N
Multimed Tools Appl (2018) 77:10135-10156 @ CrossMark
DOI 10.1007/s11042-017-5055-5

Split keyword fuzzy and synonym search over encrypted
cloud data

Raghavendra S! . Girish S! - Geeta C. M.! .
Rajkumar Buyya? - Venugopal K. R.! - S. S. Iyengar? -
L. M. Patnaik*

Received: 28 February 2017 / Revised: 31 May 2017 / Accepted: 24 July 2017/
Published online: 7 September 2017
© Springer Science+Business Media, LLC 2017

Abstract A substitute solution for various organizations of data owners to store their data in
the cloud using storage as a service(SaaS). The outsourced sensitive data is encrypted before
uploading into the cloud to achieve data privacy. The encrypted data is search based on key-
words and retrieve interested files by data user using a lot of traditional Search scheme.
Existing search schemes supports exact keyword match or fuzzy keyword search, but syn-
onym based multi-keyword search are not supported. In the real world scenario, cloud users
may not know the exact keyword for searching and they might give synonym of the key-
word as the input for search instead of exact or fuzzy keyword due to lack of appropriate
knowledge of data. In this paper, we describe an efficient search approach for encrypted
data called as Split Keyword Fuzzy and Synonym Search (SK F'S). Multi-keyword ranked
search with accurate keyword and Fuzzy search supports synonym queries are a major con-
tribution of SKFS. The wildcard Technique is used to store the keywords securely within the
index tree. Index tree helps to search faster, accurate and low storage cost. Extensive exper-
imental results on real-time data sets shows, the proposed solution is effective and efficient
for multi-keyword ranked search and synonym queries Fuzzy based search over encrypted
cloud data.

Keywords Cloud computing - Data privacy - Keyword search - Searchable encryption -
Synonym search

P< Raghavendra S
raghush86 @gmail.com

University Visvesvaraya College of Engineering, Bengaluru, India

Cloud Computing and Distributed Systems (CLOUDS) Lab, Department of Computing
and Information Systems, The University of Melbourne, Melbourne, Australia

Florida International University, Miami, FL, USA

National Institute of Advanced Studies, Bengaluru, India

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-017-5055-5&domain=pdf
mailto:raghush86@gmail.com

10136 Multimed Tools Appl (2018) 77:10135-10156

1 Introduction

Explosive growth of data organization in the age of Information Technology has led to acute
storage and maintanence problem. Cloud computing helps customers to store data in the
cloud on pay on-demand basis, so that data owners need not worry about data storage space
and maintenance. Data owners may not have faith in Cloud Service Providers (CSPs), hence
they encrypt their data and then outsource the data into the cloud, so that other users cannot
understand the encrypted data. It is not just the problem of data storage, but the important
thing is keyword search on encrypted text rather than on plain text. User can download the
data into the local machine from the cloud space, decrypt and then search over plain text. In
practical, the performance is degrades with utilizes more bandwith. Hence, the challenge is
to search the keyword over encrypted data within the cloud storage itself.

As cloud computing is easily accessible, the sensitive data being stored or outsourced
into the cloud, like banking sector records, profiles of social networking sites, data of public
sector like army, data of government research organizations, medical records and so on
needs protection. The fact is, that data stored in the cloud server is not safe even though
Cloud Service Providers (CSPs) use firewall mechanism for data security. CSPs may share
the data of one user with another user who has also stored the data in the same cloud server
or some employee belonging to CSP may access the information stored in cloud server for
unauthorized purpose or to leak somebody’s data to another user illegally. So, it is always
recommended for data owners to encrypt the data and then outsource into the cloud. The
encryption of data makes the effective use of data utilization, but the challenge is effective
retrieving of relevant files among the large number of files that are stored in the cloud using
keyword based search. The user can retrieve only the files of interest using keyword search
technique. Considering the large number of data users and a large number of outsourced
encrypted data files into the cloud, the keyword search problem is challenging as it has to
meet the requirements of performance, system stability and scalability.

As most of the information stored by various organizations is in textual format, all the
applications have to support similarity keyword search on the data stored. The user might
have used the synonym of some keyword in various places in the file. So, it is important to
retrieve the synonym of a keyword being searched along with the exact keyword matching.
For example, in a file, the term college is stored in some documents and in some other
files institution is used in the place of college. When the user searches for a college,
it has to also retrieve the files which contain institution to the user so that user finds
more interesting and relevant results. Though the similarity search and synonym search is
possible in plain text, it is also necessary and a challenging problem for searching over
outsourced encrypted cloud data due to privacy and security reasons. Ranked search [16, 17,
19] is useful, as it sends back only the relevant data and avoids network traffic. This is quite
important as most of the users use pay-as-you-use cloud parameter. Moreover for privacy
preserving, these ranking operations should not leak any information related to keyword.
The ranking system should support multiple keyword search as well as synonym keyword
search to improve the accuracy of the search result.

Motivation Once the data is stored in cloud, the most important operation is to search.
Even though the data is accessible only to a few authorized users, who perform search oper-
ations frequently, search operation should preserve the privacy of users as well as of data
and it should also return efficient results. To achieve the privacy of data during search, many
methods or techniques for privacy-preserving have been studied. Most of the work focus on

@ Springer

Multimed Tools Appl (2018) 77:10135-10156 10137

single keyword and multi-keyword search [3, 22, 25], while few works focus on fuzzy key-
word search [23, 24, 29, 32]. Few techniques have also been proposed for similarity search
on text [26] and on images [31]. The ranked search scheme helps the users to find out the
most relevant documents.

Contribution In this paper, to meet the challenge of effective search system. A flexible
searching technique has been proposed in this paper which is efficient that supports fuzzy
keyword, multi-keyword and synonym based keyword search. This protocol generates index
using inverted indexing where the keyword is mapped to documents. This inverted index
scheme provides the technique for scoring the search results. If the number of a keyword
being searched map to a large number of individual documents, then that is considered as
a relevant document. The use of balanced binary tree improves the search efficiency. The
relevant documents can be retrieved by traversing the tree. This search scoring technique
uses Term Frequency-Inverse Document Frequency for weighting the results.
The contribution of this paper is summarized as follows:

1. Split Keyword Fuzzy and Synonym Search (SK F'S) has been proposed, which supports
fuzzy based multi-keyword search over encrypted cloud data. When the user enters the
keyword to search from the cloud data, the user obtains the fuzzy keyword matching in
addition to the files which contain the synonym of few predefined keywords.

2. SKEFS fulfills the functionality of secured keyword search which maintains keyword
privacy; relevant files based on fuzzy keyword and synonym keyword search are
retrieved.

