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A B S T R A C T

With the wide adoption of 5G technology and the rapid development of 6G technology, a variety of new
applications have emerged. A multitude of compute-intensive and time-sensitive applications deployed on
terminal equipment have placed increased demands on Internet delay and bandwidth. Mobile Edge Computing
(MEC) can effectively mitigate the issues of long transmission times, high energy consumption, and data
insecurity. Task offloading, as a key technology within MEC, has become a prominent research focus
in this field. This paper presents a comprehensive review of the current research progress in MEC task
offloading. Firstly, it introduces the fundamental concepts, application scenarios, and related technologies
of MEC. Secondly, it categorizes offloading decisions into five aspects: reducing delay, minimizing energy
consumption, balancing energy consumption and delay, enabling high-computing offloading, and addressing
different application scenarios. It then critically analyzes and compares existing research efforts in these areas.
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1. Introduction

Cloud computing used in many applications. However, it is not
suitable for real-time IoT applications that require low-latency per-
formance. Concurrently, the vigorous expansion of Internet of Things
(IoT) technology and the widespread adoption of interconnected smart
technology has engendered a relentless exponential surge in the de-
mand for device-based computation. In response to these formidable
challenges, there has been an observable paradigm shift within the
realm of computation towards the burgeoning field of distributed edge
computing [2].

1.1. Motivation

The motivation for this work arises from the transformative impact
of Mobile Edge Computing (MEC) in meeting the growing computa-
tional demands of modern applications, driven by the rapid advance-
ment of technologies such as 5G and the anticipated 6G networks. With
the proliferation of energy-intensive and latency-sensitive applications-
ranging from augmented reality to autonomous vehicles, there is a
critical need for efficient task offloading strategies that optimize re-
source utilization while minimizing delays and energy consumption. As
existing cloud computing paradigms struggle to meet the performance
requirements of increasingly distributed and dynamic environments,
MEC emerges as a pivotal solution. It enables computations to be
processed closer to the data source, thereby reducing the burden on
centralized data centers and enhancing responsiveness. This survey
aims to present a thorough overview of current research efforts in MEC
task offloading strategies, highlighting significant methodologies, chal-
lenges, and future directions. By doing so, it seeks to inform researchers
and practitioners of the state of the art, fostering further innovation in
this critical area of study and contributing to the realization of efficient,
sustainable, and intelligent edge computing systems. The exploration
of offloading algorithms not only addresses pressing issues in compu-
tational efficiency and resource management but also aligns with the
broader vision of smart and connected environments that underpin the
future of technology.

1.2. Research methodology

This section explains the search method used for task offloading in
an edge computing environment. First, a systematic literature review
was conducted, following specific steps to explore, collect, categorize,
analyze, and assess relevant articles in this field. The review focused on
identifying and selecting pertinent articles based on predefined inclu-
sion and exclusion criteria. We have used several databases and search
2 
engines, including Google Scholar, Web of Science, DBLP, and relevant
papers and their corresponding citations, to gather comprehensive and
relevant articles. This approach ensured a thorough and well-rounded
understanding of content caching in edge computing environments.

1.3. Mobile Edge Computing (MEC) overview

The Cisco Internet Report (2018–2023) outlined a prediction for
the year 2023 that each individual is anticipated to have an average
of 3.6 Internet-connected devices [3]. Moreover, within households,
the number of devices and connections is expected to reach 10, with
approximately 47% of these devices featuring video functionality. This
signifies a proliferation of communication devices that will generate
substantial data traffic. The adoption of 5G and the ongoing develop-
ment of 6G communication networks are poised to offer robust capa-
bilities for handling the escalating volume of data traffic. To address
the escalating demand for computing resources, a novel computing
paradigm is emerging, one that involves the integration of additional
devices to furnish ample computing power support for ubiquitous
computing environments. This transition is particularly noteworthy
in light of the ‘‘post-Moore’s era’’, wherein the historical trend of
guaranteed performance growth in integrated circuit technology is no
longer assured. Consequently, the concept of establishing expansive
computing networks is gaining prominence as a critical strategy to meet
the evolving demands of the digital age.

In this context, while network computing offers significant com-
putational power for data processing, it still falls short of meeting
data demands. Consider, for instance, the cloud computing paradigm
in an airport monitoring application, where thousands of cameras are
deployed to ensure airport security, each capable of generating 12 Mbps
of data [4]. The analysis of transmitted video data alone on the central
cloud server necessitates hundreds of gigabits per second (Gbps) in
bandwidth resources for collection. This would significantly elevate
the load on high-traffic servers within the central core network and
lead to increased processing and transmission delays. Consequently, the
notion of entrusting all computations and data to a centralized cloud
computing center is proving both impractical and unreasonable. As an
alternative paradigm, in the MEC, the edge server assumes the role
of a ‘‘distributed mini cloud computing center’’. For instance, within
the context of an airport monitoring system, technology for offloading
computations directly onto the MEC server near the airport monitoring
equipment can be employed. This server can analyze and filter the
video stream before transmitting it to the central server, and thereby
decreasing demand for network bandwidth and server processing re-
quirement, and incurring less latency. This approach alleviates the data
flow transmitted via the Wide Area Network (WAN), thus substantially
reducing the burden on the central server and, subsequently, the central
network server’s load.
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Table 1
Comparison of survey papers related to MEC in recent years.

literature Year MEC Energy consumption
minimization

QoS Time delay
minimization

High-computing
offloading

Different application
scenarios

[5] 2017 ✓ ✓ ✗ ✓ ✗ ✗

[8] 2019 ✗ ✓ ✓ ✗ ✗ ✗

[9] 2020 ✗ ✓ ✓ ✗ ✗ ✓

[10] 2020 ✗ ✓ ✓ ✗ ✓ ✓

[11] 2020 ✓ ✓ ✓ ✓ ✗ ✗

[12] 2020 ✗ ✗ ✗ ✗ ✗ ✗

[13] 2021 ✓ ✗ ✗ ✗ ✗ ✗

[14] 2021 ✓ ✓ ✗ ✓ ✓ ✗

[15] 2022 ✓ ✓ ✗ ✓ ✗ ✗

[16] 2022 ✓ ✓ ✗ ✓ ✗ ✗

[17] 2023 ✓ ✗ ✗ ✗ ✗ ✗

Our 2024 ✓ ✓ ✓ ✓ ✓ ✓

✓: Discussed, ✗: Not Discussed.
.4. Significance of offloading in MEC

MCC initially introduced the concept of computing offloading,
hereby intricate computations are executed in the cloud, resulting

n the simplification of mobile device functions and a reduction in
onfiguration complexity. Traditional cloud computing encompasses
se cases and methodologies for ‘‘computing migration’’ or offloading
omputations. Various factors, such as the nature of tasks, device
pecifications, user preferences, and the resource availability of MEC
ervers, play a crucial role in this process [5]. Currently, MEC lever-
ges offloading technology to efficiently manage user task offloading
nd server resource allocation, significantly enhancing server task
rocessing efficiency. Consequently, this paper focuses on one of the
ivotal technologies in MEC applications-namely, the technology of
ffloading computational tasks. This technology involves offloading
omputational tasks from MDs to the edge servers, thereby alleviating
he computational burden on the terminal equipment itself. By intelli-
ently utilizing MEC server resources, this approach conserves energy
nd accelerates computation speeds. In MEC, the challenge of efficient
ask offloading is multifaceted due to the limited resources available
n servers compared to cloud servers [6]. Furthermore, tasks vary
n terms of priority, scheduling, computational overhead, and inter-
ependencies. The optimal task offloading strategy necessitates the
election of the most suitable task for offloading to the most appropriate
erver at the optimal time, all while ensuring optimal application
erformance and efficient utilization of MEC resources. This issue
elongs to the category of NP-hard problems, involving multi-objective
ptimization [7].

.5. Objectives and scope

This work presents the recently proposed task-offloading methods
n MEC, highlights the research progress of task-offloading algorithms,
nd outlines the current challenges in MEC.

The main contributions of this paper are as follows:
(1) The development background, basic concepts, and differences

etween different computing paradigms of MEC are briefly summa-
ized.

(2) This paper summarizes the research progress of computing of-
loading algorithms in edge computing, studies the architecture design
f the MEC system, and provides a typical MEC application scenario to
acilitate readers to compare the design of such applications.

(3) The offloading algorithms are qualitatively compared from the
spects of offloading methods, application scenarios, and main ideas,
nd the algorithms are analyzed and classified.

The reminder of this paper is organized as follows: The Section 2
urveys the recent related works. The Section 3 provide fundamental
nowledge of MEC technology. The Section 4 discusses the architectural
ramework of MEC technology at the system level. Section 4 introduces
ystem model for offloading. Section 5 gives offloading approaches in
3 
MEC. Section 6 introduces the classification of mobile edge computing
offloading decisions. Section 7 discusses the key findings and future
directions. Finally, Section 8 summarizes the survey.

2. Related surveys

We have studied and summarized the overview of task offloading of
edge computing from six aspects, including MEC, Energy Consumption
Minimization, QoS, Time Delay Minimization, High-computing Offload-
ing and different application scenarios. Table 1 shows the comparison
of survey papers related to MEC in recent years.

Among them, the main review object of paper [8–10,12] is the
task offloading for edge computing. However, paper [5,11,13–17] are
the task offloading for mobile edge computing. Paper [5,8–11,14,15]
conducted research on minimizing energy consumption. Among them,
paper [8,11,14] are for MEC. In terms of QoS, for the review articles on
MEC, only paper [8] has discussed it. For the time delay minimization,
most review papers on MEC have analyzed and discussed this issue.
This indicates the importance of time delay for MEC in task offloading.
Relatively speaking, there is less discussion on the remaining two
topics, especially regarding the discussion on MEC. There is no rele-
vant review paper to summarize and discuss the different application
scenarios.

Mach et al. [5] categorize the research on computation offloading
into three main areas: (1) decisions on computation offloading, (2)
allocation of computing resources within the MEC, and (3) mobility
management. Due to the relatively simple research scenario at that
time and the lack of consideration for more complex QoS and different
application scenarios, the issues in this part of the scenario were not
discussed. Jiang et al. [8] focus on the various task computing of-
floading strategies. However, the paper mainly discusses issues related
to minimizing energy consumption and QoS, without addressing some
aspects such as time latency and different application scenarios. Wang
et al. [9] present taxonomy of task offloading in edge-cloud environ-
ments and discuss the resource task for edge-cloud and multi-cloud
scenes. Lin et al. [10] focus on the different offloading modeling meth-
ods. However, the paper did not take into account and discuss the issue
of time dalay for edge computing. Zheng et al. [12] discuss computation
offloading in edge computing including offloading scenarios, influence
factors and offloading strategies. However, the paper did not follow
the energy consumption, QoS, time delay et al. Mustafa et al. [13]
present the survey of MEC offloading techniques with WPT. This pa-
per, like the previous paper, did not discuss the above issues. Qadir
et al. [14] analyze and discuss task offloading based on the performance
parameters. However, the paper ignores the summary and discussion
of QoS and different application scenarios. Shakarami et al. [11] fo-
cus on game theory (GT)-based computation offloading mechanisms
in the MEC. However, the paper did not analyze or discuss further
offloading strategies. Feng et al. [15] summarize various offloading

objectives including energy consumption minimization and time delay.
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However, there is also a lack of discussion on QoS and task offloading
strategies. Huda et al. [16] review computation offloading approaches
in UAV-Enabled MEC. For offloading decisions, the paper focuses on
the energy/power consumption and time delay. Akhlaqi et al. [17] add
algorithm classification, bibliometric analysis in the paper. However,
there was no analysis and discussion on task offloading strategies and
performance requirements. In our work, we introduce the mobile edge
computing fundamentals and system model for offloading. According
to the MEC offloading decisions, we summarize and classify the task
offloading for MEC from six aspects including MEC, Energy Consump-
tion Minimization, QoS, Time Delay Minimization, High-computing
Offloading and different application scenarios. Moreover, we identify
research gaps with respect to each aspect and propose future research
directions.

3. Mobile edge computing fundamentals

What distinguishes MEC from MCC is that it takes the computing
power to the near the edge of the network [18]. Applications running
on MDs transfer computationally intensive tasks to nearby MEC servers
to reduce overhead and further alleviate network congestion [19–21].

3.1. Key concepts of mobile edge computing

In 2014, the concept of the mobile computing paradigm emerged
through collaboration between the European Telecommunications Stan-
dards Institute (ETSI) and industry leaders like Intel, Nokia, Huawei,
IBM, and others. This collaboration set the stage for what we now
know as MEC [22,23]. ETSI formally defined MEC as ‘‘deployed in
the carrier network or its subnet to provide management and host
functions for mobile edge applications’’, solidifying its essential role
in the emerging 5G/6G landscape. Initially, MEC was envisioned as a
way to integrate cloud computing technology into cellular networks.
However, by 2017, ETSI expanded the concept to encompass various
wireless network types, thereby extending its reach beyond 3GPP
networks [24]. Today, MEC is recognized as a cloud server designed for
deployment at the edge of mobile communication networks, capable of
executing specialized tasks. Despite evolving terminology, the industry
predominantly still refers to it as ’MEC,’ underscoring its significant
presence and importance within the domain of mobile communication
networks [25].

