Fwdl1 is a line (y =3z + 2).
Res2Fwd2 and Res3Fwd3 are three degree polynomials.
Curves Res4Fwd4 and Res5Fwd5 are four degree polyno-
mials. Res6Fwd6 is a five degree polynomial.

Effect of Increasing Forward Messages on the Order of the
RCIG. From Table 1, we extract the various observations
taken for total number of nodes with respect to the incre-
ment in (forward) elements while sequential and response
elements are kept constant at the values 1, 2, 3, 4, 5, and 6.
Based on the extracted values, Fig. 8 depicts six curves
namely Res1Seql, Res2Seq2, Res35eq3, Res4Seq4, Res55eq5,
and Res6Seq6. Nature of the curves in Fig. 8 is linear.

In the best case (wWhen count of forward elements are
growing), the growth of the order of RCIG is linear. In
the average case (when count of response elements are

Effect of Sequential Messages on the Order of the RCIG

—o— Res1Fwd1 X
o —4— Res2Fwd2 :
§ . —— Res3Fwd3
o
o _|
o
<
o
go
28
5 ™
-
)
=
5 :
Be ;
S8 ;
& x
o
o _J
o
X A
. _a--""7
....... X el Ae----
o - oo Kzl B=--- 4 ° °
T T T T T T
1 2 3 4 5 6
No. of Sequential Messages
Effect of Sequential Messages on the Order of the RCIG
—— Res4Fwd4 B
o —7— Res5Fwd5 :
? | —&— Res6Fwd6
(]
<
wv
o
T
O™
o
3
o
S
w0
oS¢
°%
T O
-E N
o}
: v
: P
0 . ’
? | : ’
o ." 7’ ’
- 8 ,
,
P
,
4 <
3 gl —
e ® P S Bo-TT
e T T T T T T
1 2 3 4 5 6

No. of Sequential Messages

Fig. 7. Effect of increasing sequential messages on the order of the
RCIG.

growing), the growth of the order of RCIG is lower degree
polynomial, and in the worst case (when count of sequential
elements are growing), the order of RCIG is a higher degree
polynomial. However, in many practical cases, it is a lower
degree polynomial.

6 DISCUSSION

In this section, we present discussion on similarity of RCIG
with a call graph of input/output WSDL, inclusion of same
service more than once in a composition chain, and distance
from the presented approach to a system useful in practice.
Similar to RCIG, in literature, several graphical models
based on input/output WSDL messages have been pro-
posed for capturing recursive composition of Web serv-
ices. There are mainly two categories of those graphical
models: call graphs [36] and graph-based planners [37].

Authorized licensed use limited to: University of Melbourne. Downloaded on February 06,2021 at 01:10:08 UTC from IEEE Xplore. Restrictions apply.

RAIET AL.: WEB SERVICE INTERACTION MODELING AND VERIFICATION USING RECURSIVE COMPOSITION ALGEBRA 311

Effect of Forward Elements on the Order of the RCIG

o
S Res1Seq1 X
—A— Res2Seq2 .
—*— Res3Seq3
.'x..
o
S
™
x
o .
o
x
2o
28 ~
=
[}
B
o .
o
S -
x _a---m8
_-.a--T 7T
-- -7
N
a---" o o—o—— °
o o——©
T T T T T T
1 2 3 4 5 6
No. of Forward Elements
Effect of Forward Elements on the Order of the RCIG
—— Res4Seq4 .a
P Res5Seq5 -
@ _| & Res6Seq6
2 -
w0
¢ @
LR
o
4
[
s
0 =
-
58
o .
w0
o
? -
o .
- &
________ v
8 __________ y-----" v---" v
7 - 8= g ° o o
e T T T T T T
1 2 3 4 5 6

No. of Forward Elements

Fig. 8. Effect of increasing forward elements on the order of the RCIG.

