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a b s t r a c t 

The emergence of Network Function Virtualization (NFV) enabled decoupling network functionality from 

dedicated hardware and placing them upon generic computing resources. Moreover, the introduction of 

edge computing paradigm which utilized the resources at the network edges brings reduced end-to-end 

latency. With these technologies, Virtualized Network Functions (VNFs) can be placed in anywhere either 

in the central clouds to utilize more resources or in the network edges to reduce the end-to-end latency. 

In this work, we propose a dynamic resource provisioning algorithm for VNFs to utilize both edge and 

cloud resources. Adapting to dynamically changing network volumes, the algorithm automatically allo- 

cates resources in both the edge and the cloud for VNFs. The algorithm considers the latency requirement 

of different applications in the service function chain, which allows the latency-sensitive applications to 

reduce the end-to-end network delay by utilizing edge resources over the cloud. We evaluate our al- 

gorithm in the simulation environment with large-scale web application workloads and compare with 

the state-of-the-art baseline algorithm. The result shows that the proposed algorithm reduces the end- 

to-end response time by processing 77.9% more packets in the edge nodes compared to the application 

non-aware algorithm. 

© 2019 Elsevier Inc. All rights reserved. 
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1. Introduction 

In the past decade, cloud computing has attracted huge atten-

tion from both industry and academia that enables utility-based

computing resource provisioning with the advancement of virtual-

ization technologies ( Buyya et al., 2009 ). Physical resources, such

as CPU cores, memory, storage, and networks, are virtualized and

leased to cloud tenants who pay for only their usage instead of

buying physical machines and paying for up-front installation fees.

Application providers can rent only necessary amount of the re-

sources from cloud providers in the initial deployment stage and

easily scale up the application when more resources are necessary

to support more users and data. 

In addition to the advancement of cloud computing, a new

paradigm of edge computing has emerged that utilizes resources

at the edge of the network ( Hu et al., 2015 ). In edge comput-

ing, applications and services are fully or partially served upon

resources located on the edge of the network, instead of entirely

serviced by centralized resources in cloud data centers. It reduces
∗ Corresponding author. 
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he end-to-end network delay by responding to the request from

dge nodes instead of traversing the core network to reach the

loud data center. Also, it can reduce the network traffic between

he edge and the central cloud by preprocessing and filtering the

aw data generated by data source especially for the Internet-of-

hings (Io T) and streaming applications. Although edge comput-

ng has brought many benefits, its limited resource capacity causes

any challenges for efficient resource management. As the edge

odes have significantly limited resources compared to the cen-

ral clouds, resource allocation and provisioning among edges and

louds are challenging to efficiently utilize both resources while in-

reasing the benefits of edge computing. 

Network Function Virtualization (NFV) ( ETSI, 2018a ) has been

nabled from the advancement of virtualization technologies

ncluding the emergence of Software-Defined Networking (SDN)

 Son and Buyya, 2018 ) and the increased hardware performance.

raditionally, network functions (e.g., firewalls, proxy servers, and

ntrusion detection systems) run on powerful and proprietary

ardware dedicated for the particular network function. Network

roviders have to purchase the purpose-built device only for a

etwork function and upgrade periodically as the network traffic

rows up. Instead of using dedicated hardware, a Virtualized

etwork Function (VNF) utilizes common computing resources as
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xploited in cloud computing in NFV paradigm. A VNF runs upon

eneric computing resources to provide the same network func-

ionality. Similar to Virtual Machines (VMs) in cloud computing,

NFs can be elastically scaled and migrated to different physical

achines that enables dynamic and efficient resource provisioning

ased on the actual demand. Network providers running their own

loud data centers can utilize the cloud resources to place VNFs. 

Although most research on resource allocation for VNFs focus

n placing on centralized data centers ( Herrera and Botero, 2016 ),

tilizing edge resources for VNFs has been recently started and ex-

lored in the literature ( Boubendir et al., 2016; Dominicini et al.,

017; Cziva and Pezaros, 2017 ). Placing VNFs in edge nodes carries

ut benefits for end users, application providers, and network op-

rators. End users can get the response faster by placing VNFs in

he edge nodes, as the network delay is reduced by avoiding addi-

ional network transmission from the edge to the central cloud for

he network function. Reducing network latency obviously brings

enefits for network providers and application providers as they

an provide a better quality of service (QoS) to their respective

ustomers. 

