
CVSS: A Cost-Efficient and QoS-Aware Video
Streaming Using Cloud Services

Xiangbo Li∗, Mohsen Amini Salehi†, Magdy Bayoumi∗
∗The Center for Advanced Computer Studies

†HPCC Laboratory, Computer Science Department

University of Louisiana at Lafayette, Louisiana, USA

Email: {xxl8948, amini, mab}@cacs.louisiana.edu

Rajkumar Buyya
Cloud Computing and Distributed Systems Laboratory

Department of Computing and Information Systems

The University of Melbourne, Australia

Email: rbuyya@unimelb.edu.au

Abstract—Video streams, either in form of on-demand stream-
ing or live streaming, usually have to be converted (i.e.,
transcoded) based on the characteristics of clients’ devices (e.g.,
spatial resolution, network bandwidth, and supported formats).
Transcoding is a computationally expensive and time-consuming
operation, therefore, streaming service providers currently store
numerous transcoded versions of the same video to serve different
types of client devices. Due to the expense of maintaining
and upgrading storage and computing infrastructures, many
streaming service providers (e.g., Netflix) recently are becoming
reliant on cloud services. However, the challenge in utilizing
cloud services for video transcoding is how to deploy cloud
resources in a cost-efficient manner without any major impact
on the quality of video streams. To address this challenge,
in this paper, we present the Cloud-based Video Streaming
Service (CVSS) architecture to transcode video streams in an
on-demand manner. The architecture provides a platform for
streaming service providers to utilize cloud resources in a cost-
efficient manner and with respect to the Quality of Service
(QoS) demands of video streams. In particular, the architecture
includes a QoS-aware scheduling method to efficiently map video
streams to cloud resources, and a cost-aware dynamic (i.e., elastic)
resource provisioning policy that adapts the resource acquisition
with respect to the video streaming QoS demands. Simulation
results based on realistic cloud traces and with various workload
conditions, demonstrate that the CVSS architecture can satisfy
video streaming QoS demands and reduces the incurred cost of
stream providers up to 70%.

I. INTRODUCTION

The way people watch videos has dramatically changed
over the past decades. From traditional TV systems, to video
streaming on desktops, laptops, and smart phones through
Internet. According to Global Internet Phenomena Report [1],
video streaming currently constitutes approximately 64% of all
the U.S. Internet traffic. Cisco Systems, Inc.1 estimates that the
streaming traffic will increase up to 80% of the whole Internet
traffic by 2019 [2].

Video content, either in form of on-demand streaming (e.g.,
YouTube 2 or Netflix 3) or live-streaming (e.g., Livestream
4), needs to be converted based on the characteristics of the
clients devices. That is, the original video has to be converted
to a supported resolution, frame rate, video codec, and network
bandwidth of the clients devices [3]. The conversion is termed

1http://www.cisco.com/
2https://www.youtube.com
3https://www.netflix.com
4https://livestreams.com

video transcoding [4], which is a computationally heavy and
time-consuming process. Due to the limitations in processing
power and energy sources (e.g., in smart phones), it is not
practical to transcode videos on clients’ devices [5]. Therefore,
one approach to address the video transcoding problem is
to store numerous transcoded versions of the same video to
serve different types of client devices. However, this approach
requires massive storage resources in addition to powerful
processors. Provisioning and upgrading these infrastructures to
meet the fast-growing demands of video transcoding is cost-
prohibitive, specifically for small- and medium-size streaming
service providers. Moreover, given the explosive growth of
video streaming demands on a large diversity of the client
devices, this approach remains unachievable. Alternatively, the
approach we propose in this research is to transcode video
streams in an on-demand (i.e., lazy) manner using computing
services offered by cloud providers.

The challenge in utilizing cloud resources for on-demand
video transcoding, however, is how to employ them in a cost-
efficient manner and without a major impact on the QoS
demands of video streams.

Video stream clients have unique QoS demands. In partic-
ular, they need to receive video streams without any delay.
Such delay may occur either during streaming, due to an
incomplete transcoding task by its presentation time, or it may
occur at the beginning of a video stream. In this paper, we
refer to the former delay as missing presentation deadline and
the latter as the startup delay for a video stream. Previous
studies (e.g., [6]) confirm that streaming clients mostly do not
watch videos to the end. However, they rank the quality of a
stream provider based on the video’s startup delay. Therefore,
to maximize clients’ satisfaction, we consider video streaming
QoS demand as: minimizing the startup delay without missing
the presentation deadline.

Streaming service provider’s goal is to spend the minimum
for cloud resources, while meets the QoS requirements of
video streams. Satisfying this goal becomes further compli-
cated when we consider the variations exist in the demand
rate of video streams. Thus, to minimize the cost of utilizing
cloud resources, our system should adapt its service rate (i.e.,
transcoding rate) based on the clients’ demand rate and with
respect to the video streams QoS requirements.

Based on the provided definitions, the specific research
questions we address in this research are:

2016 16th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing

978-1-5090-2453-7/16 $31.00 © 2016 IEEE

DOI 10.1109/CCGrid.2016.49

106

• How to improve clients’ QoS satisfaction by minimiz-
ing the video streams startup delay and presentation
deadline miss rate?

• How to create a dynamic cloud resource provision-
ing policy to minimize streaming service providers’
incurred cost while the clients’ QoS demands are
respected?

To answer these research challenges, in this paper, we
propose the Cloud-based Video Streaming Service (CVSS)
architecture. It enables a stream provider to utilize cloud
resources with the minimum incurred cost and maximum client
satisfaction. More specifically, the proposed architecture pro-
vides a system that maps transcoding tasks to cloud resources
with the goal of minimizing the number of transcoding tasks
that miss their individual deadlines and minimizing the startup
delay of video streams while incurring minimum cost for using
cloud resources.