However, we do not use the said (existing recursive com-
position based) models because our requirements are dif-
ferent. We find many graphical models that are suitable
for discovery and composition planning [19], [38], how-
ever, our main interest is in the verification process. Our
focus is on interaction verification and we are generating a
RCIG based on the requirement specification given by a
verifier /user. One more difficulty with the available mod-
els is that, by seeing WSDL file of a composite service, we
are not able to find the sufficient details (i) how (sequen-
tially or in parallel) a composite service is composed of its
component/constituent services, and (ii) the messages a
composite service is sending to its component/constituent
services. Unavailability of the said details hinders the real-
time implementation of automatic composition and verifi-
cation process. Moreover, an abstract graphical represen-
tation is not suitable to verify the concrete requirement
specification given by a user.

With our proposed modeling technique, it is possible to
include a service in a composition chain more than once.
However, it is not possible to include a service-input tuple
more than once in a composition chain. While forming a com-
position chain, the proposed approach avoids composing a
service-input tuple that has been already composed as a con-
stituent service of the composition chain. If the same service-
input tuple be included in a composition chain more than
once, then it can lead into an indirect deadlock. For instance,
let us consider a scenario where A invokes B for hotel booking,
which invokes C for hotel booking, and C invokes A for hotel
booking. This scenario may lead into an indirect deadlock.
Explanation is given as follows: A invokes B for hotel book-
ing can be written as ‘(A, Hotel_Book) & (B, Hotel_Book)’'.
Further, B in (A, Hotel_Book) & (B, Hotel_Book)’ invokes C
for hotel booking that can be written as ‘(A, Hotel_Book) &
(B, Hotel_Book) @ (C, Hotel_Book)’. Now, if C invokes A
for hotel booking, it lead into an indirect deadlock written
as ‘(A, Hotel_Book) @ (B, Hotel_Book) & (C, Hotel_Book),) &
(A, Hotel_Book)’. That is why the proposed approach does
not allow including a service-input tuple more than once in a
composition chain.

Our proposed Web service interaction modeling and ver-
ification technique consists of three steps: (i) given a set of
Web services, modeling of the Web service interaction, (ii)
writing a requirement specification for verification, and (iii)
verification of the requirement specification against the
model. Though we have implemented and demonstrated
that all the steps are working correctly, there is space for
sophistication of the technique from the practical perspec-
tive as follows. We perform I/O messages (mentioned in
WSDL files) based matching to discover a composable ser-
vice while creating a composite service. However, matching
I/0 messages of WSDL files is very syntactic in nature and
does not capture the service logic. Due to this fact, small
variation in message syntax will make look compatible serv-
ices as incompatible. The similar kind of situation arise
when one verifies whether a given trace interprets the
semantics of a given requirement specification. In order to
address the said problem, as our future work, we plan to
incorporate a vocabulary in service discovery and specifica-
tion formula interpretation process.

7 RELATED WORK

Our proposition is completely focused on Web service inter-
action modeling and verification. We compare our work
with most related works from the literature on modeling
and verification of service interaction.

The problem of automatic Web service composition gener-
ation is closely related to the problem of Goal-Oriented Action
Planning (GOAP) in artificial intelligence [37], [39]. In litera-
ture, several Al planning based techniques for automatic com-
position are available: STRIPS-based [39], PDDL-based [40],
HTN-based [41], [42], etc. Though theoretically possible, they
present a number of complexities in practical implementation,
such as, generating and maintaining heavy amount of addi-
tional information (for instance, task library in [39]) hinders
the automation process. We also use WSDL-based intermedi-
ate representation, however, in our approach, generation of
the intermediate representation takes place automatically at
the back-end and a verifier need not to be concerned about it.

Authorized licensed use limited to: University of Melbourne. Downloaded on February 06,2021 at 01:10:08 UTC from IEEE Xplore. Restrictions apply.

