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Resource provisioning is one of the challenges in federated Grid environments. In these environments
each Grid serves requests from external users along with local users. Recently, this resource provisioning
is performed in the form of Virtual Machines (VMs). The problem arises when there are insufficient
resources for local users to be served. The problem gets complicated further when external requests have
different QoS requirements. Serving local users could be solved by preempting VMs from external users
which impose overheads on the system. Therefore, the question is how the number of VM preemptions
in a Grid can be minimized. Additionally, how we can decrease the likelihood of preemption for requests
with more QoS requirements. We propose a scheduling policy in InterGrid, as a federated Grid, which
reduces the number of VM preemptions and dispatches external requests in a way that fewer requests
with QoS constraints get affected by preemption. Extensive simulation results indicate that the number
of VM preemptions is decreased at least by 60%, particularly, for requests with more QoS requirements.

Scheduling
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1. Introduction

Resource provisioning for user applications is one of the main
challenges and research areas in federated Grid environments.
Federated Grids, such as InterGrid, enable sharing, selection, and
aggregation of resources across several Grids, which are con-
nected through high bandwidth network connections. Nowadays,
heavy computational requirements, mostly from scientific com-
munities, are supplied by these federated environments such as
PlanetLab [8]. Job abstraction is widely used in resource manage-
ment of Grid environments. However, due to advantages of Virtual
Machine (VM) technology, recently, many resource management
systems have emerged to enable another style of resource man-
agement based on lease abstraction [38].

InterGrid, as a federated Grid environment, also aims to provide
a software system that interconnects islands of virtualized Grids. It
provides resources in the form of VMs and allows users to create
execution environments for their applications on the VMs [12]. In
each constituent Grid, the provisioning rights over several clusters
inside the Grid are delegated to the InterGrid Gateway (IGG).
IGGs coordinate resource allocation for requests coming from
other Grids (external users) through predefined contracts between
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Grids [11]. On the other hand, local users in each cluster send
their requests directly to the local resource manager (LRM) of the
cluster.

Hence, resource provisioning is done for two different types
of users, namely: local users and external users. As illustrated in
Fig. 1, local users (hereafter termed as local requests), refer to users
who ask their local cluster resource manager (LRM) for resources.
External users (hereafter termed as external requests) are those
users who send their requests to a gateway (IGG) to get access to
a larger amount of shared resources. Typically, local requests have
priority over external requests in each cluster [6]. In other words,
the organization that owns the resources would like to ensure that
its community has priority access to the resources. Under such a
circumstance, external requests are welcome to use resources if
they are available. Nonetheless, external requests should not delay
the execution of local requests.

In our previous research [33], we demonstrated how preemp-
tion of external requests in favor of local requests can help serving
more local requests. However, the side-effects of preemption are
twofold:

e From the system owner perspective, preempting VMs imposes
a notable overhead to the underlying system and degrades
resource utilization [38].

e From the external user perspective, preemption increases the
response time of the external requests.

As a result, both the resource owner (who prefers to increase
resource utilization) and external users (who are interested in
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Fig. 1. A scenario that shows the contention between local and external requests in a federated Grid environment (InterGrid) [33].

shorter response time) benefit from fewer VM preemptions in
the system. We believe that with the extensive current trend in
applying VMs in distributed systems, and considering preemption
as an outstanding feature of VMs, it is crucial to investigate policies
that minimize these side-effects. Therefore, one problem we are
dealing with in this research is how to decrease the number of VM
preemptions that take place in a virtualized Grid environment.

The problem gets complicated further when external requests
have different levels of Quality of Service (QoS) requirements
(also termed different request types in this paper). For instance,
some external requests can have deadlines whereas others do
not. Preemption affects the QoS constraints of such requests.
This implies that some external requests are more valuable than
others and, therefore, more precedence should be given to valuable
requests by reducing the chance of preemption of these requests.

To address these problems, in this paper, we propose a QoS and
preemption-aware scheduling policy for a virtualized Grid which
contributes resources to a federated Grid. This scheduling policy
comprises of two parts.

The first part, called workload allocation policy, determines
the fraction of external requests that should be allocated to each
cluster in a way that minimizes the number of VM preemptions.
The proposed policy is based on the stochastic analysis of
routing in parallel, non-observable queues. Moreover, this policy
is knowledge-free (i.e. it is not dependent on the availability
information of the clusters). Thus, this policy does not impose
any overhead on the system. However, it does not decide the
cluster that each single external request should be dispatched upon
arrival. In other words, dispatching of the external requests to
clusters is random.

Therefore, in the second part, called dispatch policy, we
propose a policy to find out the cluster to which each request
should be allocated to. The dispatch policy has the awareness of
request types and aims to minimize the likelihood of preempting
valuable requests. This is performed by working out a deterministic
sequence for dispatching external requests. In summary, our paper
makes the following contributions:

e Providing an analytical queuing model for a Grid, based on the
routing in parallel non-observable queues.

e Adapting the proposed analytical model to a preemption-aware
workload allocation policy.

e Proposing a deterministic dispatch policy to give more priority
to more valuable users and meet their QoS requirements.

e Evaluating the proposed policies under realistic workload
models and considering performance metrics such as number
of VM preemptions, utilization, and average weighted response
time.

We utilize InterGrid [10], which is a virtualized federated Grid
environment, as the context of our work. In the next section,
InterGrid structure is discussed in detail. The rest of this paper is
organized as follows: In Section 2, an overview of the InterGrid
environment is provided. The proposed analytical queuing model
is described in Section 3 which is followed by the preemption-
aware scheduling policy in Section 4. Performance evaluation of
the proposed policy is reported in Section 5. Then, in Section 6
related research works are introduced. Finally, conclusion and
future works are provided in Section 7.

2. InterGrid environment

In this section, we provide a brief overview on InterGrid
architecture and implementation. Interested readers could refer
to [12] for more details.

2.1. Architecture

In InterGrid each Grid has predefined peering arrangements
with other Grids, which are managed by IGGs and through which
IGGs coordinate the adoption of InterGrid’s resources. An IGG is
aware of the peering terms between Grids, selects suitable Grids
that can provide the required resources, and replies to requests
from other IGGs.

The Local Resource Manager (LRM)! is the resource manager
in each cluster which provisions resources for local and external
(Grid) requests. Resource provisioning in clusters of InterGrid is
based on the lease abstraction. A lease is an agreement between
resource provider and resource consumer whereby the provider
agrees to allocate resources to the consumer according to the
lease terms presented by the consumer [38]. Virtual Machine (VM)
technology is used in InterGrid to implement lease-based resource
provisioning [39]. InterGrid creates one lease for each user request
(in this paper we apply these two terms interchangeably).

T This component is also called Virtual Infrastructure Engine (VIE) in the
InterGrid.
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In InterGrid each request is contiguous and has to be served
within resources of a single cluster. Each request has the following
characteristics:

Type of the request.

Number of VMs.

