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Summary

Energy consumption and its associated costs represent a huge part of cloud providers’ operational

costs. In this study, we explore how much energy cost savings can be made knowing the future level

of renewable energy (solar/wind) available in data centers. Since renewable energy sources have

intermittent nature, we take advantage of migrating virtual machines to the nearby data centers

with excess renewable energy. In particular, we first devise an optimal offline algorithm with

full future knowledge of renewable level in the system. Since in practice, accessing long-term

and exact future knowledge of renewable energy level is not feasible, we propose two online

deterministic algorithms, one with no future knowledge called deterministic and one with limited

knowledge of the future renewable availability called future-aware. We show that the determin-

istic and future-aware algorithms are 1 + 1∕s and 1 + 1∕s − 𝜔∕s.Tm competitive in comparison to

the optimal offline algorithm, respectively, where s is the network to the brown energy cost, 𝜔 is

the look-ahead window-size, and Tm is the migration time. The effectiveness of the proposed algo-

rithms is analyzed through extensive simulation studies using real-world traces of meteorological

data and Google cluster workload.
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1 INTRODUCTION

Cloud computing is a paradigm focused on the realization and long

held dream of delivering computing as a utility.1 Nowadays, the num-

ber of individuals and organizations shifting their workload to cloud

data centers is growing more than ever. Cloud services are delivered via

data center sites each containing tens of thousands of servers, which

are distributed across geographical locations. The geographical diver-

sity of computing resources brings several benefits, such as high avail-

ability, effective disaster recovery, uniform access to users in different

regions, and access to different energy sources.

Data centers as the heart of a cloud computing system are energy

intensive. This is because of the high power required to run the IT

equipment, power, and cooling infrastructure.2 Based on the report

by Koomey,3 data centers were responsible for 1% of the world’s

total energy consumption in the year 2005, equivalent to 152 billion

kilowatt-hours (kWh) that has been almost doubled from the year

2000. Besides the high energy consumption of data centers, the cost

associated with the energy is a big concern as well. According to

Hamilton,4 the energy costs are estimated to be around 42% of the

data center’s operational costs. Furthermore, the issue of high energy

consumption by data centers makes them responsible for 2% of the

world’s total CO2 emission.5

To overcome the problem of high energy consumption that leads to

high energy costs for the cloud provider and environmental concerns

because of the high CO2 emission of energy sources, there are two

possible solutions: (1) improving the data center’s efficiency or (2)

replacing the brown energy sources with clean energy sources. By

making data centers energy efficient and aware of energy sources,

cloud providers are able to reduce their costs significantly.6 Recently,

large IT companies started to build their own on-site renewable energy

sources, such as Facebook’s solar-powered data center in Oregon,7 its

newly build wind-powered data center in Texas,8 Amazon,9 Apple,10

Google,11 and Microsoft12 renewable energy farms. To this end,

we consider access to on-site renewable energy sources*, which is

*Renewable and green energy sources are used interchangeably in the paper.
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becoming popular for modern data center sites. However, because

of the intermittent nature of renewable energy sources, these

data centers consider access to off-site electrical grid (also known

as brown energy) to power their infrastructure in the absence of

renewables. The on-site energy sources considered are solar and

wind, the two fastest growing renewables. As discussed earlier,

these energy sources are not available all the time. Solar energy is

only available during the day and it has its peak during noon, while

wind energy fluctuates during the day and does not follow any par-

ticular pattern. Yet, cloud providers try to minimize their energy

cost through maximizing on-site renewable energy usage. How-

ever, maximizing renewable energy usage in one data center site is

challenging, because of the intermittent and limited nature of solar

and wind energy. One solution to achieve this goal is to migrate the

load (virtual machines [VMs]) from one data center without cur-

rently available renewable energies to a data center with excess

renewable energy. Moreover, migrating VMs requires the knowl-

edge of the time that migration should take place to avoid brown

energy usage.

In this study, we are motivated by the following question: “with

limited or no priori knowledge of the future level of renewable ener-

gies, when should VM migration take place so that the energy cost

is minimized and accordingly the overall renewable energy consump-

tion is maximized?” For this, we study cost-minimizing VM migration

algorithms targeting a cloud provider with distributed data center

sites within a region† with access to disparate renewable energy

sources. We model the cost-minimizing VM migration problem and

determine the cost of offline algorithm, as well as the competitive

ratio for the optimal online deterministic algorithm. Moreover, we

enhance the online algorithm by adding limited future knowledge of

available renewable energy in the system. We evaluate the proposed

algorithms through extensive simulation using CloudSim toolkit,14

traces of wind and solar energy undertaken by the National Renew-

able Energy Laboratory (NREL),15 and real-world workload traces

from Google.16

The main contributions of this study are:

1. Formulation of the offline cost optimization problem for VM migra-

tion, across geographically distributed cloud data centers, with

respect to the availability of renewable energy.

2. Proof and competitive ratio analysis of the optimal online determin-

istic algorithm with no future knowledge against the optimal offline

algorithm.

3. Design of an online VM migration solution with limited future

knowledge regarding the solar/wind power availability.

4. Evaluation of the proposed algorithms through extensive simula-

tions using real-world renewable energy (solar and wind) traces and

workload traces of a Google cluster.