312 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2021

Recent Al planning based works, like [19] and [6], are better
than previous proposals as they handle dynamic availability
of services and domain-dependency of planning in more effi-
cient way. Zou et al. [6] focused on search time reduction
when finding a composite service from the Web service repos-
itory. In order to achieve their goal they converted the Web
service repository into a planning domain. This transforma-
tion reduces the response time and improves the scalability of
solving Web service composition problems. Kaldeli et al. [19]
differed from other Al planning based techniques in that they
used state variables rather than predicates as the basic ele-
ments for describing the worlds (in modeling phase). From
the modeling perspective, we differ from [19] as, in our
approach, the worlds need not to be defined or generated by
the designer explicitly. Once the specification formula is avail-
able, worlds in the interpretation model get generated auto-
matically. Moreover, unlike to our work, verification aspect of
Web service interaction is not discussed in [6], [19].

Another line of work [4], [43] investigated into recursive
composition of Web services. To form a cost-effective com-
posite service, Jaiswal et al. [4] used a recursive composition
based model. The model proposed in [4] is suitable for opti-
mization, whereas our focus is interaction verification.
Abrougui et al. [43] used recursive multi-agent systems to
support dynamism in Web service composition. Like previ-
ous one [4], this work also supports in finding a better
composition solution; their motive was not to verify an
interaction specification.

Application of model checking based techniques for verifi-
cation of Web service interaction is not entirely new, but still
is in use because of its efficacy. Foster et al. [33] proposed a
model-based technique to verify Web service compositions
represented in the form of BPEL. They modeled specifications
in the form of Message Sequence Charts (MSCs). Further,
BPEL and MSCs were mechanically compiled into the finite
state process notation (FSP). Then, verification process takes
place between FSPs generated from BPEL and MSCs using
trace equivalence phenomenon. Contrary to [33], Fu et al. [12]
presented a Web service interaction verification scheme based
on the centralized theme of conversation modeling. They
specified desired conversations of a Web service as a guarded
automaton. Their focus was on the asynchronous messaging
and they made effort to relax the restrictions in the way of
direct application of model checking. Walton [44] verified the
interaction among agents participating in multi-agent Web
service systems by proposing a Web service architecture and
a lightweight protocol language. Further, he verified the spec-
ification properties written in the proposed language using
model checking. Techniques presented in [12], [33], [44] were
efficient, however, they did not deal with automation of verifi-
cation process. Schlingloff et al. [45] presented an integrated
technique for modeling and automated verification of Web
service composition. Their modeling was based on Petri net
and for correctness they employed model checking technique
with alternating temporal logics. Zheng et al. [46] presented a
test case generation framework for BPEL using model check-
ers SPIN and NuSMV. They modeled BPEL as Web service
automata (WSA) and on the basis of WSA they presented their
test case generation framework. Test cases were used to verify
whether the implementation of Web services meet pre-speci-
fied BPEL behavior. Rossi [47] proposed a model checking

algorithm for adaptive service compositions. She employed a
logic-based technique for verification of security and correct-
ness properties using modal p-calculus. Collectively, we dif-
fer from all the said model checking based techniques [12],
[33], [44], [45], [46], [47] in that our verification technique
employ possible trace-based phenomenon for verification
instead of classical possible-world phenomenon and explicit
system modeling (specifications of the system provided by
the designer) is not required.