Duration for the request.

Deadline for the request (optional).

We consider several types of external requests in InterGrid
which correspond to different QoS levels. These external requests
are broadly classified as Best-Effort (BE) and Deadline-Constraint
(DC)requests. BE requests, are scheduled in the first available time-
slot. In the case that there are not enough resources to start, BE
external requests can be preempted in favor of local requests. DC
requests are rejected if there is not enough resources for them to
start. Based on this categorization, we classify external requests as
follows:

e BE-Cancelable: these leases neither guarantee the deadline nor
the duration of the lease. These leases can be started at any
time after their ready time. At the time of preemption, if
the cluster is overloaded, Cancelable leases are terminated.
Preempting Cancelable leases impose very little overhead time.
This overhead pertains to the required time for terminating
VM s allocated to the lease. Cancelable leases are applicable for
map-reduce requests [20]. Spot instances in Amazon EC2? are
another example of Cancelable leases.

e BE-Suspendable: these leases ensure the duration of the lease
but not in a particular deadline. Similar to Cancelable leases,
these leases can be scheduled at any time after their ready time.
In the case of preemption, these leases are re-scheduled to find
another time-slot for the rest of execution. The overhead time
of preemption in this case is the amount of time required to
suspend VMs, reschedule the lease, and resume it later [39].
Suspendable leases are appropriate for Parameter Sweep and
Bag-of-Task applications [26].

e DC-Migratable: Duration and the deadline have to be guar-
anteed for these type of leases. A Migratable lease can be
preempted but it has to be resumed and finished before its
deadline, either on the same resource or on another resource.
Migrating VMs entail VM transferring overhead. One solution
to alleviate this overhead is migrating the VM to another cluster
inside the same Grid of InterGrid which has a high bandwidth
connection. We leave the details of VM migration issues as a fu-
ture work. Migratable requests are applicable where the job has
a loose deadline or requires more powerful resources.

e DC-Non-Preemptable: These leases guarantee both deadline and
duration without getting preempted during the lease. This type
of lease is useful for jobs with very tight deadline. For example,
critical tasks in work-flows where some tasks have to be started
and finished at exact times to prevent delaying the execution of
the work-flow [23,27].

We assume that local requests are all DC-Non-preemptive whereas
external users can send all request types mentioned earlier. Hence,
there is a mixture of different requests entering to each Grid. The
case that local requests have different types is also interesting.
However, in this work we consider several types of external
requests and leave different types of local requests as a future
work.

Different lease types incur different costs for the user. Thus,
users are encouraged to request various lease types. Unarguably,
the less flexible the request type is, the more expensive the lease
will be. We consider the more expensive leases (i.e. DC) as more
valuable ones and take this criteria into account at the time of
scheduling.

2 http://aws.amazon.com/ec2/spot-instances.
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Fig. 2. InterGrid Gateway components.
2.2. Implementation

The core part of InterGrid, IGG, has been implemented in Java.
A layered view of its components is depicted in Fig. 2. The core
component of IGG is the Scheduler, which implements provisioning
policies and peering with other IGGs. The scheduler performs
creation, starting, and stopping VMs through the Virtual Machine
Manager (VMM). VMM implementation is generic, so different
LRMs can interact with it. Currently, it is possible for a VMM to
connect to OpenNebula [13], or Eucalyptus [30] to manage local
resources. In addition, two interfaces to connect to a Grid middle-
ware (i.e., Grid’5000) and a Cloud Iaa$ provider (i.e., Amazon EC23)
have been developed. Moreover, an emulated LRM for testing and
debugging has been implemented for the VMM.

The persistence database is used for storing information
of IGG such as VM templates and peering arrangements. The
Management and Monitoring provide command-line tools to
configure and manage IGG. The Communication Module provides
an asynchronous message-passing mechanism between IGGs,
which makes IGGs loosely coupled and fault-tolerant.

3. Analytical queuing model

In this section, we describe the analytical modeling of
preemption in a virtualized Grid environment based on routing
in parallel queues. This section is followed by our proposed
scheduling policy in IGG built upon the analytical model provided
in this part.

The queuing model that represents a gateway along with
several non-dedicated clusters (i.e. clusters with shared resources
between local and external requests) is depicted in Fig. 3. There are
N clusters where cluster j receives requests from two independent
sources. One source is a stream of local requests with arrival rate
A;j and the other source is a stream of external requests which are

sent by the gateway with arrival rate ij. The gateway receives
external requests from other peer gateways [12] (G, ..., Gpeer in
Fig. 3). Therefore, external request arrival rate to the gateway is
A = Ay + Ay + -+ + Apeer Where peer indicates the number
of gateways that can potentially send external requests to the
gateway. Submitted local requests to cluster j must be executed
on cluster j unless the requested resources are occupied by another
local request or a Non-preemptive external request (see Section 2).

3 http://aws.amazon.com/ec2.
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Table 1
Description of symbols used in the queuing model.
Symbol Description
N Number of clusters
M; Number of computing elements in cluster j where 1 <j < N
/_11- Original arrival rate of external requests to cluster j
?\j Arrival rate of external requests to cluster j after load distribution
A =Y A= 4
0; Average service time of a external request on cluster j
; Second moment of external requests service time on cluster j
Y =0;- 4
Aj Arrival rate of local requests to cluster j
K;j Arrival rate of local requests plus external requests to cluster j
T Average service time of local requests on cluster j
W Second moment of local requests service time on cluster j
pj =74
m; = %’wj + %Mj
u; Utilization of cluster j (=y; + p;)
Tj Average response time of local requests on cluster j
7 Number of VM preemptions that happen in cluster j
T Average response time of all external requests
T; Average response time of external requests on cluster j
vj Average number of VMs required by external requests
Bj Average duration of external requests
Sij Processing speed (MIPS) of processing element i in cluster j

Meta-Sched
(Gateway)

Fig. 3. Queuing model for resource provisioning in a Grid with N clusters.

The first and second moment of service time of local requests in
cluster j are 7j and u;, respectively. On the other hand, an external
request can be allocated to any cluster but it might get preempted
later on. We consider 6; and wj as the first and second moment of
service time of external requests on cluster j, respectively. For the
sake of clarity, Table 1 gives the list of symbols we use in this paper
along with their meaning.

Indeed, the analytical model aims at distributing the total orig-
inal arrival rate of external requests (A) amongst the clusters. In
this situation if we consider each cluster as a single queue and the
gateway as a meta-scheduler that redirects each incoming external
request to one of the clusters, then the problem of scheduling ex-
ternal requests in the gateway (IGG) can be considered as a routing
problem in distributed parallel queues [2].

Considering these situation, the goal of the scheduling in the
IGG is to schedule the external requests amongst the clusters in a
way that minimizes the overall number of VM preemptions in a
Grid. Therefore, our primary objective function can be expressed
as follows:

N
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Fig. 4. Regression between the number of VMs preempted and response time of
external requests.