3. SKFS ensures that search results using synonym based keyword searches over
encrypted cloud data is authenticated by using index-based tree structure.

4. Extensive experimental result shows the effectiveness and efficiency of the SKFS
scheme.

Organisation: The rest of the paper is organized as follows: Section 2 presents the
reviews of the features of related work. Section 3 briefly describes the necessary background
for the techniques used in this paper. The design goals are explained in Section 4. Section 5
describe the overview of proposed multi-keyword ranked search scheme which supports
synonym query and our proposed scheme. Performance analysis for index time construc-
tion, storage cost of index and search time and security analysis is presented in Section 6.
Section 7 contain the conclusions.

2 Related works

Fuzzy keyword search are investigated in [5, 6, 10, 18, 20, 27, 28, 35]. Xu et al. [32] takes
linear time to store the searchable cipher-text as keywords and resists keyword guess attack
but unaffordable for large database. Tuo et al. [23] propose a semantically secure fuzzy key-
word search scheme using the bloom filter which translates the keyword into attribute set
and uses independent hash functions to map the elements to some random number using
bilinear mapping technique. This method extends from fuzzy identity encryption scheme
to fuzzy keyword search scheme but does not support multi-keyword search and synonym
search. Chuah et al. [5] introduce a h®“tree index tree construction and storage cost is
efficient compared to the symbol-based trie-traversed based and listing based approach.
Wildcard-based fuzzy set construction technique is used in [10, 13, 27, 35]. Jie et al. [10]

@ Springer

10138 Multimed Tools Appl (2018) 77:10135-10156

use dictionary based schemes to remove unwanted keywords and results in relatively small
constructed index.

Wang et al. [28] achieve similarity search for top-k ranked keywords and it uses Keyword
Fingerprint Extraction which converts a string into a fingerprint vector. The k-Nearest
Neighbors(kNN) encryption provides two tiers of protection for keywords being searched
but does not provide support for synonym search. Fu et al. [6] use vector space model to
construct the index for document; a balanced binary tree-based index structure is used for
searching the keyword. Synonyms of predefined keywords are searched but this requires
increased storage space. Shekokar et al. [20] designed a privacy-preserving fuzzy keyword
search to achieve effective usage of encrypted data stored remotely in cloud. Indexing tech-
nique is not used for mapping the keywords and takes more search time. In [35] weighted
ranking algorithm has been used to compute the weight of each word in the fuzzy set, that
involves high computation overhead.

Different privacy-preserving search method over encrypted data [2, 21, 33, 34] had been
proposed. Yuan et al. [34] use two algorithms, Index Generation to generate the index and
Document Retrieval to retrieve only top-k documents. The second algorithm i.e., Two-
Server Secure Search and Document Retrieval searches keywords from the file server and
provides adaptive semantic security. The main advantage of this method is the capability of
multi keyword search in a single query. Sun et al. [21] propose search index based on term
frequency—inverse document frequency(TF-IDF) and vector space model along with cosine
similarity measure which supports multi-keyword search and ranking method. Bijral et al. [2]
design a B tree search algorithm that uses inverted index and fully inverted index. This
method shows that wildcard based search has more keywords than fuzzy keywords in dic-
tionary based search. It is observed that Dictionary-Based Search method is efficient with
respect to time. Xu et al. [33] propose a dictionary-based fuzzy set is constructed for fuzzy
keywords and uses coordinate matching which returns all the matches as possible so that
the data files obtained is relevant. One-to-many order preserving mapping scheme is used
to build the inverted index and for searching.

Wang et al. [29] propose a verifiable fuzzy keyword search scheme based on the symbol-
tree which supports the fuzzy keyword search and also performs the verifiability of the
searching result. This scheme uses two algorithms i.e., Generate Fuzzy Set which generates
the Fuzzy keyword set and Searching Tree which generates set of file ids that helps in
security and privacy-preserving. Wang et al. [24] propose a scheme for multi keyword fuzzy
search which searches by exploiting the locality-sensitive hashing technique. This method
does not expand the index file, instead it searches fuzzy keyword matches using algorithmic
design where the predefined dictionary is not required and using Symmetric cryptography.
The index generation procedure is a single time computation and as the new keywords
are inserted, the index generation time increases linearly. The search also happens in the
encrypted index. Here, locality-sensitive hashing (LSH) method is used to construct the
index of a file and this is efficient to search multiple keywords.

Few methods [4, 7, 11, 12, 14] support semantic search schemes. Khan et al. [11]
formulate secure rank search of fuzzy multi-keyword which returns the matching files when
input keyword exactly matches the predefined keyword. If it fails to match the exact files,
it returns the possible keywords from the dictionary based on similarity semantics. The
ranked fuzzy multi-keyword search(RFMS) method have two algorithms Build-Index and
Fuzzy-search. As the encryption files contains special characters, the dictionary attack is
not possible. Each element of the trapdoor is unique, it is one-to-many mapping between
plaintext keyword and its cipher text which contains special characters that results in

@ Springer

Multimed Tools Appl (2018) 77:10135-10156 10139

enhanced security. Fu et al. [7] propose a semantic search scheme which returns keyword
based proper match and also a keyword based semantic match and the search result are
verifiable. Whenever the keyword is submitted for search, it builds the term similarity tree
and then shortest path and similarity between keywords are calculated. The user can cross
check the correctness and completeness of the result obtained. It uses the hash function
query to achieve index privacy. Fu et al. [8] propose a semantic keyword based search
scheme and privacy preserving. The stemming algorithm is used to construct the stem set
and reduce the dimensions of index. A symbol based trie is adopted for construction of
index which improves the search efficiency.

Ko et al. [12] propose a semantical scheme which searches data on mobile devices
where a user query is translated into a query graph and then retrieved. This method uses the
algorithm for finding answer graphs from a query graph, then the answer graph is translated
to SQL statements by traversing answer graphs and obtain the result from the database. It
overcomes the limitations of keyword based full text search. Chinnasamy et al. [4] propose
semantic secure keyword based search scheme(ESSKS) that retrieves exact details needed
by the user and ensures that same keyword does not always produce similar results. This
method addresses the problem of data integrity while transferring data from the user to
cloud and vice-versa. The user has to encrypt a file using secure symmetric encryption that
reduces the search time of the keyword and does not allow unauthorized users to access the
data. Moh et al. [14] propose a semantic search with three different schemes like synonym-
based, wikipedia based and wikipedia based synonym keyword search. This scheme uses
Data encryption standard algorithm for symmetric key encryption as well as decryption. The
search results are in the form of similarity score on the data file. This scheme performs better
than wildcard-based fuzzy set construction scheme with respect to storage requirements,
performance and the search result in terms of preserving data security and maintaining
privacy.