Further, as an improvement over the previous ones, recent
model-checking based verification techniques [10], [48], [49]
support automation to a great extent. Bentahar et al. [49] pro-
posed a modeling and verification technique for composite
Web services. Their modeling aspect is based on separation of
concerns between operational and control behaviors (interac-
tions among Web services) of Web services. Their verification
technique was model checking-based where they automati-
cally generated Kripke model out of the given operational
behavior. Similarly, Sheng et al. [48] also proposed an auto-
mated service verification approach based on the operational
and control behaviors. The coordination of operational and
control behaviors at runtime was facilitated by conversational
messages and their proposed automated verification tech-
nique was based on symbolic model checking. Like [49] and
[48], our proposition also supports the operational and control
behaviors. Operational behaviors can be captured using the
RCIG model and control behavior can be specified using
RCSL. In addition to that, in our approach, once control
behaviors are provided by a verifier, related operational mod-
els are discovered automatically. Rai et al. [11] proposed a set
partition and trace based technique for Web service composi-
tion and its verification. However, unlike to our proposition,
their focus was on the control flow logic, not on the interaction
between the services. E1 Kholy et al. [10] presented a frame-
work to capture and verify the interactions among multi-
agent based Web services. In order to capture the interactions,
they proposed and use a specification language that use com-
mitment modalities in the form of contractual obligations.
Further, multi-agent commitment protocols regulated the
interactions among services and engineered service composi-
tions. Though their approach is efficient and incorporate com-
mitment modalities, it can capture the conversation between
two agents only if participant agents are known in advance
(does not support automation). Moreover, it does not capture
recursive composition scenarios that is done in our approach.
Recently, a Petri net based formal model for verification of
Web service composition [50] was proposed. However, their
goal was to verify the compliance not the interaction.

8 CoONCLUSIONS AND FUTURE WORK

In this paper, we present a recursive composition based tech-
nique for modeling and verification of interactions among
Web services. Given a set of Web services and an interaction
specification, our goal is to verify whether the specification is
being satisfied or not. We propose recursive composition
interaction graph to model the interactions among Web serv-
ices, and recursive composition specification language to cap-
ture the specifications about service interactions. Further, we
propose a verification technique based on the interpretation
of a requirement specification formula (written in RCSL) over

Authorized licensed use limited to: University of Melbourne. Downloaded on February 06,2021 at 01:10:08 UTC from IEEE Xplore. Restrictions apply.

RAIET AL.: WEB SERVICE INTERACTION MODELING AND VERIFICATION USING RECURSIVE COMPOSITION ALGEBRA 313

a given interpretation model (represented as a RCIG). Recur-
sive composition and the quest for automated composition
are two important challenges that make Web service interac-
tion verification process difficult and different from other
classical verification problems. In this paper, we successfully
addressed these two challenges.

Although our proposed approach is able to achieve its
intended objectives, it still has two limitations: partially
solved state explosion problem and non-consideration of Quality
of Services (QoSs). As we have seen in Section 5.2.2, a RCIG
grows polynomially if response messages and sequential
messages grow higher. Trace merging [11] (merging of simi-
lar traces in a RCIG) is a technique that is applicable and
working fine to reduce the order of the RCIG. However,
more sophisticated solutions are required. Non-consider-
ation of QoS parameters is a major limitation of our pro-
posed approach. In a RCIG, a QoS parameter could be
represented in two ways: either by labeling the edges or by
providing the values in nodes. After forming a RCIG with
QoS parameters, multi-objective optimization techniques
could be used to compute the best possibility at runtime
based on availability of services.

In our future work, apart from addressing the said limi-
tations, we plan to make the proposed technique more
designer interactive, so that a designer will have fine
grained control over the modeling and verification aspects.
We also plan to enhance the technique in such a way that it
would be able to capture and verify more generic interac-
tion scenarios. Further, we want to investigate the applica-
bility of our proposition for multi-agent interaction
verification, formalization of negotiation and bargaining,
and modeling of enterprise mash-up.

REFERENCES

[1] G. Alonso, F. Casati, H. A. Kuno, and V. Machiraju, Web Services -
Concepts, Architectures and Applications. Berlin, Germany: Springer,
2004.

[2] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and
X. Xu, “Web services composition: A decade’s overview,” Inf. Sci.,
vol. 280, pp. 218-238, 2014.

[3] C. Granell, M. Gould, R. Grenmo, and D. Skogan, “Improving
reuse of web service compositions,” in E-Commerce and Web Tech-
nologies. Berlin, Germany: Springer, 2005, pp. 358-367.

[4] V. Jaiswal, A. Sharma, and A. Verma, “ReComp: QoS-aware
recursive service composition at minimum cost,” in Proc. 12th
IFIP/IEEE Int. Symp. Integr. Netw. Manage., 2011, pp. 225-232.