The remainder of the study is organized as follows. The next section

discusses the related work. The system model and cost optimization

problem are formalized in Section 3. Section 4 presents the optimal

† A region is a separate geographic area with multiple and isolated locations known as availabil-
ity zones connected through dedicated low latency links. This is the same definition used by
Amazon EC2 architecture.13

offline solution followed, in Section 5, by introducing the online deter-

ministic and future-aware online algorithms. Evaluation results are

presented in Section 6, and Section 7 concludes the paper.

2 RELATED WORK

The context of energy-efficient resource management has gained con-

siderable attention over the last few years. Moreover, along with the

objective of energy consumption optimization, the problem of reduc-

ing carbon footprint has been an ongoing research because of envi-

ronmental concerns, rise in global warming, social and governmen-

tal pressure (impose of carbon tax), and more importantly, increase

in the usage of renewable energy sources to power data center

sites by cloud providers.17 Most of the early works on energy effi-

ciency focus on a single server and intradata center optimization tech-

niques, such as CPU DVFS (dynamic voltage and frequency scaling),18

virtualization,19 VM migration, and consolidation for switching off

idle servers and power management.20, 21 An extensive taxonomy

and survey by Beloglazov et al22 discuss different techniques on

energy-efficient data centers. Similar to our work, Beloglazov and

Buyya23 formulated cost for the single VM migration and dynamic VM

consolidation problems within a single data center environment. They

conducted competitive-ratio analysis to characterize the performance

of optimal online algorithms against the optimal offline competitor. On

the contrary, we focus on energy cost minimization by applying VM

migration between data center sites considering access to renewable

energy sources and limiting brown energy usage. While they consider

service level agreement violation cost because of server oversubscrip-

tion, we consider interdata center network cost and additional brown

energy usage.

Following the high energy consumption by data centers, increase

in their operational costs, and the issue of carbon footprint encour-

aged cloud providers to have their own on-site renewable energy

sources and power their data centers completely or partially through

clean energy sources.7, 24 Kong and Liu25 investigated research works

towards green-energy-aware power management for single and

multi data centers. Recently, there has been a large body of litera-

ture considering reducing energy costs targeting interdata center

sites. They achieve this goal either by considering spatial (different

electricity prices in different geographical locations) or temporal

changes (different electricity prices during different times of the

day) of the electricity derived from off-site grid or by maximizing

renewable energy usage, which leads to minimizing brown energy

consumption as well.

One of the earliest studies that targets reducing the costs associ-

ated with brown energy consumption is done by Le et al.26 They con-

sider the amount of load each data center can accommodate based on

its electricity price and energy source, whether it is brown or green

energy and within a specific time period and budget. A similar work

by Liu et al27 considers geographical load balancing to minimize brown

energy consumption through an optimal mix of renewable energy

sources (solar and wind) as well as storage of these renewables in

data centers. An extension to that work has been done by Lin et al28

to explore the optimal combination of brown and green (solar/wind)
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TABLE 1 Comparison of proposed work with existing literature

Renewable Competitive-

Energy Cost Brown Energy Energy Ratio

Minimization Minimization Maximization Migration Analysis

Le et al26 ✓ ✓ ✓

Liu et al27 ✓ ✓

Lin et al28 ✓ ✓ ✓ ✓

Rao et al30 ✓

Le et al37 ✓ ✓ ✓

Ren et al31 ✓ ✓

Buchbinder et al32 ✓ ✓ ✓

Chen et al33 ✓ ✓

Celesti et al34 ✓ ✓ ✓

Le et al35 ✓ ✓ ✓

Luo et al36 ✓

Toosi and Buyya29 ✓ ✓ ✓

Our work ✓ ✓ ✓ ✓ ✓

energy sources aiming a net-zero brown energy system. To tackle

the same problem, Toosi and Buyya29 proposed a fuzzy logic–based

load balancing algorithm that needs no knowledge of future. All these

works consider routing of incoming load to the data centers based

on their initial renewable/brown state by the time of users’ requests

submission. Whilst, we consider VM migration between data center

sites, because of the limited and intermittent nature of renewable

energy sources.

Rao et al30 aimed at minimizing total cost by considering electricity

pricing data to route delay-constraint applications. Ren et al31 pro-

posed online algorithms to route jobs to the data centers with low

electricity prices or suspend jobs and resume them later, if necessary.

Buchbinder et al32 has the same objective of reducing energy cost for

a cloud provider. They take advantage of dynamic electricity pricing to

migrate running batch jobs to the data center with lower electricity

price. Comparatively, we focus on VM migration and take advantage of

available renewable energy sources in data centers.

Towards reducing energy cost and limiting brown energy con-

sumption, Chen et al33 proposed scheduling algorithms to forward

incoming jobs to the data centers considering energy source at

the data center and requests’ deadline to process the incoming

requests for further execution. Celesti et al34 proposed a frame-

work to allocate VM requests to the data centers with the high-

est level of solar energy and lowest cost. Le et al35 used the same

idea of assigning incoming requests to the data center consider-

ing green energy sources and electricity price to minimize brown

energy consumption. Luo et al36 leverage both the spatial and tem-

poral variation of electricity price to route the incoming requests

between geographically distributed data centers targeting energy

cost minimization.