Balamuralikrishna et al. [1] propose a fuzzy keyword search on encrypted cloud data
along with maintaining privacy of the searched keyword. Wildcard and gram based tech-
niques use string matching algorithm. Trie traverse tree structure has been constructed that
are transformed from the resulted fuzzy keyword sets. Zhou et al. [35] propose a scheme
to generate fuzzy keyword search over encrypted cloud data which uses k-grams index to
return fuzzy results where keywords are searched as wildcard queries on plain-text files.
Weighted ranking algorithm has been used to compute the weight of each word in the fuzzy
set. Xia et al. [30] propose a public key encryption scheme in mobile cloud storage for a
group of users for data sharing. A asymmetric group key agreement protocol and proxy re-
signature is used for updating the searchable keywords which are encrypted. It ensures that
mobile users in some group have to share the common secret key and update it when group
members change.

3 Background

Researchers have been working on finding out the efficient way of searching keyword
over encrypted cloud data to perform the searchable encryption in cloud computing. Many
search schemes have been proposed like fuzzy keyword search scheme which uses wildcard-
based technique to generate fuzzy keyword sets. Other schemes use TF-IDF method to find
out keyword weight, that can generate top-k relevant data files. But, this supports single

@ Springer

10140 Multimed Tools Appl (2018) 77:10135-10156

keyword search. A multi-keyword search scheme has been proposed in [21] based on vector
space model which supports more accurate results as it stores the weight of each keyword.
The authors [9] use searchable index tree which is a balanced binary tree where each internal
node is stored with keywords. This scheme takes more space for index storage and it has to
traverse a large number of nodes for searching the keyword. Moreover this scheme does not
support fuzzy search and semantic based search.

3.1 Security requirements

In the SKFS Scheme, we consider the cloud service provider to be honest-but-curious that
means the cloud service provider performs the task allocated by the data owner and search
the suitable document based on the user need. In spite of this, it is curious to know the
information about the storage files and the generated trapdoors to gain extra information.
Explicitly, the SKFS targets to offer the following safety requirements:

— Content Secrecy and Index Privacy: Content files and index file must be encrypted
before outsourcing to the cloud server. The index privacy will have two safety
requirements, i.e., the cloud sever not permitted to learn the information of the index
file because the information of the index file straightforwardly reveals the information
of the content files. In additional, cloud server cannot assume any relationship among
the content files and keywords during exploring the encrypted index file.

— Query Confidentiality: The cloud server not permits to learn any information from the
query keywords. Two types of privacy requirements are trapdoor privacy and access
pattern. Each query keyword produces a trapdoor to access the cloud storage space and
search across the encrypted index. The query information is present in the trapdoor but
in an encrypted manner. After observing the trapdoor cloud server not permits to learn
anything from user’s query. Trapdoor privacy can safeguard by query keywords, number
of keywords present in the query and the cloud server cannot assume any relationship
among the two trapdoors. The cloud server not permits to know the accurate keyword
holds in the trapdoor of the user search query. Access pattern refers to the retrieved files
based on series of search results. In the SKFS, the access pattern completely hidden
from the cloud service provider. The query search results should be vague form every
user because the cloud server not allow to know the details of the retrieved files.

4 Problem statement and system model
4.1 System model

We consider the cloud computing architecture with three modules, i.e., Data Owner(D O),
Data User(DU) and Cloud Server (CS) as shown in Fig. 1. Data owner has a set of n
data files D = Fy, F», F3, ..., F,, which are stored in the cloud server. All these files are
encrypted and a set of encrypted files ED = (EFy, EF>, EF3, ..., EF,) are generated.
The data owner extracts the keywords from the data files D. The data owner then removes
the stop words from the extracted keywords to form a set KW = ki, ka, ..., k;,. Next, the
data owner obtains the synonyms for keywords Si, 2, ..., Sy and generates a searchable
encrypted index EI for keywords and its synonyms, the encrypted index E/ and a set of
encrypted files E D are outsourced into the cloud server.

@ Springer

Multimed Tools Appl (2018) 77:10135-10156 10141

Dataowner Datauser

| e

Files — E";izted Return Top-k der y Keyword
2 File Ids l
Extract Keywords %a
% Get the Synonyms
Filter Stopwords Cloud for Query keyword

l Server l

Get the Synonyms ‘\Search for Queried
s Sf‘ar .
for Keyword S <4 Keyword or its
S, .
Synonyms with max
Index Generation for Occurrence

Keywords and Synonyms

Fig. 1 Index generation on split keyword system architecture

When the authorized user performs the search operation, he or she submits an input
keyword for search which is considered as Query KeyWord (Q K W). The Data User gets
the synonyms QS1, OS2, ..., OSk for QK W, then searches for Q KW and its synonyms
(see Table 1). The Cloud Server(CS) returns the search results as per the following rules.

1. If the Query keyword matches exactly with any keyword stored in the index, the server
returns the files which contain the keyword.
2. If any file contains any synonym of the QKW, the cloud server returns also those files.

4.2 Design goals

The design of our system model supports multi-keyword search over outsourced encrypted
data in cloud with the following security and performance paradigms.

1. Synonym Search : Our search scheme supports fuzzy keyword search as well as syn-
onym search for the input keyword and returns the files containing keyword or its
synonyms

2. Privacy — Preserving : Our method is designed to meet the privacy challenge and
prevents a cloud server and other cloud users from reading any information from any
data files or from index being stored

3. Efficiency: The above functionalities is achieved with low storage, low network
traffic and with low computation and search time.

4.3 Inverted index

Inverted index is an indexing data structure that stores a mapping from keywords to the
respective set of files containing the keyword, which allows full text search. By using the
inverted index, it is easy to get the files in which a given keyword has maximum number
of occurrence. This is usually done by calculating a numerical score based on any ranking
function. An example for inverted index is shown in Table 2.

@ Springer

10142 Multimed Tools Appl (2018) 77:10135-10156

Table 1 Notations

Symbols Definition

D The plain-text document collection to be outsourced as a set of n data files
D= (F,F, F3,..., fa).

ED A set of encrypted documents collection to be outsourced as a set of n data files
ED = (EF),EF,,EF3,...,EF),).

El Encrypted Index.

MF Merge Factor.

F; The file identifiers F; to locate uniquely the actual file.

KW The extracted distinct keywords from the document collection D, denoted as a set of m
keywords KW = (ky, ko, ..., kp).