To the best of our knowledge, there is no scheduling policy
for such an environment with the goal of minimizing the number
of VM preemptions. However, several research works have been
undertaken in similar circumstances to minimize the average
response time of external requests.

Some initial experiments as well as results of our previous
research [33] intuitively imply that there is an association between
response time and number of VM preemptions in the Grid. The
regression analysis with least squares method (depicted in Fig. 4
and shown in Eq. (2)) demonstrates the positive correlation
between the two factors. In Eq. (2), R and n indicate the response
time of external requests and number of VM preemptions,
respectively

R = 3.09 + 0.0127. 2)

Therefore, we expect that minimizing average response time
have similar impact on the overall number of VM preemptions.
Simulation results, which are discussed in Section 5.3, also confirm
the correlation of response time and number of VM preemptions
in the system. Details of the analysis are discussed over the next
paragraphs.

For this purpose, we extend the approach developed by Li [24],
which has been done within a cluster, for circumstances that there
is a Grid system in which some external requests are more valuable
than others (i.e. different levels of QoS).

Thus, we can define a new objective function that aims at min-
imizing the average response time of external requests (Eq. (3)):

N

> AT, 3)

j=1

T =

> =

Given the M/G/1 queue for each cluster, and also preempting ex-
ternal requests in favor of local requests, then the response time of
external requests in clusterj (T;) is worked out based on Eq. (4) [22]

T = g + — I 4)
T\ 200wy
The constraint for Eq. (3) is:
Aj—A=0. (5)

j=1

The Lagrange multiplier method is applied to minimize Eq. (3).
We consider Eq. (3) as f(;lj), Eq. (5) as g(;&j) — ¢, and z as the
Lagrange multiplier. Then, the Lagrange function is defined as
follows:

h(Aj,2) = f(A) +z - (g(A) —¢)

I
N
2
=
+
N
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By solving the equations resulting from partial derivatives of all
Aj (1 < j < N) and z, the input arrival rate of each cluster is
calculated based on Eq. (7):

s _(=p) 1\/(1 — o) (@;(1— o) + Okiu

T g 6\ 26,1 — pz + () — 267)

(7
Considering that A = ?\1 + ?X] + -+ ?&N, then z can be
calculated using the following Equation:

1= p) (1= ) + 6k
0; 26;(1 — pj)z + (wj — 2912)

=

N (1= o
:<Z(9W)—A. )
J

j=1
In fact, Eq. (8) expresses the relation between different
parameters of the system in which j is unknown. By solving
Eq. (8) for all clusters and working out z, Eq. (7) can be solved.
However, finding a generic closed form solution for z in Eq. (8) is
impossible [24]. Nonetheless, z can be found in the range of [Ib, ub]
numerically. For this purpose, considering that A; > 0 and from

Eq. (7) we can infer that:

Atk 0
T2(1-p)?  (A—p)
Therefore, for all 1 < j < N the lower bound (Ib) of the interval

is:

A 0,
b=max( 28 _ 4 3 ) (10)
=1\2(1—py) 1—p)

If we define ¢;(z) according to Eq. (11):
1 /(= p)(oj(1 = p) + i1
Qj 29j(1 — pj)Z + (a)j — 29j )
and considering Eq. (8), then we have:

N N '
IE (Z “;””) - a (12)
j=1 i

j=1

: (9)

(11)

The upper bound can also be worked out based on Eq. (13). ub
can be reached by doubling Ib up until the following condition is
met

d (- pj)>
¢j(ub) < — | - A (13)

If the condition in Eq. (12) is not met, then we have to decrease
Ib by removing clusters which are heavily loaded. The load of
clusterj is comprised of local requests that have been received and
external requests which are already assigned to the cluster. The
load can be calculated as follows:

Al b
vy = PRV —
2(1 ;0]) (1 ,OJ)
For the sake of simplicity, in Eq. (15) we have assumed that

Y1 <V <Yy

k k 1— o
> i = (Z (9"1)> — A (15)
=1 j i

j=1

. (14)

It is worth mentioning that values bigger than k would not
receive any external request from the IGG (i.e. Ay = Appo =
coo= Ay =0).

4. QoS and preemption-aware scheduling

In this section, we propose a workload allocation policy and a
dispatch policy. The positioning of this scheduling policy in IGG is
demonstrated in Fig. 2. The proposed scheduling policy comprises
of two parts. The first part, discusses how the analysis mentioned
in the previous section can be adapted as the workload allocation
policy for external requests in IGG. The second part, is a dispatch
policy which determines the sequence of dispatching external
requests to different clusters considering the type of external
requests.

4.1. Workload allocation policy

The analysis provided in Section 3 was based on some widely
used assumptions. Here, we state these assumptions and discuss
if they are valid in the Grid scenario. In the analysis provided in
Section 3 we assumed that:

e Each cluster was an M /G/1 queue.

o All requests needed one VM (i.e. they were sequential).

e Each queue was run in FCFS fashion.

e External requests were type-less (no superiority between
external requests).

On the other hand, in our scenario we encounter parallel
requests (requests require more than one VM) that follow a general
distribution. Additionally, we apply a conservative backfilling [41]
policy as the local scheduler of each cluster. The reason of using
conservative backfilling is that it increases the number of requests
getting served at each moment with respect to the FCFS policy [36].
Moreover, it is proved that conservative backfilling performs better
in multi-cluster environments compared with other scheduling
policies [32]. Given M; processing elements in cluster j, and v;
the average number of VMs required by external requests, the
number of simultaneous requests that are served within cluster j
is approximately I; >~ M;/v;. We can infer that the queuing model
of cluster jis G/G/I;.

However, in the analyses of Section 3 we applied the M/G/1
queuing model instead of G/G/I;. This approximation can be
justified by the fact that if we consider the normalized response
time in Eq. (3), then the proportion of external workload to each
cluster remains unchanged. In other words, scaling up or down of
the service times in the clusters, does not change the proportion of
external requests allocated to each cluster. In Section 5, we validate
this approximation through extensive simulations in the context of
workload allocation policy for a virtualized Grid system.

Considering the above differences, we do not expect that
the preemption-aware workload allocation policy still performs
optimally. In fact, we examined how efficient the proposed analysis
would be in a virtualized Grid environment by relaxing these
assumptions.

To adapt the analysis in a way that covers requests that need
several VMs, we modify the service time of external requests on
cluster j (6;) and local requests on cluster j (z;j) in the following
way:

Ui - d:
6 =2~ (16)
D Si
i=1
G-
T = 7)\1/1] ) (17)
2 Si
i=1

where ¢; and & show the average number of VMs needed and
. ML
average duration of local requests. Also, > ., s; indicates the
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overall computing power offered by different processing elements
within the cluster j. Nonetheless, if the processing elements of a
cluster are homogeneous Z?ﬁ] sij turns to M; - sj;.