The comparison of the existing literature with our proposed work is

summarized in Table 1. Our work is different from the discussed studies,

because we consider VM migration between data centers to maximize

renewable energy (solar/wind) consumption. The targeted system here

has several data centers located within a region (geographically near

locations). We analyze the VM migration problem by calculating the

optimal offline cost and computing the competitive ratio for an online

deterministic algorithm, without any future knowledge of renewable

energy level, and a future-aware online algorithm with a look-ahead

window and limited knowledge, up to a window-size, of future level of

solar and wind energy.

3 SYSTEM SPECIFICATION AND PROBLEM
DEFINITION

3.1 System model

The targeted system in this study is an IaaS cloud provider offering

VM resources to its clients similar to Elastic Compute Cloud (EC2)

service by Amazon Web Services.13 The cloud provider, as shown in

Figure 1, consists of several geographically distributed regions. Each

region is isolated from other regions and consists of several availabil-

ity zones. The availability zones in the regions are data centers con-

nected through low latency links. Hereafter, whenever we talk about

data centers, we refer to the availability zones within one region. We

only consider VM migration between data center sites belonging to

the same region, as the network cost and delay associated with that is

acceptable. 13 To the best of our knowledge, we are the first consider-

ing VM migration between cloud data centers to maximize renewable

energy utilization.

A cloud user (hereafter called user) at the time of submitting a VM

provisioning request can choose the availability zone he/she wants to

run the VM in or leaves the availability zone selection up to the cloud

provider. Users submit VM provisioning requests through a cloud inter-

face called a cloud broker (hereafter called broker). This connects them

to the cloud provider and enables the users to monitor and follow the

status of their requests. Broker, as discussed in our previous work,38

is a major component of the provider. It is responsible for receiving

VM requests, performing the VM placement, and migrating the cur-

rently running VM to another data center, in case of failure, maximizing

renewable energy usage, or any other purpose. The information needed

by the broker to function is provided by the directory called Energy and

Carbon Efficient Cloud Information Service (ECE-CIS). Data centers
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FIGURE 1 System model. ECE-CIS, Energy and Carbon Efficient Cloud Information Service.

register themselves at the ECE-CIS and keep it updated regarding any

changes in their current state. The information sent by data centers

to the ECE-CIS include availablephysical resources, data center’s PUE,

energy source(s), amount of available renewable energy, carbon foot-

print rate, and physical servers’ current utilization. Note that PUE

stands for power usage effectiveness and is a metric coined by the

Green Grid consortium39 to represent a data center’s energy efficiency.

Power usage effectiveness is the ratio of total power consumed by the

data center to its power consumed by IT devices.

As shown in Figure 1, data centers might use their own on-site

renewable energy sources to power their infrastructure and servers

in addition to the electricity delivered from off-site grid. The off-site

grid energy is usually derived from polluting sources, known as brown

energy, so cloud providers are deploying their own on-site renewable

energy sources with the aim of cost saving and social impact. Two

renewable energy sources considered in this work are solar photo-

voltaic (PV) and wind, as they are the most common and the fastest

growing ones. Solar energy, as can be seen in Figure 2A, has a raised

cosine distribution during the day; therefore, its peak energy level

varies by change in time zone for different locations. In contrast,

wind energy does not have a clear predictable pattern, as shown in

Figure 2B. Having these two renewable sources in a data center pro-

vides access to clean energy to run requests during different times of

the day.

3.2 Preliminaries

We consider a cloud provider with a set of n data center sites, shown

as  = {d1, d2, … , dn}, distributed in a geographical region. Each

data center is referred to as an availability zone that consists of a set of

h servers/hosts shown as  = {s1, s2, .., sh}. The list of all the symbols

used in this study is given in Table 2.

Total cost. The total cost of energy, Equation 1, is the cost of energy

used to run/execute VMs in the data center and the extra cost.

Ctotal = Cexecution + Cextra . (1)

Extra cost. Extra cost, Equation 2, is associated with the energy used

to migrate VMs between data center sites and the additional brown

energy usage in the source data center while VM migration takes place.

Cextra = Cmigration + CaddBrown . (2)

The aforementioned costs (execution, migration, and additional

brown) can be detailed as follows:

Execution cost. Execution cost is the energy cost to run VMs in the

data center and is shown in Equation 3. The energy cost to run VMs con-

sists of server (Cs) and overhead (Co) costs imposed due to running VMs

within a data center.

Cexecution = Cs + Co . (3)

To calculate overhead energy, we use PUE that is equal to the total

energy goes to a data center divided by the total energy consumed by

IT devices and is computed as

PUE =
Cs + Co

Cs
. (4)

As a result,

Cexecution = Cs × PUE . (5)

Server cost. Servers host the incoming workload and based on their

configuration are capable to accommodate different number of VMs.

The cost of servers Cs is computed as follows:

Cs = pr × Er + pb × Eb , (6)

where Er and Eb are the energy consumption of servers using renew-

able and brown energy sources, and pr and pb are the related

prices, respectively.