3.2. Role of 5G in MEC

5G networks possess three distinct characteristics: Enhanced Mobile
Broadband Technology (eMBB), Large-Scale Machine-Type Commu-
nication Technology (m-MTC), and Ultra-High Reliability and Low-
Latency Communication (uRLLC). The advent of 5G has given rise to a
surge in the demand for connecting numerous devices and performing
high-speed computations. In fact, it is estimated that by 2023, 5G will
support over 10% of all global mobile connections, as per a report [26].
The primary connectivity goals within the EU include ensuring seamless
5G wireless broadband access in urban areas and transportation routes
by 2025, and extending 5G coverage to all populated regions by 2030.
Official statistics indicate that 5G coverage has presently reached 72%
of the EU population [27,28]. Followings are the core features of 5G:

Ultra-High Bandwidth: 5G boasts incredibly high data transfer
rates, allowing for seamless streaming and downloading of large files.

Ultra-High Density: This refers to the ability of 5G networks to
accommodate a massive number of devices and connections within a
limited area.

Ultra-Low Delay: 5G minimizes communication delays, making it
ideal for applications where real-time responsiveness is critical. How-
ever, amid the exciting possibilities of 5G, there are technical chal-

lenges to address. As the number of devices connected to mobile e
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networks increases significantly, ensuring timely data transmission be-
comes crucial. Two primary approaches can tackle this challenge:

Strengthening Network Capabilities: While 5G inherently en-
hances network capabilities, it is important to acknowledge that net-
work performance can be unpredictable and subject to interference
[29]. Therefore, reinforcing network capacity alone may not suffice.

Front-End Enhancement with MEC: MEC emerges as a valuable
solution. Even though small processors have limited computing power,
MEC empowers the front end by bringing computation closer to the
edge of the network. This approach mitigates the reliance solely on
the network.1 Cisco’s annual Internet report predicts that, by 2023,
Machine-to-Machine (M2M) connections supporting networked appli-
cations will make up approximately 50% (14.7 billion) of all global
equipment and connections [30]. This underscores the significant role
of interconnected devices in the future of communication networks. In
this context, the demands of 5G and the IoT form a joint force: on
the one hand, the faster communication technologies, such as 5G and
WIFI6, can significantly reduce the delay of data transmission, so that
the single-hop delay of front-end equipment can be reduced to a single
millisecond level. On the other hand, it can also relieve the pressure
of cloud computing centers by decentralized processing of massive
computing demand of edge devices. On the premise of meeting the
existing computing demand, it is bound to spawn all kinds of real-time
computing services [31]. 5G/6G and beyond, represents a significant
advancement in network capabilities. It is characterized by its ability to
efficiently handle substantial volumes of data, offering attributes such
as low latency, high reliability, and exceptional speed or bandwidth.
However, the efficacy of 5G/6G is contingent upon its integration
with edge computing. This integration becomes imperative when a
multitude of devices are interconnected within the network, and the
data generated by each device inundates the network infrastructure. In
such circumstances, the conventional approach of transporting all this
data to centralized cloud servers proves to be increasingly impractical
and resource-intensive. Moreover, the quintessential promise of 5G/6G,
namely the attainment of revolutionary latency levels, necessitates a
fundamental shift in data processing. This shift entails the localiza-
tion of data processing at the network’s edge, ensuring that data is
handled in proximity to its source or point of utilization. By adopting
this approach, latency can be minimized, as data traversal distances
are reduced, thereby aligning with the stringent latency requirements
set forth by new technology. In essence, the aggregation of 5G/6G
and edge computing emerges as a pivotal paradigm for the realiza-
tion of its transformative potential, enabling seamless and responsive
communication across diverse applications and scenarios.2

3.3. Comparative analysis of similar paradigms

In the realm of mobile broadband Internet services and the burgeon-
ing field of mobile IoT, the explosive growth of data applications has
posed significant challenges in terms of processing vast amounts of data
efficiently. To meet this challenge, a range of innovative computing
paradigms has emerged over the past few years. These paradigms aim
to ensure that application services are not only more timely and reliable
but also resource-efficient and flexible. Some of these groundbreaking
computing paradigms include the Transparent Computing Paradigm
(TC), Fog Computing Paradigm (FC), Mobile Cloud, Cloudlet (Cloudlet),
and Follow ME Cloud. Each of these paradigms comes with its unique
set of advantages and disadvantages, making them suitable for various
practical scenarios. In the future, as the Internet continues to evolve
into an interconnected ecosystem where everything is linked, collabo-
ration among these paradigms will become increasingly vital. People

1 https://www.ibm.com/cloud/smartpapers/5g-edge-computing/.
2 https://www2.deloitte.com/us/en/pages/consulting/articles/what-is-5g-

dge-computing.html.

https://www.ibm.com/cloud/smartpapers/5g-edge-computing/
https://www2.deloitte.com/us/en/pages/consulting/articles/what-is-5g-edge-computing.html
https://www2.deloitte.com/us/en/pages/consulting/articles/what-is-5g-edge-computing.html
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Table 2
Comparison of similarities and differences of computational paradigm schemes.

Scheme Calculate position Function size Flexibility

Fog computing Devices on the route Maximum Normal
Cloudlet the terminal device and data center Small Relatively worst
Cloud computing On the internet Normal Better
Mobile edge computing The edge of the local network Smallest Best
will harness the strengths of these paradigms collectively to navigate
the complexities of the connected world. Followings are the three of
these paradigms: Fog Computing, Mobile Cloud, and Cloudlet. We will
explore their attributes and differences to gain a clearer understanding.
For a comprehensive comparison, please refer to Table 2.

3.3.1. Fog computing
Fog computing, introduced as a concept by Cisco in 2012, emerged

as a new paradigm. This section explores fog computing and its similar-
ities to MEC. Initially designed for the IoT environment, fog computing
brings computational power to the network’s edge, and it aims to
process data, store it on the client side, and transmit data with minimal
volume to the cloud. This approach prioritizes edge device processing,
offering advantages like wireless access, mobility support, location
awareness, and rapid response when compared to traditional cloud
computing. It shares striking similarities with the concept of MEC [30,
32,33]. Fog computing was originally conceived for IoT environments.
Its primary objective is to provide computational resources at the edge
of the network, bringing processing closer to where data is gener-
ated [34,35]. Fog technology employs edge devices to process data,
store data on the client side, and transmit data with minimal volume
to the cloud. In contrast to cloud computing, fog computing empha-
sizes wireless access, mobile support, location awareness, and rapid
response times. Fog computing demonstrates advanced capabilities and
superior performance in handling user requests when compared to
traditional cloud computing. Cloud computing relies on infrastructure,
necessitating hardware and software to manage tasks and processes.
Conversely, fog computing leverages the resources available on edge
devices, making it a more resource-efficient approach [36].

3.3.2. Mobile Cloud Computing(MCC)
In recent decades, sending and storing large volumes of data in the

cloud for real-time analysis and calculation has become a prevailing
development trend. This section explores the concept of real-time big
data processing in the cloud and its significance. It also discuss the role
of cloud computing, the challenges posed by mobile IoT applications,
and the emergence of Mobile or MEC architecture in addressing these
issues. Cloud computing offers users pay-per-use services and comput-
ing resources tailored to their specific requirements [37]. It has become
a cornerstone in facilitating real-time data processing and analysis. In
the era of mobile IoT, the proliferation of MDs and the surge in mobile
data flow have strained the Internet, leading to uncontrollable service
delays. Mobile IoT applications are particularly sensitive to time delays
and context awareness, making it challenging to meet their service
requirements solely through mobile cloud services. MEC architecture
represents a fundamental shift from the traditional decentralized cloud
computing model. However, it is important to recognize that cloud
computing and edge computing are not polar opposites; they com-
plement each other. MEC does not seek to replace cloud computing
but rather extends and enhances the capabilities of traditional cloud
computing services [38].

3.3.3. Cloudlet
When MCC transfers computing-intensive tasks from MDs to the

cloud for execution, the data does not just travel through the wireless
network; it also goes through the core network. If there is a lot of data
interaction during this upload, it can overload the network and signifi-

cantly increase transmission delays. Cloudlet [39], a service which falls
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into the category of edge computing and is essentially another form of
edge computing [40]. It is a crucial method and tool for effectively
addressing the previously mentioned issue of high concurrency delays.
The Cloudlet architecture principle is depicted in Fig. 1(b). In this
setup, the cloud computing server is positioned near the user’s location,
usually just one hop away. When a mobile device directly accesses the
service interface of mobile intelligent cloud computing, it does not need
to navigate through a complex core network. This approach can be
referred to as a ‘‘near-end cloud implementation mode’’. In contrast to
traditional cloud computing, Cloudlet uses wireless Wi-Fi connections
and offloads resource-intensive cloud computing tasks to smaller local
clouds. This approach prolongs the battery life of mobile storage de-
vices. A cloudlet processes most of the data locally, transmitting only
a smaller portion to the central cloud. This reduces data storage re-
quirements and bandwidth usage, resulting in reduced communication
delays, latency, and jitter for a smoother user experience.

4. System model for offloading

The typical deployment mode for MEC is illustrated in Fig. 1(a).
In this setup, installing a standard x86 server directly onto the base
station allows for the immediate handling of various urgent tasks within
the station. However, this approach can consume a substantial amount
of system resources. When the base station receives a video signal
from a camera, it sends it directly to the MEC server for processing.
This enables timely updates and adjustments to the vehicle’s current
driving conditions based on system rules. Nevertheless, rule updates
and remote driving execution occur on a remote server. By deploying
the MEC server within the base station, MEC can significantly reduce
delays and enhance location awareness by processing user requests at
the network’s edge. This, in turn, leads to an improved user experience
and lessens the burden on the core network, as outlined in Hu et al.’s
work [23].

MEC has been developed to provide a multi-tenant hosting envi-
ronment for applications at the network edge. Its system architecture
comprises hardware resources and virtualization infrastructure, includ-
ing computing power and network resources. MEC supports a variety
of applications, such as autonomous driving and car networking. Cur-
rently, there is a growing demand for high-speed computing in services
like HD live broadcasting, video surveillance, and unmanned aerial
vehicles. These services are exceptionally sensitive to bandwidth and
latency. To address this challenge and fulfill the increasing computa-
tional needs on MDs, the concept of decentralizing cloud computing
has emerged as a new solution [41]. MEC leverages cost-effective x86
servers to complement expensive communication components, enhanc-
ing the network’s ability to efficiently manage computing resources.
This approach aims to harness the computing power at the network’s
edge while minimizing delays, aligning with the demands of modern
applications.

4.1. Computational model

It enables low-latency and high-performance processing for appli-
cations like augmented reality, autonomous vehicles, and IoT devices.
In the context of MEC, offloading involves transferring computational
tasks from a central cloud server to edge servers to achieve faster
processing. Here is an overview of the computational model for MEC
offloading technology:
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Fig. 1. (a) and (b) illustrate the deployment architecture of Cloudlet and Mobile Edge Computing (MEC) systems, highlighting the structural differences and similarities between
the two.
• Edge Servers: MEC depends on a distributed network of edge
servers or nodes positioned at the network’s edge, close to end-
users or devices. These servers have sufficient computational
power and resources to perform real-time processing.

• Task Offloading: Computational models for MEC offloading in-
volve deciding whether to execute a task locally on the device
or transfer it to an edge server. This decision can be based
on factors like task complexity, available network bandwidth,
latency requirements, and server load.

• Edge Computing Frameworks: Various edge computing frame-
works and platforms have emerged to facilitate task offloading.
These frameworks provide APIs and tools for developers to deploy
and manage applications at the edge. Examples include AWS
Greengrass, Azure IoT Edge, and OpenStack Edge Computing.

• Machine Learning and AI: Machine learning models and arti-
ficial intelligence algorithms are often used in MEC offloading
decision-making. These models can analyze data from the device,
network conditions, and server capabilities to make intelligent
offloading decisions in real-time.

• Network Slicing: MEC can involve network slicing, where ded-
icated virtual network segments are created to prioritize traffic
and resources for specific applications or tasks. This ensures that
critical tasks get the necessary computational resources.

• Security and Privacy: Computational models for MEC offloading
need to address security and privacy issues. Data transmitted to
edge servers needs to be encrypted, and access control mecha-
nisms must be in place to prevent unauthorized access to sensitive
information.

• Dynamic Adaptation: MEC offloading is adaptable and can re-
spond to fluctuating network conditions and workloads. Models
may need to continuously monitor and adjust offloading decisions
to optimize performance. The computational model is discussed
in Section 5 in more detail.