In summary, the key contributions of this paper are:

• Proposing the Cloud-based Video Streaming Service
(CVSS) architecture that enables streaming service
providers to utilize cloud services with minimum cost
and maximum user satisfaction.

• Developing a QoS-aware scheduling method to map
transcoding tasks on cloud resources with minimum
deadline miss rate and minimum start up delay.

• Proposing a dynamic resource provisioning policy that
minimizes the incurred cost to the streaming service
providers without any major impact on the video
streams’ QoS.

• Analyzing the behavior of the scheduling methods and
dynamic resource provisioning policy from different
perspectives and under various workloads.

• Discussing the trade-off involved in configuring the
dynamic resource provisioning policy.

The rest of the paper is organized as follows. Section II pro-
vides some background on video streaming and transcoding.
In section III, we present the CVSS architecture. Scheduling
methods and resource allocation policy will be discussed in
section IV and V, respectively. In section VI, we perform
performance evaluations. Section VII discusses related work
in the literature and finally section VIII concludes the paper
and provides a venues of future work.

II. BACKGROUND

A. Video Stream Structure

A Video stream, as shown in Figure 1, consists of several
sequences. Each sequence is divided into multiple Group Of
Pictures (GOP) with sequence header information at front.
GOP is essentially a sequence of frames beginning with an
I (intra) frame, followed by a number of P (predicted) frames
or B (be-directional predicted) frames. There are two types of
GOP: open-GOP and closed-GOP. In closed-GOP, there is no
inter-relation among GOPs, hence, can be transcoded indepen-
dently. In contrast, there is an inter-dependency between GOPs

in open-GOP. Each frame of the GOP contains several slices
that consist of a number of macroblocks (MB) which is the
basic operation unit for video encoding and decoding.

For the transcoding process, video streams can be split at
different levels, namely sequence level, GOP level, frame level,
slice level, and macroblock level. Sequence level contains
several GOPs that can be transcoded independently. However,
due to the large size of each sequence, its transmission and
transcoding time is long. On the other hand, frames, slices
and macroblocks have temporal and spatial dependency. That
makes their processing complicated and slow [7].

In order to avoid unnecessary communication delay be-
tween different cloud servers (i.e., virtual machine), video
stream are commonly split into GOPs, that can be transcoded
independently [8].

Fig. 1: The structure of a video stream that consists of several
sequences. Each sequence includes several GOPs. Each frame
of GOP contains several macroblocks.

B. Video Transcoding

Video contents are initially captured with a particular for-
mat, spatial resolution, frame rate, and bit rate. Then, the video
is uploaded to streaming servers. Streaming server usually
has to adjust the original video based on the client’s network
bandwidth, device resolution, frame rate, and video codec. All
these conversions and adjustments are generally called video
transcoding [3], [4]. Below, we briefly introduce these types
of transcoding operations:

1) Bit Rate Adjustment: To produce high quality video
contents, it has to be encoded with high bit rate. However,
high bit rate also means the video content needs large network
bandwidth for transmission. Considering the diverse network
environment of clients, streaming service providers usually
have to transcode the video stream’s bit rate to ensure smooth
streaming [9].

107

2) Spatial Resolution Reduction: Spatial resolution indi-
cates the encoded dimensional size of a video. The dimensional
size does not necessarily match to the screen size of clients’
devices. To avoid losing content, macroblocks of an original
video have to be removed or combined (aka downscaled)
to produce lower spatial resolution video. There are several
circumstances where the spatial resolution algorithms can be
applied to reduce the spatial resolution without sacrificing
quality, Figure 2a and 2b show the challenge in mapping four
motion vectors (MV) to one [10] and determine the type from
several types [11], respectively.

(a) MV dowscaling (b) MB type downscaling

Fig. 2: Spatial resolution downscaling

3) Temporal Resolution Reduction: Temporal resolution
reduction happens when the client’s device only support lower
frame rate, and the stream server has to drop some frames.
However, due to dependency between frames, dropping frames
may cause motion vectors (MV) become invalid for the in-
coming frames. Temporal resolution reduction can be achieved
using methods explained in [12], [13].

4) Video Compression Standard Conversion: Video com-
pression standards vary from MPEG2, to H.264, and to the
most recent one, HEVC. Video contents are encoded by
various video compression standards. Therefore, video streams
usually need to be transcoded to the supported codec on clients
device [14], [15].

III. CLOUD-BASED VIDEO STREAMING SERVICE (CVSS)
ARCHITECTURE

We propose the CVSS architecture for on-demand video
transcoding on the cloud. An overview of the architecture is
presented in Figure 3. The architecture shows the sequence
of actions taken place when clients request videos from a
streaming service provider. The architecture includes six main
components, namely video splitter, task (i.e., GOP) scheduler,
transcoding virtual machines (VM), elasticity manager, video
merger, and caching policy. The cooperation of these compo-
nents leads to cost-efficient and QoS-aware on-demand video
transcoding on the cloud. These components are explained in
the next few subsections.

A. Video Splitter

In the video splitter component, each video stream is split
into several GOPs, that can be transcoded independently. In
a previous research, Jokhio et al., [8] have considered several
GOPs to construct a transcoding segment. In this case, each
transcoding task has to deal with several GOPs. However, our
initial experiments showed that transcoding segments with one
GOP is more efficient for scheduling. Therefore, in this work,
we treat each GOP as a task with an individual deadline. The

Fig. 3: An overview of the Cloud-based Video Streaming
Service (CVSS) architecture

deadline of a GOP is the presentation time of the first frame in
that GOP. As we study the case of video on-demand streaming
(e.g., Netflix and YouTube), if a GOP misses its deadline, it
still has to complete its transcoding. In this study, we consider
close-GOP type where processing of each GOP can be carried
out independently.

