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Abstract—Market oriented methodologies have been exten-
sively used for solving dynamic allocation problems in online
systems including the Cloud. Despite their extensive use, very
little has been known about their security against market specific
security threats (e.g. monopoly, shill bidding, etc.). This work
follows an experimental driven approach for: (i) promoting
the development of threat-aware, market-oriented Clouds, (ii)
exposing existing market specific security vulnerabilities and (iii)
developing security mechanisms for online markets. We show that
the designs of existing market-oriented Clouds are limited when
facing market specific attacks and when thwarting malicious
bidders and sellers from manipulating auction mechanisms for
personal gains. Furthermore, we show that our solutions can
effectively resolve market specific attacks and secure bidders,
sellers and auctioning mechanisms in the context of Cloud.
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I. INTRODUCTION
Market-oriented methodologies have been widely employed

by software engineers for solving dynamic allocation problems
[1-4] in online systems such as the Cloud. Despite the growing
work in the area, the majority of the existing market-oriented
methodologies such as SHARP [5], Tycoon [6], Bellagio [7],
Shirako [8], Aneka [9] and Gridbus [10] have not provided
treatment for market specific threats. To ensure the secure
operation of these systems, it is not sufficient to protect them
against generic attacks (e.g. denial of service, etc.), but to also
consider possible market specific threats that can disturb the
operation of bidders, sellers and auction mechanisms.

Even though advanced strategy-proof (e.g. Vickrey–Clarke–
Groves) auction mechanisms exist for warranting that the es-
tablished auctioning protocol is respected, we are not aware of
any systematic or ad-hoc attempt in deploying them in the con-
text of Cloud. This may be attributed to the following: firstly,
strategy-proof solutions can be complex and/or of limited
scalability when applied in dynamic and fundamentally elastic
environments like the Cloud. This can render them ineffective,
where the perceived benefits are likely to be overtaken by the
cost and overhead of their application. Secondly, these proofs
have been to a big extent theoretical in nature and concerned
with the fundamentals of auctions. Consequently, their as-
sumptions and solutions may be challenged or can break when
applied in scalable and unpredictable environments. Thirdly,
proofing bottleneck might impact Service Level Agreement
compliance in many ways, for example, (i) the time required
to take mitigation decisions will increase exponentially as the
number of violation alerts increases, (ii) given the dynamism

of the system, mitigation decisions are likely stale by the
time they are effected, and (iii) the auction controller may
become overloaded and thus fail, making the Cloud system
outrightly unavailable. Henceforth, Cloud-specific proofing
shall be fundamentally light-weight and scalable; they may
need to operate with assumptions suited for the Cloud covering
areas related to distribution and/or federation management.

This work identifies security limitations in the engineering
of the commonly used market-oriented Clouds. The work at-
tempts to overcome these challenges by proposing mechanisms
that will cater for the security of bidders, sellers and auctioning
mechanisms in the Cloud. More specifically, there are four
main contributions in this paper:

1) To experimentally demonstrate the deficiency of exist-
ing market-oriented Clouds in facing market security
threats. We motivate the need for engineering threat-
aware market-oriented Clouds. We use CloudAuction
[11], a market-oriented component of CloudSim sim-
ulation framework, as our test-bed to test the market to
four market specific threats:

• Shill bidding attack: Bidders forge bids and submit
them to auctions in order to escalate the final price
for a seller and defraud legitimate bidders.

• Reputation attack: False bad feedback is submitted
to sellers to harm their status, profit and clientele.
False feedback damages the reputation of sellers and
the information available to bidders, so meaning that
markets can no longer function correctly.

• Monopoly attack: A seller buys up resources from
other sellers in the market in order to acquire the
biggest percentage of resources (corner the market)
and escalate their prices. Monopolies can distort
investment incentives and damage market profit.

• Denial of payment attack: Attackers create fake
bidding accounts to bid and win resources from
sellers and then intentionally deny payment to harm
their profit.

2) Use the observations of the experiments to develop can-
didate, lightweight and scalable defensive mechanisms
for securing market-oriented Clouds against the four
aforementioned market-specific attacks.

3) Compare and analyze how the market is affected in the
absence and presence of the selected attacks and the
proposed solutions.

Through our simulation tests we were able to illustrate that
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market inspired methodologies such as [5-10] have not been
designed with market-specific attacks in mind. We have
demonstrated that market-specific attacks can significantly af-
fect the operations, costs, profit and utility of both bidders and
sellers in a market. Lastly, we have shown that by deploying
our candidate solutions it was possible to efficiently counter
the selected attacks and cater for a secure market.