However, the resource limitation on edge nodes brings chal-

enges on resource management for VNFs. As we cannot place ev-

ry VNF only onto edge nodes due to the limited capacity, the ini-

ial resource selection has to be carefully decided between edge

nd cloud resources for a VNF. For example, VNFs for latency-

ensitive applications can be placed on edge nodes, whereas VNFs

or less sensitive applications can be placed on cloud data cen-

ers. A recent work has explored the optimal placement for VNFs

n edge and cloud computing ( Cziva et al., 2018 ). 

After the initial placement, it is also important to provision the

esources dynamically adapting to the dynamic changes of the net-

ork loads. Network traffics passing through a VNF is dynamically

hanging depending on the number of connections and the vol-

me of requests. Therefore, the provisioning method must be able

o adapt to the change of the network traffic which can be sig-

ificantly different from the initial placement. The method has to

onsider the limited resource size of the edge nodes and utilize the

loud resources when the required resources for a VNF exceeds the

apacity in edge nodes. 

In this paper, we propose a dynamic resource provisioning

ethod for VNFs in the edge cloud environment. If no more re-

ource is available in edge nodes, our algorithm creates a new VNF

n the cloud data centers to distribute the network load. Further-

ore, we consider the latency requirement of different applica-

ions utilizing the same VNF. Packets for latency-sensitive appli-

ations are forwarded to the original VNF in edge nodes up to

he capacity limitation in order to maximize the benefit of edge

omputing. Packets for less sensitive applications divert to the new

NFs created in clouds to utilize abundant resources provided by

he cloud data center. 

The key contributions of this paper are: 

• a dynamic resource provisioning methods for VNFs utilizing

both edge and central cloud resources to deal with the resource

overloading; 

• a latency-aware VNF placement algorithm in edge clouds which

selects edge resources over clouds for time-critical applications;

• an architectural design that manages both edge and cloud re-

sources to provide minimum latency time for critical applica-

tions; 

• a performance evaluation of the proposed algorithm through

detailed simulation experiments in order to depict the effec-

tiveness and improvements over the baseline algorithm. 

The rest of the paper is organized as follows: Section 2 explains

he background of edge computing and NFV, followed by exploring

elated works in Section 3 . We propose the system architecture in
ection 4 and the new algorithm in Section 5 . Section 6 describes

he experiment environment and performance results evaluating

he proposed algorithm. Finally, Section 7 concludes the paper

ith the future directions. 

. Background 

In this section, we explain the background of edge computing,

etwork Function Virtualization, and placing VNF in edge comput-

ng environment. 

.1. Edge computing 

In edge computing environment, applications and service func-

ions can be placed in edge nodes which can reduce the latency

nd the onward network traffics. The service latency can be re-

uced by placing the applications and service functions near to

he end users. Instead of traversing to the central cloud resources

ver the high-latency WAN, edge nodes can instantly respond to

he user request with minimum network latency. Since the service

s placed next to the end user, network latency decreases. A sim-

lar concept has been widely adopted in the industry in contents

elivery network (CDN). 

Another benefit is to reduce the size of the network traffics. For

xample, in Big-data and IoT applications, edge nodes can perform

ltering and data transformation tasks before transmission which

an reduce the number of packets and their sizes. By filtering un-

ecessary data in edge nodes, the number of jobs sending onward

o the central computing facility (i.e., cloud data center) can be re-

uced. Also, data transformation in edge nodes can compact the

ata size. 

Although edge computing can improve the application end-to-

nd latency and network efficiency, it has limited resources com-

ared to the central clouds. Thus, it is critical to optimize resource

llocation and provisioning to maximize the benefit of edge com-

uting. In this work, we consider edge nodes to place network

unctions to reduce the latency for time-critical applications. 

.2. Network Function Virtualization (NFV) and Service Function 

haining (SFC) 

Network functions require high throughput and low latency in

ts processing, so that network providers had to exploit expen-

ive dedicated hardware only to process network functions. How-

ver, the advancement of virtualization technologies and comput-

ng performance, network functions can be virtualized and served

hrough commodity computing resources. Instead of buying high-

ost purpose-built network equipment, network operators can pro-

ess the same function in virtual machines running in generic

loud computing resources. 