B. Transcoding (GOP) Task Scheduler

The transcoding task scheduler (briefly called transcoding
scheduler) is responsible for mapping GOPs to transcoding
servers. The scheduler’s goal is to satisfy the QoS demands
of clients in terms of minimum startup delay and minimum
deadline miss rate of video streams.

GOPs of different video streams are interleaved in the
scheduling queue. In addition, the scheduler has no assumption
or prior knowledge about the arrival pattern of the GOPs to
the system. Details of the scheduling method that maps GOPs
to appropriate servers (VMs) is presented in section IV.

C. Transcoding Virtual Machine (VM)

VM(s) are allocated from the cloud provider to process
GOP tasks. In this work, we assume that the allocated VMs
are homogeneous. We leave the case of heterogeneous VMs
as a future research.

Each VM has a local queue where the required data for
GOPs are preloaded before execution. The scheduler maps
GOPs to VMs until the local queue gets full. As all allocated
VMs that execute transcoding tasks are homogeneous, size of
their local queues is the same across all the allocated VMs.

108

Whenever a free spot appears in the local queue of a VM, the
scheduler is notified to map a GOP to the VM. We assume that
the GOP tasks in the local queue are scheduled in the FCFS
fashion.

D. Elasticity Manager (EM)

EM is responsible to monitor the operation of transcoding
VMs in the CVSS architecture, and accordingly resizes the
VM cluster with the goal of meeting the clients QoS demands
and minimizing the incurred cost to the stream provider. For
that purpose, EM includes dynamic (i.e., elastic) resource
provisioning policies that are in charge of allocating and
deallocating VM(s) from the cloud provider based on the
clients’ demand rate.

When video streams’ QoS violation rate increases or the
scheduling queues size increases, the EM allocates VM(s) and
add them to the VM cluster. Similarly, resource provisioning
policies of EM identifies circumstances that VMs are under-
utilized and removes them from the VM cluster to minimize
the incurred cost to the streaming service provider.

EM is executed periodically and also in a event-based
fashion to verify if the allocated VMs are sufficient to meet the
QoS demands or not. Once the EM updates the set of allocated
VMs, it informs the scheduler about the latest configuration
of the VM cluster. More details regarding the EM resource
provisioning policies are discussed in section V.

E. Video Merger

The task of video merger is to place all the transcoded
GOPs in the right order to create the resulting (i.e., transcoded)
video stream. Video merger sends the transcoded streams back
to the video repository to be accessed by clients.

F. Caching Policy

Previous studies (e.g., [6]) show that the access rate to
video streams follows long tail distribution. That is, there are
few videos that are accessed very frequently (i.e., trending
videos), and many others that are barely streamed by clients.
Therefore, to avoid unnecessary transcoding of the trending
videos, the CVSS architecture provides a caching policy to
decide whether a transcoded video should be cached or not.
However, if the video is barely requested by clients, there is
no need to store (i.e., cache) the transcoded version of that.
Such videos are transcoded in an on-demand (i.e., lazy) manner
upon clients’ request. We will explore more details of caching
policy in a future research.

IV. QOS-AWARE TRANSCODING SCHEDULING METHOD

Transcoding scheduler architecture is shown in Figure 4.
For scheduling, GOPs of the requested video streams are
batched in a queue upon arrival. To minimize the startup delay
of video streams, we consider another queue termed startup
queue. The first few GOPs of each new video stream are placed
in the startup queue that has a higher priority in compare to
the batch queue. To avoid any execution delay, each VM is
allocated a local queue where required data for GOPs are
preloaded, before the GOP transcoding execution started.

For each GOP j from video stream i, denoted Gij , the
arrival time and the deadline (denoted δij) are available. It is
worth noting that the GOP deadline is relative to the beginning
of the video stream. Therefore, to obtain the absolute deadline
for Gij (denoted Δij) the relative deadline must be added to
the presentation start time of the video stream (denoted ψi).
That is, Δij = δij + ψi.

In on-demand video streaming, a video usually has been
streamed multiple times by different clients. Therefore, an esti-
mation of the transcoding execution time for each Gij (briefly
called transcoding time and denoted τij), can be obtained
from the historic execution information of Gij . We note that,
although we transcode the same GOP of a given video on
a cluster of homogeneous VMs, there is some randomness
(i.e., uncertainty) in the transcoding execution time. That is,
the homogeneous VMs do not necessarily provide identical
performance [16]. This is attributed to the fact that the VMs
can be potentially allocated on different (i.e., heterogeneous)
physical machines on the cloud. The performance variation of
a VM can also be attributed to other neighboring VMs that
coexist with the VM on the same physical host in the cloud
datacenter. For instance, if the neighboring VMs have a lot of
memory access, then, there will be a contention to access the
memory and the performance of the VM will be different with
situation that there is not such neighboring VM.

To capture the randomness in the estimated execution
time of GOPs, we consider τij as the worst-case analysis of
transcoding time estimation. That is, in the scheduling, we
consider τij as the sum of mean historic execution times of
Gij plus its standard deviation.

Once a free spot appears in a VM local queue, the scheduler
is executed to map a GOP to the free spot. The scheduler maps
GOPs to the VM that provides the shortest completion time.

Fig. 4: QoS-aware Scheduling Architecture

In general, to estimate the completion time of an arriving
GOP Gx on VMj , we add up the estimated remaining exe-
cution time of the currently executing GOP in VMj with the
estimated execution time of all tasks ahead of Gx in the local
queue of VMj . Finally, we add the estimated execution time of
Gx (i.e., τx). Let tr the remaining estimated execution time of
the currently executing task on VMj , and let tc is the current
time. Then, we can estimate the task completion time for Gx

(denoted ϕx) as follows:

109

ϕx = tc + tr +
n∑

p=1

τp + τx (1)

where τp denotes the estimated execution time of any task
waiting ahead of Gx in local queue of VMj and n is the
number of waiting tasks in local queue of VMj .