The second moment of the service time for both local and
external requests are also accordingly changed. We use the
coefficient of variance (CV = StDev/Mean) to obtain the modified
second moment. Assuming that CV is given, the second moment of
service time for external and local requests on clusterj is calculated
according to Eqgs. (18) and (19), respectively.

wj = (- 6)* + ej? (18)

wi= B 5+ (19)

where o; and f; show the CV of external requests and CV of local
requests service time on cluster j.

The preemption-aware workload allocation policy (PAP) is
presented in the form of pseudo-code in Algorithm 1. According to
Algorithm 1, at first v is calculated for all clusters. Then, in steps
4-10, to exclude the heavily loaded clusters, clusters are sorted
based on the i value in the ascending order. Next, the value of k is
increased until the condition defined in Eq. (15) (step 7) is met. ub
is found by starting from 2 - Ib and is doubled until the condition
in step 13 is met. Steps 16-21 show the bisection algorithm
mentioned in Section 3 to find a proper value for z. Finally, in steps
22 and 23 the arrival rate to each cluster is determined. Steps 24
and 25 guarantee that clusters k+ 1 to N, which are heavily loaded,
do not receive any external request.

It is worth mentioning that, in practice, IGG can get the required
parameters for this policy by analyzing clusters’ workloads.
Such parameters have been used in similar research works
undertaken [17,9,43].

4.2. Dispatch policy

The algorithm proposed in the previous subsection determines
the routing probability to each cluster (i.e. ;&j / A). However, it does
not offer any deterministic sequence for dispatching each external
request to the clusters (i.e. dispatching Grid requests is memory-
less). More importantly, as mentioned earlier, external requests are
in different levels of QoS which implies that some external requests
are more valuable. Hence, we would like to decrease the chance of
preemption for more valuable requests to the minimum possible.
We plan to put this precedence in place through a dispatch policy.

In this part, we propose a policy that, firstly, reduces the number
of VM preemptions for more valuable external requests. Secondly,
this policy makes a deterministic sequence for dispatching external
requests. It is worth noting that the dispatch policy uses the same
routing probabilities that worked out for each cluster using the
workload allocation policy. The only difference is in the sequence
of requests dispatched to each cluster. For this purpose, we adapt
a Billiard strategy [ 18] as the dispatching policy.

The Billiard strategy is the generalized form of Round Robin
and considers the sequence of routing, which is called the Billiard
sequence. Suppose that a billiard ball bounces in an n-dimensional
cube where each side and opposite side are assigned by an integer
value in a range of {1, 2, ..., n}. Then, the billiard sequence is
generated by a series of integer values which show the sides
hit by the ball when shot. This sequence is deterministic, and
is different from the sequence of probabilistic scheme, which is
entirely random.

Hordikj [18], proposed a method to implement this scheme and
generate the billiard sequence as follows:

Xi +Y;
js = n}%n {%} (20)
j

Algorithm 1: Preemption-aware workload allocation Policy
(PAP).

Input: A;, ), wj, Aj, T, wj, forall 1 < j < N.

Output: (/A\j) load distribution of external requests to
different clusters, forall 1 <j < N.

forj < 1toN do

MK % .
L V= 2(1—pj)? T (I=pp)’
//8ort array Y in ascending order;
Sort (V);

k < 1;
while k < N do

7 | if Z}lle & (Yi) > (ijzl “;jﬂj)) — Athen

| break;
9 else
10 L k<—k+1;

11 b < Y;

12 ub =2 % lb;

13 while Y5, ¢;(ub) > <Z};1 “;j"”) — Ado
14 L ub = 2 * ub;

15 //€ is the expected precision;
16 whileub — Ib > € do
17 z < (Ib+ub)/2;

18 | Y ¢(2) = (Z}Ll “;f”) — Athen

N -

U bW

19 | Ib<«z;
20 else
21 L ub « z;

22 forj < 1tokdo

23 A= Gz 1 [A=p)@Azp)+0kiny
T b\ 26(1-pz+(@—26})

24 forj < k+ 1toN do
25 LAj:O;

where j; is the target queue, and Y and X are vectors of integers
with size n. Y; keeps track the number of requests that have been
sent to the queue j. X; reflects which queue is fastest, and is set to
one for the fastest queue and zero for all other queues [2]. Y; has to
be initialized to zero, and after finding the target queue, it must be
updated as Y, = Yj, + 1. P; is the fraction of external requests that
are sent to the queue j and is worked out as the result of workload
allocation policy in Section 4.1.

It is worth mentioning that minimizing the likelihood of
preempting valuable requests depends on the scheduling policy
in the gateway (IGG) (which is investigated in this paper) as well
as the local scheduling policy in each cluster. The local scheduling
policy we use in the clusters has the awareness of the request
types and at the time of preemption preempts leases that belong to
less valuable users [33]. Given this policy for the local schedulers
of each cluster, more valuable leases would be preempted if and
only if there are no (sufficient) leases of less valuable request
types to be preempted. We can infer that the chance of getting
preempted for valuable external requests would be low if a mixture
of valuable and less valuable external requests are dispatched
to each cluster. Therefore, in the dispatch policy we keep track
of number of external requests of each type that are dispatched
to each cluster. The pseudo-code developed for this purpose is
presented in Algorithm 2.

In Algorithm 2, at first the fastest cluster is found based on the
average service time for external requests in each cluster (step 1).
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Algorithm 2: Request Type Dispatch Policy (RTDP).
Input: P;, 9 forall 1 <j <N.
Output: Selected Cluster (js)

1 fastestCluster < findFastestCluster(f);

2 foreach Cluster j do

3 Xj < 0,

4 foreach RequestType i do

5 L P} < P; x GetProportion(i);

6

| Y].'<—0;

7 XfastestCluster ~ 1
8 foreach external request received do

9 i < GetRequestType();
10 min < MaxValue;
11 foreach Cluster j do

12 if (P # 0) then

13 D= (X;+Y))/P};
14 if (D < min) then
15 min < D;

16 L tmpCluster < j;
17 YtlmpCIusrer <~ YtlmpCluster +1;

18 | js < tmpCluster;

We consider P]' as the probability of dispatching request type i

to cluster j. PJ' is worked out based on P; and the proportion of
request type i in external requests (steps 4, 5). In step 7, we
assign 1 to the fastest cluster. Yj’ expresses the number of external
requests of type i that are dispatched to cluster j and initially is
zero (step 6). By receiving an external request, value of the adapted
billiard sequence for all clusters are worked out and a cluster with
minimum value is chosen (steps 9-16). Finally, Y' is updated for
the selected cluster (step 17).

5. Performance evaluation

In this section, we discuss different performance metrics
considered, the scenario in which the experiments are carried out;
finally, experimental results obtained from the simulations are
discussed.