The energy consumption of servers is the product of the power con-

sumption of servers and the time period they have been working under

that power. The power consumption depends on several hardware

resources including CPU, memory, and disks.40 According to Blackburn

and Grid,41 the total power consumed by a server is determined by

the incoming load to that server, which is shown as CPU utilization.
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(A)

(B)

FIGURE 2 Renewable energy traces

TABLE 2 Description of symbols

Symbol Description Symbol Description

 Set of data center sites n Number of data center sites

 Set of physical servers (hosts) in a data center h Number of physical servers (hosts)

Cexecution Energy cost to execute the VMs Cextra Extra cost due to VM migration

Cmigration Energy cost to migrate the VMs CaddBrown Additional brown energy consumption at the

source data center during VM migration

Cs Cost of server energy consumption Co Cost of overhead energy consumption

cn Cost of network to migrate the VM per unit time cb Cost of brown energy per unit time

pr Price of renewable energy per unit usage pb Price of brown energy per unit usage

Er Servers total renewable energy consumption Eb Servers total brown energy consumption

tm Start time of VM migration at the source data center Tm Duration to migrate the VM

tb Start time of brown energy consumption at the Tb Duration of brown energy usage during VM

source data center migration at the source data center

The relationship between the server power consumption and CPU uti-

lization can be a constant, cubic, or quadratic.42

Migration cost. Migration cost is part of the extra cost and is

the energy consumed by the network to migrate the VMs between

data center sites. Live migration of VMs requires relocating the VMs

and placing them in their new destination.43 The cost due to trans-

ferring the VMs is proportional to the VM size and the number of

bytes that need to be transferred between data center sites, sim-

ilar to AWS EC2 pricing.13 For the sake of simplicity, we limit the

migration cost to a specific type of VM with a constant network cost

cn per unit time for the live migration, and Tm is the time required

to perform and complete the migration. Equation 7 represents the

migration cost.

Cmigration = cn × Tm . (7)

Additional brown energy cost. This part represents the penalty of

brown energy consumption while VM migration takes place at the

source data center. As mentioned earlier, we consider two different
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types of energy sources: brown and renewable. The renewable energy

is drawn from on-site solar and wind power generators. There-

fore, there is a one-time installation and fixed maintenance cost

for them, which leads to very low price per unit usage in their

lifespan. On the other hand, brown energy is derived from off-site

electricity that, besides its high per unit usage cost, also leaves car-

bon dioxide in the environment. We show the brown energy cost

for the specific type of VM as cb per unit time, and the time dura-

tion brown energy has been used while migration takes place as

Tb. Therefore, the cost of additional brown energy usage can be

shown as

CaddBrown = cb × Tb . (8)

3.3 System objective

Considering prices of different energy sources and their environmen-

tal impact, running VMs using renewable energy sources eventually

leads to a lower total cost. We consider powering data centers using

renewable energy unless it is not available. Since renewable energy

sources have intermittent nature, there is the possibility of their short-

age in the lifetime of a VM running in the data center. In this case, cloud

provider could migrate the VM to another availability zone with excess

renewable energy available. Performing VM migration could lead to

lowering and even eliminating brown energy usage, but it imposes

extra costs to the system. In this work, our objective is to minimize

the total cost of running VMs in the system through VM migration. As

shown in Equation 9, the objective function consists of energy used in

data centers to run VMs, and extra energy used to migrate VMs to the

data center with access to renewable energy and the additional brown

energy used in the source data center while migration takes place.

minimize Cexecution + Cextra . (9)

The first part (execution cost) in the objective function is inevitable

even if no migration takes place. Therefore, to achieve our goal, we

restate the objective function as to minimize the extra cost due to VM

migration. However, optimal cost minimization within a data center

with very large number of VMs is a complex problem. We narrow down

our formulation to a single VM migration problem, which eventually

leads to overall cost minimization when the cost for the individual VM

is minimized.

3.4 Virtual machine migration problem

To maximize renewable energy usage and be aligned with the sys-

tem objective, we perform VM migration in the absence of renewable

energy. The extra energy, Equation 2, consists of the energy used by the

network, Equation 7, and additional brown energy used at the source

data center, Equation 8, while the VM migration takes place.

We break down the extra cost into three different cases, as shown in

Equation 10 and Figure 3.

Cextra =
⎧⎪⎨⎪⎩

C1 if tm < tb and tb − tm ⩾ Tm,

C2 if tm < tb and tb − tm < Tm,

C3 if tm ⩾ tb,

(10)

FIGURE 3 Example of migration time (tm) versus start time of brown
energy consumption (tb)

where

C1 = cn.Tm ,

C2 = C3 = cn.Tm + cb.(tm − tb + Tm) .
(11)

The first case (C1) indicates when the VM migration starts at tm and

finishes before the start of brown energy consumption tb. This is shown

in case A in Figure 3 as well and can be formulated as tm < tb and

tb − tm ⩾ Tm. Therefore, the time duration required for VM migration to

be completed Tm comes to at end before the data center starts to use

brown energy sources, and the only extra cost in this case is the migra-

tion cost as shown in Equation 11. C2, case (B) of Figure 3, occurs when

migration starts before finishing of renewable energy tm < tb, but it

completes after start of brown energy usage tb − tm < Tm. As shown

in Equation 11, besides the migration cost, the cost of brown energy

usage in the source data center is added to the extra cost as well. Finally,

C3, which is the case (C) in Figure 3, occurs after the time no renewable

energy is available in the data center, ie, tm ⩾ tb.