The paper is organized as follows. Section II reviews related
work. Section III describes the experimental setup and design
for testing the resilience of the market in the absence and
presence of the selected attacks and their candidate solutions.
Section IV concludes with future work.

II. RELATED WORK
The existing work on market-oriented Cloud security

has primarily focused on improving the anonymity [12-14],
confidentiality [15,16] and integrity [17] characteristics of
these systems; however it has less considered market-specific
threats, which can affect the operation of bidders, sellers and
auction mechanisms. Scarce work exists on the analysis and
counteraction of shill bidding and reputation attacks in online
markets; where no work associated to monopoly and denial of
payment attacks were encountered in the context of Cloud.

A. Shill Bidding
The work of Bhargava et al. [18] proposes a shill bidding

counteracting algorithm for risk neutral online English auc-
tions. The proposed algorithm uses an equilibrium strategy that
maximizes the bidder’s utility, holding the bidding strategies
of all other bidders fixed. The authors assume that agents bid
according to a symmetric strategy that maximizes their utility
as it results into Bayes Nash equilibrium.

Kauffman et al. [19] analyze bidding data from Ebay coin
auctions to gain insight and counter reverse price shill bidding.
To identify shill bidding the authors analyze the following
attributes: ratio of number of auctions with questionable bids
compared to the total number of auctions held by a seller;
the experience level of the seller; the seller’s reputation; the
starting bid in an auction; duration of an auction; and the coin
value.

The work of Threvathan et al. [20] presents an algorithm
that detects shill bidding in English auctions. The algorithm
observes bidding patterns over a series of auctions, provid-
ing each bidder a score indicating the likelihood of their
potential involvement in shill behavior. The assigned score
is determined by analyzing the following bidding characteris-
tics: seller received bids; bidding frequency; number of won
auctions; time of bid submission; and bidding price.

The existing work on shill bidding restricts its application
to simplistic e-commerce markets, that trade single items and
utilize the English auction model. Contrary, market-oriented
Clouds often necessitate the utilization of combinatorial auc-
tions to allocate bundles of services and resources to bidders,
which is not addressed by existing literature. Furthermore,
the majority of the existing work assumes that the operating
environment is semi-trusted with bidders that operate in a
symmetric fashion, which does not hold for heterogeneous,
shared and dynamic environments such as the Cloud.

B. Reputation Attack

FIRE reputation system [21] computes a trust metric for
each user in a market by classifying trust information into:
direct experience, witness information, role based rules and
third party referrals. It then filters out and penalizes inaccurate
opinions. FIRE uses an inaccuracy tolerance threshold to
specify the maximal permitted differences between the actual
performance and witness rating. In order to operate, FIRE
requires data from multiple sources, which in Cloud can be
proven complex due to absence of third party referrals and
user refusal to provide data.

Sharma et al. [22] demonstrate a reputation system with a
built-in attack resilience for markets. The proposed framework
reduces the incentive for dishonest behavior and minimizes
harm in case of attacks by dishonest bidders. This is achieved
by: (i) setting reputation and dis-reputation thresholds for
sellers and advisors; (ii) introducing effective reputation value
increase/decrease factor; and (iii) reducing the incentive for
change-in-identity. An increase in transnational experience
leads to an increased weight-age of individual reputation.
Fraudulent sellers are penalized with a vast drop of their
reputation which results into the quick detection of fraudulent
behavior.

TRAVOS [23] is a reputation system that uses Bayesian
probability to compute the trust of an agent by analyzing
the past experience between two agents. To remove unfair
opinions TRAVOS estimates the accuracy of reputation advice
based on the number of valid and invalid advice submitted
by an agent in the past. TRAVOS assumes that sellers act
consistently which may not be the case.

Reputation model Trunits [24] is founded on the accumu-
lation of trust units (trunits). A seller must possess sufficient
trunits before performing a transaction. To engage in a transac-
tion, a seller must risk a particular quantity of trunits. After a
transaction, if a buyer is satisfied, the seller gets more trunits,
otherwise it loses the risked trunits.

Beta Reputation System (BRS) [25] estimates the reputation
of sellers by using the beta probability density function. It
combines the ratings of a seller being provided with multiple
advisors by accumulating the number of good and bad ratings.
To handle unfair opinions, BRS filters out ratings that are not
in the majority. BRS can be proven effective only when the
majority of the ratings are fair.

III. EXPERIMENTAL SETUP AND DESIGN

We testify our hypothesis that market-oriented Clouds are
unsecured against the four selected market specific attacks.
More specifically, our experiments allow us to answer the
following questions: (i) how is the utility of bidders and sellers
affected by the deployed attacks? (ii) how is CloudAuction’s
combinatorial double auction mechanism affected by these
attacks? (iii) can online markets that are vulnerable to market
specific attacks pose as dependable solutions? and (iv) can our
candidate solutions resolve the selected attacks and secure the
market?