5.1. Performance metrics

5.1.1. User satisfaction

As mentioned earlier, both resource owners and users benefit
from fewer VM preemptions. From the resource owner perspec-
tive, less VM preemption leads to less overhead on the underlying
system and improves the utilization of resources. However, from
the external user perspective, preemption has different impacts
based on the lease types. For Suspendable and Migratable leases,
preemption leads to increasing completion time. For Cancelable
leases preemption results in terminating the lease. Since users of
different lease types have distinct expectations from the system, it
is not easy to propose a common criterion to measure the satisfac-
tion of different users. Nonetheless, in all types of leases external
users suffer from VM preemption. Therefore, we believe that the
number of VM preemptions in the system is a generic metric to
express both external users’ and resource owners’ satisfaction.

As one of the contributions of this paper is giving more
precedence to more valuable external users, we also investigate
how distinct scheduling policies affect more valuable leases (i.e. DC
leases). To this end, for Migratable leases we consider migration
rate (percentage of Migratable leases that get migrated) and for
Non-Preemptable leases we consider rejection rate (percentage of
Non-preemptive leases that are rejected).

5.1.2. Resource utilization

Time overhead due to VM preemptions leads to resource
under-utilization. Thus, from the system owner perspective, we
are interested to see how different scheduling policies affect the
resource utilization. Resource utilization for the Grid system is
defined as follows:

N
2_overhead,
Utilization = | 1— —— - 100 1)
> computationTime;
j=1

where:
L]
computationTime; = Z v(ly) - d(l) (22)
i=1
where |L| is the number of leases allocated in cluster j, v(l;) is the
number of VMs in lease I;, d(I;) is the duration of lease I;.

5.1.3. Average weighted response time (AWRT)

Preemption-based scheduling policies are usually prone to long
response time for BE requests (i.e. Suspendable and Cancelable).
Therefore, in our study we are interested in AWRT metric to see
how the investigated scheduling policies affect response time of
BE requests. Smaller values of AWRT indicate more (external) user
satisfaction.

In fact, this metric measures the amount of time on average a
BE lease should wait beyond its ready time to be completed. AWRT
in each cluster is calculated based on the Eq. (23) [15].

> v()-d) - (= b)
lea;
2 v -d()

le4;

AWRT; = (23)

where, A4; is the set of BE leases on cluster j. ¢, and b; show
completion time and ready time, v(l) and d(I) represent number
of VMs and duration for lease I, respectively. Then, AWRT over all
clusters is defined as follows:

N
3" (M; - AWRT))
AWRT=2"L (24)

M;

=

1

J

5.2. Experimental setup

We use GridSim [40], a discrete event simulator, to evaluate the
performance of the scheduling policies. We consider a Grid with
3 clusters with 64, 128, and 256 processing elements with differ-
ent computing speeds (s; = 2000, s, = 3000, s3 = 2100 MIPS).
This means that in the experiments we assume computing speed
homogeneity within each cluster. This assumption helps us to con-
centrate more on the preemption aspect of resource provisioning.
Moreover, considering that the resources are provisioned in the
form of VMs, the assumption of homogeneous resources within the
clusters is not far from reality [29]. It is worth noting that the anal-
ysis provided in Sections 3 and 4 are generic and do not consider
homogeneity within cluster nodes. The cluster sizes are selected
in accordance with the average demand of the current scientific
applications [19]. Each cluster is managed by an LRM and a con-
servative backfilling scheduler. Clusters are interconnected using a
100 Mbps network bandwidth. We assume all processing elements
of each cluster as a single core CPU with one VM. The maximum
number of VMs in the generated requests of each cluster does not
exceed the number of processing elements in that cluster. We con-
sider size of each VM as 1024 MB [42].
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The overhead time imposed by preempting VMs varies based
on the type of external leases involved in preemption [39]. For
Cancelable leases the overhead is the time needed to terminate
the lease and shutdown its VMs. This time is usually much
lower than the time required for suspending or migrating leases
and can be ignored [39]. In our experiments, suspension time
(ts) and resumption time (t;) are considered as 160 and 126 s,
respectively [39]. The time overhead for migrating a VM with
similar configuration is 372.5 s [39,42].

5.2.1. Baseline policies

To the best of our knowledge, there is no elaborate policy in
the literature to be compared with proposed policies. Therefore,
we evaluate the proposed policy against other basic policies which
have been used as a benchmark in similar works [16]. These
policies are described below:

e Round Robin (RR): In this policy IGG distributes external re-
quests between different clusters in a round-robin fashion with
a deterministic sequence. Formally, this policy is demonstrated
as follows:
A=2 25
i =N (25)
e Least Rate First (LRF): In this policy the routing probability to
each cluster has an inverse relation with arrival rate of local
requests to that cluster. Hence, IGG distributes the external
requests with a random sequence between clusters. In other
words, clusters that have a larger rate of incoming local requests
would be assigned a smaller number of external requests by
IGG. A formal presentation of the policy is as follows:

T R 26
A=|1-- A (26)
DA
j=1

e Biggest Cluster First (BCF): This policy is also frequently used
in distributed systems [16]. In this policy the external requests
are submitted to a cluster with a probability proportional to its
processing capability. This policy can be formally described as
follows:

M

2. Si

i=1

A= - A. (27)

> Si

j=1i=1

We have also implemented the workload allocation policy (PAP)
with the following details:

e Weassumed thatin step 16 of Algorithm 1 the precision is 0.001
(¢ = 0.001). In fact, from the experiments we noticed that
values more than 0.001 do not change the results significantly.

e InEqgs. (18) and (19), to work out the second moment of service
time for local and external requests, we assumed that in all
clusters j = 0.5 and B; = 0.1 (i.e. CV of service time for
external requests is more than local requests which implies that
we expect more diversity in service time of external requests).

e To have a mixture of different external request types, in each
workload there is 25% of each external request type which are
distributed uniformly over the generated requests.

We have implemented two dispatch policies for PAP. The first
one in entirely random (PAP-RND in the experiments) and the
other one which is described in Algorithm 2 (PAP-RTDP in the
experiments).

5.2.2. Workload model

In the experiments conducted, the DAS-2 workload model [25]
has been configured to generate a two-day-long workload of
parallel requests. This workload model is based on the DAS-2
multi-cluster Grid in the Netherlands.

We intend to study the behavior of different policies when they
face workloads with different characteristics. For this purpose,
we change the specifications of external and local requests.
Particularly, we study situations where:

e External requests have a different number of VMs: In this case
for external requests, we keep average duration = 420 s
(similar to DAS-2 [25]), average arrival rate = 0.15; and average
local request arrival rate = 0.12. In fact, the local request arrival
rate should not be too low (in this case few preemptions take
place) and should not be too high (in this case there is no room
for external requests). However, external request arrival rate
should be more than local arrival rate.

e The duration of external requests vary: In this case for external
requests, we keep average number of VMs = 5 (similar to
DAS-2 [25]) and average arrival rate = 0.15; and average
local request arrival rate = 0.12.

e External requests’ arrival rate vary: In this case for external
requests, we keep average number of VMs = 5 and average
duration = 420 s; and average local request arrival rate = 0.12.

e Local requests’ arrival rate vary: In this case for external
requests, we keep average number of VMs = 5 and average
duration = 420 s, and average request arrival rate = 0.15.