[5] C.-A.Sun, X. Zhang, Y. Shang, and M. Aiello, “Integrating trans-
actions into BPEL service compositions: An aspect-based
approach,” ACM Trans. Web, vol. 9, no. 2, 2015, Art. no. 9.

[6] G.Zou,Y.Gan, Y. Chen, and B. Zhang, “Dynamic composition of
web services using efficient planners in large-scale service
repository,” Knowl.-Based Syst., vol. 62, pp. 98-112, 2014.

[7] Q.Hu, Y. Du, and S. Yu, “Service net algebra based on logic petri
nets,” Inf. Sci., vol. 268, pp. 271-289, 2014.

[8] F. Belli, A. T. Endo, M. Linschulte, and A. Simao, “A holistic
approach to model-based testing of web service compositions,”
Softw.: Practice Experience, vol. 44, no. 2, pp. 201-234, 2014.

[91 M. Chen, T. H. Tan, J. Sun, Y. Liu,]. Pang, and X. Li, “Verification
of functional and non-functional requirements of web service
composition,” in Proc. Int. Conf. Formal Eng. Methods, 2013,
pp- 313-328.

[10] W. El Kholy, J. Bentahar, M. El Menshawy, H. Qu, and R. Dssouli,
“Modeling and verifying choreographed multi-agent-based web
service compositions regulated by commitment protocols,” Expert
Syst. Appl., vol. 41, no. 16, pp. 7478-7494, 2014.

[11] G. N. Rai and G. R. Gangadharan, “Set partition and trace based
verification of web service composition,” in Proc. 6th Int. Conf.
Ambient Syst. Netw. Technol., 2015, pp. 278-285.

[12] X. Fu, T. Bultan, and J. Su, “Analysis of interacting BPEL web serv-
ices,” in Proc. 13th Int. Conf. World Wide Web, 2004, pp. 621-630.

[13] R. Kazhamiakin, M. Pistore, and M. Roveri, “Formal verification
of requirements using SPIN: A case study on web services,” in
Proc. 2nd Int. Conf. Softw. Eng. Formal Methods, 2004, pp. 406—415.

[14] G. N. Rai, G. R. Gangadharan, and V. Padmanabhan, “Algebraic
modeling and verification of web service composition,” in Proc.
6th Int. Conf. Ambient Syst. Netw. Technol., 2015, pp. 675-679.

[15] G. M. Kapitsaki, D. A. Kateros, C. A. Pappas, N. D. Tselikas, and
I. S. Venieris, “Model-driven development of composite web
applications,” in Proc. 10th Int. Conf. Inf. Integr. Web-Based Appl.
Serv., 2008, pp. 399—-402.

[16] H. Foster, S. Uchitel,]. Magee, and J. Kramer, “Compatibility veri-
fication for web service choreography,” in Proc. Int. Conf. Web
Serv., 2004, pp. 738-741.

[17] R. Hamadi and B. Benatallah, “A petri net-based model for web
service composition,” in Proc. 14th Australian Database Conf., 2003,
pp- 191-200.

[18] A. Ferrara, “Web services: A process algebra approach,” in Proc.
2nd Int. Conf. Service Oriented Comput., 2004, pp. 242-251.

[19] E.Kaldeli, A. Lazovik, and M. Aiello, “Domain-independent plan-
ning for services in uncertain and dynamic environments,” Artif.
Intell., vol. 236, pp. 3064, 2016.

[20] P. Papapanagiotou and J. D. Fleuriot, “A theorem proving frame-
work for the formal verification of web services composition,” in
Proc. 7th Int. Workshop Automated Specification Verification Web
Syst., 2011, pp. 1-16.

[21] D. Skogan, R. Grenmo, and I. Solheim, “Web service composition
in UML,” in Proc. 8th IEEE Int. Conf. Enterprise Distrib. Object Com-
put., 2004, pp. 47-57.