4 OPTIMAL OFFLINE VIRTUAL MACHINE
MIGRATION

In this section, we study the offline solution of a single VM migration

problem among data center sites to increase the usage of renewable

energy sources. Without loss of generality, we assume that the brown

energy cost per unit time to be 1 and normalize the network cost cn to

the brown energy cost, as shown in Equation 12.

cb = 1 and cn = s; where s ∈ R
+
. (12)

Moreover, we consider the following relation for tb, tm, and Tm.

tb − tm = aTm; where a ∈ R . (13)

Considering Equations 12 and 13, we rewrite Equations 10 and 11

as follows:

Cextra =
{

C1 = s.Tm if a ⩾ 1,
C2 = C3 = s.Tm + (1 − a)Tm if a < 1.

(14)

Theorem 1. The optimal offline cost is s.Tm.

Proof. However, finding the optimal offline cost associated with

Equation 14 is straight forward, we provide the detailed proof for bet-

ter understanding of VM migration problem under different system
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conditions. To find the optimal offline solution, we need to find the

condition where the cost function has the minimum cost. Based on

Equation 14, we have

1. C1 equals s.Tm, where a ⩾ 1.

2. If a < 1 then 1 − a is always a positive value and C2 or C3 are always

greater than s.Tm, which means C2 > C1 or C3 > C1.

As a result, the optimal offline happens at a ⩾ 1 or tb − tm ⩾ Tm.

This means that the optimal offline happens when migration starts and

finishes before the start of brown energy usage in the data center. This

leads to the optimal offline cost s.Tm.

5 ONLINE VIRTUAL MACHINE MIGRATION

In this section, we construct two online algorithms to minimize cost

of VM migration. The reason for proposing online algorithms is that

optimal offline algorithm is only attainable when we have full future

knowledge about the system and renewable energy level. Here, we

propose two deterministic online VM migration algorithms: optimal

online deterministic (OOD) VM migration with no future knowledge

and future-aware dynamic provisioning (FDP) VM migration with lim-

ited knowledge (up to a window-size) regarding renewable energy level.

Our online algorithms are inspired by ski-rental problem.44 We decide

when to migrate a VM to another data center with excess renewable

energy to minimize brown energy consumption. It should be noted that

the decision to whether or not to migrate a VM to another data cen-

ter is considered to be happening in serial. Making decision to migrate

the VMs in this way, we assume that we only make decision regarding

migration of one VM at a time, and our knowledge about the renew-

able energy level at the destined data center is precise to large extent.

Moreover, in our model, we keep two copies of VM while migration

and switching is happening. Keeping a copy of the VM in the source

data center till VM migration fully completes assures that user experi-

ence in terms of latency and response time would not be affected by the

migration time and network delay.

To be able to evaluate the performance of our online algorithms, we

use the competitive ratio analysis.45

Definition . An online algorithm is called c-competitive if, for all pos-

sible inputs, the outcome of the online algorithm (CA) in compari-

son to the optimal offline outcome (COPT) has the following relation:

CA∕COPT ⩽ c.

5.1 Optimal online deterministic virtual machine

migration

Our goal is to propose an algorithm that could achieve optimal result

using only the current information available. Theorem 2 shows that

the optimal online deterministic algorithm for a single VM migration

problem is attained when migration takes place by the beginning time

of brown energy usage, that is, tm = tb.

Theorem 2. The optimal online deterministic algorithm is achieved

when tm = tb and it is (1 + 1∕s)-competitive.

Proof. Based on the cost function in Equation 14 and Theorem 1, we

can write the competitive ratio for any arbitrary online algorithm with

no future knowledge as follows:

COOD

COPT
⩽
⎧⎪⎨⎪⎩

s.Tm

s.Tm
= 1 if a ⩾ 1,

s.Tm+(1−a)Tm

s.Tm
= 1 + 1−a

s
if a < 1.

(15)

where a = tb−tm

Tm
as defined in Equation 13.

Any online algorithm with no future knowledge can only have the

knowledge of the current time ti, and tb if tb ⩾ ti, that is, the time

from which VM started using brown energy. Accordingly, two different

groups of online algorithms with no future knowledge can be defined

that they set tm as a function of

1. the current time ti, ie, tm = f1(ti), and

2. the start time of brown energy usage, ie, tm = f2(tb).

For algorithms from the former group, a = tb−f1(ti)
Tm

, since a is not

a function of tb, a can grow arbitrarily large when the adversary will

select tb such that it is infinitely greater than f(ti), ie, a → ∞, and as a

result, COOD

COPT
→ ∞. Therefore, all algorithms from the first group are not

competitive.

For algorithms from the latter group, a = tb−f2(tb)
Tm

, the time of migra-

tion tm is dependent to the start time of brown energy usage tb, which

is known for the algorithm, therefore

tm ⩾ tb ,

as a =
tb − tm

Tm
⇒ a ⩽ 0 .

(16)

Considering a ⩽ 0, the minimum competitive ratio is achieved when

a = 0 for the second inequality in Equation 15. This means migration

starts by the beginning of brown energy usage, ie, tm = tb. As a result,

the best competitive ratio is 1 + 1

s
.