In the proposed scheduling method, we assign a higher
priority to the GOP tasks in the startup queue. However, the
priority should not cause missing the deadlines of tasks waiting
in the batch queue. Let Gb, the first GOP in the batch queue
and Gs, the first GOP in the startup queue. At each scheduling
event, Gs can be scheduled before Gb only if it does not cause
Gb to miss its deadline. For that purpose, we calculate the
minimum completion time of Gs across all VMs. Then, we
can calculate the minimum completion time of Gb, assuming
that Gs has already been mapped to a VM, and finally check
if Gb will miss its deadline or not. If not, then Gs can be
scheduled before Gb.

The performance of the proposed scheduling method also
depends on the queuing policy of the batch queue. We can
utilize any conventional queuing policy (e.g., FCFS or SJF) to
determine the ordering of tasks in the batch queue. However,
to have a comprehensive study on the performance of the
QoS-aware scheduling method, in the experimental results
section (Section VI) we have investigated the impact of several
queuing policies.

V. DYNAMIC RESOURCE PROVISIONING POLICY

A. Overview

EM in the CVSS architecture is in charge of adapting
cloud resource acquisition based on the clients demand rate.
For that purpose, EM includes resource provisioning policies
that dynamically allocates or deallocates VMs from the cloud
provider. Then, the policies notify the transcoding scheduler
to consider the changes in its task mapping decisions.

The goal of the provisioning policies is to minimize the
incurred cost to the stream provider while respecting the video
streaming QoS demands. More specifically, the stream provider
can determine an upper bound threshold (denoted β) for the
percentage of transcoding tasks that can miss their deadlines
(termed deadline miss rate and denoted γt in a given time t).
Similarly, there is a lower bound threshold (denoted α) that
enables the provisioning policies to reduce the incurred cost
of stream providers through terminating VM(s). Therefore, any
provisioning policy has to manage VM allocation so that the
deadline miss rate remains between α and β. That is, at any
given time t we should have α ≤ γt ≤ β.

Resource provisioning policies of the EM follow the scale
up early and scale down slowly principle. That is, VM(s) are
allocated from cloud as soon as a provisioning decision is
made. However, as the stream provider has already paid for the
current charging cycle of the allocated VMs, the deallocation
decisions are not practiced until the end of the current charging
cycle.

In the next subsections, we introduce two resource provi-
sioning policies for EM that work together to satisfy the goals
of cost and QoS violation minimization.

Algorithm 1 Periodic Resource Provisioning Policy

Input:
α: lower threshold
β: upper threshold
λt: provisioning event
k: an coefficient based on the arrival rate

Output:
n: number of VMs to be allocated.

1: Calculate current deadline miss rate (γt)
2: while Expected task completion time ≤ λt+1 do
3: Hypothetically map a task from startup or batch queue
4: Update the task completion time
5: end while
6: Estimate next provisioning event deadline miss rate (γt+1)
7: Calculate deadline miss rate variation (ν = γt+1 − γt)
8: if ν ≥ 0 and γt+1 ≥ β then
9: Allocate n VMs, where n = �k·γt+1

β �
10: else if ν ≤ 0 and γt+1 ≤ α then
11: Deallocate the VM with the minimum remaining time
12: else
13: No allocation or deallocation action
14: end if

B. Periodic Resource Provisioning Policy

This resource provisioning policy occurs periodically (we
term it provisioning event) to make allocation or deallocation
decisions. At each provisioning event, the policy predicts the
deadline miss rate that will occur at the next provisioning event
(i.e., γt+1) based on the current states of the local queues and
the batch queue.

Algorithm 1 provides a pseudo-code for the periodic provi-
sioning policy. The policy makes allocation decisions based on
the current deadline miss rate (γt in step 1 of the Algorithm 1)
and the predicted (i.e., estimated) deadline miss rate in the next
provisioning event (γt+1 in steps 2 to 6). To predict γt+1, the
policy assumes that there is no limit on the VMs’ local queue
sizes. Then, it obtains the expected completion time for each
task waiting in the batch or startup queue based on Equation 1
and the scheduling method (see Section IV). Once the tasks
completion times are calculated, the provisioning policy can
determine the deadline miss rate at the next provisioning event
(γt+1).

Decision making on allocating new VMs does not only
depend on the predicted deadline miss rate in the next pro-
visioning event (γt+1), but it also depends on the variation
of deadline miss rate until the next event. That is, if the pre-
dicted deadline miss rate is beyond the upper bound threshold
(γt+1 > β) but it is less that the current deadline miss rate
(i.e., γt+1 − γt < 0), then it means that the current allocation
is effective and the deadline miss rate is reducing (see step 8).
Similar phenomenon can happen for deallocating VMs. Having
a predicted deadline miss rate less than α is not sufficient to
deallocate VMs. In fact, if γt+1 < α but the deadline miss rate
is predicted to increase (i.e., γt+1 − γt > 0), then we should
not deallocate any VM (see step 10).

The number of VM allocations by the policy depends on
how far γt+1 is from β. That is, the further the predicted
deadline miss rate is from β, more VMs have to be allocated

110

(a) Startup delay of various videos (b) Deadline miss rate of various videos (c) Incurred cost of various videos

Fig. 5: Comparing the impact of using QoS-aware scheduling method with non-QoS-aware scheduling. The video QoS violation
and the cost of using cloud are plotted when the number of video requests varies. (a) shows the average startup delay. (b) shows
the deadline miss rate. (c) shows the cost of using cloud resources in both cases.