4.2. Pricing mechanism

To ensure uninterrupted service, edge nodes must pre-install fre-
quently requested service programs [42,43]. This is because the time it
takes to install and load these programs can be several tens of seconds,
in contrast to their execution time, which is in milliseconds [44]. These
commonly requested programs are pre-cached on the edge node servers
to enable real-time service delivery. However, given that edge servers
have limited resources, they need to prioritize and cache the most
frequently requested service programs to ensure efficient operation.
Programs that are not cached result in the inability of edge nodes to
provide real-time services, a process referred to as service caching [45,
6 
46]. For instance, a program for human face authentication, used in
payment or security verification, must be cached by the edge servers.
MEC servers determine their pricing based on their computational
and storage capabilities. However, their pricing strategy is not solely
dependent on their own resources but also takes into account how other
users decide to utilize their service. For instance, if there is a high
demand for a popular service program, the MEC server may increase
its price. Conversely, if the price becomes excessively high and other
MEC servers are available, it might lose requests. Therefore, to optimize
resource utilization and maximize profits, the pricing mechanism relies
on algorithmic game theory. Specifically, it is modeled as a two-stage
dynamic game with incomplete information, often referred to as a
Stackelberg game. In this game, MEC servers play the role of leaders,
while requesting devices act as followers.

4.2.1. Two-stage stackelberg game model
In a Stackelberg game, edge computing service provider (ESP) acts

as a leader, while service requesting users (referred to as followers)
respond with their moves.3 Likewise, in the context of MEC, the MEC
server determines the pricing for its computing resources. This pricing
is influenced by the server’s own computing resources and the current
utilization rate. Subsequently, the MEC server broadcasts this pricing
to the network. In the second stage of this process, the applicants must
decide which edge to offload their tasks to and purchase the necessary
resources. This decision takes into account not only the pricing but also
factors such as the amount of data that needs to be offloaded [47].

When edge servers offer their pricing they broadcast in the network.
Based on the received pricing the requesting devices compete for the
computational resources such as to minimize their own cost. A request-
ing device is unaware of how many other devices are going to offload
its task on a given server which is interesting about this game. Utilizing
this phenomenon about prediction at both sides, i.e. the server and
receiver both need to make intelligent decisions to maximize their own
profit. As the requesting device does not know about the other devices’
requesting program, it makes a suitable choice for the Stackelberg game
because there is missing information.

4.2.2. Pricing types
Two pricing strategies are adopted based on MEC servers namely

uniform and differential[45]. In a uniform strategy, all the service
program from a given server is offered at the same price. On the
other hand differential pricing assumes that the MEC servers are set
differently based on the demand, computational and storage, and many
more requirements.

3 https://web.stanford.edu/~rjohari/teaching/notes/246_lecture7_2007.
pdf.

https://web.stanford.edu/~rjohari/teaching/notes/246_lecture7_2007.pdf
https://web.stanford.edu/~rjohari/teaching/notes/246_lecture7_2007.pdf
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5. Offloading technologies in mobile edge computing

MEC is a crucial element in 5G/6G technology, aimed at deploying
server devices at the edge of the mobile network. This setup enables
quick responses to computing, storage, and service requests from in-
telligent devices through the radio access network (RAN) [48]. This
approach effectively minimizes service delays and bolsters network
bandwidth [49]. Contrasting with the vast storage and centralized
computing resources found in the cloud computing paradigm, MEC
operates with limited server-based storage and computing resources.
Consequently, the efficient scheduling of task offloading and allocating
resources emerges as a critical challenge in MEC. These aspects sig-
nificantly contribute to enhancing MEC functionality, underscoring the
significance of research into computational offloading technology [11].
As the backbone of the MEC computing paradigm, offloading tech-
nology plays a pivotal role in advancing IoT technology. One of the
primary research objectives revolves around making informed decisions
regarding task offloading to MEC servers. These decisions take into
account the task’s characteristics within the MEC computing paradigm.
Such decision-making becomes particularly vital when terminal devices
exhibit high energy consumption requirements or face storage con-
straints that hinder task completion [50]. Consider, for example, the
5G communication network, where a multitude of terminal devices,
including smartphones and IoT devices in smart homes, need to offload
their tasks. However, as the number of tasks offloaded onto MDs
gradually increases, it can surpass the processing capacity of the MEC
server, leading to unmet task requests and subsequently extended task
execution times due to queuing scenarios. Additionally, despite the
MEC server’s proximity to end-users compared to remote cloud centers,
the network access mode of RAN raises two common considerations: (1)
the congestion caused by the interference of the actual communication
links, and (2) task transmission time by the extra delay offloading
execution. Considering the total transmission delay of tasks, key factors
influencing the quality of communication links are signal-to-noise ratio,
co-channel interference, etc. For various edge environments, Shannon
equation is generally used to predict the reliable transmission rate of
the channel. The task upload rate is as follows:

𝑅𝑗 = 𝐵 log 2
(

1 +
𝑞𝑗𝑔𝑗

𝑁 +
∑

𝑖𝑞𝑖𝑔𝑖

)

(1)

In Eq. (1), the variables are defined as follows: B represents the user
bandwidth, N represents ambient noise, q denotes user transmission
power, and g represents channel gain. Given that user bandwidth is
typically fixed, especially in scenarios involving multiple users, increas-
ing the transmission power primarily serves to enhance the transmis-
sion rate. Consequently, the energy consumption for task offloading is
expressed as follows:

Et = 𝑞 ∗
𝐼𝑛𝑝𝑢𝑡
𝑅

(2)

Input represents the task offloading amount and 𝐼𝑛𝑝𝑢𝑡
𝑅 denotes the task

ffloading delay. When tasks are offloaded to edge servers, there are
sually far fewer servers than edge users. The processing delay of a
ingle task is modeled as follows:

= C
𝑅

(3)

In this context, C represents the number of CPU cycles needed for
task processing, while R denotes the computing resources allocated
y the edge server to users, typically expressed as CPU cycles per
nit time. When the local device’s task execution time is significantly
horter than the combined communication and server execution times,
omputational offloading is not an appropriate solution. Moreover, in
omains like autonomous driving and the Internet of Vehicles, data

requently updates during task execution, with constant communica-

7 
tion base station switches. High delays could render computing task
results outdated. For instance, let us consider the 0–1 offloading mode
in a single-user scenario, where the focus lies on time delay, energy
consumption, and Quality of Experience (QoE) for users [13]. In this
scenario, the focus is on offloading tasks to the edge network and
achieving optimal processing. Deciding whether to offload tasks locally
or to the server, as per Purdue University’s task offloading guide-
lines [51], also takes into account considerations such as transmission
energy consumption or restrictions related to wireless transmission
energy.

On the graph, the horizontal axis represents ascending calculation
complexity from left to right, while the vertical axis illustrates the
quality of the wireless communication channel. The coordinate space
depicts the task selection for offloading. When the energy consumption
and time delay considered together, higher computational costs corre-
late with a higher likelihood of task execution via offloading. However,
as the communication channel quality worsens, the processing time
delay increases, making local task processing more favorable. The white
section in the figure represents a situation between these extremes, and
the decision largely hinges on the bandwidth allocated to the task, as
follows:
ℑ
fm

>
𝑦
𝑌

+ ℑ
𝑓𝑠

(4)

where ℑ denotes the computational task cost (complexity), 𝑓𝑚 repre-
sents the capability of MDs to process tasks locally, while y signifies the
volume of data requiring offloading during task uploads. Additionally,
𝑓𝑠 signifies the capacity of servers to handle offloaded tasks.

For instance, in Eq. (4), user delay serves as the benchmark for
measuring computational offloading capability. In this scenario, the
efficiency of MDs in handling tasks locally is higher. Considering MD
energy consumption, the calculation method is as follows:

𝑝𝑚 ∗ ℑ
𝑓𝑚

> 𝑝𝑡 ∗
𝑦
𝑌

+ 𝑝𝑖 ∗ ℑ
𝑓𝑠

(5)

where, 𝑝𝑚 signifies MDs’ capability to handle tasks locally, 𝑝𝑡 represents
local transmission energy consumption, and 𝑝𝑖 indicates the mini-
mum energy consumption required to keep the equipment operational
while waiting for task processing and reception, as detailed in Eq. (5).
The previous work did not account for the time-varying nature of
the communication channel in calculations. However, in real-world
environments, communication channel conditions can fluctuate [52].
Consequently, considering task types and communication networks,
it becomes essential to formulate optimal strategies for MEC server
task offloading, aiming to enhance user equipment service quality and
maximize network-wide benefits.

5.1. Task offloading technology overview

The main research goal of MEC is to facilitate the use of extended
cloud computing services at the network’s edge for MDs with limited
resources. Given the constraints posed by terminal equipment energy
consumption and computing resources, user devices can offload cer-
tain tasks to the MEC server. This task offloading not only reduces
computation time, enhancing Quality of Experience (QoE), but also
maximizes revenue for network operators and service providers by re-
ducing mobile device energy consumption and extending their lifespan.
This is especially crucial for emerging mobile applications that demand
low latency and intensive computation. Within the MEC literature,
researchers focus on these individual metrics or collectively consider
them as indicators of multi-objective challenges. Furthermore, various
researchers employ different methods to evaluate task offloading. In
this context, our paper concentrates on examining different offloading

scenarios, methods, and optimizing the indicators for task offloading.
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5.2. Background knowledge of offloading algorithms

5.2.1. Markov decision processes and Bellman equation
A Markov Decision Process (MDP) is a stochastic model that encom-

passes a series of events. The current state of events is independent
of the prior sequence of states the process has undergone, forming
the fundamental basis of the reinforcement learning process. The Bell-
man equation is frequently employed to resolve recursive MDP prob-
lems [53]. Presently, the Bellman equation features two formulations:
Value Iteration and Policy Iteration. These methods involve techniques
like dynamic programming and linear programming, and the respective
iteration equations are as follows:

𝑉 𝜋(𝑠) = 𝑅𝑠 + max
𝑎

𝛾
∑

𝑠′
𝑃𝑠𝑎𝑠′𝑉 𝜋(𝑠′) (6)

𝜋(𝑆) = arg max
𝑎

∑

𝑠′
𝑃𝑠𝑎𝑠′𝑉 𝜋(𝑠′) (7)

In current research and analysis, optimization problems are typically
converted into calculation offloading schemes using deep reinforcement
learning through the Markov decision method. The two methods based
on Bellman equations can be more suitable for specific scenarios when
solving MDPs.

5.2.2. Q-learning [1]
In the Q-learning-based task offloading algorithm, the state of the

next task processed by the server is related to the current state informa-
tion, but it is independent of earlier states. Typically, it employs time
difference learning (TD Learning) for estimating the problem’s end, and
the iterative equation of the algorithm is given as Eq. (8). Because the
system adheres to the Markov property, the TD algorithm converges
when the condition of an absolute decrease in 𝛼 is met. Specifically,
e(s) denotes the state S’s voting degree. In practice, you can calculate
it using Eq. (9), where when 𝑠 = 𝑠𝑘, 𝛿𝑠,𝑠𝑘 equals 1. This implies that the
number of visits to state S influences the current reward value, and its
value function is iteratively adjusted as per Eq. (8).

V(𝑠) = 𝑉 (𝑠) + 𝜕(𝑟𝑡 + 1 + 𝛾𝑉 (𝑠𝑡 + 1) − 𝑉 (𝑠))𝑒(s) (8)

e(𝑠) =
𝑡

∑

𝑘=1
(𝛾𝑦)𝑡−𝑘𝛿𝑠, 𝑠𝑘 (9)

The learning estimation aspect of Q-learning closely resembles that
of State Action Reward State Action (SARSA), involving the iterative
update of the Q function at each step. The model is defined by four
tuples, and Q-learning utilizes these four tuples (state, action, reward,
next-state) to estimate the Q function. As outlined in equation Eq. (10),
where s represents states, a represents actions, and 𝛾 denotes the
discount coefficient within the range [0,1], s and a describe the current
state behavior, while 𝑠,𝑎 characterize the behavior of the next state.
It is evident that in this decision-making process, only the preceding
measurement influences the offloading decision.

Q(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 ∗ max 𝑎{𝑄(𝑠,𝑎)} (10)

5.2.3. DQN
In task offloading, the algorithm must choose the offloading loca-

tion, access location, and cache location to minimize the task processing
cost. In this algorithm, a neural network utilizes DQN (Deep Q Net-
work) within reinforcement learning to expedite the selection process
based on the server and access point’s current state. Contrasting with
the standard Q-learning algorithm, a significant modification involves
the incorporation of a novel ‘‘Target-Q-Network’’. The comprehensive
equation can be found in the following expression:

𝑄(s, 𝑎) = (1 − 𝜕)𝑄(𝑠, 𝑎) + 𝜕(𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′)) (11)

The equation reveals that the Q function Q(s,a) consists of two parts.
The first part, represented as (1-a)Q(s, a), primarily serves to retrieve
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the current state–action value and update its value (utilizing Q as
follows: Q(s,a) = (1-a)Q(s, a) +⋯). In contrast, the second part involves
the basic Q-learning algorithm, where these Q functions (networks) are
generally identical.

6. Classification of mobile edge computing offloading decisions

This section presents an overview of the literature regarding task
offloading algorithms, categorizing articles into five distinct groups
based on varying research objectives. This section primarily elabo-
rates on and discusses five key aspects: attaining a balance between
energy consumption and time delays(QoS), reducing energy consump-
tion, minimizing time delays, high-computing offloading, and different
application scenarios.