For the purposes of our experiments we make two as-
sumptions concerning the market environment: we operate
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in a regulated market-oriented Cloud that restricts users and
vendors from acting maliciously; and the market auctioneer is
able to monitor the behavior of vendors and buyers within the
market in order to identify and eliminate malicious behavior.
To assert our hypothesis we utilize CloudAuction as our test-
bed. Observations of the experiments were used to develop
defensive mechanisms for securing market-oriented Clouds
against the selected attacks. We report on the added value of
introducing our candidate defensive mechanisms for securing
the market. The source code of the developed attacks and so-
lutions can be found in: github.com/GiannisT/MarketAttacks.

A. Experimental Setup

1) CloudSim Framework and CloudAuction Component:
CloudSim [11] is a framework for modeling and simulating
Cloud computing infrastructures and services. It enables the
simulation of: (i) large-scale Cloud environments on a single
physical computing node, (ii) service brokers, (iii) service
provisioning, (iv) allocation policies, (v) network connections
among the simulated system elements and (vi) a federated
Cloud environment that inter-networks resources from private
and public domains. CloudSim facilitates a visualization en-
gine that aids in the creation and management of multiple,
co-hosted virtualized services. CloudAuction component [11]
is an extension of the Cloudsim framework which enables
the system to handle auction-based services. CloudAuction
simulates a market-oriented Cloud in which a varied num-
ber of Datacenters (sellers) and Databrokers (bidders) trade
their resources (RAM, bandwidth and CPU MIPS) with the
assistance of a combinatorial double auction mechanism.

Combinatorial auctions [26], refer to auctions of multiple
goods, as opposed to single auctions. In combinatorial double
auctions there are X items x1, ...., xn, m bidders and k sellers.
Bidder i has (true) reservation value Pi per unit for a bundle of
items Si ⊆ {x1, · · ·, xn} , and submits a bid Bi that demands
up to Di units of the bundle Si, such as Bi{Pi, Di, Si}. On
the other hand, each seller j forms and submits an ask Aj
that has Cj as the unit cost and offers to sell up to Sj units
of xj at a unit price of Fj , such as Aj{Sj , xj , Fj}. In each
auction round, all bids and asks are simultaneously submitted
to the auctioneer for auctioning. The auctioneer sorts bids in
a descending price order B1 ≥ B2 ≥ ... ≥ Bn and asks in an
ascending price order A1 ≥ A2 ≥ ... ≥ An, where a subset
h of them are used for auctioning. h is the largest index such
that Bm ≥ Ak. The subset of the selected bids (q ⊆ Bn)
and asks (z ⊆ An) are in the price range of [ max(Ah, Bh +
1),min(Bh, Ah + 1) ] which results in an equilibrium price
as both demand and supply is h. To match the selected asks
and bids the auctioning mechanism first ensures that bids are
matched with asks up to their maximum demand (Di < Sj)
and that asks are matched with bids up to their maximum
supply (Sj < Di). Finally, a settlement price is calculated by
deriving the average of the selected bid and ask prices and then
the average of the two (Equ.1). All sellers who asked less than
the settlement price sell and all bidders who bid more than that
price buy resources at the settlement price.

AV G(

∑q
i=1 Di×Pi

q
+

∑z
j=1 Sj×Fj

z
) (1)

As Cloud users often require the composition and allocation
of diverse resources and services, supplied by different sellers
in a market, it is essential to utilize combinatorial auctions.
Single item auctions can be proven insufficient, time consum-
ing and expensive as Cloud users need to submit multiple bids
to acquire different resources and services.

2) Why Use CloudSim Simulation Framework: The devel-
opment of real test-beds limit the experiment to the scale of
the test-bed and make the reproduction of results difficult.
Furthermore, the creation of real test-beds introduce low-
level tasks, such as setting up basic hardware and software,
which is time and money consuming. Additionally, attributes
such as allocation and provisioning algorithms are beyond
the control of developers in real life markets, which restricts
the experiment and its outcomes. A suitable alternative is the
utilization of simulation tools, which allows the evaluation
of hypothesis in an environment where one can reproduce
tests. Furthermore, the development of simulation frameworks
enable users to test their services/resources in a repeatable
and controllable environment free of cost. At the provider
side, simulation environments allow the evaluation of different
resource leasing scenarios under varying loads and pricing
distributions [11]. Added, simulation tools allow for the ho-
mogeneous quantification of results as they are architecture
imperative, where real life market-oriented Clouds have their
own composition and deployment requirements. To test our
hypothesis we have selected CloudSim tool as our test-bed,
due to its plethora recognition from academia and industry.