5.2 Future-aware dynamic provisioning virtual

machine migration

As mentioned earlier, we consider access to renewable energy sources

along with the electricity derived from off-site grid. Two renewable

sources considered in this study, solar and wind, have different pattern

during the day. As shown in the Figure 2A, solar energy has a predictable

pattern during the day, and its peak is foreseeable. In contrast, wind

energy does not have a predictable diurnal pattern. But one can use the

average temporal pattern of wind energy, which can be captured in the

region.46 It is often assumed that the renewable energy availability in

the near look-ahead window can be predicted with a good accuracy in

reality, such as autoregressive techniques used in the works by Kansal

et al47 and Cox.48 If there are prediction errors in the model, decisions

would be affected by the same error margin as prediction errors. For

example, 10% prediction error causes 10% error in decision making.

If the time window is small enough, such as minutely windows, then

renewable energy prediction can be predicted with considerably high

precision almost similar to real time measuring; therefore, it will not

affect the decisions significantly. The question is how much knowledge

can help and get the online algorithm performance close to the optimal

offline algorithm.
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We assume that at any given time, ti, the future renewable energy is

predictable for a window-size𝜔, which means the amount of renewable

energy in the system is known for the period [ti, ti + 𝜔]. Now we elab-

orate on how the window-size affects the decision making process and

improves the online algorithm performance. The following two cases

are plausible:

1. If window-size is greater or equal to the time required to perform

the migration,𝜔 ⩾ Tm, it would be the same as the scenario for opti-

mal offline algorithm. Therefore, there is enough time to migrate

the VM to a data center with access to renewable energy and avoid

brown energy usage.

2. If window-size is smaller than the time of migration, 𝜔 < Tm, then

tm + 𝜔 ⩾ tb.

Theorem 3. The competitive ratio for the future-aware dynamic pro-

visioning algorithm is CFDP

COPT
⩽ 1 + 1

s
− 𝜔

s.Tm
, where w ⩽ Tm.

Proof. The optimal offline algorithm migrates the VM, Tm unit of time

earlier than tb, and the optimal online deterministic algorithm with no

future knowledge migrates the VM by the time of tb. The FDP algorithm

with limited future knowledge minimizes the cost when migrates the

VM as soon as tb is known. That is, FDP can migrate the VM at most

up to 𝜔 unit of time earlier, when tb can be seen within the look-ahead

window. Therefore, there would be 𝜔 unit less brown energy consump-

tion, which improves the online algorithm cost. Equation 17 shows the

competitive ratio for future-aware online algorithm.

CFDP

COPT
⩽ s.Tm + Tm − 𝜔

s.Tm
= 1 + 1

s
− 𝜔

s.Tm
, (17)

where w ⩽ Tm as competitive ratio is always greater or equal to 1.

5.3 Virtual machine placement

By the arrival of each VM request, the broker should allocate resources

to the VM, and for this purpose, it needs to decide where to place the

VM. We treat VM placement as a bin-packing problem with different

bin sizes, which are physical servers in this context. Since bin-packing

is an NP-hard problem, we use derivation of best-fit heuristic to solve

it. To be aligned with our purpose and taking the most from available

renewable energy in distributed data centers, we consider a modifica-

tion of the best-fit heuristic that we proposed in our previous work. 38

The modification to the ECE algorithm38 is denoted as most available

renewable energy (MARE). The MARE sorts data center sites accord-

ing to the amount of available renewable energy and submits the VM to

the data center with the highest available amount. The pseudocode of

the VM placement algorithm is presented in Algorithm 1.

The time complexity of Algorithm 1 with v VM requests, n data center

sites, and h physical servers within each data center in detail is as fol-

lows: Lines 3-6 take O(n) and the sort function in Line 7 can be done in

O(nlog(n)). Lines 8-12 take O(nh), in the worst case. Thus, the total run-

ning time for the algorithm is O(v(n+nlog(n)+nh)). Since the number of

VM requests and hosts dominate the total number of data center sites

(n), the total time complexity of the algorithm is O(vnh).
In addition, we consider another VM placement algorithm with-

out any knowledge regarding renewable energy availability, denoted

as Random algorithm. By the arrival of a new VM request, Random

algorithm chooses a random data center uniformly.

6 PERFORMANCE EVALUATION

We perform simulation-based experiments to evaluate our proposed

algorithms. Our aim is to measure the energy cost savings incurred due

to migration of VMs to data centers with access to renewable energy

sources. Moreover, we measure the improvement made by applying the

proposed approaches in cutting the amount of carbon emission.

Workload data. We use Google cluster-usage traces16 for workload

as there is no other publicly available real-world workload traces for

IaaS cloud providers to the best of our knowledge. The Google dataset

has records of one cluster’s usage (which is a set of 12,000 physical

machines) and includes submitted requests to that cluster over a period

of one month. Each request has requirements shown as amount of

requested CPU, memory, and storage. Because these traces are user

requests not representing VM instances demand, we need to make

a mapping between request submissions from users to IaaS comput-

ing demand. We use the same technique used by Toosi et al for their

workload generation to generate VM request traces.49

Google traces include record of users, each submitting several tasks,

with specific resource requirements. Considering the fact that 93% of

the Google cluster machines have the same computing capability, we

assume all physical machines in the cluster have the same resources (in

terms of CPU, memory, etc) and map our VM size to that of the physical

machine. To derive VM request traces from Google traces, whenever a

user submits a task, we check if there is already a VM instantiated by

that user in the system with enough computing resources to run the

new task. Otherwise, if there is no VM owned by the user with enough

capacity to accommodate the new task, we instantiate a new VM to

serve the user’s task.49 We also terminate a VM when there is no task

running on it. By this, we can create a trace of VM requests submitted

from users. The trace contains 250 171 VM requests, each has the start
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FIGURE 4 One-month Google workload trace

time and holding time in the data center. We consider the VM specifi-

cations in our model similar to the standard small instances introduced

by Amazon EC2.13 Figure 4 shows the number of VM requests per hour

received by the provider, generated based on the scheduling algorithm

we used to generate VM requests according Google cluster traces.