(step 9). Arrival rate of transcoding tasks also impacts the
deadline miss rate in the system. Therefore, the periodic
resource provisioning policy considers the arrival rate (k in
step 9) when decides about allocating new VMs. In the case
that the predicted deadline miss rate is between the allowed
thresholds (α ≤ γt ≤ β), the policy does not to take any action
in terms of allocating or deallocating VMs (step 13).

C. Remedial Resource Provisioning Policy

The periodic dynamic provision policy introduced in the
previous section predicts deadline miss rates accurately. How-
ever, in our initial experiments we noticed that obtaining
estimated completion time for all tasks is a time consuming
process and imposes a significant overhead at each provision-
ing event. Hence, it is not efficient to perform provisioning
events frequently. In addition, the uncertainty exists in the
execution time of each transcoding task is compounded as the
length of the VM local queues increases. Thus, the accuracy of
predictions on task completion times and deadline miss rates
decreases. The last but not the least is the fact that we have
no assumption or knowledge about the demand rate that will
arrive to the system.

To cope with the inherent problems of the periodic provi-
sioning policy, we propose a lightweight remedial resource
provisioning policy that can improve the efficiency of the
EM. By injecting this policy to the intervals of the periodic
provisioning policy, we can perform the periodic policy less
frequently. The remedial provisioning policy provides a quick
prediction of the system based on the state of the startup queue.

Recall that the tasks in the startup queue have a higher
precedence over those in the batch queue. However, such tasks
cannot be executed if they cause a deadline miss for the tasks
in the batch queue. This implies that when there is a congestion
in the startup queue, the tasks deadlines in the batch queue are
urgent (i.e., have fast approaching deadlines). Therefore, there
is a correlation between the number of tasks waiting in the
startup queue and the deadline miss rate in the near future. To
avoid such deadline miss rate, our lightweight remedial policy
checks the size of the startup queue (denoted Ns). Then, it
uses Equation 2 to decide for the number of VMs that should

be allocated.

n = � (Ns − 1)

θ · β � (2)

where n is the number of VM(s) that should be allocated,
Ns−1 is the number of waiting tasks excluding the new arrived
one. θ is a constant factor that determines the aggressiveness
of the VM allocation in the remedial policy. That is, lower
values of θ leads to allocating more VMs and vice versa. In
the implementation, we considered θ = 10.

Experiment results indicate that the remedial provisioning
policy does not incur any extra cost to the stream service
provider. Nonetheless, it increases the efficacy of the dynamic
provisioning policy by reducing the deadline miss rate and
startup delay (see Section VI-E).

VI. PERFORMANCE EVALUATION

A. Experimental Setup

We used CloudSim [17], a discrete event simulator, to
model our system and evaluate the performance of scheduling
methods and resource provisioning policies. To create a diver-
sity of video streaming requests, we uniformly selected videos
from the range of [10 , 600] seconds from a set of benchmark
videos. We made the benchmarking videos publicly available
for reproducibility purposes 5. We modeled our system based
on the characteristics of VMs in Amazon EC2 6. Accordingly,
transcoding execution times of the benchmark videos were ob-
tained by transcoding them on T2.Micro instances of Amazon
EC2 that are available for free. In calculating the cost of cloud
resources, we excluded the storage costs. This is because we
focus on the cost of VMs allocated for transcoding operations.
Moreover, all methods provide the same storage cost.

To capture the randomness in the execution time of
transcoding tasks on cloud VMs, we transcoded GOPs of each
benchmark video for 30 times and modeled the transcoding
execution times of GOPs based on the Normal distribution.

To study the performance of the system comprehensively,
we evaluated the system under various workload intensities.

5The videos can be downloaded from: https://goo.gl/TE5iJ5
6http://aws.amazon.com/ec2

111

(a) Startup delay of static provisioning (b) Deadline miss rate of static provisioning (c) Incurred cost of static provisioning

(d) Startup delay of dynamic provisioning (e) Deadline miss rate of dynamic provisioning (f) Incurred cost of dynamic provisioning

Fig. 6: Comparing the impact of different queuing policies on the QoS-aware scheduling method when combined with both
dynamic and static provisioning policies. (a)(d) Show the average startup delay of different queuing policies with static and
dynamic provisioning, respectively. (b)(e) Show the average deadline miss rate of resulted from different queuing policies with
static and dynamic provisioning. (c)(f) Incurred cost of different queuing policies in static and dynamic provisioning.

For that purpose, we varied the arrival rate of the video
streaming requests from 100 to 1000 within the same period
of time. The inter-arrival times of the requested videos are
generated based on the Normal distribution. All experiments
of this section were run for 10 times and the average and 95%
of the confidence interval of the results are reported for each
experiment.

B. Impact of the QoS-aware Scheduling Method

Figure 5 demonstrates how the average startup delay of
video streams varies when our proposed QoS-aware scheduling
method is applied in compare with the situation that the
scheduling method is not QoS-aware. To show the impact
of different workload intensities, we perform the experiment
with various number of video stream requests arriving during
the same time interval (horizontal axis in Figure 5). To
focus merely on the impact of the scheduling method, in this
experiment, we consider static resource provisioning policy
with 10 VMs. Also, Shortest Job First (SJF) is used for the
queuing policy in the batch queue.

We observe in Figure 5a that using the QoS-aware schedul-
ing, we can keep the average startup delay less than 1 second.
The startup delay remains almost the same as the number
of video streams increases. More importantly, the reduced
startup delay is obtained without a major impact on the video
streams’ deadline miss rate. In fact, Figure 5b shows that the

average deadline miss rate is almost always less than 10%. This
experiment demonstrates that it is possible to transcode videos
in an on-demand manner. Figure 5c shows that both with and
without QoS-aware scheduling, the incurred cost is almost the
same. The reason is that in both methods all tasks have to
be completed. Thus, the total time cloud VMs are utilized
is the same. This means that we can improve the users’ QoS
satisfaction, without incurring extra cost to the stream provider.