Although it is feasible to run Virtualized Network Functions on

ommodity hardware, resource management for VNF becomes crit-

cal in order to maximize resource utilization and minimize opera-

ional cost. For example, the resource amount for a VNF has to be

ecided to provide the required performance. Also, where to place

 VNF becomes another issue that need to be addressed with a

mart decision for the minimum network delay and network tra-

erse. Even if the initial placement was optimal, VNF should be

ble to scale up and down based on the dynamic volume of the

etwork traffic. For increasing network load, a VNF has to be able

o scale up and/or duplicated to be able to process all the increased

raffic on time without dropping packets. 

In many cases, the series of network functions, which is also

alled service functions (SF), create a chain to serve the applica-

ion. Service Function Chaining (SFC) is a chain of various network
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Table 1 

Summary of related works in VNF placement and provisioning. 

Work SF chaining Dynamic provisioning Domain Parameters Application consideration 

Algorithm H ( Xia et al., 2015 ) � x Single data center Chain’s connectivity NA 

Yang et al. (2016, 2018) x � Edges Latency requirement Mobile application 

ABA ( Bhamare et al., 2017 ) � � Edges and clouds Network traffic and affinity NA 

Cziva et al. (2018) � � Edges and clouds Latency NA 

Our approach � � Edges and clouds Real-time utilization and latency Time-critical application 
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functions for certain traffics which performs various network func-

tionalities ( Pham et al., 2018 ). For example, an SFC can contain a

sequence of NAT, Firewall, Intrusion Detection System, and Proxy,

in which the packets for an application should go through every

network function in the chain. As the network traffic has to go

through the chained functions in an SFC, it is critical to consider

the network affinity between the connected functions in SFC place-

ment problem ( Xia et al., 2015 ). 

Utilizing NFV technology in edge and cloud environment has

been explored in many studies ( Boubendir et al., 2016; Dominicini

et al., 2017; van Lingen et al., 2017; Cziva and Pezaros, 2017; Rig-

gio et al., 2018 ). Placing a VNF in edge nodes can reduce the addi-

tional network delay brought by the network function. If all VNFs

are placed in a central cloud, extra delays are expected for packets

to traverse through the backbone network to reach the cloud data

center before reaching to the application provider. VNF in edge

nodes can minimize the extra latency. 

However, computing resources at edge nodes are limited, and

workloads are dynamic with little or no prior knowledge. If the

number of network requests increases, and the VNF cannot handle

them properly, it is necessary to provision cloud resources with

more resources to serve the network function. In this work, we

propose a novel algorithm to dynamically provision the edge and

cloud resources to scale VNFs adapting to the dynamic workload.

We use the network latency requirement of different applications

to decide which resource to be exploited between edge and clouds

for a specific type of applications. 

3. Related work 

A number of studies focused on VNF placement and resource

management algorithm in the literature as depicted in Table 1 .

Xia et al. (2015) studied VNF placement algorithms for NFV chain-

ing in a data center. Considering the connectivity between VNFs,

the authors proposed an algorithm to assign VNFs within the same

function chain onto the network pod in the topology to reduce the

network traffic between the VNFs in a chain. The heuristic algo-

rithm selects a pod within a data center to place a VNF, however, it

has no consideration for the distributed multi-cloud or edge cloud

environments. 

Yang et al. (2016, 2018) proposed dynamic resource allocation

framework with virtualized edge resources for mobile applications.

The authors consider mobile applications that can dynamically

move around multiple mobile edge-clouds and decides to increase

or decrease the amount of resource for the application. The pro-

posed framework also includes the re-optimization methods which

periodically migrate and scale the existing functions to consolidate

the resources and reduce the operational costs. Although the study

explored the resource placement and dynamic provisioning prob-

lem thoroughly, the work has no consideration in Service Function

Chaining and different application requirements sharing the same

network functions. In contrast, our work focuses on provisioning

VNFs consisting of a network function chain and tries to minimize

the network latency for a time-critical application among various

applications. 

Optimal placement for VNFs in a multi-cloud environment has

been studied by Bhamare et al. (2017) which considers the edge
loud environment. The authors presented the analytical model

nd a heuristic algorithm, named ABA (affinity-based allocation)

or the service function chain placement problem in the multi-

loud environment. The proposed algorithm exploits the fraction

f the network traffic for a VNF and their affinity in order to de-

ide where to place the VNF. Evaluation results showed that their

ffinity-based heuristics can outperform other simple heuristics.

his study focuses on the initial placement of VNFs in the multi-

loud environment, whereas our work is for provisioning resources

ynamically to adapt to the ever-changing network traffic after the

nitial placement. 