This figure shows the shape of the workload and its fluctuation in

our simulations.

Data centers’ configuration. We consider 3 data center sites located

in the US-West region. The locations are chosen from the data centers

map50 and are as follows: Phoenix in Arizona, Los Angeles in Califor-

nia, and Cedar City in Utah. The number of servers in each data center

is set in a way that data centers’ capacity would not be a limitation for

not being able to take advantage of available renewable energy. Based

on the previous discussion, the servers in the data centers are homoge-

neous with equal processing capacity. We model servers in data centers

based on the latest HP ProLiant DL360 Gen9 server,51 with follow-

ing specifications: Intel Xeon E5-2670v3, 10 cores × 2.3 GHz, 256 GB

memory. The power consumed by each request running on a server

within a data center is assumed to be on average a constant rate per

time slot (eg, 550W/hour).

We consider PUE value of 1.4 for all data center sites to calculate

the overhead energy usage. The reason is that we aim to evaluate

algorithms in a setting where PUE values are not determinative. We

select the carbonfootprint = 0.350Tones∕MWh for the off-site grid

electricity, derived from the US Department of Energy Electricity Emis-

sion Factors.52 The electricity price of pb = 6.22cents∕kWh is chosen

for the off-site electricity from the US Energy Information Adminis-

tration. 53 This price represents the electricity price for the on-peak

period, between 8AM and 10PM. We opt the off-peak price to be half

of the on-peak. Moreover, as discussed earlier, we consider a fixed price

for renewable energy usage per unit as pr = 1.0cents/kW.

Renewable energy traces. We use the measurements reported by

NREL15 for irradiance and meteorological data from different stations

to capture wind and solar energy with 1-hour granularity from May,

1st to May, 29th 2013. To calculate the output for PV power, we use

the hourly solar irradiance reported for flat plates on tilted surface at

a 45-degree angle and PV efficiency of 30%. We calculate the solar

output based on Photovalic Education Network54 and the total area

for the flat plates is considered to be 100m2, derived from the config-

uration by Solarbayer.55 To generate hourly wind energy, we use the

proposed method by Fripp et al.46 The hourly wind speed, air temper-

ature, and air pressure, derived from NREL measurements, are fed to

the model and the generated power is computed accordingly, assum-

ing each data center uses a GE 1.5MW wind turbine. Figures 2A and 2B

show the solar and wind energy availability for 3 different cities in our

system model, respectively.

6.1 Experiment setup

Benchmark algorithm. We compare the proposed offline, optimal

online, and future-aware algorithms with a baseline benchmark

algorithm with no VM migration. The benchmark does not take any

further action and does not perform any migration after initial place-

ment and instantiation of the VMs in the data ceners. The benchmark

is referred to as No-Migration (NM) policy.

6.2 Experiment results and analysis

In the experiments, we use the real-world traces derived from Google

to study the performance of the proposed offline, optimal online,

and future-aware algorithms all in combination with 2 VM placement

policies against the benchmark algorithm. The results are shown in

Figures 5 to 7.

Figure 5 shows the total energy cost incurred by all algorithms, when

the window-size for future-aware algorithm is set to 4.5 minutes. The

results indicate that having initial knowledge about the current renew-

able energy level in the data centers has a substantial effect in the

amount of cost reduction. It can be seen that there is a significant cost

reduction for policies under the MARE placement in comparison to

the Random. Since offline policy has the full knowledge of renewable

energy in the system, it achieves the lowest cost, 14% and 18.5% energy

cost reduction in comparison to future-aware and online policies,

respectively. Future-aware policy performs slightly better than optimal

online algorithm and reduces the total cost by 4% in comparison to the

optimal online policy that makes decision instantly without any future

knowledge. The benchmark policy has the highest cost, since after

placement of VMs and when there is no renewable energy available

in the data center it does not take any further action. The benchmark

FIGURE 5 Total energy cost. FDP, future-aware dynamic provisioning;
NM, no migration; OOD, optimal online deterministic; OPT, optimal
offline
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FIGURE 6 Brown energy consumption. FDP, future-aware dynamic
provisioning; NM, no migration; OOD, optimal online deterministic;
OPT, optimal offline

FIGURE 7 Carbon footprint. FDP, future-aware dynamic provisioning;
NM, no migration; OOD, optimal online deterministic; OPT, optimal
offline

policy on average consumes 26% more energy cost in comparison to the

optimal offline policy under different VM placement algorithms.