0S; Synonyms for each extracted distinct keyword, denoted as (QS1, OS2, ..., QSk).

ks Keyword denoted as wildcard format.

ksy Keyword with first sf number of characters.

sf Split factor to divide the keywords.

n—sf Number of Remaining characters of keyword after splitting it.

kn—sf Remaining characters of keyword after splitting it.

OK Wy Query keyword with first sf number of characters.

OKW,_sr Remaining characters of query keyword after splitting it.

R; Set of ksy for many keywords where &y is same.

ki Individual keyword.

QKW User interest queried keyword.

4.4 Tree based structure

Searchable index is a balanced binary tree. The index tree EI is built from the set of data
files D = (F1, F, F3, ..., F,,) . The tree is built using the following procedure, which is
expressed as generatelndex(D) as follows:

1. Aleaf node in a tree is generated for each document/data file F; in D, which stores the
file identifier F; and the index list.

2. Futher, the tree is constructed using postorder traversal with all the leaf nodes generated
in first step. Each internal node of index tree contains atleast one element in linked
list, where each list stores the details of keywords in wildcard based format where k;
belongs to F;.

3. The linked list is generated in each internal node. If ksr belongs to F;, where kyy =
(ksr*), it adds the length of * and file F; into the list; characters of * in k; is also
encrypted and added into the list. Similarly, a list node for each keyword is created.

Table 2 Inverted index matrix

Keyword File 1d(F;)
Computer Fi, Fs
Network F>, F3
Software Fi, F4, F5
Router F3, Fy, Fs

@ Springer

Multimed Tools Appl (2018) 77:10135-10156 10143

4.5 Tree based search

The sequential search method for keywords in input search is as follows: Procedure starts
from the root node and then it searches for an internal node, it checks with QK W and
ksy in the linked list. If both match, then it searches to match for remaining characters of k;
inside the list. If it is found, searching stops in the subtree, otherwie, it continues to search in
the child nodes. When it traverses the node, it gets the file /d and the number of occurrences
of the keyword in each file. In this search method, it traverses lower number of nodes as it
stores k; in the wildcard based format and each file id F; of that k; occurrence in the same
list and also because it uses inverted index structure.

5 Proposed work

This section gives the overview of the SKFS scheme. An efficient multi-keyword ranked
search scheme using synonyms is designed as follows:

Algorithm 1 SKFS: Split Keyword Fuzzy and Synonym Search

Input :setofdatafiles D = Fy, F>, ..., F,
Output : A encrypted index EI

Index Generation,;

Create index for each document separately using generateIndex(D) method;

Merge the group of indices based on Merge Factor M F;

Create a stack for indices;

Create index for all the documents as explained in Section 5.1;

Push new index being created into stack;

Assume merge factor M F = 5;

n = o00;

while (max _size > 1&&max _size < n) do

read current;

if there are M F number of index with max _size docs on top of stack then
Pop M F number of indexes from stack;
Merge them into one index;
Push the merged one into stack;

else

L Break;

max_sizex = M F,

Search Phase
Search(QK Wyr,n — sf, OKW,_sr)
for (i=1to QK Ws¢[n]) do
if (QK W,y ==ky/[i]) then
if (there exists node with [; == n — sf) then
if (QKW, _y is present inside) then
| Return File set F; where QKW € F;
else
| Break;

@ Springer

10144 Multimed Tools Appl (2018) 77:10135-10156

1. [Initialization: This phase is executed by DO to initialize the scheme. It generates
secret key sk for encrypting the data before outsourcing into cloud.

2. Index generation: The Index phase is executed by D O to build the index using sk and
a set of distinct keywords k; of data files D and outputs the index..

3. Query generation: The query function is generated by DU to generate the query out
of the keyword being given for search as input. It splits the keyword QKW and its
synonym QS; based on the split factor s f and generates query.

4. Search: The search phase is executed by CS to search for the files F; which contains
the keyword Q KW or its synonyms Q.S;. It takes query and index as input and returns
the set of files where the keyword and its synonyms are present

5.1 Steps in the algorithm SKFS

1. The D O generates the secret key for encrypting the data files before they are outsourced
into the cloud.

2. In this procedure, A tree based index structure is built for fuzzy keyword set which
enables multi keyword search. The DO reads all the data files D and builds a set of
distinct keywords for each file. In addition, a set of file identifiers for all files i built
and then outsourced to C'S. The text documents can be expressed as follows.

Fi=kl K, ... k! k)

L A B
Fy =2 K2, . k2, K

Foo = K KSR K

> %n—1""n

5.1.1 Extracting synonyms

_ 71 1 1 .1 1 1 1 .1
F —klz,sl2,...k%,s%,...,kg_l,snz_l,kg,s,é
Fo = ki, 87, . k3, 85, ks se ks sy

Fo =k, s, Ky, sy, .. Sk skt s
The fuzzy keyword set generated here is based on the wildcard. Index is created for each
document by splitting the keyword based on the split factor s f, which divides the keyword
k; into two tokens kyr and kj, ¢, where n is the length of k;. The indexed linked lists stored
in each node contains the list for keyword starting with ksy. The linked list is denoted as

ksf,n—Sf, Fi»kn—sf-

5.1.2 Generating index for individual files

IF : = RI.; ((1,11,_1., ER,}il) (lg_i, ER%I));
=R; ((ln—i’ ERnfl) (ln—i’ ERnfl));
= R} ((lr]H" ER,I,-]) (lr]zvfi’ ER}'ZIV—I)) ;

where R; + ER,—; = K;.

After creating the index for each document, merging of index is done using the merge
factor M F. Initially, all the individuals index are stored into stack. Then MF number of
indexes are extracted and merged as below.

@ Springer

Multimed Tools Appl (2018) 77:10135-10156 10145

5.1.3 Merging index files

I ={RM(I)_;, Fs, ER} |)...(1Y,. Fu, ERY

5 1n—i’ n—1 n—i’ - };
= RA(

’

)
)

1
n—i> Fn> ER;Ll) (lrllv—i’ Fu, ER;Zszl)

= R(()

n—i’

Fu, ER! |)..(IY, F,, ERY)}

n—1 n—i’ n—1
where
F,={F,F, .. F,},i <j<n,K; €F,.
T =R/ _,, F., ER!)}
The merged index is pushed onto the stack and the merging of indexes is continued till
M F number of indexes are available. The index is merged based on the R;, the files contains
R; make into one group. Each R; presence in X files but it’s not same for all R;.

3. Query generation: When the keyword QK W is given for search, the QKW is split
into two tokens based on splitting factor sf used in index generation like Q K Wy and
OKW,_r. Then the split tokens are encrypted and query set containing (QK Wyr, n —
sf, OKW,_r) and its synonyms are formed and sent to the cloud server.