More recently, Cziva et al. (2018) presented a VNF placement

lgorithm at the network edge that considers network latency.

he proposed work considers dynamically relocating end-users

n multi-access edge computing environment. Given the network

opology, the edge resources, and connection latency, the algo-

ithm decides VNF to resource mapping: which VNF to be placed

n which resources. The optimal solution for initial placement is

resented with integer-linear programming model (ILP). In addi-

ion, a dynamic extension is proposed to decide the frequency of

NF migration and reallocation in case of user’s movements and

atency changes. Although the proposed method can result in the

ptimal solution, the cost and complexity of running the ILP al-

orithm can be significantly high in practice. Instead, we propose

 heuristic algorithm for dynamic scaling and load-balancing for

NFs in the edge-cloud environment along with the latency-aware

NF forwarding algorithm in this paper. 

Also, many platforms have been proposed for utilizing edge re-

ources to serve VNFs ( Mijumbi et al., 2016; Taleb et al., 2017 ).

an Lingen et al. (2017) proposed a model-driven approach for

ridging cloud and edge for NFV and fog computing. The model

s based on ETSI’s MANO architecture ( ETSI, 2018b; Mijumbi et al.,

016 ) and includes fog computing as a part of the convergence.

he platform can manage IoT services across the cloud and the

dge. Riggio et al. (2018) also proposed a MANO based framework,

amed LightMANO, to deploy NFV in a distributed environment

uch as Multi-access Edge Computing environment. The proposed

latform is implemented as a proof-of-concept on a small scale.

he authors also explored the challenges of NFV deployment in

ultiple, distributed, and heterogeneous environment. 

VirtPhy is another NFV orchestration architecture for edge data

enters ( Dominicini et al., 2017 ). The proposed architecture is ca-

able of programming the orchestration strategy with the informa-

ion of the network topology for geographically distributed small

ata centers in edge computing. The authors implemented a proof-

f-concept system using OpenStack ( OpenStack Foundation, 2017 ).

heir architecture fits in ETSI MANO standard. 

Cziva and Pezaros (2017) proposed a container-based NFV

latform, named Glasgow Network Functions, to place and migrate

 network function in the network edge nodes as a container.

he platform can orchestrate the containerized VNFs to save

ore network utilization and reduce the network latency. The

ystem is implemented upon various existing technologies, such as

penDaylight SDN controller and OpenVSwitch upon Linux kernel.

he authors also explored the VNF migration techniques with the

pecified timeline. 
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Fig. 1. VNF provisioning system architecture. 
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In this work, we propose a similar architecture for utilizing NFV

n edge cloud environment. Our architecture enables that the edge

esources can be utilized and orchestrated for NFV in addition to

he central cloud. In addition to architecture, we focus on the de-

elopment of new resource management algorithm which can uti-

ize both edge and cloud resources. 

. NFV-enabled edge-cloud architecture 

As we discussed in the previous section, various frameworks

ave been proposed in the literature for enabling NFV in edge-

loud environment ( Boubendir et al., 2016; Dominicini et al., 2017;

an Lingen et al., 2017; Cziva and Pezaros, 2017; Riggio et al., 2018 ).

uilding on them, we propose a system to dynamically scale VNFs

n edge-clouds by duplication and forward network traffic to the

uplicated VNFs with the latency information in the application

equirement. Fig. 1 shows the proposed architecture. The system

eceives SFC requests consisting of the source, destination, and

NF chain of the application, which also includes the latency re-

uirement of the different applications. For example, an application

ith a tighter delay requirement is classified as a latency-sensitive

pplication. Thus, network packets for this application have to be

rocessed with priority. We compare the latency requirement of

ifferent applications in order to figure out if the application is

ore delay-critical than others. If the delay requirements of an ap-

lication is lower than the median of all applications sharing the

ame VNF, the application is regarded as time-critical for the VNF. 