More details about the generated workloads are mentioned in
Table 2. To generate these workloads, we modify parameters of
DAS-2 model. As shown in Table 2, the distribution of local requests
in each cluster and also the distribution of external requests
arriving to IGG are independent of each other. Based on the
workload characterization [25], the inter-arrival rate, request size,
and request duration follow Weibull, two-stage Log-uniform, and
Log-normal distributions, respectively. These distributions with
their parameters are listed in Table 2.

Pone and Pyoy; are probabilities of request with one VM and
power of two VMs in the workload, respectively. So, the mean
number of VMs required by requests is given as follows:

ﬁj = Pope + Zm (Ppowz) + 2" (1 - (Pone + Ppow2)) (28)

where r is the mean value of the two-stage uniform distribution
with parameters (I, m, h, q) as listed in Table 2 and can be found as
follows:

r_ql—l—m—}—(l—q)h
=

Additionally, the mean request duration is the mean value of
the Log-normal distribution with parameters (a, b) which is given
by:

(29)

dj=e"7. (30)

Therefore, we are able to calculate the mean request size in
Egs. (16) and (17).

Each experiment is performed on each of these workloads
separately. For the sake of accuracy, each experiment is carried
out 100 times by using different workloads and the average of
the results is reported. In all the reported results CV is less than
0.01. The results of the experiments are investigated from practical
and statistical perspectives. In statistical analyses we applied Two-
way ANOVA and T-student tests. In doing these tests, we have
ensured the normal distribution of the underlying data and equity
of variance.
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Table 2
Input parameters for the workload model (C:cluster).

Input parameter Distribution Values Site

No. of VMs Log-uniform (1=08,25<m<35h=6,0g=0.9) Grid
(I=08,m=25,h=6,q=0.9) Cc64
(1=08,m=35h=7,q=0.9) C128
(I=08,m=45,h=8,q=0.9) C256

Request duration Log-normal 3.0<a<54,b=1.7) Grid
(a=5.0,b=1.7) C64
(a=5.35b=1.7) Cc128
(a=55b=17) €256

Inter-arrival rate external requests Weibull (38<a <7.0,8=0.5) Grid
(¢ =2.0,8=0.35) c64
(¢ =1.6,8=0.35) C128
(¢ =1.2,8=0.35) €256

Average inter-arrival rate local requests Weibull (¢ =7.0,=1.1) Grid
(0.1 <a<7.0,8=0.35) C64
(0.08 <« <6.0,8=0.35) C128
(0.06 <o <4.5,8=0.35) C256

Pone N/A 0.2 Grid
0.3 All clusters

PpowZ N/A 0.5 Grid
0.6 All clusters

5.3. Experimental results

5.3.1. Number of VM preemptions

The primary goal of this paper is to express the impact of
scheduling policies on the number of VMs preempted in a Grid
environment. Therefore, in this experiment we report the number
of VMs getting preempted by applying different scheduling
policies. As we can see in all sub-figures of Fig. 5, the number of
VMs preempted increases by increasing the average number of
VMs (Fig. 5(a)), duration (Fig. 5(b)), arrival rate of external requests
(Fig. 5(c)), and arrival rate of local requests (Fig. 5(d)). In all of them
PAP-RTDP statistically and practically significantly outperforms
other policies (two-way ANOVA results in P-value < 0.001 in all
the cases).

The result of a T-test analysis between PAP-RTDP and PAP-
RND in Fig. 5(a) represents a significant difference. 95% confidence
interval (CI) of the average difference between these policies is
(2737.97, 3896.95) where P-value < 0.001. Moreover, the 95%
CI of the average difference between PAP-RND and LRF-RND is
(168.2, 1561.1) (P-value = 0.02). This indicates that PAP-RND
significantly outperforms other policies.

In Fig. 5(b), we witness a sharp decrease in PAP-RTDP when
the average run time is more than 300 s. 95% CI of the average
difference between PAP-RTDP and PAP-RND is (342, 2354.6) using
T-test (P-value = 0.012). Normally, as average duration increases,
less free space is available, therefore, the incoming local requests
result in more preemptions. A similar issue takes place in Fig. 5(c)
and 95% CI of the average difference between PAP-RTDP and PAP-
RND using T-test is (380.5, 4570) and P-value = 0.02. This means
around 60% improvement rather than LRF-RND in points more
than 300. In fact, in the case of PAP-RTDP, better sequencing of
the external requests has resulted in better balance in allocating
requests which in turn results in fewer VM preemptions.

Fig. 5(c) and (d) reveal the efficacy of PAP-RND and PAP-RTDP,
particularly where the arrival rate of external requests or the
arrival rate of local requests are increased. 95% CI of the average
difference between these policies in Fig. 5(c) is (380.5, 4570)
(P-value = 0.02) and in Fig. 5(d) for rates more than 0.12 is
(469.12, 3826.45) (P-value = 0.02). As we noted, the difference
between PAP-RTDP and PAP-RND is more remarkable in Fig. 5(c)
than Fig. 5(d). However, in general, there is a larger difference
between PAP (both RND and RTDP) and other policies in Fig. 5(d)
(95% CI of the average difference between PAP-RND and LRF-RND

is (230.7, 4823.9) where P-value = 0.03). We can conclude that
workload allocation policy (PAP) has more impact where inter-
arrival rate of local requests is high whereas the dispatch policy
has more influence where the external requests’ arrival rate is
high.

Generally, the difference between PAP (specially PAP-RTDP)
and other policies become more significant when there is more
load in the system which shows the efficiency of PAP when the
system is heavily loaded.

5.3.2. Resource utilization

In this experiment we explore the impact of preempting VMs
on the resource utilization as a system centric metric.

In general, resource utilization resulted from applying PAP-
RTDP is drastically better than other policies as depicted in Fig. 6.
In Fig. 6(a), 95% CI of the average difference of utilization between
PAP-RTDP and LRF-RND is (12.5, 14.7) (P-value < 0.001) and
the average difference between LRF-RND and PAP-RND is (2.2, 4.6)
(P-value = 0.001) using the T-test.

However, the difference is more substantial when the average
duration or arrival rate of external requests increase (Fig. 6(b) and
(c)). In Fig. 6(b), 95% CI of the average difference between PAP-
RTDP and LRF-RND for the durations more than 300 s using T-
test is (7.3, 14.5) (P-value = 0.002). Additionally, 95% CI of the
average difference between LRF-RND and PAP-RND is (0.9, 7.4)
with P-value = 0.01. Also, in Fig. 6(c), 95% CI of the average
difference between LRF-RND and PAP-RTDP is (1.5, 15.1) (P-value
= 0.02).In Fig. 6(b) and (c), the reason that LRF-RND leads to better
utilization compared to PAP-RND is that LRF-RND rejects fewer
requests and consequently utilizes resources more than PAP-RND
(see Fig. 8(d) and (f)). Expectedly, PAP-RTDP performs better than
other policies in Fig. 6(d); 95% CI of the average difference between
PAP-RTDP and PAP-RND for rates more than 0.12 is (11.3, 18.3)
(P-value = 0.001).