B. Experimental Design

We describe the use of CloudAuction to test our hypothesis.
We report on the effects of each market specific attack and
solution on the operation of sellers, bidders and the combina-
torial double auction mechanism. The market parameters (e.g.
number of Databroker, detection thresholds, etc.) used for our
experiments are tailored according to the idiosyncrasies and
characteristics of each attack/solution. The selected parameters
allowed our defensive mechanisms to attain the highest detec-
tion and lowest false positive and false negative rates. We may
note that these parameters are flexible thresholds, which can be
set by the auctioneer according to the needs of the market. Un-
fortunately, it is impossible for us to establish a set of optimal
thresholds for the parameters of our defensive mechanisms.
This is due to the diverse composition of markets and the
environments they operate in, which render these parameters
case specific. One possible method to overcome this problem is
to test the sensitivity of our defensive mechanisms by altering
the thresholds, until the required results are witnessed.

1) Shill Bidding:
Shill Bidding Attack On CloudAuction: To test CloudAuc-

tion market to shill bidders we have simulated 3 Datacenters
and a varying number of Databrokers (between 5-220) and
assessed how the increase in the number of shill bidders can
affect the average accumulated profit margin of sellers in the
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market. At the beginning of each auction round, a number of
bidders (currently set to 10%) were randomly selected and
“forced” to act as shill bidders by submitting forged bids.
As we operate in a market that utilizes the combinatorial
double auction model, a large number of bidders (i.e. 10%)
are required to submit high bidding prices for the settlement
price (Equ. 1) to significantly increase. In case where a low
number of shill bidders are deployed in the market a shill
attack can remain undiscovered or have marginal implication
on the expected gain (increase in price) of malicious sellers.
The price Pi submitted in the bids of the shill bidders is
semi-randomly generated by adding a percentage v (10%-
20%) on the highest ask price t in an auction. The selected
value v represent the tendency of shill bidders that make
unnecessarily large price increments to rapidly drive up selling
prices. However, the submission of bids that vastly deviate
from the prices submitted by legitimate bidders increases the
likelihood of detection as they pose as price anomalies. Hence,
our bidding prices aim to only moderately increase resource
prices, for legitimate bidders to retain their interest in auctions
and evade detection. To compute the bidding price for each
shill bidder we use the following equation: Pi = (t× v) + t.

Shill Bidding Defensive Mechanism On CloudAuction:
Our shill bidding defensive mechanism is founded on the
real time analysis of bidding records. Each bidding record
archives the following attributes for each bidder: (i) price
difference from the second highest bid, (ii) bidder feedback
(e.g. positive, negative), (iii) number of lost auctions, (iv)
number of bids submitted per auction, (v) total number of
auctions participated, (vi) number of times that a bidder
overbid himself/herself while winning an auction, (vii) number
of bids submitted before and after the half time of an auction,
(viii) the number of bids submitted to each seller and (ix)
the overall number of bids submitted to the market. At the
end of each auction round all bidding records are analyzed.
The record analysis entails the comparison of the 9 archived
attributes with given thresholds which result as a shill value
for each bidder. In case that a comparison is true, 1 is returned
and added to the “shill value”, whereas if it is false 0 is
returned instead. The shill value illustrates the number of
malicious conditions met by a bidder in a single iteration of
our algorithm. The higher the score of a shill value, the higher
the likelihood of a bidder being malicious.

Our algorithm performs the following assertions to deter-
mine if a bidder is malicious (Alg.1): We first examine the
feedback of a bidder. If no or negative feedback is found we
increase the likelihood of a bidder being malicious (feedback
is bad || neutral), as shill bidders usually do not receive
feedback. Following, we examine the ratio between the lost
auctions of a bidder and the total number of auctions that
he/she participated in. As the goal of shill bidders is to drive
up prices and allow legitimate bidders to win the resources,
shill bidders maintain an unusually high number of lost
auctions. Therefore, we assume that if a bidder has lost above
a = 60% of the auctions he/she participated in (LostAuctions
> NumOfAuctPartic×a), he/she is probably malicious. Our
algorithm, then examines if the number of bids submitted by