The system periodically monitors the current status of edge and

loud resources. If an SLA violation and an overloaded VNF is de-

ected, it increases the size of VNF by duplicating it. If the edge

as enough resource, it creates the duplicated VNF in the edge

ode, otherwise in clouds. Once the VNF duplication process is

ompleted, the additional VNF can be used for load distribution

hrough VNF Packet Forwarder. The forwarder updates forwarding

ules in SDN switches across the core network, edge, and clouds.

n order to decide which VNF to use, the system measures and an-

lyzes the network latency from the source in the service chain to

he alternative VNFs. The analyzed information is used to deter-

ine the alternative VNF in the forwarder module. 
Fig. 2 shows an example scenario of the proposed system. Ini-

ially, two applications (App1 and App2) are served through the

etwork managed by our system. Application servers are located

n the internet whereas the end-users are in the edge site. Lim-

ted resources are available to run the VNF in the edge. The VNF in

he edge site has to be passed through for both applications. 

Once the network traffic going through the VNF increases, the

apacity in the edge resources might not be enough to process all

he increased network traffic. In this case, we have to utilize the

loud resource to create a duplicated VNF. Assuming the VNF is

tateless, we can utilize either the original VNF or the duplicated

NF for same functionality regardless of the application. The pro-

osed system determines which VNF to use by analyzing the la-

ency from the end-users to each candidate VNF, as well as the

pplication requirement. In this example, we assume that App1 is

ore time-critical than App2, and the original VNF in the edge site

as less delay than the duplicated VNF in the cloud. With the anal-

sis, the system set the forwarding rules in every site to forward

he packets for App1 to the original VNF, and the packets for App2

o the duplicated VNF. The algorithm details are explained in the

ollowing section. 

. Latency-aware VNF provisioning for edge clouds 

With the required latency information provided by the appli-

ation providers, network operators can decide which resources to

e exploited for the VNFs between edge and cloud. In principle,

etwork packets for delay sensitive applications are sent through

NFs in edge nodes as far as the resources provided by edge nodes

an handle the volume of the network traffic. Less sensitive packets

an be distributed to the cloud data center to reduce the load of

dge nodes. In this section, we describe our proposed algorithms

n detail with pseudo codes and baseline algorithms including the

tate-of-the-art in the literature. 

.1. Latency-aware VNF provisioning algorithm 

We propose a VNF provisioning algorithm in edge cloud

omputing environment which considers different latency require-

ents of applications. Although VNF placed in edge nodes can
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Fig. 2. VNF placement example in edge clouds. 
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reduce the network latency, computing resources are limited at

edge nodes. On the other hand, the central cloud data centers can

provide a large amount of resources for VNFs, but the network

traffic must go through a number of extra hops to reach the cloud

data center. Considering these trade-offs, we propose a latency-

aware VNF provisioning algorithm to utilize edge resources for

latency-sensitive applications while using clouds for less sensitive

applications. 

Our algorithm utilizes edge resources if the resources are

enough to provide the amount of request. In the case of resource

outage in the edge, the algorithm tries to divert some workloads

to the cloud in order to distribute the load onto VNFs with enough

resources. For latency-sensitive applications, we still utilize edge

resources for meeting the required latency time. Less latency-

sensitive requests are redirected to VNFs placed in the central

cloud to utilize its adequate resources. 

Algorithm 1 describes the overall process of the proposed al-

Algorithm 1 VNF auto-scaling and provisioning for edge-clouds. 

1: Data : V NF : Currently running VNFs. 

2: for each VNF v in V NF do 

3: if v is over-utilized then 

4: loc ← Location of v (edge or cloud); 

5: if loc.hasAvailableResource( v ) then 

6: v ′ ← duplicate VNF v in loc; 

7: else 

8: v ′ ← duplicate VNF v in cloud; 

9: end if 

10: Update latency map for v to add v ′ ; 
11: end if 

12: end for 

gorithm. At first, the algorithm detects the overloaded VNFs that

need more resources due to the dynamically increased amount

of the network packets. The resource utilization of VNFs are con-

stantly monitored and periodically detects the VNF overload, e.g.

every 5 min. Once a VNF overload is detected, the algorithm dupli-

cates the VNF for load-distribution in the same location if there are

available resources. If the VNF located on the edge node is over-

loaded, for example, the algorithm tries to create another VNF in

the edge. If the available resource in the edge is enough for the

additional VNF, the edge node will run another VNF for the same

network function, and the network packets are forwarded to either

VNF regardless of the application’s latency requirement. However,

in the case if the resource is not enough in the edge, the new VNF

will be placed in the cloud which increases network delay. In ei-
her case, the algorithm updates a latency map which will be used

or forwarding the network packets. 