We also measured the amount of brown energy consumption as

well as carbon footprint in the system as shown in Figures 6 and 7,

respectively. Policies under MARE VM placement achieved consider-

able reduction in brown energy consumption in comparison to the case

when VM placement randomly chooses destined data center. Within

each category, offline with full knowledge of renewable energy con-

sumes less brown energy, 5.6% and 12.9% less brown energy in com-

parison to future-aware and online policies, respectively. Future-aware

and online policies reduce brown energy consumption by 30.5% and

22%, respectively, in comparison to the benchmark with no migration.

The same behavior can be seen for carbon footprint in Figure 7, because

reduction in brown energy consumption eventually leads to lower car-

bon footprint.

As shown, future-aware policy achieves results that fall between

the outcome of the offline algorithm with full knowledge and opti-

mal online with no knowledge about future renewable energy level.

We change the window-size to see its impact on the performance of

the future-aware dynamic processioning algorithm. As Figure 8 illus-

trates, increase in the window-size reduces total cost, brown energy

(A)

(B)

(C)

FIGURE 8 Effect of window-size on the results of future-aware
dynamic provisioning algorithm under MARE VM placement policy

consumption, and carbon footprint. Increase in the window-size makes

future-aware algorithm closer to its offline competitor. The perfor-

mance of the future-aware policy improves and gets close to the

optimal offline until window-size reaches 9 minutes. After this point

no improvement is achieved, since this is the point that window-size

reaches the VM migration time in our experiments. This supports the

theoretically proven supposition in Section 4 that if enough knowledge

of future is available, the optimal decision suggests a VM migration that

finishes before the start of brown energy usage in the data center.

As per Figure 5, the cost ratio of deterministic and future-aware

online policies versus the optimal offline algorithm are 1.18 and 1.13,

respectively. Moreover, based on the simulation setup s = 3.5, which
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FIGURE 9 Number of virtual machine (VM) migrations. FDP, future-aware dynamic provisioning; MARE, most available renewable energy; OOD,
optimal online deterministic; OPT, optimal offline

leads to deterministic and future-aware online algorithms be 1.28

and 1.14 competitive in comparison to the optimal offline algorithm,

respectively. The simulation results are compatible with the calculated

competitive ratio as per the provided definition of c-competitive in

Section 5.

Figure 9 depicts the total number of migrations happening in the

system for each policy during the 1-month simulation period and total

of 250, 171 VM requests. We observe that migration policies under

MARE placement achieve lower number of migrations in comparison

to the same migration policies under Random placement. The reason

is that under MARE placement, a wise data center selection is made

for initial VM request placement, which reduces the need for possible

future migrations. Amongst three different migration policies, offline

has the highest number of VM migrations. Since it has full knowledge

of the amount of renewable energy in the system and begins to migrate

the VMs before the start time of brown energy usage, unless there is

no renewable available in other data centers. Similarly, future-aware

policy makes more VM migrations than online policy, due to further

knowledge regarding renewable energy level.

7 CONCLUSIONS AND FUTURE DIRECTIONS

Using on-site renewable energy sources instead of electricity derived

from off-site grid helps cloud providers reducing their energy cost and

their reliance on polluting energy sources. Since the nature of renew-

able energy sources (solar/wind) is intermittent, we take advantage of

having access to several geographically distributed data center sites

of a cloud provider to perform intra-region VM migration and utilize

the most of the available renewable energy. In this study, we intro-

duced algorithms with full and partial knowledge of future availability

of renewable energy levels to migrate the VMs to another data center

within a region in the absence of sufficient renewable at the host

data center. We first introduced the optimal offline algorithm to mini-

mize the energy cost. Because of the necessity of having full knowledge

of future level of renewable energy for optimal offline, we propose

two online algorithms. The first online algorithm is a deterministic

algorithm that does not have any knowledge regarding the future level

of renewable energy and the second one is denoted as future-aware

online algorithm with limited knowledge, up to a window-size (𝜔), of

future level of renewable energy. We have compared the results of the

proposed optimal offline, optimal online, and future-aware algorithms

with a basic benchmark algorithm that does not perform any migration,

all in combination with two VM placement algorithms. One VM place-

ment is aware of the current renewable level, known as MARE, and the

other one randomly chooses the destined data center.

We have evaluated the proposed algorithms through extensive sim-

ulations using real-world traces for renewable energy (solar and wind)

and 1-month workload trace of a Google cluster usage. The offline

algorithm with full knowledge of renewable energy level performs the

best in comparison to the future-aware and optimal online algorithms.

The optimal online algorithm incurs 18.5% more cost compared to the

offline algorithm when no future knowledge is available. Moreover, sim-

ulation results show that future-aware algorithm’s performance gets

competitive with offline algorithm by the increase in its window-size

until the window-size reaches the network delay or the time needed

that a migration takes place and gets completed.

As a future direction, one can study the effect of inter-region migrat-

ing of VMs to evaluate the improvements in energy cost versus network

delay. Moreover, studying selection of VMs to perform VM migration is

another issue that could be investigated, since there are situations that

VM migration could lead to service level agreement violation of some

users’ with special requirements or VM migration needs large amount

of data transfer over the network because of data unavailability in the

destination. Another important topic of future research is considering

a more complex problem, which involves the migration of multiple VMs,

the effect of sharing the network on the transfer time, and evaluating

the competitiveness of the possible online algorithms in comparison to

the optimal offline algorithm.
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