6.1. Joint optimization delay and energy consumption

This section summarizes key studies in MEC task offloading that
focus on balancing energy consumption and time delay. A concise
overview of their distinctive features can be found in Tables 3, 4, with
further elaboration provided below.

• The deep learning literature, as presented in [55], introduces a
partial offloading scheme rooted in deep learning principles. Its
main goal is to reduce both delay costs and energy consumption.
To be more precise, this paper delves into the realm of wireless
power-supplied MEC systems, comprising MDs and hybrid access
points (HAPs) integrated with MEC infrastructure. It explores the
reduction of costs and energy consumption in MDs by harnessing
trained Deep Neural Networks (DNNs) [110].

• Improved NSGA-II: In the research presented in [56], a task
scheduling and offloading strategy is introduced for a multi-user
MEC system. Here, computational offloading is treated as a multi-
objective optimization problem (CMOP) encompassing processing
delay, transmission delay, energy consumption, and scheduling
constraints. To address this challenge, the author divides the
computational task into multiple subtasks and examines the sys-
tem overhead, resulting in the proposal of an enhanced NSGA-II
algorithm.

• Multilateral collaborative computing: Li et al.’s study [57]
delves into the realm of integrated task migration for computing
offloading within the MEC environment. Traditional MEC archi-
tectures often underutilize the idle computing resources of off-site
edge servers. In response, this research introduces a collaborative
computing offloading strategy to maximize resource utilization.
Furthermore, considering the challenge of service migration due
to user mobility in the MEC environment, the study also presents
a corresponding migration strategy to address this issue.

• Adaptive task offloading: In the context of network scenarios,
MEC offers vehicles the opportunity to access nearby network
resources and computing power, effectively meeting the growing
demand for on-board services. Tang L et al.’s research [58] centers
on the challenge of task offloading within vehicle-mounted edge
computing environments, where the high mobility of vehicles
and significant task offloading in the Internet of Vehicles add
complexity. Notably, the study aims to ensure that task execution
remains uninterrupted even as vehicles are in continuous motion
during the offloading process. To achieve this goal, the authors
conduct a comprehensive analysis, considering various influenc-
ing factors, including vehicle speed, the load on access points
within the community, and the load on MEC servers. This analysis
informs the optimization of the next offloading strategy, which
can be applied to automate network access selection and vehicle
edge computing task offloading decisions.
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Table 3
Summary of algorithms for energy consumption and time delay.

Reference Performance parameter Objective Advantage Limitations

[54–69] Balance energy
consumption and delay

Solve the relationship
between energy consumption
and time delay

Solving the relationship
between energy consumption
and time delay

Not suitable for applications with
strict requirements on time delay
or energy consumption

[70–75] Minimizing energy
consumption

Reduce the energy
consumption in the
calculation process

Energy consumption of
offloading process is minimal

Saving transmission energy
consumption may reduce the
transmission power of
communication equipment

[76–84] Minimizing delay Reduce the calculation time Conducive to time-sensitive
applications

May cause greater energy
consumption or reduce the
overall offloading capacity

[85–88] High Computation
offloading

Maximize the offloading
capacity

Effectively meeting
compute-intensive tasks

Generally, energy consumption
can be taken into account

[89–91] Multi-task offloading Meet the requirements of
multi-task offloading

Performing multiple
uninstallation tasks at the
same time

May cause a large time delay
Table 4
MEC task uploading schemes for balancing energy consumption and time delay.

Algorithm Limitations Year Literature

MCE-GA Virtual environment 2021 [54]
DL Virtual environment and secure 2021 [55]
Improved NSGA-II Virtual environment 2021 [56]
Multilateral collaborative computing Ignores the competition for resources 2021 [57]
Adaptive task offloading strategy N/A 2021 [58]
DDL-CORA N/A 2022 [60]
MAPE-K Ignores the mobility of the device 2021 [61]
PSO1 Weak system model 2022 [62]
ACDQN N/A 2021 [65]
DCO Low packet loss rate 2021 [66]
DORS N/A 2021 [67]
EDLO Simple task dependency model 2022 [68]
DRL Constrained UAV cooperation capability 2021 [69]
MGW Only a few variable system parameters 2021 [92]
Mukherjee M Ignores specific service requirements 2020 [93]
DCOGA virtual environment 2021 [94]
DOCRRL Ignores the competition for resources 2021 [95]
PSO Weak system model 2021 [96]
Li Q Uncertainty of tasks and networks 2021 [97]
Attention-Based DDQN Uncertainty of tasks and networks 2021 [98]
Lai SW Simple task dependency model 2021 [99]
Feng GS Simple system model 2021 [100]
MARL Virtual environment and security 2021 [101]
DMRO Ignores the competition for resources 2021 [102]
HAGP Ignores the competition for resources 2021 [103]
Abbas A Virtual environment 2021 [104]
QUARTER Virtual environment in collaborative computing 2021 [105]
TADPG The scene studied is simple 2021 [106]
SCA-based The UAV scene studied is simple and virtual environment 2020 [107]
MEC-Agent The UAV scene studied is simple and virtual environment 2020 [108]
JOME N/A 2023 [109]
• DDL-CORA: Wang et al. introduced a distributed deep learning-
based computational offloading algorithm in their work [60].
This algorithm employs multiple parallel deep neural networks
(DNNs) to make optimal offloading decisions. Their study focuses
on software-defined mobile edge computing (SD-MEC) within the
IoT context, and it involves the construction of a utility function
that combines weighted delay and power considerations. This
utility function is designed using multiple parallel DNNs.

• MAPE-K: Shakarami et al. presented an autonomous computing
offloading framework in their work [61], employing the MAPE-K
cycle method. This approach effectively reduces the complexity
of offloading decision problems by utilizing a combination of
deep neural networks (DNNs) and multiple regression models.
However, it is worth noting that the paper does not account for
the mobility of equipment in real-world applications.

• PSo1: Building upon enhancements and optimizations to the
particle swarm optimization (PSO) algorithm, Li et al. [62] intro-

duce an offloading strategy tailored for IoT edge computing. This
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strategy involves the development of a customized particle swarm
optimization approach. It encompasses the design, encoding, and
calculation of fitness values for particles, facilitating the dynamic
updating of particle positions. It is found that compared with the
two algorithms in paper [63,64], the average time delay of task
execution of this method is lower in different situations.

• ACDQN: In their study [65], the authors aimed to jointly op-
timize partial computation offloading and communication re-
sources within an MEC system. They introduced a low-complexity
Deep Reinforcement Learning (DRL) algorithm named ACDQN.
This algorithm effectively mitigates computational overhead in
NOMA-MEC networks. ACDQN combines actor-critic and deep Q-
network methods to streamline its complexity. Furthermore, the
authors explored the benefits of merging NOMA and orthogonal
multiple access (OMA). Simulation experiments demonstrate the
algorithm’s effectiveness when compared to traditional schemes
like full offloading in NOMA, random offloading in NOMA, and

global execution.
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• DCO: In the examination of the MIMO MEC system [66], the
paper delves into the comprehensive joint optimization of the
offloading ratio, transmission covariance matrix, and CPU cy-
cle frequency. It introduces a dynamic computational offloading
(DCO) algorithm tailored to the specific needs of the MIMO
MEC-EH system.

• DORS: In Zhao et al.’s work [67], the focus shifts to task offload-
ing and resource allocation within multi-user scenarios, partic-
ularly those involving energy harvesting (EH) equipment. The
study takes into account energy consumption, computing re-
sources, and system performance, framing them as a minimum
cost problem. To address this, the authors propose an online op-
timization algorithm known as DORS, founded on Lyapunov op-
timization theory. This approach dynamically adapts to changes
within the MEC system.

• EDLO: Cheng et al. [68] explore task offloading strategies in the
context of large-scale WDs. They introduce the EDLO algorithm,
a deep learning-based offloading strategy designed to minimize
both energy consumption and delay. Numerical experiments re-
veal that when compared to TLP, TEP, and ROS, the proposed
algorithm yields lower final costs and superior performance.

• DRL: In [69], the advantages of unmanned aerial vehicles (UAVs)
in terms of easy deployment and flexibility are explored. This pa-
per focuses on the multi-user UAV-assisted MEC network, aiming
to optimize both computation delay and energy consumption. To
achieve this, the authors introduce a deep reinforcement learning
model that seamlessly learns and optimizes task offloading and
UAV trajectory control in an end-to-end manner. It is worth
noting, however, that the UAV-assisted MEC system under con-
sideration in this paper does not incorporate UAV cooperation in
task division.

• MGW: In the study presented in [92], the authors delve into
the Cloudlet-deployment problem, with the primary goal of min-
imizing system energy consumption, delay, and the number of
cloud resources used. To address this multi-objective optimization
problem, they develop an offloading strategy tailored to optimize
the local cloud deployment site. This problem is formulated as a
mixed-integer nonlinear programming (MINP).

• Mukherjee M: Mukherjee et al. [93] introduce a distributed
deep neural network-based offloading strategy. Within this DNN
model, a training instance is associated with multiple DNNs, and
the authors focus on verifying the minimum loss. Additionally,
they expedite the training convergence rate through quadratic
constraint linear programming (QCLP) and subsequently optimize
the offloading decisions. When compared to baseline schemes,
this approach takes into account numerous system parameters
and consistently demonstrates superior performance.

• DCOGA: In the work by Li et al. [94], a task weight cost model
is constructed, taking into consideration energy consumption and
delay factors. This model transforms into an optimization prob-
lem, which the algorithm is designed to solve. Consequently,
they introduce a dynamic computation offloading method termed
DCOGA. Furthermore, the authors propose a resource alloca-
tion model grounded in utility maximization, with the aim of
maximizing both user and edge node utility.

• DOCRRL: In the context of task uninstall security for WDs, as
discussed in [95], several challenges are considered, including
channel time variability, load randomness, and privacy protec-
tion. These aspects are modeled as a joint optimization problem
encompassing delay, energy consumption, and channel resource
allocation, which takes the form of a Markov Decision Process
(MDP). In this scenario, where both channel state and task load
are random, the authors emphasize the need to fully consider MD
task characteristics during offloading. Additionally, they propose
a deep reinforcement learning algorithm called DOCRRL, which
focuses on partial offloading and resource allocation, facilitating
the exploration and learning of optimal decisions without prior
knowledge.
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• PSO: Similar to the improvements made to PSO by Li et al. [62,
96] addresses task offloading with strict delay requirements
within the context of time-industrial IoT. To balance energy con-
sumption and delay, the paper introduces a penalty function de-
signed to reduce queuing delays for tasks. Although experimental
results show that the PSO strategy is effective, choosing the right
parameters for various problem instances can be challenging.

• Li Q: Addressing the Quality of Service (QoS) challenge in task
offloading, as outlined in [97], this paper extends its focus to
energy conservation alongside low latency. It introduces a QoS-
guaranteed task offloading strategy rooted in statistical analysis.
This approach accounts for the unpredictability of task arrivals
and establishes a threshold for task processing delay within the
system, allowing for delays beyond this threshold when necessary.
In terms of energy conservation, the system can curtail energy
consumption by relaxing the QoS requirement. Numerical experi-
ments affirm the superiority of this algorithm over three baseline
algorithms.

• Attention-Based DDQN: The paper [98] explores task offloading
within a multi-base station MEC system characterized by an ultra-
dense network. Leveraging reinforcement learning, the problem is
transformed into a Markov Decision Process (MDP). The authors
design a dual-depth Q network (DDQN) method incorporating an
attention mechanism, enabling rapid convergence.

• Lai SW: Introducing a task assistance framework with a security
focus, as presented in [99], this framework aims to optimize
bandwidth allocation and transmitting power offloading rates to
enhance performance. Deep learning algorithms are employed,
leading to the proposal of a DQN-based offloading strategy for
automated multi-objective optimization problem-solving. Experi-
mental results demonstrate the algorithm’s capacity to consider
security aspects while reducing system overhead.

• Feng GS: In the context of task uninstallation within mobile ad
hoc networks (MANET), discussed in [100], the paper employs
UAVs as MEC servers. It formulates a joint optimization problem
encompassing transmission paths, task partitioning, and uninstal-
lation locations. To tackle this challenge, the authors account for
the motion state of MANET and employ distinct strategies for
dynamic and static MANET scenarios.

• MARL: The technology of Multi-Agent Reinforcement Learning
(MARL), as proposed in by Sacco et al. [101], addresses dynamic
network states to optimize transmission efficiency. Within this
system, every node shares the overall state of the network and
continually learns the most suitable actions from its environ-
ment. This cooperative approach leads to the development of the
offloading decision discussed in the paper.

• DMRO: In the context of dynamic environments, Qu et al. [102]
explore the task offloading problem, specifically focusing on
fine-grained task offloading. The author combines deep learning
and meta-learning techniques to propose an offloading algo-
rithm based on Deep Meta-Reinforcement Learning (DMRO). This
algorithm effectively adapts to various environmental conditions.

• HAGP: In the paper authored by Guo et al. [103], the authors
investigate the enhancement of task offloading reliability within
the industrial internet. They assess the reliability of MDs based
on residual energy levels after task completion and introduce
a heuristic algorithm employing a greedy strategy (HAGP) for
offloading decisions. This algorithm optimally determines the
offloading for each MD, considering channel constraints. Numer-
ical experiments demonstrate its superiority over several baseline
algorithms.