If the duplicated VNFs are placed in different locations, the

NF forwarder considers the application requirements to decide

here to forward the network packets. When the duplicated VNF

s placed in a different location, our algorithm creates a network

atency map between the source of the packets and the VNFs in

ifferent locations to be used in the forwarder. It measures the net-

ork latency (e.g., ping time) from the source node of the network

acket to the VNF in the edge and in the cloud. By preparing the

atency map at the time of VNF duplication, the forwarder can use

he latency information to decide a VNF to forward the network

acket. 

In order to keep the latency information between source nodes

nd the new VNF, we update the network latency map from the

ource node to different VNF alternatives. Please note that updat-

ng latency map is only performed right after the duplication, in

rder to reduce the overhead at the packet forwarding. As we pre-

are the latency map and sort them only at the time of VNF du-

lication, the VNF forwarder can simply select the preferred VNF

mong duplicated ones. Algorithm 2 presents the detailed pseudo-

lgorithm 2 Build latency map for a duplicated VNF. 

1: Input : v n f : Original VNF to be scaled. 

2: Input : v n f ′ : Newly created VNF duplicated from v n f . 

3: Output : V all (c) : List of duplicated VNFs sorted by latency. 

4: C ← All SFCs passing through v n f ; 

5: for each SFC c in C do 

6: V all (c) ← Duplicated VNFs of v n f for c; 

7: src ← Source node in c sending a packet to v n f ; 

8: l(src, v n f ′ ) ← Get latency from src to v n f ′ ; 
9: V all (c) .insert( V ′ , l(src, v n f ′ ) ); 

10: sort ( V all (c) , key= l(src, v ) for v ∈ V all (c) ); 

11: end for 

ode for building a latency map. The algorithm has the original

NF and its duplicated alternative as input and measures the la-

ency from the source node of all SFCs passing through the VNF. In

etail, the algorithm starts to retrieve all SFCs that contain the in-

ut VNF. For each chain, we retrieve the previous latency map and

et the source node of the chain which sends the packet to the

NF. Once we know the source node, we can measure the network

atency from the source node to the newly duplicated VNF. The

ew VNF is inserted to the latency map along with the measured

atency. At last, the map is sorted by the latency, from lower la-

ency to higher latency, so that the forwarder can choose the front

nes in order to reduce the latency. 
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Once duplicating VNFs and building a latency map are com-

leted, newly arrived packets can exploit the new VNFs. VNF for-

arder is in charge of distributing network packets whose destina-

ion is the VNF. If the VNF has no duplicate, it simply forwards all

ackets to the original VNF. If the VNF has been duplicated from

he previous monitoring and auto-scaling process, the forwarder

as to decide which VNF alternative to be used for a packet. When

he network packet arrives at the forwarder, the forwarder decides

hich VNF to be selected by looking up the latency map and the

pplication’s latency requirements. 

The proposed VNF selection algorithm to forward a network

acket is presented in Algorithm 3 . Latency-critical packets are for-

lgorithm 3 Latency-aware VNF selection algorithm. 

1: Input : c: VNF chain to be forwarded. 

2: Input : v n f : Original VNF for c with duplicates. 

3: Input : C t : Count threshold for latency-sensitive traffic. 

4: Output : v n f ′ : Selected VNF from alternatives of v n f . 

5: q ← Get count-based priority queue of duplicated VNFs for

v n f ; 

6: if q is empty then 

7: V v n f ← Get all duplicated VNFs of v n f ; 

8: for each VNF v in V v n f do 

9: q .insert( v , v count =0); 

10: end for 

11: end if 

12: v n f ′ ← q .poll(); 

13: if c is latency sensitive then 

14: V all (c) ← Latency-sorted VNFs lists for c; 

15: for each v n f ′′ in V all (c) do 

16: if | count(v n f ′′ ) − count(v n f ′ ) | < C t then 

17: v n f ′ ← v n f ′′ ; 
18: break; 

19: end if 

0: end for 

21: end if 

2: q .insert( v n f ′ , v n f ′ count +1); 

arded to the VNFs with lower latency whereas packets for la-

ency insensitive applications are forwarded to VNFs with higher

atency value in the map. Note that the network load balancing

s performed through the forwarder regardless of the application

atency requirements. The proposed algorithm considers the vari-

us network latency requirements as well as the measured delay

o VNFs in different locations in the process of the load balancing. 