4. If the linked list in any node in the index tree matches with Q K W, then it searches
inside the linked list for n — s f. If a internal node in the linked list matches with n —sf,
it proceeds to search inside that node only for finding out the match for QK W,, . If
there exists QK W,,_r inside the list, it returns the list of file /ds where the keyword
contains QKW and its synonyms.

5.2 Algorithm example

In the example, we have assumed two files F| and F> with various keywords. Initially, the
index is created for first file. Each keyword is divided into two sub keywords based on the
split factor. The keyword university is divided into univ and ersity. While generating
the index, all keywords starting with univ are combined together and index is formed as
shown in Table 3 i.e., university, universe and universal. Let n be the length of keyword, s f
the split factor, the index for keyword k;, first i added to the initial characters of keyword,
then the length of remaining characters i.e., n — sf is added. The file id and the remaining
characters are added after encrypting. If there are a number of keywords starting with the
same characters, then index for each k; is separated by the delimiter and are added based on
length of n — sf in the ascending order.

After the index is created for the index file, the index for the second file is generated in
the same manner and both are merged. Check if the index for the keyword is already existing
in the index file. If it exists, then only the file id has to be added. In the above example, file
id?2 is added for university and the index for the new keyword computer is also added. In
a similar manner, we have to continue adding the new keywords for new files.

6 Performance

Our proposed scheme is verified by implementing the search scheme on the cloud server.
We have used real time data sets: National Science Foundation Research Awards Abstracts

@ Springer

10146 Multimed Tools Appl (2018) 77:10135-10156

Table 3 Example for algorithm

Number of Files

F F
Extracted Keywords University University
Universe College
Universal Optical
Optimize Computer
Optical
Index Format
File id R; n-sf ER frequency
F Univ 6 ersity 4
4 erse 4
5 ersal 4
Opti 4 mize 4
3 cal 4
F Univ 6 ersity 4
Opti 3 cal 4
Coll 3 ege 4
Comp 4 uter 4
Merged Index File
R; n-sf ER frequency File ids
Univ 6 ersity 4 Fi, F»
4 erse 4 F1
5 ersal 4 Fi
Opti 4 mize 4 F
3 cal 4 Fi, F»
Coll 3 ege 4 F
Comp 3 uter 4 F

1990-2003[15]. Our experiment includes a user and a server. The search scheme is imple-
mented using Java language in Windows machine with Dual CPU running at 1.46 GHz and
the encrypted collection of files are stored on the commercial public cloud, Amazon cloud
services like S3 (simple storage service). The performance is evaluated for index gener-
ated time, index storage space, search time and security analysis. Total number of keywords
present in index is 94,832 for 10,000 files and 8936 are distinct keywords.

6.1 Index generations time
Figure 2 indicates the time complexity for generating the index which is directly propor-
tional to the number of data files. Although, index generation is performed only once before

outsourcing the data into cloud, this operation can be ignored. While generating the index,
encryption of the keyword is an additional operation. As shown in Fig. 2, the B-tree method

@ Springer

Multimed Tools Appl (2018) 77:10135-10156 10147

55
50
45
40
35
30
25
20
15
10

Index Generation Time (in sec)

B-Tree[9] ——
SKFS Scheme ------

5 10 15 20 25 30

Number of Documents (x103)

Fig. 2 Index generation time over number of documents

[9] takes 12.64 secs to generate index for 10000 files whereas the proposed scheme takes
12.40 secs to perform the same operation on the same set of data files. The comparison
shows that SKFS is already efficient at this stage. Similarly for 20000 files, B-tree requires
29.21 secs and the proposed SKFS scheme requires 27.84 secs. Both the methods grow lin-
early as the number of files also increments. It can be seen that the index time generation
for the proposed scheme is more efficient than the B-tree scheme [9].

6.2 Index storage space

The index file uses less amount of storage space compare to existing scheme. Data security
is important rather than for storage space of index. Figure 3 indicates the size of index

25

20

15

10

Index Storage Space (in MB)

B'-Tree[9] N
SKFS Scheme ---+---

5 10 15 20 25 30

Number of Documents (x103)

Fig. 3 Index storage space on cloud

@ Springer

10148 Multimed Tools Appl (2018) 77:10135-10156

tree in both the schemes. The storage cost for 10000 files in B-Tree method is 7.5 MB
whereas the proposed scheme costs just 6.33 MB. B-Tree scheme for 20000 files costs 14.43
MB, while the proposed SKFS scheme requries 12.41 MB for the index file. Extensive
experiment shows that SKFS scheme takes less space for storage of index file compared to
B-tree method [9].

6.3 Search time

In this section, the performance of SKFS search scheme is evaluated with the increase in
the number of documents. The search process is initiated by the cloud server. It is done
by computing the score of documents and search result is based on the ranking. Figure 4
shows the search time for both the schemes. It shows search time for proposed scheme
is efficient compared to the B-tree scheme, as the proposed scheme uses inverted index
method and stores the keywords by splitting the index tree. In our scheme, if the first part of
query keyword matches with the sub keyword in index, then it compares with the remaining
characters in index. Hence, it does not compare all the characters of keyword and so this
scheme takes less time for searching compared to the B-Tree. If the first sub keyword in the
index does not match in the index tree, it traverses the next node and searches in the next
node and the process continues till the leaf node. Let the height of the index tree be m + 1
with m leaf nodes and number of nodes is r, the time complexity in B-tree is O (rlogm). In
SKFS scheme, the search procedure traverses through one node in each level and hence, the
search complexity is O (logm + 1).

6.4 Results acurracy

In the SKFS scheme, synonym and fuzzy keywords are not accurately associated with the
queried keyword. Meanwhile some of the false positive keywords are searching to confuse

12 . : : . ;
B-Tree[9] ——
SKFS Scheme ---»---
—~ 10t
(6]
[0
w
E 8¢t
(0]
£
E 6}
<
e
x
(0]
g 2| -
0 _X<_0.77—> ! ! ! !

0 5 10 15 20 25 30
Number of Documents (x103)

Fig. 4 Search keyword over encrypted cloud data

@ Springer

Multimed Tools Appl (2018) 77:10135-10156 10149

120 T T T T T T T T
Exact Match
Fuzzy Match
110 r Synonym Match 1
2 100 | 1
£
S 9| 1
Q
3
a 80 r 1
70 1
60 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
Number of Queried Keywords

Fig. 5 Precision for synonym and fuzzy keyword queries

the adversary. The precision and recall definition is used to measure the search result
accuracy. Explicitly, the precision is defined as
/
Precision = m (1)

/

k
Recall = o)

Where k is number of files return from the cloud server and k' is the number of positive
top-k response from k returned files. k” is the number of relevant response from k returned
files. The standard deviation o = 0.5 have an effect on precision and recall.