a bidder to an auction is greater than the b = 45% of the
overall bids submitted in an auction. We have selected 45% as
our threshold b as shill bidders tend to submit an abnormally
high number of bids in auctions to drive prices up quickly
(NumOfBidsSubmittedToAuction > BidsInAuction×b). Added,
we analyze if a bidder has overbid himself/herself while win-
ning an auction. Shill bidders often overbid themselves even
if they are winning, as their goal is only to increase auction
prices. Our algorithm tolerates bidders that overbid themselves
once (c = 2), to avoid penalizing legitimate bidders that
accidentally overbid themselves (OverbidWinSelf ≥ c). Next,
we speculate concerning the frequency of the bids submitted
by a bidder during the first and second half of an auction.
Shill bidders are more eager to bid during the first half of an
auction in order to give legitimate bidders sufficient time to
place their bids and win (BidNumFirHalf > BidNumSecHalf ).
Next, we examine if the bidder has submitted the majority
of its bids (i.e. d = 54%) to a single seller (BidsToSeller >
TotalBids×d). Shill bidders usually submit all their bids to
a very small number of sellers, as their goal is to increase
the revenue of specific seller(s). Lastly, we analyze the price
difference between the bidding price submitted by a bidder and
the second highest price in that auction. We then compare this
price difference with the average price difference exhibited in
similar auctions in the market (CurBidPrice-OverbidedPrice
> AverageMarketPriceDiff ). This enables us to determine if
the prices submitted by a bidder are unnecessarily high, which
is behavior often encountered by shill bidders.

Once the shill value of a bidder is calculated, it is compared
with a threshold (i.e. t ≥ 5), to determine if the bidder is mali-
cious. The value selected for t is significantly high to avoid the
detection of legitimate bidders that exhibit shill-like behavior
(meet some of the malicious conditions in our algorithm), but
still effective for detecting shill behavior in the market. If a
bidder is found to be malicious, it is flagged as a possible shill
bidder and is been given a warning. If the exhibited malicious
behavior is repeated from the flagged bidder a number of times
(current set to q = 2), the bidder has to pay a fine f to the
market and its account is deleted. The algorithm has been
configured to tolerate the first occurrences of shill bidding
from each bidder in order to decrease the occurrence of false
positives. The imposed fine f aims to discourage shill bidding
by exceeding the expected gain of a shill bidder and the seller
it represents. The imposed fine is obtained by calculating the
average market price of resources in similar, shill-free auctions
and the average of resource in the presence of the shill bidder
in question and then subtract one from the other and increase
the resulting value by z = 10% ( f = (AVG(ShillResourcePrice)
- AVG(NonShillResourcePrice))×z).

The proposed defensive mechanism was able to successfully
detect 83% of the shill bidders (results deducted with the
execution of our solution 100 times) in the market. To test how
sensitive is the detection rate of our defensive mechanism to
threshold t we have lower it from 5 to 3. The obtained results
showed a perfect detection rate (100%), however we have
caused the occurrence of false positives (9,5%). Our results
were ineffective as the benefits of lowering threshold t were
overtaken by the occurrence of false positives.
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Algorithm 1 Shill bidding defensive mechanism pseudocode
for i=1 to Nth Bidder do

shillValue:=0
if (feedback = bad || neutral) then

shillValue:=shillValue+1
end if
if (LostAuct > NumOfAuctPartic *a) then

shillValue:=shillValue+1
end if
if (NumOfBidsSubmittedToAuction > BidsInAuction ∗ b) then

shillValue:=shillValue+1
end if
if (OverbidWinSelf ≥ c ) then

shillValue:=shillValue+1
end if
if (BidNumFirHalf > BidNumSecHalf) then

shillValue:=shillValue+1
end if
if (BidsToSeller > TotalBids ∗ d) then

shillValue:=shillValue+1
end if
if (CurBidPrice-OverbidedPrice > AverageMarketPriceDiff) then

shillValue:=shillValue+1
end if
if (ShillValue ≥ t ) then

FlagAsPossibleShillBidder()
WarnBidder()

end if
if (TimesFlagged ≥ q) then

PayFine(f )
DeleteAccount()

end if
end for

Comparative Results: Our comparative results illustrate
the variations observed in the average accumulated profit of
Datacenters in the presence and absence of shill bidders and
our solution in CloudAuction market. Our initial tests were
performed in the absence of shill bidders, witnessing a profit
margin that proportionally increased to the numbers of bidders
in the market (Fig. 1, round dotted blue line).

Following, we have tested CloudAuction to shill bidders,
where a higher average market price with a disproportional,
continuous growing trend exhibited. The average accumulated
market price in the absence of shill attackers was $242.36,
where in their presence it was increased to $313.91 (Fig. 1,
long dashed red line). The upsurge in the price demonstrates
that even if shill bidders submit bids with only moderate
increments in their bidding prices, legitimate bidders will still
not be able to acquire resources at optimal prices.