.2. Baseline algorithm 

In order to evaluate our algorithm, we implemented a baseline

lgorithm incorporated with the state-of-the-art work recently pre-

ented in Cziva et al. (2018) . The authors utilize both edge and

loud resources to provision VNFs. In the case of VNF overload-

ng in edge nodes, the algorithm migrates VNFs to the central

loud in order to utilize more resources. However, the work is in

ack of consideration in application’s latency requirements which

an restrict the migration to cloud. Migrating all network traf-

cs to clouds regardless of the application’s latency requirement

an lead to failures in responding within the boundary time for

atency-sensitive applications. Our algorithm considers different la-

ency requirements of the applications which makes the workload

or latency-sensitive applications run in the edge nodes to keep

heir short latency, whereas the other workload to be redirected

o cloud to utilize its adequate resources. The baseline is noted

s Cloud + Edge algorithm in the following section for simplicity,
hich denotes that the algorithm utilizes both cloud and edge re-

ources but without consideration of latency requirements. 

. Performance evaluation 

We evaluated the proposed algorithm in a simulation environ-

ent to test its feasibility and effectiveness. For evaluation envi-

onment setup, we use CloudSimSDN ( Son et al., 2015 ), a CloudSim

 Calheiros et al., 2011 ) based simulation framework to support SDN

nd network functionalities. As the original CloudSimSDN does not

upport simulating multiple cloud data centers and network traf-

cs, we extended and implemented several components to enable

valuating multi-cloud environment. The extended simulation soft-

are is able to simulate inter-cloud network transmissions, VNF

reation and migration, and VNF forwarding policies. In this sec-

ion, we present the experiment simulation environment, applica-

ion configuration, and the evaluation results. 

.1. Environment, configuration, and workload 

We created an edge site, a cloud data center, and the internet

o simulate internet applications in the simulation environment as

hown in Fig. 3 . Application servers are located on the internet,

hich receives requests from end-users at the edge site. The edge

ite also has limited computing resources which can be utilized to

lace VNFs. A cloud data center is created with a large amount of

esources so that VNFs can be running in the cloud if the edge site

s lack of resources. In edge and cloud site, we put several network

witches to build a local canonical tree network topology. Wide

rea network is set up to interconnect the edge, cloud, and the

pplication servers on the internet. Network latency between hops

s set to 1 ms for local area networks (within edge and cloud) and

00 ms for wide area networks to simulate the delay. 

Upon the physical settings, two applications are prepared to

epresent latency-sensitive and normal applications. App 1 is a

atency-sensitive application with tight delay requirement, whereas

pp 2 has a higher latency requirement. Each application consists

f 12 servers placed on the internet to respond to the user re-

uests. End-users are placed in the edge site and send application

equests to the application servers. Network packets from an end-

ser to the application server passes through a chain of the net-

ork functions. We put a firewall for all packets from the end-user

o the application server regardless of the application. The firewall

s initially placed in the edge node. In short, a network packet is

enerated from the end-user in the edge site and then sent to the

rewall in the same edge site. After processing in the firewall, it is

ent to the application on the internet passing through the wide

rea network with higher latency. Please note that VNFs can be

laced either in the edge node or in cloud resources. The response

ackets from the application server also pass through an Intrusion

etection System before arriving at the end-user. These VNFs are

hared by two separate applications. 

We generated two workloads to submit to each application.

he workload is generated with a three-tier application model

 Ersoz et al., 2007 ) with the 24-h Wikipedia traces available from

age view statistics for Wikimedia projects . Approximately 1.5 to 2

illion requests are sent to each application server for 24 h with

aried inter-arrival rate derived from the model. 

.2. Analysis of latency 

We measured the response time of every request in the work-

oad. Fig. 4 a shows the average response time of all workloads re-

ardless of the application with different VNF provisioning algo-

ithms. The first algorithm (Cloud-only) indicates the result with

nly cloud resources exploited without using any edge resources.
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Fig. 3. Testbed configuration for simulation-based evaluation. 

Fig. 4. Average response time of workloads in different algorithms. 
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VNFs are created and provisioned only in the cloud resources, thus

the average response time is significantly increased due to the ad-

ditional delay that all the packets have to be transmitted to the

central cloud. The next two results are with exploiting edge re-

sources along with the cloud resources with the baseline algo-

rithm (Edge + Cloud) and the proposed algorithm (Latency-aware).