[22] B. Benatallah, F. Casati, and F. Toumani, “Web service conversa-
tion modeling: A cornerstone for e-business automation,” IEEE
Internet Comput., vol. 8, no. 1, pp. 46-54, Jan./Feb. 2004.

[23] B. Finkbeiner and I. Kriiger, “Using message sequence charts for
component-based formal verification,” in Proc. Int. Conf. Specifica-
tion Verification Component-Based Syst., 2001, pp. 32—45.

[24] A. Letichevsky, J. Kapitonova, V. Volkov, S. Baranov, and
T. Weigert, “Basic protocols, message sequence charts, and the
verification of requirements specifications,” Comput. Netw.,
vol. 49, no. 5, pp. 661-675, 2005.

[25] D. Jordan, et al., “Web services business process execution lan-
guage version 2.0,” OASIS Standard, vol. 11, 2007, Art. no. 11.

[26] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, Web
Services Description Language (WSDL) Version 2.0 Part 1: Core Lan-
guage, World Wide Web Consortium Std., 2007, http://www.w3.
org/TR /2007 /REC-wsdl20-20070626/

[27] N. Mehandjiev, F. Lécué, M. Carpenter, and F. A. Rabhi,
“Cooperative service composition,” in Proc. Int. Conf. Adv. Inf.
Syst. Eng., 2012, pp. 111-126.

[28] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge,
MA, USA: MIT Press, 2008.

[29] H. Giese and B. Becker, Modeling and Verifying Dynamic Evolving
Service-Oriented Architectures. Potsdam, Germany: Universitatsver-
lag Potsdam, 2013.

[30] S. Hashemian and F. Mavaddat, “Composition algebra,” in Proc.
Formal Aspects Component Softw., 2006, pp. 247-264.

[31] P. Hofner and F. Lautenbacher, “Algebraic structure of web serv-
ices,” Electron. Notes Theoretical Comput. Sci., vol. 200, no. 3,
pp- 171-187, 2008.

[32] Q. Yu and A. Bouguettaya, “Framework for web service query
algebra and optimization,” ACM Trans. Web, vol. 2, no. 1, 2008,
Art. no. 6.

[33] H. Foster, S. Uchitel,]. Magee, and J. Kramer, “Model-based verifi-
cation of web service compositions,” in Proc. 18th IEEE Int. Conf.
Automated Softw. Eng., 2003, pp. 152-161.

[34] L. E. Moser and P. M. Melliar-Smith, “Formal verification of
safety-critical systems,” Softw.: Practice Experience, vol. 20, no. 8,
pp- 799-821, 1990.

[35] A.DP.Sistla, “Safety, liveness and fairness in temporal logic,” For-
mal Aspects Comput., vol. 6, no. 5, pp. 495-511, 1994.

[36] S. Kona, A. Bansal, G. Gupta, and D. Hite, “Automatic composi-
tion of Semantic Web services,” in Proc. Int. Conf. Web Serv., 2007,
pp- 150-158.

[37]]. Peer, “Description and automated processing of web services,”
Ph.D. dissertation, Univ. St. Gallen, St. Gallen, Switzerland, 2006.

[38] P. Bertoli, M. Pistore, and P. Traverso, “Automated composition
of web services via planning in asynchronous domains,” Artif.
Intell., vol. 174, no. 3, pp. 316-361, 2010.

Authorized licensed use limited to: University of Melbourne. Downloaded on February 06,2021 at 01:10:08 UTC from IEEE Xplore. Restrictions apply.

http://www.w3.org/TR/2007/REC-wsdl20-20070626/
http://www.w3.org/TR/2007/REC-wsdl20-20070626/

314

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2021

S. Lu, A. Bernstein, and P. Lewis, “Automatic workflow verifica-
tion and generation,” Theoretical Comput. Sci., vol. 353, no. 1,
pp- 71-92, 2006.