Lastly, we have tested CloudAuction to the existence of shill
bidders and our defensive mechanism. We have witnessed a
significant drop in the average profit margin of Datacenters
and similar price fluctuations to the experiment conducted in
the absence of shill bidders (Fig. 1, square dotted green line).

2) Reputation Attack:
Reputation Attack On CloudAuction: To perform reputa-

tion attacks on CloudAuction we have introduced a reputation
status for each seller and allowed bidders to: (i) submit
feedback to sellers according to their end service satisfaction
and (ii) specify in their bids the reputation of the sellers
they would like to obtain services from. Depending on the
nature of the market and the services/resources that it trades,
different types of feedback (comprising different information)
can be used to enable users to express their opinions. For
the purposes of our experiment we assume that all feedback
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Figure 1. Illustrates the average market price in the absence and presence of shill
bidding attackers and our solution

are grounded on five causes: (i) seller failure to meet resource
demands (e.g. allocated fewer resources, etc.), (ii) seller failure
to allocate resources, (iii) seller failure to satisfy the QoS
requirements of a bidder, (iv) payment issues and (v) hardware
or software errors that restricted the bidder from acquiring the
won resources. To test the CloudAuction market to reputation
attacks we have simulated 3 Datacenters and 25 Databrokers.
At the end of each auction round we randomly select one
bidder that won, paid and received resources from a seller to
submit a false bad feedback to that seller.

Reputation Attack Defensive Mechanism On CloudAuc-
tion: To defend against reputation attacks, we automatically
intercept bad feedback for analysis prior to their publication.
During analysis the following aspects (Alg. 2) are examined:
(i) has the bid successfully received by the seller in question?
(ii) has the bid been served? (iii) has the bidder been allocated
the requested amount of bandwidth, CPUs and RAM? (iv) is
the agreed price paid? and (v) have any hardware or software
errors been reported during the utilization of the resources by
the bidder? If the analysis illustrates that the bidder has valid
reasons for submitting bad feedback, the feedback is released
and submitted to the seller, whereas if the analysis shows that
the bidder had invalid reasons, its feedback is discarded and
a bad feedback is submitted to the bidder.

Algorithm 2 Reputation defensive mechanism pseudocode
if (BadFeedback isReceived) then

Intercept(Feedback)
end if
if (Bid isReceived) & (Bid isServed) & (ReqBW ≥ AllocBW) &
(ReqMIPS ≥ AllocMIPS) & (ReqRAM ≥ AllocRAM) & (PaidPrice ≤
BidPrice) & (Payment is Performed) & (SoftErrors || HardErrors not found)
then

Delete(Feedback)
SubmitBadFeedback(bidder)

else
ReleaseFeedback
SubmitBadFeedback(seller)

end if

Our solution was able to detect all cases of false feedback.
The defensive mechanism illustrated that in some occasions
it is feasible to efficiently (low overhead) and proactively
determine the validity of feedback in electronic markets,
without the need for human intervention and manual revision.

Comparative Results: To determine how sellers are affected
in the absence and presence of false bad feedback in the
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Figure 2. Illustrates the profit of each seller in the absence of false bad feedback

Figure 3. Illustrates the profit of each seller in the existence of false bad feedback

market, we have initially configured CloudAuction to operate
with no false bad feedback and then introduced bad feedback
to seller Datacenter3. Bidders were programmed to avoid
sellers with bad reputation to simulate the reluctance of real
world bidders to be associated with bad reputation sellers.
Our test illustrated a vast variation in the profit margin of the
seller with bad reputation. In the absence of false bad feedback
Datacenter3 was able to obtain 11 bids (Fig. 2), where in the
presence of false bad feedback the number of bids (3 bids) and
its profit dramatically decreased (Fig. 3). The debt column in
Fig. 2 and Fig. 3 presents the money received by Datacenters
for their resources in the absence and presence of false bad
feedback respectively.

3) Monopoly Attack:
Monopoly Attack On CloudAuction: To perform our

monopoly experiments we have simulated 3 Datacenters and
25 Databrokers. At the beginning of each simulation round we

randomly select one seller that forwards requests for leasing
resources from rival sellers until it exceeds the ownership of
the 50% of the resources in the market. This aims to simulate
the malicious behavior of a seller that buys up resources and
corners the market.