In Fig. 6(b), we observe that PAP-RTDP results in significantly
better utilization. The first reason is that PAP workload allocation
policy is applied which decreases the number of VM preemptions
and consequently the overall overhead. The second reason is that
PAP-RTDP is directed to prevent preempting Migratable leases (as
avaluable lease) that impose significant overhead when compared
with other lease types to migrate VMs. In other words, PAP-RTDP
dispatches a balanced mixture of all request types to different
clusters. Therefore, at the time of preemption the local scheduler
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Fig. 5. The number of VMs preempted by applying different policies. The experiment is carried out by modifying (a) the average number of VMs, (b) the average duration,
(c) the arrival rate of external requests, and (d) the arrival rate of local requests.
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Fig. 6. Resource utilization resulted from different policies. The experiment is carried out by modifying (a) the average number of VMs, (b) the average duration, (c) the
arrival rate of external requests, and (d) the arrival rate of local requests.

can preempt from BE leases that are less valuable and inherently requests become longer (duration more than 300 s). The reason is
impose less overhead to the system. In all other policies, in that when requests become longer, the useful computation time
Fig. 6(b), resource utilization becomes more stable when external dominates the overhead of VM preemptions. We can infer that VM
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preemption does not significantly affect resource utilization when
requests are long (more than 300 s).

5.3.3. Average weighted response time (AWRT)

In this experiment we investigate the impact of different
scheduling policies on the average weighted response time for BE
requests as a user centric metric.

The results of the experiment by varying different aspects of
workload are shown in Fig. 7. The results prove that PAP-RND
results in minimum average weighted response time compared
to other policies. The reason that PAP-RTDP has longer response
time than PAP-RND, is that PAP-RTDP leads to more preemptions
on Cancelable and Suspendable leases. Consequently, the average
response time of these requests increase.

According to the results, we can conclude that PAP-RND results
in better average response time for BE requests, which implies
more satisfaction of BE users. More specifically, 95% CI of the
average difference between PAP-RTDP and PAP-RND in Fig. 7(a) is
(3814.7, 4417) s (P-value < 0.001). This difference in Fig. 7(b)
is (654.1, 4158) s (P-value = 0.02) for requests longer than
300 s. However, there is not a statistically significant difference for
requests shorter than 300 s (P-value = 0.8). 95% CI of the average
difference between PAP-RTDP and PAP-RND in Fig. 7(c) is (673.8,
4753.5) s (P-value = 0.02). Finally, 95% CI of the average difference
between PAP-RTDP and PAP-RND in Fig. 7(d) is (1516.4, 3784) s
with P-value = 0.005 for rates more than 0.12.

However, in all cases, PAP-RTDP still performs significantly
and practically better than other policies. More specifically, 95%
CI of the average difference between PAP-RTDP and BCF-RND, in
Fig. 7(b), is (1863, 6456.2) s (P-value = 0.002), in Fig. 7(c) is (1665,
6115) s (P-value = 0.004), and in Fig. 7(d) is (3595.8, 7661) s
with P-value < 0.001. The reason that BCF-RND results in lower
AWRT than other policies (i.e. LRF-RND and RR), in spite of more
number of preempted VMs (Fig. 5), is that according to Fig. 8, BCF-
RND results in more migrations and rejections compared to other
policies.

Another interesting point in this experiment is that AWRT
does not change significantly by increasing the average number of
VMs in the external requests (Fig. 7(a)) or their inter-arrival rate
(Fig. 7(c)). The reason is that in both cases, by increasing average
number of VMs of the external requests or their inter-arrival
rate, more DC external requests and even more local requests
get rejected. This makes more room for other requests to fit in.
Therefore, although average number of VMs increase, AWRT does
not increase.

5.3.4. Respecting valuable users

In this experiment we measure how different scheduling
policies respect valuable users. We consider DC external requests
(Migratable and Non-preemptive) as valuable users. For Migratable
requests we measure the number of times that VM migration
happens (migration rate). For Non-preemptive external requests,
however, we consider the rejection rate as the measurement
criterion. The results of the experiments are illustrated in Fig. 8.

This experiment expresses the efficacy of PAP-RTDP policy in
migrating and rejecting less number of external requests. In all sub-
figures of Fig. 8, we can notice that PAP-RTDP dispatching policy
has substantially reduced the percentage of migrations and also
rejections. Details of the 95% CI of the average differences between
PAP-RTDP and PAP-RND, are presented in Table 3. According to
Table 3, in almost all experiments PAP-RTDP leads to statistically
and practically significant difference with PAP-RND. Except in
Fig. 8(h); Fig. 8(c) and (d) where request duration is less than
300 s. P-values in these points are 0.8 and 0.7 respectively, which
proves the null hypothesis (i.e. PAP-RTDP and PAP-RND are not
statistically different).

Table 3
95% confidence interval (CI) of the average differences between PAP-RTDP and PAP-
RND related to Fig. 8.

Figure 95% Cl P-value
8(a) (2.4,3.8) <0.001
8(b) (9.3,12.7) <0.001
8(c) (2.6,4.3) 0.001
8(d) (5.9,12.5) 0.003
8(e) (0.14,7.8) 0.04
8(f) (2.1,16) 0.02
8(g) (0.02,3.2) 0.04
8(h) Not statistically significant 0.2

Particularly, in Fig. 8(h), although PAP-RTDP is not statistically
better than PAP-RND, we observe a marginal improvement in the
rejection rate mainly for rates more than 0.12. We also witness
a sharp decrease both in Fig. 8(c) and (d) for requests that last
more than 300 s. Basically, this is because the overall number of
preemptions in that point has decreased (see Fig. 5(b)).

In Fig. 8(e) and (f) as the inter-arrival rate of external requests
increases, we observe a decrease in the migration and rejection
rates. In fact, by having more external requests the probability of
having diverse leases at each time is more. This issue reduces the
probability of migration and rejection. The issue is observed in
Fig. 8(a), (b) and that is why we notice a slight decrease mainly
in Fig. 8(b).

6. Related work

There are several research works that have investigated
“preemption” of jobs/requests in parallel distributed computing.
Scheduling a mixture of different job/request types has also been
extensively studied. Particularly, the mixture of local and external
requests have been investigated [24,14,4,3]. Meta-scheduling
has also been under through investigation in multi-cluster/Grid
computing environments. In this section, we provide a review
on the recent studies in these areas and position our work in
comparison with them.

Bucur and Epema [5] have evaluated the average response
time of jobs in DAS-2 [25] by applying local, global (external),
and combination of these schedulers in the system. They have
concluded that the combination of local and global schedulers is
the best choice in DAS-2. They have also observed that it is better
to give more priority to local jobs while the global jobs should also
have chance to run.