In Figs. 5 and 6 Shows the performance metrics of precision and recall variation among
exact match, fuzzy match and synonym match. The exact match searches accurate matching

100 ‘ : ‘
Fuzzy Match
95 L Synonym Match

90 r 1
85
80 r 1

Recall(in %)

75 | :
70 | 1
65 |]

60 ! ! ! ! ! ! ! !
1 2 3 4 5 6 7 8 9 10

Number of Queried Keywords

Fig. 6 Recall for synonym and fuzzy keyword queries

@ Springer

10150 Multimed Tools Appl (2018) 77:10135-10156

keywords and there is no recall for the exact matching because it’s not performs on negative
search results. The exact match precision is reducing a little from 100% to 92% based on the
query keywords rises from 1 to 10. The precision is reduces when increasing the keywords
because acceptable amount of negative search results appear in retrieved files. The fuzzy
match precision is varies from 78% to 86% based on the query keywords increases from 1
to 10. The fuzzy keyword performs on likely relevance to the exact keyword but the word
and spelling might not the accurate keyword. The fuzzy match recall is varies from 90.5%
to 85% when the amount of query keywords increases from 1 to 10. The synonym keyword
precision is varies from 70% to 75% when the number of query keywords rises from 1
to 10. The synonym keyword performs on a word which has the similar meaning with an
alternative word. The synonym keyword set is taken from New American Roget’s College
Thesaurus in Dictionary Form. The synonym match recall is varies from 82% to 75% when
the number query keyword increases from 1 to 10. If the number of keyword increases,
precision will increase simultaneously recall will decrease.

7 Security analysis

We examine the security and privacy of the proposed scheme by analysing its fulfilment
of security guarantees. SKFS scheme aims to provide Data Privacy to the outsourced files.
SKFS Scheme contains: Content Secrecy, Index Privacy and Query Confidentiality. The
content secrecy succeeds by using AES algorithm for file encryption before outsourced to
the cloud. Index privacy and query confidentiality are the two major security concerns are
focused in these work. In index privacy, the index file contains file id, split keywords and
frequency of each keyword. Here, we are providing privacy for keywords because the index
file access to the cloud server and they are trying to know the content of the file. In query
confidentiality, the cloud service providers are trying to know generated trapdoor or access
pattern of keyword search request given from the data users.

7.1 Index privacy and query confidentiality

In our SKFS scheme, file content, trapdoor and query keywords are in encrypted form. The
secret keys are well secured, the cloud service provider cannot able to assume document
details, index keywords and query keywords. The data files stored in the cloud servers are
not able to learn or alter any information by unauthorized data user. Index file contains
keywords split into two part using split factor; both split parts are encrypted separately and
upload to the cloud server. The adversary is not possible to decrypt the index file without
a secret key. If the adversary has the secret key, they cannot able to break the cipher text
because only one part of cipher text is available.

We focus on three thread models that are used in previous associated scheme. Ciphertext-
only attack (COA) model: In COA model, the encrypted documents, protected index file
and submitted trapdoors are allowed to access from the cloud service provider. The cloud
server is continuously accessible to the secure indexes and encrypted files but the trapdoors
are accessible only after submitting the search query from the data users. Known-keyword
attack (KKA) model: In KKA model, the cloud service provider observes the presence
of the keyword in encrypted files based on the trapdoor pairs. The trapdoors are used to
retrieve the encrypted files that contain the query keyword. This model performs based on
the earlier trapdoor generated by the search query keywords but its having very limited

@ Springer

Multimed Tools Appl (2018) 77:10135-10156 10151

trial of trapdoor pairs. Chosen-keyword attack (CKA) model: In CKA model, the adversary
collects the information by gaining the plaintext of chosen encrypted data. The adversary
has a possibility to submit one or more identified ciphertexts into the scheme and achieve t
get the plaintext. The goal of the opponent is to retrieve the secure index.

The scheme is secured from above three thread models because the index and files are
encrypted by AES algorithm. The symmetric encryption is well protected from COA. the
keyword is split into two tokens, the first part contains starting four letters and second part
contains the remaining letters. Both the tokens encrypted separately and index file has file
id, R;, n-sf, ER, frequency. When the user submit the search query, the query keyword split
into two tokens and R;, n-sf is used to search the keyword over index file. R;, is used to
select the bucket and n-sf is used select the length of the remaining word ER. The trapdoor
generated based on the R; and the adversary no idea about ER. The KKA and CKA is not
possible to attack on SKFS scheme because the adversary can only access of R;, n-sf and it
is not sufficient to gather information about the keywords or index file.

8 Conclusions and future work

In this paper, we solve the problem of multi-keyword ranked search and synonym and fuzzy
based keyword search over the encrypted cloud data. The proposed SKFS scheme includes
multi-keyword ranked search with enhanced accuracy and synonym-based search which
supports synonym queries. When the cloud user gives the synonym of any predefined key-
words as input, instead of exact matching keywords, it also returns the search result for
synonym queries. The inverted index method used for indexing and wildcard based tech-
nique for indexing keywords, takes less time for searching. The TF*IDF technique is used
for ranking mechanism. The SKFS scheme is simulated on real-time datasets to verify the
search efficiency, storage cost and security. It is observed that the SKFS scheme supports
synonym and fuzzy based queries and it outperforms B-tree scheme [9].

Further, we would like to explore semantic based search over encrypted cloud data and
search for images using image information.

References

1. Balamuralikrishna T, Anuradha C, Raghavendrasai N (2013) Fuzzy keyword search over encrypted data
in cloud computing. Asian J Comput Sci Inform Technol 1(3)

2. Bijral S, Mukhopadhyay D (2014) Efficient fuzzy search engine with B-tree search mechanism,
arXiv:1411.6773

3. Cao N, Wang C, Li M, Ren K, Lou W (2014) Privacy-preserving multi-keyword ranked search over
encrypted cloud data. IEEE Trans Parall Distri Syst 25(1):222-233

4. ChinnaSamy R, Sujatha S (2012) An efficient semantic secure keyword based search scheme in
cloud storage services. In: Proceedings of the international conference on recent trends in information
technology (ICRTIT), pp 488-491

5. Chuah M, Hu W (2011) Privacy-aware bedtree based solution for fuzzy multi-keyword search over
encrypted data. In: Proceedings of the 31st international conference on distributed computing systems
workshops (ICDCSW), pp 273-281

6. Fu Z, Sun X, Xia Z, Zhou L, Shu J (2013) Multi-keyword ranked search supporting synonym query
over encrypted data in cloud computing. In: Proceedings of the IEEE 32nd international performance
computing and communications conference (IPCCC), pp 1-8

7. Fu Z, Shu J, Sun X, Linge N (2014) Smart cloud search services: verifiable keyword-based semantic
search over encrypted cloud data. IEEE Trans Consum Electron 60(4):762—770

@ Springer

http://arxiv.org/abs/1411.6773

10152 Multimed Tools Appl (2018) 77:10135-10156

8.