C. Impact of the Queuing Policy

The queuing policy applied on the batch queue, impacts
the startup delay, deadline miss rate, and the incurred cost. To
obtain the best queuing policy that can work with the QoS-
aware scheduling method, we evaluated three different policies,
namely first come first serve (FCFS), shortest job first (SJF)
and shortest deadline first (SDF).

To differentiate the impact of these queuing policies on
the static and dynamic resource provisioning policies, we run
the queuing policies on both scenarios separately and compare
their QoS violations and their costs. We utilize 10 VMs in
running the experiments with the static provisioning policy.
The result of this experiment is shown in Figure 6.

1) Static Resource Provisioning: Figures 6a, 6b, and 6c
show the performance of the queuing policies when combined
with the static resource provisioning policy. We observe that as
the number of video requests increases, the startup delay and

112

(a) Comparison of average startup delay (b) Comparison of average deadline miss rate (c) Comparison of incurred cost

Fig. 7: Comparing the performance of the static and dynamic provisioning policies. (a) Presents the average startup delay in
the dynamic and static policies. (b) Presents the average deadline miss rate in the dynamic and static provisioning policies. (c)
Incurred cost to the streaming provider using dynamic and static provisioning policies.

deadline miss rate grow significantly in SDF and FCFS, while
remains low and stable with SJF. This is mainly because when
there are massive number of videos being transcoded, the batch
queue is congested and GOPs miss their deadlines. The growth
of the deadline miss rate prevents our QoS-based scheduling
method to be effective, thus, the startup delay increases too.
However, SJF priorities GOPs with shorter execution times that
significantly reduces congestion. Hence, SJF produces a better
startup delay and lower deadline miss rate when combined
with the static provisioning policy.

Figure 6c shows that all three queuing policies cost almost
the same. In fact, the total transcoding time of all the videos
are the same and stream provider has to pay almost the same
amount for any static method with a fixed number of VMs.

2) Dynamic Resource Provisioning: As shown in Fig-
ures 6d and 6e, SDF produces the lowest deadline miss rate in
the dynamic provisioning policy. This is because SDF maps the
most urgent GOP tasks first. Therefore, the rest of GOPs will
have enough slack time and allow the GOP tasks in the startup
queue to execute without missing their own deadlines. The
reason that SJF has low startup delay but higher deadline miss
rate is that it priorities GOPs the GOPs with short transcoding
time from middle or rear part of the video stream. This creates
an opportunity for the GOPs in the startup queue, while incurs
a large deadline miss rate for long GOPs with short deadlines.
In the FCFS policy, GOPs in the batch queue have to wait
until all GOPs arrived earlier be transcoded, this leads to a
high deadline miss rate.

As demonstrated in Figure 6f, SDF incurs the lowest
cost, especially when the video requests arrival is low and
the system is not congested. As the number video requests
increases and the system becomes congested, the cost of all
three queuing policies increases and becomes similar.

From Figure 6, we can conclude that with the static
resource provisioning policy, SJF provides the lowest startup
delay and deadline miss rate while the incurred cost is similar
to other two policies. However, in the dynamic resources
provisioning, SDF provides better startup delay, deadline miss
rate, and also a lower cost compared with the other two
queuing policies.

D. Dynamic versus Static Resource Provisioning Policy

To further investigate the behavior of the dynamic resource
provisioning policy, we compare the QoS violation and the
incurred cost of both static and dynamic policies. As SJF
and SDF perform the best in static and dynamic provisioning
policies, we just compare the results from these two policies.
For static policy, we only present the results for fixed number
of VMs —from 5 to 10. The startup delay and deadline miss
rate are very high when few VMs are allocated and there is
no point to discuss them.

In Figure 7a, as the number of video requests increases,
the average startup delay in all static policies grows while
in the dynamic policy it produces a low and stable startup
delay. When the workload is not intensive (i.e., system is
lightly loaded), the dynamic policy has a little bit higher startup
delay (� 1 second) than the static policy. In fact, to reduce
the incurred cost, the dynamic policy usually allocated fewer
VMs in compare with the static one. Therefore, new GOP tasks
have to wait in the queue to be transcoded. However, the static
policy with a large number of VMs can process GOPs in the
startup queue quickly that reduces the startup delay.

Figure 7b illustrates that the dynamic resource provisioning
policy leads to low and stable deadline miss rate in compare
with the static one. In the static policy with few VMs, as
the number of video requests increases, the deadline miss
rate grows dramatically. As the dynamic provisioning policy
functions based on the deadline miss rate to resize the VM
cluster, it keeps the average deadline miss rate low, even when
the system is congested.

With low and stable startup delay and deadline miss rate,
Figure 7c shows that the dynamic provisioning policy reduces
up to 70% cost when the system is not congested. In fact, when
the video demand rate is low, VMs are under-utilized in the
static policy, however, the stream provider still has to pay for
them. In the dynamic provisioning policy, however, the system
deallocates idle VMs when the deadline miss rate is below
the lower bound threshold (α), that reduces the incurred cost
significantly. As the video demands rate becomes intensive,
more VMs are created, therefore, the cost incurred by the
dynamic policy approaches the static one.

113

E. The Impact of Remedial Resource Provisioning Policy

To evaluate the efficacy of the remedial provisioning policy,
we conduct an experiment on the dynamic resource provision-
ing policy in two scenarios: when the dynamic provisioning
uses the remedial approach against the case that only the
periodic provisioning policy is in place. As illustrated in
Figure 8, when the system is not congested, the difference
between the two scenarios is negligible. This is because
when few videos arrive during the next provisioning event,
it does not significantly impact the accuracy of deadline miss
rate estimation. In this case, the VMs allocated by periodic
resource provisioning policy are capable to keep streaming
QoS violation low and stable.