Monopoly Defensive Mechanism On CloudAuction: Ac-
cording to the work of Oswald [27], if a vendor owns more
than 40% of the market shares then it is likely that it is a
case of monopoly. Based on [27], our monopoly solution flags
sellers that own more than m = 40% of the overall market re-
sources as suspicious. Suspicious sellers are further examined
to determine if they were intentionally buying up resources
to corner the market. The analysis entails the examination of
a seller’s: idle resources; used resources; and the number of
requests made for leasing resources. If the vast majority of a
sellers resources are in idle state (current threshold: i = 70%),
and has repeatedly submitted requests for leasing resources
(current threshold: average number of leasing requests per
hour) from rival sellers, it is classified as malicious. If a seller
is found malicious, its leasing capability is revoked for a period
of time t and its selling price is restricted to the average
market selling price (Alg. 3). Thus, sellers have no incentive
for cornering the market as if they are discovered they will lose
their purchasing capabilities and will not be able to increase
the price of their resources.

Algorithm 3 Monopoly defensive mechanism pseudocode
if (sellerRAM > marketRAM ∗m) || (sellerStorage > marketStorage ∗m)
|| (sellerBW > marketBW ∗m) || (SellerMIPS > marketMIPS ∗m) then

flag(suspicious Seller)
end if
if (seller is suspicious) & ((idleSellerRAM > totalSellerRAM ∗ i)
|| (idleSellerBW > totalSellerBW ∗ i) || (idleSellerStorage >
totalSellersStorage ∗ i) || (idleSellerMIPS > totalSellersMIPS ∗ i)) &
(NumOfReq > MarketReqPerHour/NumOfSellers) then

Flag (Malicious seller)
PausePurchaseCapabilities(t)
RestrictHighSellPriceForSeller (AverageMarketSellingPrice)

end if

The proposed defensive mechanism was able to success-
fully detect all cases of monopoly attack. Regardless of the
successful detection and mitigation of monopoly attacks, our
algorithm is not able to solve the situation where an attacker
distributes the overall amount of owned resources to multiple
fake seller accounts, to evade detection and still maintain the
majority of resources in the market. However, even in this
occasion the attacker is penalized as it is both harder and
more expensive to maintain multiple accounts.

Comparative Results: Our results illustrate how the average
price of each traded resource is affected in the presence
and absence of a monopoly attack in CloudAuction. We
have observed that monopoly can significantly increase the
average price of resources. This can lead into damaging the
profit of other sellers (due to lack of available resources) and
harming the financial interests of bidders as they will only
be able to obtain resources at higher costs. More specifically,
we observed that in the absence of monopoly attacks the
average price for leasing RAM (per 1 MByte), storage ( per 1
GByte) and bandwidth (per 1 Mbit/s) was $4.8, $4.8 and $5.2
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Figure 4. Illustrates the average price of resources in the existence/absence of monopoly

respectively, where when we introduced a monopoly attack the
prices escalated to $6.2, $6.1 and $5.2 (Fig. 4).

4) Denial of Payment Attack:
Denial of Payment Attack On CloudAuction: To perform

denial of payment attacks in CloudAuction we have simulated
3 Datacenters and 25 Databrokers. At the beginning of each
simulation run we randomly select a number (currently set to
the 15%) of ongoing auctions and force them to remain at
matching stage and not to proceed to payment. This simulates
the behavior of bidders that refuse payment to sellers. The big
number of bidders selected for performing this attack aims to
exemplify the effects of the certain attack on the sellers’ profit
and the overall revenue of online markets.

Denial of Payment Defensive Mechanism On CloudAuc-
tion: The proposed solution (Alg. 4) is founded on the
real time analysis of bidding records. Each bidder in the
market maintains a bidding record that archives the following
attributes: (i) price difference from the second highest bid, (ii)
bidder feedback, (iii) number of bids submitted to each seller,
(iv) number of bids submitted to the market, (v) number of
times that a user denied payment for won resources and (vi)
number of won auctions. At the end of each auction round all
bidding records are analyzed. The outcome of the analysis is
expressed as a value (unpaid-status value). The unpaid-status
value is calculated by comparing the six archived bidding
attributes with given thresholds. In case that a comparison
is true, 1 is returned and added to the unpaid-status value,
where if it is false 0 is returned. The unpaid-status value
illustrates the total number of malicious conditions met by
a bidder in a single iteration of our algorithm. The higher the
score of the unpaid-status, the higher the likelihood of a bidder
to be malicious. Our defensive algorithm first examines the
number of bids send to each seller by a bidder. Bidders that
intentionally refuse payment to sellers, have specific targets
that they submit all their bids to. Hence, we check if a bidder
has submitted more than a number of its overall bids (i.e.
d = 50%) to a single seller (BidsToSeller > TotalBids×d).
Following, we examine the ratio between the total number
of won auctions and the times denied payment. We consider
bidders that have denied payment to more than w = 50%
of their won auctions, as probably malicious, as legitimate
bidders bid to win and purchase resources excluding few,
exceptional circumstances. Lastly, we analyze the price dif-
ference between the bidding prices submitted by a bidder
and the second highest price in that auction. We then com-
pare this price difference with the average price difference

exhibited in similar auctions (CurBidPrice-OverbidedPrice >
AverageMarketPriceDiff ). This enables us to determine if the
prices submitted by a bidder are unnecessarily high, which is
behavior often witnessed by malicious bidders that want to
guarantee that they win auctions and deny payment to sellers.