• Abbas A: The study conducted by Abbas et al. [104] focuses
on the task offloading problem in multi-objective optimization,
aiming to strike a balance between response time and energy
consumption. The paper explores meta-heuristic task offloading

algorithms and compares the performance of the Ant Colony
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Table 5
MEC task uploading schemes for reducing energy consumption.

Algorithm Limitations Year Literature

CMOP Virtual environment in collaborative computing,not secure 2021 [71]
CG Simple task dependency model 2022 [72]
SRSO Virtual environment and ignores the competition for resources 2022 [112]
End-to-end DRL Tasks cannot be arbitrarily partitioned and offloaded 2021 [73]
DDQN Simple task dependency model 2021 [74]
RAPD Virtual environment in collaborative computing, not security 2021 [75]
Sun YY Output instability 2021 [113]
RSU-assisted algorithm Virtual environment, weak system model 2021 [114]
DRTO Virtual environment in collaborative computing, not security 2021 [115]
EFDOT Single MD network needs to be extended 2021 [116]
PTAS Virtual environment with user mobility 2021 [117]
Ali A Virtual environment in collaborative computing, not secure 2021 [118]
Chen X Virtual environment and ignores the competition for resources 2021 [119]
QIAC N/A 2021 [120]
Wang F Just a single user scenario 2020 [121]
Xu C Uncertainty of tasks and networks 2020 [122]
EEDOS Limited to single-user scenarios 2019 [123]
LiMPO Without mobility-aware task/VM migration in MEC 2023 [124]
Optimization (ACO), Whale Optimization Algorithm (WOA), and
Grey Wolf Optimization (GWO) algorithms in optimizing energy
consumption and delay. Simulation results indicate that the Grey
Wolf Optimization algorithm outperforms the others.

• QUARTER: In the study of Space-air-ground-integrated power
IoT (SAG-PIoT) presented in [105], the task can be processed
either locally on the device (Plot) or offloaded to Edge Com-
puters (ECs) using Unmanned Aerial Vehicles (UAVs). To tackle
the stochastic nature of this problem, Lyapunov optimization
decomposes it, and the solution is found through Lagrange dual
decomposition, an actor-critic-based task offloading approach,
and a low-complexity algorithm based on greediness [111]. Ad-
ditionally, the QUARTER method is introduced to address the
dimension disaster problem.

• TADPG: Addressing the slow convergence and instability in
model training associated with Deep Reinforcement Learning
(DRL) methods, the author explores the task offloading problem
in a single-cell multi-Mobile Device (MD) MEC system in [106].
They propose the Time Attention Deterministic Policy Gradient
(TADPG) method and compare it with four other DDPG variants,
demonstrating the algorithm’s superior convergence properties.

• SCA-based: In the work by Yu et al. [107], the task offloading
of a UAV-MEC system is discussed, focusing on a cooperative
UAV-Edge Cloud (EC) offloading scheme involving IoT devices,
UAVs, and edge servers. This joint scheme aims to minimize
system delay and UAV energy consumption, considering the ser-
vice delay of all IoT devices. The paper transforms this into an
optimization problem, proving its high non-convexity. To address
this, the author proposes a Successive Convex Approximation
(SCA) algorithm. Numerical experiments demonstrate that this
offloading scheme, accounting for UAVs, IoT equipment, and
ECs, outperforms the baseline scheme relying solely on local
MEC offloading. However, it is worth noting that the single-hop,
single-UAV scenario considered may not be entirely realistic.

• MEC-Agent: Wang et al. [108], the focus is on the UAV-assisted
Mobile Edge Computing (UMEC) system. The paper addresses the
task offloading of MDs, UAVs, and edge cloud servers, partic-
ularly in situations involving unreliable requests for computing
resources due to information asymmetry between MDs and edge
servers. Specifically, the authors improve the reliability of task
offloading by introducing agent into the framework of task of-
floading system to model the position and resource request of an
MD.

• JOME: Huang et al. [109] propose a novel MEC protocol and
optimize the operation mode selection and resource allocation in
each mode with a task execution delay constraint.
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6.2. Energy consumption reduce as the goal

This section focus on the research work aiming at reducing energy
consumption in MEC task offloading. Characteristics of the papers
on this subject are described in detail below and are summarized in
Table 5.

• CMOP: Peng et al. [71] address the optimization of UAV flight
safety and offloading from a multi-objective perspective. Cur-
rently, most research focuses on optimizing UAV offloading based
on a single criterion, overlooking the essential considerations of
UAV flight safety. Consequently, this paper introduces a Con-
strained Multi-Objective Optimization Problem (CMOP) incorpo-
rating two objective functions: energy-efficient offloading and
safe path planning. It also presents a multi-objective evolutionary
algorithm designed to tackle this complex problem.

• CG: In contrast to the assumption that MEC systems are in-
fluenced by various uncertainties, the work by Ji et al. [72]
addresses uncertainties in real MEC systems. They start by con-
straining extreme event probabilities using extreme value theory.
When dealing with time-sensitive applications, they formulate
the expected worst-case energy consumption. Additionally, the
authors introduce a-bounded approximation algorithm based on
column generation (CG) technology. This algorithm identifies
the b-bounded approximation for offloading strategies, and it
reaches an optimal solution when b equals zero. To validate their
approach, the authors conducted experiments by running a real
mobile application on the Android platform. The results confirm
that explicitly considering uncertainty in practical applications
leads to lower energy consumption, outperforming the current
scheme in terms of energy savings.

• SRSO: In the context of the MEC remote relay assistance system
with relay nodes (RNs), the work by Chen et al. [112] takes
a comprehensive approach. Unlike previous works that solely
consider RNs, this study jointly considers RNs, Remote Servers
(RS), and local execution to optimize the computational load of
relay nodes. The proposed Smart Relay Selection Optimization
(SRSO) strategy, which utilizes Dynamic Programming (DP) tech-
nology, outperforms other benchmark strategies in optimizing
energy consumption.

• End-to-end DRL: In their work, Ale et al. [73] tackle the chal-
lenge of computing offloads in dynamic MEC networks. Their
goal is to maximize timely task completion while also minimizing
energy consumption. To achieve this, they optimize both the
selection of edge servers and the allocation of computing power
for offloading. The authors introduce an end-to-end Deep Rein-

forcement Learning (end-to-end DRL) algorithm. This model takes
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input data from the MEC network as observations, and the DRL
model generates control parameters. To ensure the model’s stabil-
ity during training, they employ experience buffer playback and
editing techniques. It is worth noting that, during the offloading
process, tasks cannot be arbitrarily divided and offloaded to edge
servers.

• DDQN: In order to reduce energy consumption in the MEC system
and develop a unified strategy for computing offloading and re-
source allocation, Zhou et al. [74] propose a Q-Learning reinforce-
ment learning algorithm based on value iteration. They further in-
troduce a method based on the Double-Depth Q-Network (DDQN)
to reduce dimensionality. This approach effectively approximates
the value function used in Q-learning. Simulation experiments
demonstrate that the algorithm’s performance closely matches
that of exhaustive methods. With verified parameters, this method
yields results similar to offloading decisions.

• RAPD: In the context of MEC networks, smart MDs often offload
resource-intensive tasks to reduce processing time and battery
consumption. The paper [75] delves into the intricacies of multi-
server MEC networks, which consist of multiple base stations.
It addresses the challenge of offloading calculation and resource
allocation, especially when multiple devices compete for limited
resources. The authors prioritize task offloading by combining
strategies to minimize overall energy consumption and a penalty
function. They employ a weighted aggregation method to con-
vert this issue into a single-objective problem, despite its high
complexity. The paper also presents a heuristic solution approach
known as Resource Allocation for Priority Devices (RAPD).

• Sun YY: To combat energy shortages in sensor nodes within MEC
networks, Sun et al. [113] proposes a task offloading method that
incorporates energy collection. This method effectively extends
the lifespan of equipment.

• RSU-assisted algorithm: Shang et al. in 2021 [114] explores
the computational offloading of Vehicular Edge Computing (VEC)
systems with a focus on efficiency and energy savings. To enable
fine-grained computational offloading, the authors utilize Road-
side Units (RSUs) to offload tasks to VEC. They employ deep
learning techniques to optimize user delay, transmission power,
and Edge Cloud (EC) computing capacity constraints, ultimately
deriving an energy-saving convergence algorithm. However, it is
important to mention that the paper lacks a thorough analysis of
the algorithm’s convergence and complexity.

• DRTO: Zhu et al. in 2021 [115] introduces a novel approach that
utilizes satellite links to aid urban terrestrial clouds (TC) in the
task offloading process. In this scenario, offloading decisions are
made based on predefined user models, and the authors design
an algorithm employing deep learning techniques. This algorithm
dynamically updates the offloading strategy in response to the
changing channel conditions. Experimental results show that the
algorithm can effectively handle real-time offloading even in
fading channels.

• EFDOT: Ali et al. [116], the focus is on UAV task offloading. The
optimization objectives in this research include user scheduling,
communication channel management, and resource allocation
within UAVs. Notably, the authors account for the time-varying
nature of the communication channel during task offloading. To
address this non-convex problem, they employ a Markov Decision
Process (MDP) approach and further propose a task offloading
algorithm based on the Depth Deterministic Strategy Gradient
(DDPG) method. The objective is to reduce task delay.

• PTAS: In contrast to the task allocation problem where the ob-
jective is minimizing total energy consumption, Liu et al. [117]
focus on the task offloading of heterogeneous resources. Un-
like partitioning tasks optimally, this study involves offloading
tasks to different servers to meet varying resource requirements.
The paper introduces heuristic methods and a series of PTAS

algorithms to address this problem.
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• Ali : The scheduling algorithm discussed by Ali et al. [118] is
specifically designed for performing offloading calculations in
the cloud. This algorithm aims to make offloading decisions that
execute calculation tasks with lower energy consumption.

• Chen X: Chen et al. [119], the topic of task offloading in Aug-
mented Reality (AR) is explored, considering both single MEC and
multi-MEC systems. The authors’ optimization objectives include
minimizing system delay and energy consumption while adher-
ing to resource constraints. They model the AR application task
offloading as a directed acyclic graph. Given the unpredictable
nature of the scheduling channel in this environment, the au-
thors devise a multi-agent deep decision strategy gradient using
a framework known as Multi-Agent Deep Deterministic Policy
Gradient (MADDPG).

• QIAC: In the context of the Virtual Reality (VR) assisted Wireless
Virtual Medical Treatment (WVMT) system, Lin et al. [120] delve
into the task offloading within a blockchain scenario. Blockchain
technology is leveraged for globally sharing task offloading and
data processing information. To ensure blockchain consistency
and account for channel conditions, the task is transformed into a
Markov Decision Process (MDP) problem. The authors introduce
a Collective Reinforcement Learning (CRL) algorithm, which uses
the Actor-Critic approach to enable adaptive resource allocation
within a blockchain-based system.

• Wang F: Wang et al. [121] investigate the problem of single-
user task offloading within a MEC system powered by wireless
energy supply. The study takes into account the impact of channel
fluctuations and task causality constraints. The primary objective
is to reduce the overall transmission energy consumption in the
MEC system. To achieve this, the authors combine Wireless Power
Transmission (WPT) and energy allocation techniques, leading to
a partial task offloading strategy known as WPT-MEC.

• Xu C: In the context of heterogeneous networks and MEC task
offloading, Xu et al. [122] aim to minimize system energy con-
sumption. To enhance system performance, the authors employ
Non-Orthogonal Multiple Access (NOMA) within the network.
The problem is divided into subproblems, and an optimal solution
is iteratively obtained. Comparative experiments demonstrate the
superiority of this scheme over baseline methods.

• EEDOS: Ali et al. [123], the focus is on task offloading within a
single-user scenario. The study takes various factors into account,
such as data offloading volume, energy consumption, network
conditions, and computational load. A cost function that encom-
passes all these factors is established, transforming the problem
into one of calculating the cost for all possible offloading strate-
gies. To avoid exhaustive solutions, the authors first create a
mathematical model to generate a dataset, then train a deep
learning network. This training process results in an energy-
efficient deep learning-based offloading scheme called EEDOS. It
is worth noting that this approach assumes sequential task exe-
cution without addressing the uncertainties present in real-world
scenarios.

• LiMPO: Zaman et al. [124] introduce a lightweight mobility
prediction and offloading (LiMPO) framework that uses artificial
neural networks with reduced complexity to offload compute-
intensive tasks to the predicted user location.

6.3. The optimization objective is to reduce the delay

This section guides towards research efforts aimed at diminishing la-
tency in MEC task offloading. It delve into the particulars of the papers
related to this subject, offering detailed insights below. Additionally, a
summary of these characteristics can be found in Table 6.
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Table 6
MEC task uploading schemes for reducing the time delay.