9.

10.

11.

12.

13.

14.

15.

16.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Fu Z, Shu J, Sun X, Zhang D (2014) Semantic keyword search based on trie over encrypted cloud data.
In: Proceedings of the 2nd international workshop on security in cloud computing, pp 59-62

Fu Z, Sun X, Linge N, Zhou L (2014) Achieving effective cloud search services: multi-keyword ranked
search over encrypted cloud data supporting synonym query. IEEE Trans Consum Electron 60(1):164—
172

Jie W, Xiao Y, Ming Z, Yong W (2014) A novel dynamic ranked fuzzy keyword search over cloud
encrypted data. In: Proceeding of the 12th international conference on dependable, autonomic and secure
computing, pp 91-96

Khan NS, Krishna CR, Khurana A (2014) Secure ranked fuzzy multi-keyword search over outsourced
encrypted cloud data. In: Proceedings of the international conference on computer and communication
technology (ICCCT), pp 241-249

Ko J, Shin S, Eom S, Song M, Jung J, Shin DH, Lee KH, Jang Y (2014) Keyword based semantic search
for mobile data. In: Proceedings of the IEEE 15th international conference on mobile data management
(MDM), vol 1, pp 245-248

Li J, Wang Q, Wang C, Cao N, Ren K, Lou W (2010) Fuzzy keyword search over encrypted data in
cloud computing. In: 2010 Proceedings IEEE INFOCOM, pp 1-5

Moh TS, Ho KH (2014) Efficient semantic search over encrypted data in cloud computing. In: Proceed-
ings of the international conference on high performance computing & simulation (HPCS), pp 382-390
National Science Foundation Research Awards Abstracts 1990-2003. http://kdd.ics.uci.edu/databases/
nsfabs/nsfawards.html (2013)

Raghavendra S, Geeta CM, Shaila K, Buyya R, Venugopal KR, Iyengar SS, Patnaik LM (2015) MSSS:
most significant single-keyword search over encrypted cloud data. In: Proceedings of the 6th annual
intrernational conference on ICT: BigData, Cloud and Security

. Raghavendra S, Girish S, Geeta CM, Buyya R, Venugopal KR, Iyengar SS, Patnaik LM (2015) IGSK:

index generation on split keyword for search over cloud data. In: 2015 international conference on
computing and network communications (CoCoNet’15), pp 380-386

. Raghavendra S, Girish S, Geeta CM, Buyya R, Venugopal KR, Iyengar SS, Patnaik LM (2015) MSIGT:

Most significant index generation technique for cloud environment. In: 12th IEEE India international
Conference on e3-c*(INDICON 2015). IEEE

. Raghavendra S, Girish S, Geeta CM, Buyya R, Venugopal KR, Iyengar SS, Patnaik LM (2016) DRSMS:

Domain and range specific multi-keyword search over encrypted cloud data. Intern J Comput Sci Inform
Sec 14(5)

Shekokar N, Sampat K, Chandawalla C, Shah J (2015) Implementation of fuzzy keyword search over
encrypted data in cloud computing. Procedia Comput Sci 45:499-505

Sun W, Wang B, Cao N, Li M, Lou W, Hou YT, Li H (2013) Privacy-preserving multi-keyword text
search in the cloud supporting similarity-based ranking. In: Proceedings of the 8th ACM SIGSAC
symposium on information, computer and communications security, pp 71-82

Sun W, Wang B, Cao N, Li M, Lou W, Hou YT, Li H (2014) Verifiable privacy-preserving multi-
keyword text search in the cloud supporting similarity-based ranking. IEEE Trans Parall Distri Syst
25(11):3025-3035

Tuo H, Wenping M (2013) An effective fuzzy keyword search scheme in cloud computing. In: Proceed-
ings of the Sth international conference on intelligent networking and collaborative systems (INCoS),
pp 786-789

Wang B, Yu S, Lou W, Hou YT (2014) Privacy-preserving multi-keyword fuzzy search over encrypted
data in the cloud. In: Proceedings IEEE INFOCOM, pp 2112-2120

Wang C, Cao N, Ren K, Lou W (2012) Enabling secure and efficient ranked keyword search over
outsourced cloud data. IEEE Trans Parall Distri Syst 23(8):1467-1479

Wang C, Ren K, Yu S, Raje KM (2012) Achieving usable and Privacy-Assured similarity search over
outsourced cloud data. In: Proceedings IEEE INFOCOM. IEEE, pp 451-459

Wang C, Wang Q, Ren K (2011) Towards secure and effective utilization over encrypted cloud data.
In: Proceedings of the 31st international conference on distributed computing systems workshops
(ICDCSW), pp 282-286

Wang D, Fu S, Xu M (2013) A privacy-preserving fuzzy keyword search scheme over encrypted cloud
data. In: Proceedings of the 5th international conference on cloud computing technology and science
(CloudCom), vol 1, pp 663-670

Wang J, Ma H, Tang Q, Li J, Zhu H, Ma S, Chen X (2013) Efficient verifiable fuzzy keyword search
over encrypted data in cloud computing. J Comput Sci Inform Syst 10(2):667-684

Xia Q, Ni J, Kanpogninge AJBA, Gee JC (2015) Searchable public-key encryption with data sharing in
dynamic groups for mobile cloud storage. J Univ Comput Sci 21(3):440-453

XiaZ, Zhu 'Y, Sun X, Wang J (2013) A similarity search scheme over encrypted cloud images based on
secure transformation. Intern J Future Gene Commun Netw 6(6):71-80

@ Springer

http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html
http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html

Multimed Tools Appl (2018) 77:10135-10156 10153

32. Xu P, Jin H, Wu Q, Wang W (2013) Public-key encryption with fuzzy keyword search: a provably secure
scheme under keyword guessing attack. IEEE Trans Comput 62(11):2266-2277

33. Xu Q, Shen H, Sang Y, Tian H (2013) Privacy-preserving ranked fuzzy keyword search over encrypted
cloud data. In: Proceedings of the international conference on parallel and distributed computing,
applications and technologies (PDCAT), pp 239-245

34. YuanD, Yang Y, Liu X, Li W, Cui L, Xu M, Chen J (2013) A highly practical approach toward achieving
minimum data sets storage cost in the cloud. IEEE Trans Parall Distri Syst (6):1234—1244

35. Zhou W, Liu L, Jing H, Zhang C, Yao S, Wang S (2013) K-gram based fuzzy keyword search over
encrypted cloud computing. J Softw Eng Appl 6(1):29-32

Raghavendra S is a research scholar in the department of Computer Science and Engineering, Univer-
sity Visvesvaraya College of Engineering, Bangalore University, Bangalore, India. He received his Bachelor
degree in Computer Science and Engineering from BMS Institute of Technology, Visvesvaraya Technological
University, Bangalore, India and Master degree from R.V.College of Engineering, Visvesvaraya Technologi-
cal University, Bangalore, India. His research interests include Cloud Computing, applied cryptography and
network security. He is a student member of the IEEE.