O. Hatzi, D. Vrakas, M. Nikolaidou, N. Bassiliades, D. Anagnosto-
poulos, and 1. Vlahavas, “An integrated approach to automated
Semantic Web service composition through planning,” IEEE
Trans. Serv. Comput., vol. 5, no. 3, pp. 319-332, Jul.—Sep. 2012.

I. Georgievski and M. Aiello, “HTN planning: Overview, compar-
ison, and beyond,” Artif. Intell., vol. 222, pp. 124-156, 2015.

D. Wu, B. Parsia, E. Sirin,]J. Hendler, and D. Nau, “Automating
DAML-S web services composition using SHOP2,” in Proc. Int.
Semantic Web Conf., 2003, pp. 195-210.

A. Abrougui, A. Mercier, M. Occello, and M.-P. Huget, “Recursive
multi-agent system for dynamic and adaptative web services
composition,” in Proc. Int. Conf. Manage. Emergent Digit. EcoSyst.,
2009, pp. 44:295-44:299.

C. Walton, “Model checking multi-agent web services,” in Proc.
AAAI Symp. Semantic Web Serv., 2004, pp. 68-75.

H. Schlingloff, A. Martens, and K. Schmidt, “Modeling and model
checking web services,” Electron. Notes Theoretical Comput. Sci.,
vol. 126, pp. 3-26, 2005.

Y. Zheng, J. Zhou, and P. Krause, “A model checking based test
case generation framework for web services,” in Proc. 4th Int.
Conf. Inf. Technol., 2007, pp. 715-722.

S. Rossi, “Model checking adaptive multilevel service
compositions,” in Proc. 7th Int. Workshop Formal Aspects Compon.
Softw., 2010, pp. 106-124.

Q. Z. Sheng, Z. Maamar, L. Yao, C. Szabo, and S. Bourne,
“Behavior modeling and automated verification of web services,”
Inf. Sci., vol. 258, pp. 416-433, 2014.

J. Bentahar, H. Yahyaoui, M. Kova, and Z. Maamar, “Symbolic
model checking composite web services using operational and
control behaviors,” Expert Syst. Appl., vol. 40, no. 2, pp. 508-522,
2013.

H. Groefsema, N. van Beest, and M. Aiello, “A formal model for
compliance verification of service compositions,” IEEE Trans.
Serv. Comput., 2016, http:/ /doi.ieeecomputersociety.org/10.1109/
TSC.2016.2579621

Gopal N. Rai is currently working as a Senior
Assisstant Professor at the Madanapalle Institute
of Technology and Science, Andhra Prasdesh,
India. His research interests focus on the inter-
face between technological and business per-
spectives. He holds the PhD degree from the
University of Hyderabad and the Institute for
Development and Research in Banking Technol-
ogy (IDRBT), Hyderabad.

G. R. Gangadharan received the PhD degree in
information and communication technology from
the University of Trento, ltaly, and the European
University Association. He is an associate profes-
sor in the Institute for Development and Research
in Banking Technology, Hyderabad, India. His
research interests focus on the interface between
technological and business perspectives. He is a
senior member of the IEEE and ACM.

Vineet Padmanabhan received the PhD degree
from Giriffith University, Australia. He is a profes-
sor in the School of Computer and Information
Sciences, University of Hyderabad, India. His
areas of interest include knowledge representa-
tion and reasoning, multi-agent systems, and log-
ics in artificial intelligence.

Rajkumar Buyya received the PhD degree from
the University of Melbourne, Australia. He is a
professor of computer science and software engi-
neering, future fellow of the Australian Research
Council, and the director of the Cloud Computing
and Distributed Systems (CLOUDS) Laboratory,
University of Melbourne, Australia. His areas of
interest include grid computing, cloud computing,
and high-performance computing. He is a fellow
of the IEEE and life member of the ACM.

Authorized licensed use limited to: University of Melbourne. Downloaded on February 06,2021 at 01:10:08 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