Algorithm Limitations Year Literature

LBTO Task processing delay 2021 [77]
GABO The algorithm has high complexity 2020 [78]
DQN, DDPG N/A 2022 [79]
DRL Simple task dependency model 2022 [81]
Jeon Y The optimal problem in this paper is NP-Hard 2021 [80]
BCD N/A 2021 [82]
Q-learning Simple system model 2021 [83]
Heuristic algorithm N/A 2021 [84]
GTGP Simple system model 2021 [125]
DDPG Virtual environment in collaborative computing, not secure 2021 [126]
QCQP Ignores the competition for resources, not secure 2021 [127]
TSHA Virtual environment in collaborative computing, not secure 2021 [128]
DODQN Virtual environment in collaborative computing, not secure 2021 [129]
SSCCTO Virtual environment in collaborative computing, not secure 2021 [130]
BDO N/A 2021 [70]
iTOA Virtual environment in collaborative computing, not secure 2020 [131]
DRL-Based Virtual environment 2020 [132]
MRLCO Bottleneck of computing resources and communication 2020 [133]
D-QLOA Virtual environment in collaborative computing, not secure 2020 [134]
DROOO Mobility of WDs not considered 2019 [135]
SDTO Virtual environment 2018 [136]
OREO N/A 2018 [136]
DRLCO Without multiple MEC servers 2023 [137]
• LBTO: He et al. [77] present an architecture for an unmanned
aerial vehicle (UAV)-assisted ad hoc network (VANET). Their
primary objective is to minimize task processing delays. The
paper formulates the vehicle task offloading problem as a multi-
objective optimization challenge. This problem is further divided
into two sub-problems: MEC server selection and task offloading.
The authors also present a novel method that tackles the com-
bined issues of task offloading, resource allocation, and security
guarantees.

• GABO: The work by Li et al. [78] introduces an optimization
approach, known as Genetic Algorithm-Based Offloading (GABO),
for task offloading within MEC systems. This method involves
combining various strategies to create an overall matrix. For
each combination, the task with the shortest completion time is
considered the optimal task.

• DQN & DDPG: In the work by Liu et al. [79], the authors lever-
age Deep Reinforcement Learning (DRL) techniques, specifically
employing a Deep Q-Network (DQN) and a Deep Deterministic
Policy Gradient (DDPG) algorithm. These methods are designed
for offshore unmanned aerial vehicles (UAVs) to enable multi-task
parallel computing on a server.

• DRL: Qiao et al. [81], the main objective is to improve user
service quality by reducing system delays. The authors introduce
a joint deep reinforcement learning (DRL) approach, based on
convex optimization algorithms, which effectively reduces system
delays. This method leverages a Deep Q-Network (DQN) to make
offloading decisions and utilizes the Lagrange multiplier method
to allocate computing power from the server to multiple users.

• Jeon Y: Jeon et al. [80], the focus is on task offloading within
a distributed edge computing (DEC) environment. The research
problem centers on minimizing response times for mobile device
task offloading in DEC settings. The authors propose a method
that selects edge devices and manages task offloading, taking mo-
bility into account within wireless DEC environments. However, it
is important to emphasize that the optimal solution in this paper
is NP-Hard, but the authors provide a heuristic algorithm with
low complexity to address it.

• Block Coordinate Descent (BCD) : Feng et al. [82], focus on
the joint optimization of offloading decisions, computation, and
bandwidth resource allocation. This problem is notably different
from the approach in another paper (referenced as [83]) where

subproblems in the RAPD algorithm are merged into a single
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high-complexity problem. In this paper, the original problem is
decomposed into two low-complexity subproblems, sequentially
considering offloading decisions and bandwidth, as well as the
allocation of computing resources. The authors also propose a
coordinate reduction approach based on blocks.

• Q-learning: Wang et al. [83] delve into the MEC system within
vehicle networks. In this study, after task offloading, Software-
Defined Networking (SDN) and MEC are integrated to achieve
unified network resource allocation. The authors introduce mod-
els for computing offloading and resource allocation and employ
Q-learning to solve them. However, it is crucial to emphasize that
the experiments are conducted without considering the complex
environmental factors inherent in vehicular networking systems.

• Heuristic algorithm: Recognizing the limitations of existing
working hypotheses that often overlook crucial network and pro-
cessing model details, hierarchical topology, and more, Rodrigues
et al. [84] propose a mathematical model for MEC systems that
simulates complex environments with multiple parameters. This
model captures the intricacies of MEC systems, including server
mobility, task processing possibilities, and network conditions.
The paper further introduces a heuristic algorithm designed to
determine when and where mobile MEC users should offload
tasks. The algorithm optimizes for minimal task transmission
and processing times, considering multiple environments and
the effectiveness of execution on local, edge cloud, and remote
cloud servers. The evaluation includes expected parameters and
technologies relevant to 6G networks.

• GTGP: In contrast to directly offloading tasks to the cloud, Naouri
et al. [125] introduce a novel approach that considers the com-
putational capabilities of MDs. Specifically, the authors employ a
three-tier task offloading strategy (Device Layer, Cloudlet Layer,
and Cloud Layer - DCC) based on the computational requirements
of each task. Tasks with minimal computation needs are pro-
cessed locally to reduce the communication overhead associated
with task transmission. The authors further propose Greedy Task
Graph Partition Algorithm (GTGP), which is also applied in face
recognition systems.

• DDPG: In the work by Wang et al. [126], the focus is on UAV
computation offloading. The paper addresses optimization objec-
tives related to user scheduling, communication channel man-
agement, and resource allocation within UAVs. Importantly, the
authors account for the time-varying nature of the communication
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channel during task offloading. To address this non-convex issue,
they model it as a Markov Decision Process (MDP) and propose
a task offloading algorithm based on Deep Deterministic Policy
Gradient (DDPG) to reduce task delay.

• QCQP: Zhang et al. [127] explore quadratic constrained quadratic
programming (QCQP) optimization within a multi-task offloading
scenario. The study takes into account user constraints related
to computational costs while aiming to optimize edge server
cache for enhanced system performance. The joint optimization
of caching, resource allocation, and offloading in this context is
recognized as an NP-hard problem. To address it, the authors
employ an approximation algorithm to enable MDs to make cost-
budget decisions. Simulation experiments validate the feasibility
of this approach.

• TSHA: In [128], the topic is task uninstallation in the Indus-
trial Internet of Things (IIoT) environment with assistance from
edge computing. The paper acknowledges the detrimental impact
of uncertain wireless channels on end-to-end delay. To address
this challenge, the authors construct a non-convex Mixed-Integer
Nonlinear Programming (MINLP) problem, considering both av-
erage and worst-case delay scenarios. They decompose this prob-
lem into two sub-problems and propose a two-stage heuristic
algorithm to mitigate these risks.

• DODQN: In the work by Chen et al. [129], the focus is on
task offloading within Vehicular Ad-Hoc Networks (VANET). The
research goal is to minimize task execution delays. To address the
challenge of limited MEC resources, the authors utilize surround-
ing vehicles as a resource pool (RP). In this context, they model
vehicle movement and determine the service time that Moving
Vehicles (MVs) can provide to requested Vehicles (RVs) based
on their relative distances. The paper introduces a distributed
computing offloading strategy known as DODQN, which is based
on a deep Q-learning network for vehicle task allocation.

• SSCCTO: In [130], the research objective is to reduce the aver-
age delay of system services. However, the paper takes into ac-
count the leasing costs incurred by application service providers.
It comprehensively considers task scheduling and task caching,
modeling task offloading as a chain structure. The authors employ
Lyapunov optimization to transform the NP problem and propose
the SSCCTO algorithm to address it.

• BDO: In [70], the authors introduce an extensible neural network-
based task offloading technology designed for blockchain sce-
narios and applied to mobile social networks. Their approach
involves using Deep Learning (DL) technology to verify offloaded
blocks in Proof-of-Work (POW) scenarios. The algorithm is robust
against data loss and efficiently manages scarce communication
resources.

• iTOA: In [131], the focus is on task offloading within a UAV edge
computing network using wireless communication. The offload-
ing problem is modeled as a Markov Decision Process (MDP). To
achieve optimal decision-making, the authors present an Intelli-
gent Task Offloading Algorithm (iTOA). Additionally, the paper
includes the design of a UAV edge computing platform, where
the algorithm is simulated and tested.

• DRL-based: In response to the time-sensitive 0–1 task offloading
problem, Tang et al. [132] introduce a distributed offloading al-
gorithm based on modelless Deep Reinforcement Learning (DRL).
This algorithm leverages dual Deep Q-Network (DQN), dual DQN
technology, and Long Short-Term Memory (LSTM) technology
to make offloading decisions even when other equipment deci-
sions are unknown. In comparison to the approach presented in
Yang et al. [138], the proposed algorithm exhibits improved task
processing efficiency and a lower packet loss rate.

• MRLCO: In consideration of the reliance of Deep Reinforcement
Learning (DRL) offloading schemes on ample training data to
update offloading strategies, Wang et al. [133] propose a task
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offloading strategy based on Meta Reinforcement Learning (MRL).
This strategy is designed for environments with limited gradient
updates and fewer samples. It enhances sample learning efficiency
for dynamic offloading scenarios, but it does not incorporate
mechanisms to filter out stragglers during training.

• D-QLOA: Guo et al. [134], focus on a MEC system designed for
vehicle networks. This study aims to propose a task offloading
scheme specifically designed for Vehicle Edge Computing Net-
works (VECNs) using Software-Defined Networking (SDN). This
scheme enables centralized collection and management of net-
work information. Importantly, it takes into account the mobility
of Intelligent Connected Vehicles (ICVs). To minimize processing
delays during task offloading, the paper constructs an offloading
algorithm based on Q-learning.

• DROOO: In [135], deep neural networks are employed to learn
binary offloading decisions based on experience. These decisions
determine whether the computation task of a MD should be exe-
cuted locally or completely offloaded to the MEC server. The au-
thors introduce the Deep Reinforcement Learning Online Offload-
ing (DROOO) framework as a flexible solution. This framework
optimally adapts to varying wireless channel conditions while
considering task offloading decisions and resource allocation.
Experimental results demonstrate that the DROOO algorithm ef-
fectively reduces CPU execution delays while maintaining similar
performance levels. However, it should be noted that convergence
becomes challenging when considering the mobility of WDs.

• SDTO: In the work by Chen et al. [136], the task offloading
problem within dense network scenarios is addressed. Leverag-
ing Software-Defined Ultra Dense Networks (SD-UDN), the paper
introduces an efficient Software-Defined Task Offloading (SDTO)
scheme capable of minimizing task processing delays. Compar-
ative results indicate that this scheme outperforms random and
uniform task offloading approaches.

• OREO: In contrast to the study presented in [136], which pri-
marily focuses on improving resource allocation efficiency to
enhance computational offloading performance, the work by Xu
et al. [139] delves into the optimization of service caching by
MEC within dense network scenarios. The core aim here is to
minimize computational delays. To achieve this goal, the authors
employ Lyapunov optimization and introduce the Online Service
Caching for MEC (OREO) algorithm. Additionally, in order to
optimize decentralized coordination between Base Stations (BSs),
they extend the OREO algorithm and propose the Distributed
algorithm for OREO. This distributed algorithm is based on a vari-
ation of Gibbs sampling, offering a comprehensive approach to
enhance computational offloading performance through efficient
service cache optimization within dense network environments.

• DRLCO: Liao et al. [137] propose the double reinforcement learn-
ing computation offloading(DRLCO) algorithm, which simultane-
ously determines offloading decisions, CPU frequency, and trans-
mit power for computation offloading.

6.4. MEC task uploading schemes for high computing offloading

This section focus on high computing offloading research. Their
characteristics are described in detail below and summarized in Ta-
ble 7.

• BIIA: Through a study of sub-game optimization problems in each
stage, the reference by Zuo et al. [85] introduces an iterative
algorithm designed to achieve the Nash equilibrium of a Stack-
elberg game. Furthermore, the paper delves into the interaction
among the three stages of the game, providing a comprehensive
exploration of this subject.
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Table 7
MEC task uploading schemes for high computing offloading.

Algorithm Limitations Year Literature

BIIA High consumed energy 2021 [85]
FL-DRL Ignore network usage, delay and fairness 2021 [86]
MITA Weak conclusion 2021 [87]
ADMM Considers only single MEC server scenario 2021 [140]
DBR Virtual environment in collaborative computing, not secure 2021 [141]
Li W Simple system model 2021 [142]
DMEC Virtual environment in collaborative computing, not secure 2021 [143]
K-NJTA Algorithm does not adapt to dynamic environment 2021 [144]
TATO Bottleneck of Transmission and SN Perception Capability 2021 [145]
Ma C Virtual environment in collaborative computing, not secure 2021 [146]
OPD Virtual environment, without considering communication factors 2021 [147]
Ma X High throughput with high robustness 2021 [148]
BRL Virtual environment and ignores the competition for resources 2021 [149]
GRL-based Virtual environment in collaborative computing, not secure 2021 [150]
STMTO The UAV scene studied is simple, virtual environment 2021 [151]
FEA The UAV scene studied is simple, virtual environment 2021 [152]
OST Virtual environment and ignores the competition for resources 2021 [153]
Xue J Virtual environment in collaborative computing,not secure 2021 [154]
GSO Virtual environment, weak system model 2021 [155]
ILP High computational cost 2020 [88]
OD-SARSA Virtual environment 2020 [156]
CQNV Considers only partial offloading is supported 2020 [157]
HGOS Not applicable to multi-user scenarios 2018 [158]
JTORA Simple task dependency model 2018 [159]
MCVCO Only vehicular computation scene 2023 [160]
• FL-DRL: In the work by Shahidinejad et al. [86], the impact of
context information on the task uninstallation decision is consid-
ered. The paper employs autonomous management in the form of
a MAPE loop to gather context during the uninstallation process.
An uninstallation algorithm based on deep reinforcement learn-
ing and federated learning (FL-DRL) is proposed, leveraging the
distributed capabilities of MEC to update weights between MDs
and Edge Devices (Eds). While simulation results demonstrate
the method’s effectiveness, it is essential to emphasize that this
context-aware algorithm fails to take into account indicators in-
cluding energy consumption, execution cost, network usage, time
delay, and fairness.