Once the unpaid-status value is calculated, it is compared
with a given threshold (currently set to u = 3), which
determines if a bidder is malicious. If a bidder is found
malicious, he/she is warned and the maximum number of bids
that can submit in the market is restricted to the s = 30% of
the average number of bids submitted in the market per hour
((TotalMarketBidsPerHour/NumOfBidders)×s). If the bidder
repeats the same malicious behavior a number of times (i.e.
k = 3), then he/she has to pay a fine and its account is
discarded. The imposed fine is the f = 8% of the total
cost of the unpaid won auctions. Though we consider f to
be reasonably low for attackers to afford and high enough to
discourage them, however it can be adjusted according to how
strict the penalty should be.

Algorithm 4 Denial of payment defensive mechanism pseudocode
for (1st to Nth Bidder) do

UnpaidStatus:=0
if (feedback = bad || neutral) then

UnpaidStatus:= UnpaidStatus+1
end if
if (BidsToSeller > TotalBids ∗ d) then

UnpaidStatus:= UnpaidStatus+1
end if
if (TimesDeniedPayment > WonAuctions ∗w) then

UnpaidStatus:= UnpaidStatus+1
end if
if (CurBidPrice-OverbidedPrice > AverageMarketPriceDiff) then

UnpaidStatus:= UnpaidStatus+1
end if
if (UnpaidStatus ≥ u) then

FlagAsMalicious()
WarnBidder()
MaxBidsPerHour(AverageMarketBidsPerHour ∗ s)

end if
if (TimesFlagged ≥ k) then

PayFine(PriceUnpaidResources ∗ f )
DeleteAccount()

end if
end for

We have executed our defensive mechanism 100 times to
assert its effectiveness and accuracy. Our results illustrated a
high detection rate reaching the 92% of the malicious bidders
in the market. We have attempted to improve the detection rate
of our mechanism by lowering threshold k from 3 to 2. The
results were contradictory, as the detection rate increased to
97.3%, but it also miss-classified 8% of the legitimate bidders
as malicious. The increase in false positive can be attributed
to the lack of sufficient bidding data for some of the bidders
due to the short time they were registered in the market.
Regardless of the effectiveness of our solution, attackers can
evade detection by discarding their fake bidding account after
each auction and then create a new one for the next auction
of interest. To mitigate the certain shortcoming, we impose
a registration fee (currently set to $80) on newly registered
bidders to discourage the creation of multiple fake bidding
accounts. The registration fee is reserved by the auctioneer
and is used to pay the first won resources of the bidder.
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Figure 5. Shows the profit of sellers in the existence and absence of payment denial
attacks

Comparative Results: Our results illustrate how the cumula-
tive profit of sellers is affected in the presence and absence of
denial of payment attacks. The obtained results (Fig. 5) show
that the profit of sellers can be severely affected by bidders
that intentionally refuse to pay for won resources as their
resources remain bounded, where no money is received. More
specifically, in the absence of intentional denial of payments
the cumulative profit of sellers reached $120.100, where in
their existence the market revenue dropped to $40.100. Once
our defensive mechanism was deployed in the market the profit
of sellers escalated to $100.150, witnessing a profit margin
similar to the one exhibited in a healthy market.

IV. CONCLUSION AND FUTURE WORK

We have hypothesized that market-oriented Cloud systems
are threat-unaware and fail to deal with market-specific at-
tacks such as shill bidding and monopoly attacks. We have
used CloudAuction, a market-oriented extension of CloudSim
simulation framework, as our test-bed to verify our hypoth-
esis. Our results have confirmed that existing markets are
vulnerable towards market specific attacks and ascertain on
how such attacks can affect sellers, bidders and underlying
auctioning mechanisms in these environments. Observations of
the experiments were used to develop defensive mechanisms
for securing Cloud markets against these attacks. We have
experimentally illustrated and reported on the added value of
introducing these mechanisms to secure the market. Future
work entails the classification and analysis of a wide range
of market specific threats and their solutions. We also hope
to introduce intelligence to proactively detect threats and
optimally configure the parameters of our solutions at runtime
according to the changing market-oriented Cloud context.
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