Alternatively, when the video demand rate is high, the
inaccuracy in the estimated deadline miss rate becomes re-
markable. Under this circumstance, as depicted in Figure 8,
relying only on the periodic provisioning policy leads to a high
QoS violation rate. Nonetheless, when the remedial resource
provisioning policy is utilized and the system is congested, we
notice a remarkable difference in the QoS violation rate. It is
shown in the last subfigure of Figure 8 that injecting remedial
resource provisioning policy comes without incurring any extra
cost to the stream provider.

Fig. 8: Impact of remedial resource provisioning policy on the
performance and cost. In the second sub-figure, DMR stands
for the Deadline Miss Rate.

F. Pareto Analysis for the Cost and QoS Trade-off

The challenge in dynamic provisioning policy is how to
handle the trade-off between the the cost and the QoS violation,
with different values of the upper bound threshold (i.e., β). In
this experiment, we utilize the idea of Pareto front analysis [18]
to understand the relation between these factors and find the
optimal range for β.

Figure 9 shows the Pareto optimal front based on different
values of β that the CVSS users (i.e., stream provider) can
choose. As we can see, the lower β value produces lower
startup delay and deadline miss rate, but also incurs higher
cost. In the contrary, higher β value reduces the expense at
the cost of higher QoS violation. However, at some points, we
can find some β values (e.g., 0.15 to 0.3) that produce good
video streams QoS with reasonably low cost. We noticed that
the relationship between the cost and QoS violation in our

system is not linear. That is, there are some optimal solutions,
where a stream provider can spend a relatively low cost but
gain a fairly low QoS violation too.

Fig. 9: Illustration of the Pareto front for determining the upper
bound threshold (β) in the dynamic provisioning policy. When
β = 0.05, it produces the lowest startup delay and deadline
miss rate at the highest cost. In contrast, when β = 0.5, it
produces the highest startup delay and deadline miss rate at
the lowest cost. There are values of β (e.g., between 0.15 to
0.3) that provide low QoS violations with less incurred costs.

VII. RELATED WORK

As video playing devices become diverse, the need to
convert between different video formats, bit-rates, spatial res-
olutions, and temporal resolutions increases. Ahmad et al., [3]
and Vetro et al., [4] provide an overview of video transcoding
techniques, architectures, and challenges during the past two
decades.

Video transcoding has been studied on distributed computer
architectures. Sambe et al., [19] implementes a distributed
video transcoding system that can simultaneously transcode
MPEG2 video files into various video formats with different bit
rates. Deneke [20] proposes a distributed transcoding approach
to reduce rendering and startup delay of a video by scheduling
different sizes of video streams to processors. On the contrary,
our proposed scheduling method can reduce the average startup
delay for multiple video streams without any major impact on
their deadline miss rate.

Video transcoding can be achieved in parallel at lower level
(e.g., at macroblock level, slice level or frame level) [21], [22].
Even though there are dependencies among frames, slices,
and macroblocks, the communication time among different
processors is negligible, if the processing machines are tightly
coupled. However, this cannot be applied to transcoding on
cloud VMs, where the resources are not necessarily tightly
coupled and the communication time among the clusters is
considerable. Therefore, the video segmentation in parallel
machines is not suitable for video transcoding in the cloud.
Jokhio et al., [8] presents how video segmentation impacts
on the transcoding time for spatial resolution reduction. In this
work, we split video streams into Group of Pictures (GOP).
But unlike [8] that splits video into segments that contain
numbers of GOPs, we treat each GOP as a segment, that can
be transmitted and transcoded faster.

114

Ashraf et al., [23] proposes a stream-based admission
control and scheduling (SBACS) approach using a two step
prediction model to predict upcoming streams’ rejection rate
based on predicting the waiting time at each server. A job
scheduling algorithm is used to drop some video segments to
prevent video transcoding jitters.

Jokhio et al., [24] proposes a method to allocate cloud
resources to balance video transcoding cost, efficiency, and
storage. In this work, we consider video-on-demand case, in
which each video has a historic execution time information
(e.g., historic transcoding time). Our proposed scheduling
method and resource allocation policy utilize these historic
data to schedule GOPs and determine the number of VMs
on the cloud. Moreover, the CVSS architecture performs
transcoding in the real-time manner whereas previous works
perform it in a batch processing form.

Several research works have been undertaken regarding
performance, energy, and cost efficiency of data-intensive ap-
plications utilizing cloud resources (e.g., [25], [26]), however,
none of them concentrates on the characteristics of on-demand
video streaming.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed the CVSS architecture for on-
demand transcoding of video streams using cloud resources.
The architecture includes a scheduling method that is aware
of QoS demands of video streams. It also includes a cost-
aware dynamic provisioning policy to allocate cloud resources.
The goal of this work is to decrease the deadline miss
rate and startup delay of video streams and minimize the
incurred cost of cloud resources. Experiment results show that
our proposed scheduling method provides low QoS violation
rate, specifically when combined with SDF queuing policy.
In addition, the dynamic resource provisioning policy helps
streaming providers to significantly reduce the cost of using
cloud services. In particular, when the video demand rate is not
high, it reduces the costs up to 70% in compare with the static
policies. The CVSS architecture can be particularly useful
for small- or medium-size video streaming provides to utilize
cloud services as their infrastructure, and improve their clients’
satisfaction with low cost. In future, we plan to extend the
architecture with machine learning-based scheduling method
and dynamic heterogeneous cloud resources. To further en-
hance the QoS, our future work will consider multiple clouds,
so that depending on end users’ location, nearest cloud will be
chosen to reduce the transmission delay.