• MITA: Zhao et al. [87] explore the offloading of computing tasks
within a vehicle-moving edge network. The main goal of this
offloading is to optimize the utilization of the system’s computing
resources. This paper transforms the offloading problem into a
multi-device decision-making challenge within a multi-objective
sequential game. To address this challenge, the authors introduce
the Minimum Incremental Task Allocation (MITA) algorithm.
Additionally, the paper proposes a solution involving the de-
ployment of multiple drones to provide computing services and
allocate computing tasks to various available devices.

• ADMM: With the aim of enhancing the computational perfor-
mance of a MEC system by leveraging surrounding resources for
collaborative computing, Lv et al. [140] apply machine learning
methods to MEC servers. The authors introduce a distributed
Stackelberg game task scheduling algorithm. Test results demon-
strate that this algorithm achieves fast convergence and maintains
stability, even in large-scale networks.

• DBR: In the work by Zhou et al. [141], the focus is on a dis-
tributed multi-agent MEC system, specifically addressing the task
offloading optimization problem while considering the dynamic
nature of task processing and communication. Initially, the paper
explores the optimization of offloading thresholds for multiple
agents within the system, effectively transforming the problem
into a game where the objective is to maximize the expected
offloading rate. Building upon game theory analysis, the authors
introduce a Distributed Best-Response (DBR) framework. Further-
more, an unconstrained Lagrangian optimization (ULO) method
is proposed for optimizing the threshold of a single agent. The
numerical results conclusively demonstrate the effectiveness of
this approach.
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• Li W: The work by Li et al. [142] is dedicated to enhancing the
energy utilization efficiency of a heterogeneous single-user MEC
system. This system offers the flexibility to offload tasks to local
resources, MEC servers, or remote cloud servers. The study aims
to balance factors such as average delay, energy consumption, and
system overhead related to task processing. To achieve this, a task
cost function is formulated, enabling the derivation of a corre-
sponding task offloading strategy. This research primarily focuses
on the allocation of task offloading positions. Simulation results
underscore the efficacy of this offloading strategy in improving
system performance and reducing allocation overhead.

• DMEC: Luo et al. [143] introduce a drone-aided Mobile Edge
Computing (DMEC) scheme incorporating blockchain technology,
applied within the context of the Ultra-Reliable Vehicular Edge
Computing (UVEC) system for task offloading. This innovative
scheme dynamically caches data generated by equipment onto
drones, facilitating data forwarding even when direct access to
the MEC network is unavailable. Furthermore, data not directly
reaching the MEC network is forwarded to a private blockchain
edge server, expanding the coverage of MEC service provisioning.
The effectiveness of this scheme is substantiated through practical
experiments conducted within a real-world blockchain network.

• K-NJTA: Wang et al. [144], focus on task offloading within
vehicle networking MEC systems. The authors introduce a novel
PP-VEC mobile edge system architecture, which prioritizes the
protection of context information during vehicle task offload-
ing, resulting in higher throughput. Specifically, when offloading
information is transmitted to Roadside Units (RSUs) and Base
Stations (BS), the privacy mechanism within this architecture
employs differential privacy technology to disturb context infor-
mation. Furthermore, the paper presents a task offloading and
resource allocation algorithm using K-Nearest Neighbor Branch
and Bound (K-NJTA). This algorithm optimizes task processing
delay by simultaneously optimizing task scheduling and resource
allocation.

• TATO: Task offloading in vehicle networks often faces the prob-
lem of heavy traffic scenarios. In [145], the authors propose a
Binary Search and Feasibility Test (BSFC) algorithm designed
to optimize the Overall Response Time (ORT) within specific

thresholds. This algorithm aims to ensure that all subtasks are
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finished within the ORT threshold while also addressing percep-
tual fusion constraints. Recognizing the sensing capabilities of
service nodes (SNs), the paper presents a Traffic-Aware Task Of-
floading (TATO) mechanism that leverages environmental input
as SNs’ input. Extensive comparisons reveal that this offload-
ing mechanism, enhanced by environmental perception, signifi-
cantly reduces the Overall Response Time (ORT) when compared
to pure communication-based and perception-based offloading
mechanisms.

• Ma C: Addressing the stringent requirements for high reliabil-
ity and low latency in Vehicular Edge Computing (VEC), Ma
et al. [146] introduce an innovative approach. It organizes idle
vehicles into clusters, effectively transforming them into virtual
edge servers within the VEC infrastructure. This approach aims
to alleviate resource bottleneck constraints commonly faced by
servers while expanding the VEC service area through a concept
known as parking edge computing. The authors of this framework
propose methods for task scheduling and resource allocation, con-
sidering the delay threshold of tasks and the energy consumption
of vehicles carrying out these tasks. The framework’s effectiveness
is validated through simulation, which incorporates real city maps
and traffic scenarios, demonstrating its ability to stably handle a
higher volume of task requests.

• OPD: In their work [147], Wang H. et al. concentrate on en-
hancing the robustness of task offloading. Specifically, they ad-
dress scenarios like battlefield monitoring and post-disaster res-
cue, which demand a high level of reliability for task assistance.
The authors introduce online primal–dual algorithms that effec-
tively reduce edge server failures and enhance the throughput of
Dynamic Edge Computing (DEC) systems. This paper discusses the
algorithm’s effectiveness across various dynamic edge computing
(DEC) tolerance thresholds.

• Ma X: In the context of MEC, it is essential to strike a balance
between reducing computational offloading costs and preserving
the information capacity of edge nodes, which in turn can boost
wireless channel bandwidth. However, prior research has not
adequately addressed the inherent conflicts in this trade-off. In
contrast, the work presented in [148] jointly optimizes channel
allocation and offloading strategies to minimize computational of-
floading costs while maintaining data freshness. This challenging
problem is framed as a dynamic nonlinear integer optimization
problem. To address it, the authors employ Lyapunov optimiza-
tion techniques, effectively transforming the problem into a series
of solvable static optimization subproblems.

• BRL: In their paper [149], the authors propose an offloading
framework centered around Lagrange coding calculations (LCC).
Within this framework, base stations are categorized into ‘‘mas-
ters’’ and ‘‘workers’’, managed either privately or by operators. A
master base station selects the most suitable worker base stations
within its observation range to offload its computation tasks,
effectively solving the selected worker base stations’ assigned
tasks. The paper establishes a random auction model, which is
subsequently transformed into a random Bayesian game and ad-
dressed using machine learning algorithms. Moreover, the authors
introduce a Bayesian Reinforcement Learning (BRL) algorithm to
match the optimal strategies within this context.

• GRL-Based: In their work [150], the authors employ a Graph
Convolutional Network (GCN) optimization approach combined
with a Deep Reinforcement Learning (DRL) model for task of-
floading. They break down the task offloading process into a
task set represented as a directed acyclic graph. The decision-
making process is implemented at the user layer, and the task set
is further modeled as a Markov Decision Process (MDP) to enable
continuous offloading.
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• STMTO: Huang et al. [151] investigate a multi-UAV task of-
floading system (STMTO) in which tasks are gathered by UAVs
and subsequently offloaded to edge servers. The system initially
partitions the UAV’s working area and facilitates the collection
of collaborative tasks by UAVs to enhance system performance.
Subsequently, MDs, Edge Computers (ECs), and UAVs assume the
roles of buyers, sellers, and auctioneers, respectively. They estab-
lish a multi-pair multi-task double auction model. Both analysis
and experimental data demonstrate that the system effectively
achieves efficient task processing.

• FEA: In the study presented in [152], the authors jointly consider
Orthogonal Frequency-Division Multiple Access (OFDMA) and
backscattering-assisted Wireless Power Mobile Edge Computing
(WPMEC). MDs can acquire energy either from a central gateway
or perform local computations with backscattered data. Given
that this problem is NP-hard, the authors propose a two-level
alternating algorithm and solve it using the block coordinate
descent (BCD) method. Furthermore, they introduce a fast and
efficient algorithm (FEA) based on the BCD approach.

• OST: Alghamdi et al. [153] explore the application of Optimal
Stopping Theory (OST) in the sequential decision-making process
of task offloading. In the context of sequential task offloading
problems, quality perception plays a significant role in deci-
sion evaluation. Factors like data freshness and the state of the
best server influence the optimal decision probability (Odds).
Moreover, the authors enhance the timeliness function algorithm.
Numerical experiments demonstrate the algorithm’s effectiveness
in ensuring Quality of Service (QoS).

• Xue J: Similar to the approach presented in [161], which orga-
nizes idle vehicles into clusters, the paper [154] utilizes vehicles
with unused computing resources to provide computing capabil-
ities to nearby users, addressing the surge in short-term resource
demands during peak hours. The author leverages idle intelligent
vehicles as vehicle-edge nodes and introduces a Vehicle Mobile
Edge Computing (VMEC) paradigm, allowing offloading to MEC
servers and Vehicle Edge Nodes (VENs).

• GSO: In the work [155], the paper discusses the problem of
minimizing time delay while adhering to energy consumption
constraints in multi-user MEC task offloading scenarios. Recog-
nizing the tradeoff between energy consumption and time de-
lay optimization, the authors propose a Glowworm Swarm Op-
timization (GSO) algorithm to enhance computational offloading
methods. By expanding the number of ideas, the GSO algorithm
outperforms Particle Swarm Optimization (PSO) and Ant Lion
Algorithm for Search Optimization (AFAS) individually regarding
energy consumption and time delay under the same conditions.
Numerical experiments illustrate how the proposed algorithm
effectively balances both energy consumption and time delay
through performance optimization.

• ILP: The paper [88] delves into a multi-user, multi-server MEC
system. Focusing on the computational offloading process involv-
ing an energy harvesting device, the authors propose a MEC
optimization computational offload technology based on Inte-
ger Linear Programming (ILP). This approach involves deploying
servers in proximity to Distance Energy Collection (DEC) devices,
enabling wireless communication between MDs and the MEC
server.

• OD-SARSA: In the context of limited MEC system resources, the
paper [156] addresses the efficient fulfillment of high Quality
of Service (QoS) requirements through judicious resource allo-
cation. To optimize both delay and energy consumption, the
authors introduce an Offloading Decision-based SARSA method
(OD-SARSA). This approach also accounts for the mobility of
MDs. Experimental results demonstrate the superiority of this al-
gorithm compared to the Reinforcement Learning-based Q Learn-
ing (RL-QL) algorithm.



S. Dong et al.

l-

Computer Networks 254 (2024) 110791 
• Choosing Qualified Nearby Vehicle(CQNV): Taking into ac-
count tolerance for delay and vehicle mobility, and effectively uti-
lizing nearby vehicles and VEC servers for task processing, [157]
introduces a task offloading strategy with perceptual mobility.
This strategy optimizes task allocation by evaluating the relative
portions of tasks to be processed, while assuming a maximum
tolerable delay for the system.

• HGOS: In comparison to studies that focus on single MEC sce-
narios with multiple users, [158] delves into computational of-
floading between multiple MEC servers. It addresses the task
offloading challenges within multi-user ultra-dense networks. The
model accounts for task processing time, including queuing time
post-offloading and execution time on the edge server. The paper
presents a Heuristic Greedy Offloading Scheme (HGOS) designed
to reduce overall energy consumption effectively. However, it is
important to note that this paper specifically examines the case
of a single Mobile Device (MD).

• JTORA: In the context of multi-cell wireless network MEC
systems, [159] explores ways to maximize task offloading. This
paper addresses the decision-making process for task offloading,
MEC server resource allocation, and user task transmission power.
Acknowledging that this constitutes a mixed-integer nonlinear
programming (MINLP) problem, the paper decomposes it into
sub-problems to find an optimal solution and introduces a heuris-
tic algorithm named JTORA. Numerical simulations confirm the
algorithm’s practical performance.

• MCVCO: Liu et al. [160] propose a multi-MEC cooperative ve-
hicular computation offloading (MCVCO) scheme, which adopt a
heat-aware task offloading strategy to capture the time-varying
multi-link relations between vehicle and MEC nodes. A parallel
transmission and execution based dynamic scheduling algorithm
is developed to make the most of available resources.