For both cases, the average response time is reduced to approxi-

mately 0.8 s compared to 1.287 s of the Cloud-only case. As the

edge resources are utilized to process a part of the network traf-

fic, those packets processed in the edge contribute to reducing the

average response time. Overall response time for both applications

is almost same for the baseline (Edge + Cloud) and the proposed

latency-aware algorithm because the total number of packets for-

warded to the edge resources are similar for load balancing in both

algorithms. 

When we measure the average response time for each appli-

cation (see Fig. 4 b) separately, the average delay is differentiated

between applications. For the latency-sensitive application (App1),

the average response time is reduced to 771 ms with the proposed

algorithm. Compared to the baseline, it is 31 ms faster response for

the time-critical application. Although the improvement percent-

age (3.9%) in this experiment scenario is relatively small, the algo-

rithm has a potential for different scenarios on the different scale.

Time-critical applications such as cyber surgery and road traffic

management system could be benefited from the improvement if
he proposed concept can be adopted to the application with re-

nement. However, the average response time of App2 is increased

o 847 ms with our algorithm. As we explained, the proposed algo-

ithm forwards more network packets from the critical application

o the edge resources which help to reduce the latency. In con-

rast, a smaller number of packets can be processed in edge nodes

or App2 for load-balancing purposes because the resources have

een already taken by App1’s packets. 

.3. Analysis of packet proportion 

We also measured the proportion of the total network pack-

ts which are processed in either edge or cloud. Fig. 5 shows the

ercentage of the network packets processed in edge or cloud re-

ources. When we placed VNFs only in clouds without utilizing

ny edge resources, obviously all packets are processed in clouds

egardless of the application. When we utilize edge and cloud re-

ources together (Edge + Cloud), where edge resources are utilized

ithout knowledge of latency requirement, the similar portion of

he packets of App1 and App2 are processed in edge resources. In

etail, 43.7% of App1 packets and 43.9% of App2 packets are for-

arded to the VNFs in edge nodes, whereas the rest of the packets

re processed in the cloud. 

In contrast, 78.1% of App1 packets are processed in edge re-

ources with our latency-aware VNF provisioning algorithm. In
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Fig. 5. Proportion of the network packets processed either in the edge or the cloud 

with different algorithms. 
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ther words, 77.9% more packets are forwarded to edge resources

ompared to the baseline results. As more portion of packets is

rocessed in the edge resources, the latency-sensitive application

App1) results in reduced delay on average for the end-users. On

he other hand, only 10% of App2 packets are processed in the

dge, and the other 90% is forwarded to the cloud. Therefore, the

etwork delay for App2 would be increased as a trade-off which is

cceptable and expected since App2 is a latency-insensitive appli-

ation. 

. Conclusions and future work 

Utilizing edge resources for Network Function Virtualization

rings many advantages for end-users who needs a tight network

elay requirement. Network operators can place VNFs in edge re-

ources, instead of central clouds, in order to reduce the additional

etwork delay. However, resource capacity in the edge is signifi-

antly limited compared to the cloud. Thus, it is critical to man-

ging and provision resources efficiently for the distributed edge

loud environment. 

In this paper, we explored dynamic resource provisioning meth-

ds for VNF in the distributed edge and cloud environment. The

ystem architecture and the provisioning and forwarding mecha-

ism are presented. We proposed a dynamic resource provisioning

lgorithm that utilizes both edge and cloud resources for dynam-

cally increasing network demands. The algorithm also includes

atency-aware packet forwarding method to utilize near-the-source

esources for latency sensitive applications. The proposed algo-

ithm is evaluated in the simulation environment with large-scale

orkloads derived from Wikipedia web application. Our results

how that the proposed algorithm can put more workloads to edge

esources for latency-sensitive applications which results in reduc-

ng average network delay for the application. We also showed that

7.9% more numbers of the network packets are forwarded to the

dge for the time-sensitive application compared to the baseline. 

Our algorithm can be extended and improved to include more

arameters in the decision making. It takes the latency require-

ent submitted by application providers to decide which pack-

ts to be forwarded to the edge. In the process, we consider the

alf of tighter delay requirements as a critical application and the

ther half regards as a normal application. This can be improved by

mploying a linear approach instead of the binary decision. Also,

n addition to the latency requirement, the algorithm can include

ther information of the application such as acceptable error rate,

equired bandwidth, and power source of different sites to decide

hich resource to be utilized. 
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