Assuncao and Buyya [10] have proposed policies in IGG based
on adaptive partitioning of the availability times between local
and external requests in each cluster. Consequently, there is a
communication overhead between IGG and clusters for submitting
availability information. Additionally, for security reasons some
clusters may not be willing to share their availability information.
Finally, there is a possibility that the availability information will be
imprecise which deteriorates the scheduling results. By contrast,
our scheduling method is non-observable and does not rely on
availability information of the clusters.

He etal.[17] have aimed at minimizing response time and miss-
rate for non-real-time and soft real-time jobs separately in the
global scheduler of a multi-cluster by applying a non-observable
approach. They have also recognized workload allocation policy
from job dispatching policy. Nonetheless, for job dispatching they
have applied policies such as weighted round robin policies. By
contrast, we consider a mixture of such jobs in our scenario which
are affected by local requests in each cluster. In another work, He
et al. [16] have proposed a multi-cluster scheduling policy where
the global scheduler batches incoming jobs and assigns each batch
to a cluster. In the next step, a local scheduler performs further
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Fig.7. Average weighted response time resulted from different policies. The experiment is carried out by modifying (a) the average number of VMs, (b) the average duration,

(c) the arrival rate of external requests, and (d) the arrival rate of local requests.

tuning to run the assigned jobs with minimized make span and idle
times.

Haizea [38] is a lease scheduler which schedules a combination
of advanced reservation and best effort leases. Haizea preempts
best effort leases in favor of advance reservation requests.
Sotomayor et al. [39], have also investigated the overhead time
imposed by preempting a lease (suspending and resuming a VM)
in Haizea. The similarity of our work and research carried out by
Sotomayor et al. is considering a combination of best-effort and
deadline-constraint requests in the system. However, we propose
a scheduling policy to decrease the number of VM preemptions in
the system whereas they focus on the overhead aspects of lease
preemption.

Scojo-PECT [37] is a preemptive scheduler that aims at making
a fair share scheduling between different job classes of a Grid. The
approach is applying coarse-grain time sharing and suspending
VMs on disk. Nonetheless, they have not considered the overhead
of suspending VMs on disk in their evaluations. The main difference
with our work, however, is the goal of scheduling. We aim to
minimize the number of VM preemptions whereas Sodan et al.’s
goal is fair share scheduling.

In [31] authors have proposed a prediction method for
unavailable periods in fine-grained cycle sharing systems where
there are mixture of local jobs and global (guest) jobs. In [35]
a variation of multi-level feed-back scheduling policy is applied
for a mixture of short and long jobs in a multi-Grid environment
with the goal of minimizing response time. In [7] a multi-level
reconfiguration manager is proposed in a time-shared multi-
Grid where external (Grid) jobs and local jobs coexist. The
reconfiguration is performed based on the local load level.

Kettimuthu et al. [21] focused on the impact of preempting
parallel jobs in supercomputers for improving the average and
worst case slow down of jobs. The authors also suggested a
preemption policy, which is called Selective Suspension in which
if the suspension factor of an idle job is sufficiently more than
the running jobs, then it can preempt the running job. However,

the authors have not specified how to minimize the number of
preemptions; instead, they decide when to do the preemption. The
proposed policy is starvation free since it operates based on the
response ratio of jobs.

Amar et al. [1] have added preemption to cope with the non-
optimality of the on-line scheduling policies. In the preemption
policy jobs are prioritized based on their remaining time as well
as the job’s waiting cost. Schwiegelshohn and Yahyapour [34]
have investigated different variations of preemptive first-come-
first-serve policy for an on-line scheduler that schedules parallel
jobs where the jobs’ run times and end times are unknown.
Margo et al. [28] have leveraged a priority scheduling based
on preempting jobs for Catalina (San Diego Super-Computer
scheduler) to increase the utilization of the resources. They
determine the priority of each job based on the expansion factor
and number of processing elements each job needs.

7. Conclusions and future work

In this research we explored how we can minimize the side-
effects of VM preemptions in a federation of virtualized Grids such
as InterGrid. We consider circumstances that local requests in each
cluster of a Grid coexist with external requests. Particularly, we
consider situations that external requests have different levels of
QoS (i.e. some external requests are more important than others).
For this purpose, we proposed a preemption-aware workload
allocation policy (PAP) in IGG to distribute external requests
amongst different clusters in a way that minimizes the overall
number of VM preemptions that take place in a Grid. Additionally,
we investigated on a dispatch policy that regulates dispatching of
different external requests in a way that external requests with
higher QoS requirements (more valuable users) have less chance
of getting preempted. The proposed policies are knowledge-free
and do not impose any communication overhead to the underlying
system.
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Fig. 8. Respecting deadline constraint (more valuable) users resulted from different policies. The experiment is carried out by modifying (a), (b) the average number of VMs,
(c), (d) the average duration, (e), (f) the arrival rate of external requests, and (g), (h) the arrival rate of local requests.

We compared the performance of the proposed policies with
variety of other policies. The results of the experiments indicate
the PAP-RND and specifically PAP-RTDP significantly decreases the
number of VM preemptions which in turn affects both user centric
and system centric criteria. We observed that PAP-RTDP resulted in
atleast 60% improvement in VM preemptions compared with other
policies. This decrease in number of VM preemptions improves
the utilization of the resources and decreases average weighted

response time of the external requests (by more than 50%). PAP-
RTDP, particularly, is better for more valuable external requests
and effectively results in less VM preemption for valuable external
requests. Although PAP-RTDP in general preempts fewer number
of VMs, PAP-RND results in better average response time for
BE requests. In fact, in the case of PAP-RTDP, since most of the
preempted leases are BE, it does not result in minimum average
response time. This indirectly represents the efficacy of PAP-RTDP
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for more valuable external requests. We also noticed that changing
request size is not that effective on the performance of scheduling
policies.

Although we carried out this research in the context of
federated Grids, we believe that it is extensively applicable in
other lease-based Grid/Cloud resource providers where requests
with higher priority (such as local or more valuable requests)
coexist with other requests. One conceivable application is in
Cloud providers (IaaS providers) where there are certain priorities
between different users; and resource owners tend to minimize
the number of VM preemptions both for more user satisfaction
and also system utilization purposes. For instance, Spot instances
in Amazon EC2 can be canceled if the price goes beyond the
user bid. However, by applying an appropriate preemption-
aware scheduling policy Amazon can minimize the number of
preemptions which causes more (spot) user satisfaction and, at the
same time, more resource utilization and even more revenue for
the company.

There are several avenues of future works that could be pursued
as the extensions of this research. One interesting issue is how IGG
can decrease the response time for BE requests in its scheduling.
Another interesting extension would be considering co-allocation
of the incoming external requests on different clusters to further
decrease the number of VM preemptions.
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