6.5. Comparison of various algorithms and its applications

The Table 8 presents a comprehensive overview of various studies
focusing on performance metrics related to computation offloading in
mobile edge computing (MEC) across multiple domains since 2016. It
categorizes the research based on evaluation tools, applications, per-
formance metrics, and publication years. Notably, simulation remains
the predominant method for evaluation, indicating a strong reliance on
theoretical modeling to assess offloading strategies. The studies cover
a diverse range of applications including healthcare, virtual reality,
vehicular networks, and smart cities. Performance metrics vary widely
but primarily focus on aspects like delay, energy consumption, cost,
and quality of experience (QoE). For instance, healthcare applications
leverage tools like iFogSim and CPLEX solver to analyze delay and
cost, while vehicular networks emphasize metrics like response time
and reliability. The increasing complexity of applications analyzed
over the years suggests a growing acknowledgment of the need to
optimize MEC strategies for improved efficiency and user satisfaction
in strained network environments. As the field evolves, the integration
of novel evaluation tools and methodologies reflects an ongoing effort
to refine offloading mechanisms and adapt to emerging computational
challenges.

7. Discussion and future research directions

7.1. Key findings and insights

In recent years, the proliferation of mobile devices (MDs) driven
by emerging applications such as medical care, augmented reality
(AR), virtual reality (VR), media identification, intelligent transporta-
tion systems (ITS), and unmanned aerial vehicles has accentuated
the significance of computational offloading as a method to address
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the inherent limitations of MDs [198]. Consequently, computational
offloading is poised to remain a focal point in the MEC research
landscape.

As MEC technology advances, it has largely resolved latency con-
cerns when accessing cloud services. This paper starts with an introduc-
tion to MEC, delineating its foundational concepts and technological
underpinnings, especially in the context of 5G and the IoT. Further-
more, this work expound on various computing paradigms. In our
discussion of task offloading algorithms, it delve into the mathematical
foundations of commonly employed algorithms in the literature, elu-
cidating concepts such as Markov Decision Processes (MDP), Bellman
Equations, Q-Learning, and Deep Q-Networks (DQN) within the context
of reinforcement learning. These algorithms are then systematically
classified based on their performance parameters.

7.2. Challenges and future trends in MEC offloading technology

Future exploration and development should focus on the effective-
ness of the previously discussed offloading strategies under demanding
practical conditions. Researchers have identified several challenges and
research directions, as outlined below:

(1) Resource Management: Efficient resource management in a
distributed environment is complex due to the interactions be-
tween devices and edge servers. Coordinating resource availabil-
ity across these elements is crucial to optimize performance and
prevent bottlenecks [199].

(2) Predicting Stochastic behavior: Edge server demand is
stochastic in nature. Therefore stochastic model based prediction
should be applied for task offloading. The identified model
must predict the system’s future behavior to efficiently offload
tasks while monitoring the required metrics. However, only a
few of the reviewed papers proposed methods addressing this
need [200].

(3) Security and Privacy Protection Issues: Data safety during
offloading is crucial, with privacy and protection against attacks
being paramount. Breaches can significantly impact sensitive
information and MEC system integrity. Key challenges include
confidentiality, service reliability, and availability, which are in-
terrelated aspects of dependability and security [201,202]. Data
security: In MEC systems, the secure transmission and storage of
data is a key issue. Future research will focus on technologies
such as data encryption, access control, and security protocols
to ensure the security of data during transmission and storage.
Privacy protection: With the enhancement of privacy protection
awareness, how to achieve efficient computing and uninstalla-
tion under the premise of protecting users’ privacy has become
an important topic. Future research will explore privacy protec-
tion schemes based on differential privacy, federated learning,
and other technologies to balance the computational efficiency
and privacy protection needs.

(4) Mobility Management: The high mobility of users and devices
adds complexity to task offloading decisions. This mobility im-
pacts resource allocation and overall efficiency, requiring strate-
gies that consider the dynamic locations of users and devices to
ensure optimal performance. Due to the unpredictable nature of
task demand, effective mobility management is essential [203,
204], including the management of user positioning, resources,
and services [205].

(5) Task Deployment and Scheduling: The deployment and schedu
ing of tasks across various edge servers is challenging, requiring
sophisticated algorithms to decide which tasks to offload to
which servers and when to execute them to minimize latency
and maximize resource utilization. Dynamic resource allocation:
In MEC systems, the dynamic allocation of resources is critical
to improve system performance and resource utilization. Future



S. Dong et al. Computer Networks 254 (2024) 110791 
Table 8
Comparison of various offloading mechanisms.

Reference Evaluation tools Case study/application Performance metrics Year

[162] Simulation (NA) General apps Security, Energy, QoE 2016
[163] Simulation (NA) VR Delay, Energy 2017
[164] Simulation (iFogSim + CPLEX solver) Healthcare, Media Streaming, Augmented Reality, Smart

Homes
Delay 2018

[165] Numerical Social networking Delay, Cost 2018
[166] Simulation (Python) Vehicular Networks Delay 2018
[167] Implementation (TensorFlow) Vehicular Networks Cost, Reliability 2018
[168] Numerical General apps Energy, Response time, Delay 2018
[169] Simulation (NA) Gaming, AR, Multimedia processing Delay 2018
[170] Simulation (CPLEX solver) Healthcare, Intelligent Transportation Systems Delay, Cost 2019
[171] Simulation (Choco solver) Intelligent Transportation Systems, Augmented Reality,

Wearable Devices
Resolution Times 2019

[172] Simulation (Java + C) Smart Building Energy 2019
[173] Simulation (Java) Media Streaming, Mobile Phones Delay, Costs 2019
[174] Simulation (NA) Virtual Reality, Augmented Reality Delay 2019
[175] Simulation (NA) IoT Applications Energy, Costs 2019
[176] Simulation (iFogSim + CPLEX solver) Intelligent Transportation Systems, Smart Cities, Agriculture Energy, Costs, Response Time 2019
[177] Simulation (NA) Virtual Reality, Augmented Reality QoS, Bandwidth 2019
[178] Simulation (CloudSim) IoT Applications Energy, Costs, Performance 2019
[179] Simulation (NA) IoT Applications Response Time, Throughput 2019
[180] Implementation (NA) VR Throughput 2019
[181] Simulation (NA) VR, Gaming, Multimedia processing Delay, Energy 2019
[182] Simulation (C++) IoT Applications Energy, Delay 2019
[183] Implementation (AMPL) Smart Cities Delay, Response Time 2019
[184] Simulation (NA) Augmented Reality, Autonomous Driving Response Time 2019
[185] Simulation (NA) General apps Delay, Energy 2019
[186] Simulation (NA) Vehicular Networks Reliability 2019
[187] Simulation (CPLEX solver) Healthcare, Augmented Reality Cost 2020
[188] Simulation (Gurobi) Healthcare, Surveillance, Agriculture Energy 2020
[189] Simulation (Python) Intelligent Transportation Systems Delay 2020
[190] Simulation (NA) Smart Cities Costs, Bandwidth Utilization 2020
[191] Simulation (Gurobi) IoT Applications Response Time 2020
[192] Simulation (TensorFlow) General apps Delay 2020
[193] Simulation (C++) General apps Response time, Throughput, QoS, Cost 2020
[194] Simulation (Python + TensorFlow) Social networking Security 2020
[195] Simulation (NA) Virtual Reality, Online Gaming Delay 2021
[196] Simulation (Python) IoT Applications QoS 2022
[197] Simulation (MATLAB) Virtual Reality, Augmented Reality Costs 2022
studies will explore more flexible and efficient dynamic resource
allocation algorithms to accommodate variable task demands
and system states. Collaborative scheduling: The MEC system
requires collaborative scheduling with the cloud server, other
MEC nodes, and terminal equipment to achieve global optimal
resource allocation. Future studies will focus on multi-level
collaborative scheduling mechanisms to improve the overall
performance and stability of the system.

(6) Interoperability: Addressing the challenges posed by hetero-
geneity in future networks involves managing communication
between different types of networks, devices, providers, and user
participation.Edge computing environments consist of a wide
variety of devices, platforms, and networks from different ven-
dors. Interoperability ensures that these heterogeneous systems
can work together seamlessly. Lack of universally accepted stan-
dards and protocols makes it difficult to achieve interoperability
across different edge computing platforms and devices. Further
interoperability might introduce performance overheads due to
additional layers of abstraction or protocol conversion [206].

(7) Task offloading in large scale connected networks: Task
offloading in large scale social networks poses the following
three major challenges:

(a) Complexity: As the network grows, task offloading de-
cisions become more complex, leading to delays that
increase overall latency [207].

(b) Centralized Methods: Optimization and machine learn-
ing methods need to collect a lot of data from the whole
network before they can make decisions. In a big network,

this process of gathering information can put too much
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strain on the system, making it difficult to make decisions
quickly [208].

(c) Real-Time Constraints: For systems that must operate
in real-time, such as smart transportation or healthcare
networks, the model for offloading tasks has to man-
age various kinds of hardware and data. This makes the
process even more complicated [209].

(8) Machine Learning Integration: Machine learning (ML) models
can address various challenges in MEC systems, such as task al-
location, ranking, and delay reduction. Conversely, MEC systems
can support ML-based solutions for delay-sensitive applications
like autonomous driving and smart cities. Developing an MEC
system that effectively integrates with ML systems presents a
significant challenge [140,198].

(9) Economic and Pricing Models: Exploring economic models
and pricing policies to optimize caching strategies represents
both a significant challenge and a valuable research opportunity.
This area of study involves understanding how different pricing
mechanisms and economic principles can be applied to enhance
caching efficiency and effectiveness. Addressing this challenge
could open up numerous research avenues, leading to innovative
solutions and improvements in caching strategies [210].

(10) Energy Consumption: Energy-aware offloading decisions face
challenges like managing diverse resources, handling substantial
computation and communication demands, and dealing with in-
termittent connectivity and network capacity limitations. Devel-
oping energy-efficient caching mechanisms to reduce the power
consumption of edge devices is, therefore, a significant chal-
lenge. Addressing these issues is crucial for optimizing the per-

formance and sustainability of edge computing systems [63,211,
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212]. Future research will explore green and energy-saving tech-
nologies, such as low-power hardware design, energy-sensing
unloading strategies, and energy recovery technologies, to re-
duce the overall energy consumption of the system. Energy
and performance balance: While pursuing low energy consump-
tion, the system performance should also be guaranteed. Future
studies will focus on how to find a balance between energy con-
sumption and performance to enable the sustainable operation
of the system.

(11) Autonomic Systems: Autonomy allows MEC systems to con-
tinue functioning even when disconnected from the central
cloud, enhancing reliability and resilience, especially in remote
or disaster-stricken areas. Advancing the development of auto-
nomic systems for IoT service placement to improve efficiency
and adaptability [213]. Therefore efficiently managing and allo-
cating computational resources, storage, and network bandwidth
autonomously across diverse and dynamic environments is a
research challenge.

(12) Optimization Algorithms: Enhancing optimization algorithms,
like the Gray Wolf optimizer, to better handle the complexities of
IoT service placement. Intelligent offloading algorithm: With the
continuous development of artificial intelligence technology, the
intelligent unloading algorithm based on machine learning and
deep learning will become a research hotspot. These algorithms
are able to analyze the system state and task requirements in real
time and dynamically adjust the offloading strategy to achieve
the optimal offloading decision.

(13) Service Placement Strategies: Developing advanced strategies
for placing services in IoT environments to optimize perfor-
mance and resource utilization. Dynamic resource allocation:
In MEC systems, the dynamic allocation of resources is critical
to improve system performance and resource utilization. Future
studies will explore more flexible and efficient dynamic resource
allocation algorithms to accommodate variable task demands
and system states. Collaborative scheduling: The MEC system
requires collaborative scheduling with the cloud server, other
MEC nodes, and terminal equipment to achieve global opti-
mal resource allocation. Future studies will focus on multi-level
collaborative scheduling mechanisms to improve the overall
performance and stability of the system.

(14) Real-time perception of the environment: When users offload
tasks to edge servers, the quality of service (QoS) is affected by
fluctuations in mobile edge computing (MEC) networks. Factors
such as varying wireless link data rates, changes in transmission
bandwidth, base station power, and unpredictable wireless con-
ditions can significantly impact QoS. Researchers have proposed
various solutions to address these challenges, including game
theory-based approaches [214,215].

8. Summary

In the paper, we have studied the task offloading method of mo-
bile edge computing, and discussed the existing review articles. Our
work mainly focuses on the task unloading decision for mobile edge
computing. Through the introduction of mobile edge computing related
technologies and unloading models, we can have a comprehensive un-
derstanding of it. In addition, there are five dimensions for determining
task offloading decisions, including Energy Consumption Minimization,
QoS, Time Delay Minimization, High-computing Offloading and differ-
ent application scenarios. The paper also offer insights into the research
landscape’s hot topics, and future trends for edge computing of MEC.
Looking ahead, as MEC application scenarios continue to proliferate,
and communication technologies advance, the research value and im-
portance of task-offloading algorithms will undoubtedly increase. We
trust that this work will provide valuable references and insights for
researchers working in related fields, guiding them in their pursuit of

innovative solutions within the evolving MEC ecosystem.
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