REFERENCES

[1] G. I. P. Report, “https://www.sandvine.com/trends/global-internet-
phenomena/,” accessed Oct. 1, 2015.

[2] C. V. N. Index, “Forecast and methodology, 2014-2019,” 2015.

[3] I. Ahmad, X. Wei, Y. Sun, and Y.-Q. Zhang, “Video transcoding: an
overview of various techniques and research issues,” IEEE Transactions
on Multimedia, vol. 7, no. 5, pp. 793–804, 2005.

[4] A. Vetro, C. Christopoulos, and H. Sun, “Video transcoding archi-
tectures and techniques: an overview,” IEEE on Signal Processing
Magazine, vol. 20, no. 2, pp. 18–29, 2003.

[5] X. Li, M. A. Salehi, and M. Bayoumi, “Cloud-based video streaming for
energy- and compute-limited thin clients,” in the Stream2015 Workshop
at Indiana University, Oct, 2015.

[6] X. Cheng, J. Liu, and C. Dale, “Understanding the characteristics of
internet short video sharing: A youtube-based measurement study,”
IEEE Transactions on Multimedia, vol. 15, no. 5, pp. 1184–1194, 2013.

[7] F. Lao, X. Zhang, and Z. Guo, “Parallelizing video transcoding using
map-reduce-based cloud computing,” in Proceedings of IEEE Interna-
tional Symposium on Circuits and Systems, pp. 2905–2908, 2012.

[8] F. Jokhio, T. Deneke, S. Lafond, and J. Lilius, “Analysis of video
segmentation for spatial resolution reduction video transcoding,” in
Proceedings of IEEE International Symposium on Intelligent Signal
Processing and Communications Systems (ISPACS), pp. 1–6, 2011.

[9] O. Werner, “Requantization for transcoding of mpeg-2 intraframes,”
IEEE Transactions on Image Processing, vol. 8, pp. 179–191, 1999.

[10] J. Xin, M.-T. Sun, K. Chun, and B. S. Choi, “Motion re-estimation
for hdtv to sdtv transcoding,” in Proceedings of IEEE International
Symposium on Circuits and Systems (ISCAS), vol. 4, pp. IV–715, 2002.

[11] N. Bjork and C. Christopoulos, “Transcoder architectures for video
coding,” IEEE Transactions on Consumer Electronics, vol. 44, no. 1,
pp. 88–98, 1998.

[12] S. Goel, Y. Ismail, and M. Bayoumi, “High-speed motion estimation
architecture for real-time video transmission,” The Computer Journal,
vol. 55, no. 1, pp. 35–46, 2012.

[13] Y. Ismail, J. B. McNeely, M. Shaaban, H. Mahmoud, M. Bayoumi et al.,
“Fast motion estimation system using dynamic models for h. 264/avc
video coding,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, no. 1, pp. 28–42, 2012.

[14] M. Shaaban and M. Bayoumi, “A low complexity inter mode decision
for mpeg-2 to h. 264/avc video transcoding in mobile environments,” in
Proceedings of the 11th IEEE International Symposium on Multimedia
(ISM), pp. 385–391, 2009.

[15] T. Shanableh, E. Peixoto, and E. Izquierdo, “Mpeg-2 to hevc video
transcoding with content-based modeling,” IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 23, pp. 1191–1196, 2013.

[16] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “A performance analysis of EC2 cloud computing services
for scientific computing,” in Cloud computing, ser. Lecture Notes of the
Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering, pp. 115–131, 2010.

[17] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Software: Practice and Experience, vol. 41, pp. 23–50, 2011.

[18] V. Pareto, Cours d’économie politique. Librairie Droz, 1964.

[19] Y. Sambe, S. Watanabe, Y. Dong, T. Nakamura, and N. Wakamiya,
“High-speed distributed video transcoding for multiple rates and for-
mats,” IEICE Transaction on Information and Systems, vol. 88, no. 8,
pp. 1923–1931, 2005.

[20] T. Deneke, “Scalable distributed video transcoding architecture,” Mas-
ter’s thesis, Åbo Akademi University, 2011.

[21] B. Jung and B. Jeon, “Adaptive slice-level parallelism for h. 264/avc
encoding using pre macroblock mode selection,” Journal of Visual
Communication and Image Representation, pp. 558–572, 2008.

[22] M. A. Mesa, A. Ramirez, A. Azevedo, C. Meenderinck, B. Juurlink,
and M. Valero, “Scalability of macroblock-level parallelism for h. 264
decoding,” in Proceedings of the 15th IEEE International Conference
on Parallel and Distributed Systems (ICPADS), pp. 236–243, 2009.

[23] A. Ashraf, F. Jokhio, T. Deneke, S. Lafond, I. Porres, and J. Lilius,
“Stream-based admission control and scheduling for video transcoding
in cloud computing,” in Proceedings of the 13th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGrid),
pp. 482–489, 2013.

[24] F. Jokhio, A. Ashraf, S. Lafond, and J. Lilius, “A computation and
storage trade-off strategy for cost-efficient video transcoding in the
cloud,” in Proceedings of the 39th IEEE Conference on Software
Engineering and Advanced Applications (SEAA), pp. 365–372, 2013.

[25] D. Petcu, H. González-Vélez, B. Nicolae, J. M. Garcı́a-Gómez,
E. Fuster-Garcia, and C. Sheridan, “Next generation hpc clouds: A view
for large-scale scientific and data-intensive applications,” in Proceedings
of Euro-Par: Parallel Processing Workshops, pp. 26–37, 2014.

[26] M. Salehi and R. Buyya, “Adapting market-oriented scheduling policies
for cloud computing,” in Proceedings of the Algorithms and Architec-
tures for Parallel Processing, vol. 6081, pp. 351–362, 2010.

115