Girish S is a Master of Engineering student in the department of Computer Science and Engineering, Uni-
versity Visvesvaraya College of Engineering, Bangalore University, Bangalore. He completed his B.E. in
Computer Science and Engineering from Sri Siddhartha Intitute of Technology, Tumkur. His areas of research
interest are Cloud Computing, Data Mining and Reliability Engineering.

@ Springer

10154 Multimed Tools Appl (2018) 77:10135-10156

Geeta C. M. is a research scholar in the department of Computer Science and Engineering, University Visves-
varaya College of Engineering, Bangalore University, Bangalore. She has received B.E.degree in Electronics
and Communication, 1997 and M.E degree in Information Technology, 2007, from Bangalore University,
Bangalore, Karnataka, India. Her areas of interest are cloud computing, wireless sensor networks.

Lol

Rajkumar Buyya is Professor of Computer Science and Software Engineering, Future Fellow of the
Australian Research Council, and Director of the Cloud Computing and Distributed Systems (CLOUDS)
Laboratory at the University of Melbourne, Australia. He has authored over 500+ publications and four text
books including “Mastering Cloud Computing” published by McGraw Hill and Elsevier/Morgan Kaufmann,
2013 for Indian and international markets respectively. He is one of the highly cited authors in computer
science and software engineering worldwide (h-index=108, g-index=225, 55200+ citations). Microsoft Aca-
demic Search Index ranked Dr. Buyya as the world’s top author in distributed and parallel computing between
2007 and 2012. He is serving as foundation Chair of the IEEE Technical Committee on Scalable Computing
and five IEEE/ACM conferences. He has received award of “2009 IEEE Medal for Excellence in Scalable
Computing” from the IEEE Computer Society, USA. Manjrasoft’s Aneka Cloud technology developed under
his leadership has received “2010 Asia Pacific Frost and Sullivan New Product Innovation Award” and “2011
Telstra Innovation Challenge, People’s Choice Award”. He served as the founding Editor-in-Chief (EiC) of
IEEE Transactions on Cloud Computing?(TCC). Recently, Dr. Buyya is recognized as “2016 Web of Science
Highly Cited Researcher” by Thomson Reuters. He is a Fellow of IEEE.

@ Springer

Multimed Tools Appl (2018) 77:10135-10156 10155

Venugopal K. R. is currently the Principal, University Visvesvaraya College of Engineering, Bangalore
University, Bangalore. He obtained his Bachelor of Engineering from University Visvesvaraya College of
Engineering. He received his Masters degree in Computer Science and Automation from Indian Institute
of Science Bangalore. He was awarded Ph.D. in Economics from Bangalore University and Ph.D. in Com-
puter Science from Indian Institute of Technology, Madras. He has a distinguished academic career and has
degrees in Electronics, Economics, Law, Business Finance, Public Relations, Communications, Industrial
Relations, Computer Science and Journalism. He has authored and edited 65 books on Computer Science
and Economics, which include Petrodollar and the World Economy, C Aptitude, Mastering C, Microproces-
sor Programming, Mastering C++ and Digital Circuits and Systems etc.. He has filed 101 Patents. During
his three decades of service at UVCE he has over 500+ research papers to his credit. His research interests
include Computer Networks, Wireless Sensor Networks, Parallel and Distributed Systems, Digital Signal
Processing and Data Mining.

S. S. Iyenger is currently Ryder Professor, Florida International University, USA. He was Roy Paul Daniels
Professor and chairman of the Computer Science Department of Louisiana state University. He heads the
Wireless Sensor Networks Laboratory and the Robotics Research Laboratory at USA. He has been involved
with research in High Performance Algorithms, Data Structures, Sensor Fusion and Intelligent Systems, since
receiving hid Ph.D degree in 1974 from MSU, USA. He is Fellow of IEEE and ACM. He has directed over
63 Ph.D students and 100 post graduate students, many of whom are faculty of Major Universities worldwide
or Scientists or Engineers at National Labls/Industries around the world. He has published more than 500+
research papers and has authored/co-authored 8 books and edited 14 books. His books are published by
John Wiley and Sons, CRC Press, Prentice Hall, Springer Verlang, IEEE Computer Society Press etc.. One
of his books titled Introduction to Parallel Algorithms has been transalted to chinese.

@ Springer

10156 Multimed Tools Appl (2018) 77:10135-10156

L. M. Patnaik is currently Honorary Professor, Indian Institute of Science, Bangalore, India. He was a Vice
Chancellor, Defense Institute of Advanced Technology, Pune, India and was a Professor since 1986 with
the Department of Computer Science and Automation, Indian Institute of Science, Bangalore. During the
past 35 years of his service at the Institute he has over 700 research publications in refereed International
Journals and refereed International Conference Proceedings. He is a Fellow of all the four leading Science
and Engineering Academies in India; Fellow of the IEEE and the Academy of Science for the Developing
World. He has received twenty national and international awards; notable among them is the IEEE Technical
Achievement Award for his significant contributions to High Performance Computing and Soft Computing.
His areas of research interest have been Parallel and Distributed Computing, Mobile Computing, CAD, Soft
Computing and Computational Neuroscience.

@ Springer

	Split keyword fuzzy and synonym search over encrypted cloud data
	Abstract
	Introduction
	Motivation
	Contribution

	Related works
	Background
	Security requirements

	Problem statement and system model
	System model
	Design goals
	Inverted index
	Tree based structure
	Tree based search

	Proposed work
	Steps in the algorithm SKFS
	Extracting synonyms
	Generating index for individual files
	Merging index files

	Algorithm example

	Performance
	Index generations time
	Index storage space
	Search time
	Results acurracy

	Security analysis
	Index privacy and query confidentiality

	Conclusions and future work
	References

