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ARTICLE INFO ABSTRACT

Keywords: Geospatial data analysis is an emerging area of research today. Systems need to respond to user
Geospatial query requests in a timely manner. In this paper we have proposed a fog computing framework namely
Fog computing Spatio-Fog, where the fog devices contain the geospatial data of their current region and process

Cloud computing
Delay-sensitive
Power-efficient

geospatial queries using resources in the proximity. The geospatial query resolution is performed
by the fog device either itself or using cloud servers or fog device of other region depending on
the geographical region related to the geospatial query. We have performed both empirical study
and experimental analysis to demonstrate feasibility of our proposed approach. The empirical
study illustrates that the proposed architecture Spatio-Fog reduces the power consumption and
delay by approximately 43-47% and 47-83% respectively over the use of existing geospatial
query resolution system. The experimental analysis demonstrates that the proposed framework
reduces the power consumption and delay by 30-60% approximately than the existing geospatial
query resolution system.

1. Introduction

Geospatial information storage, processing, and query resolution is a promising research area [1]. There are several industrial
applications of geospatial data analysis such as mapping, telecom and network services, hot spot analysis, urban planning, transport
services, environmental impact analysis, health and human services, disaster management, resource management, geology. Google
Maps is a popular application of a web-based mapping solution on geospatial data, which is used for navigation services. Geospatial
data analysis also helps in road traffic management, transport and urban planning. For risk assessment and disaster management
geospatial data analysis also important. Usually, cloud servers are used to store and process the geospatial information [2]. However,
as geospatial information is related to geographical regions, storing and processing large volume geospatial data inside the remote
cloud servers can suffer from delay and energy consumption. Geospatial query processing involves geospatial data analysis along with
different geospatial services, which have been discussed later in Section 3. While mobile devices request for any geospatial in-
formation, then to process the respective geospatial queries geospatial big data analysis is required. However, accessing geospatial
data inside the remote cloud servers may degrade the quality of user experience by enhancing delay [3] and energy. Moreover,
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storing and processing a massive amount of data on cloud data centres results in high energy consumption. The use of long distant
cloud servers also compromise with Quality of Service (QoS) in terms of delay and energy, from the perspective of the client mobile
devices [4,5]. Fog computing has been introduced to improve the QoS, where the intermediate devices between the end node and
cloud servers, e.g., switch, router, perform data and computation offloading [6-8]. The intermediate devices which store and process
data are called fog devices [9,10]. Use of fog devices in geospatial data storage and processing can reduce the delay and energy
consumption over remote cloud servers.

Motivation and contribution:

Geospatial query processing at lower time and power consumption of user device is very much needed in various applications
such as navigation, health and human services. For example, a user is travelling in a region for the first time and he/she is not feeling
well, hence needs an information regarding the nearby hospital. In such scenarios, the user needs an immediate response. Access to
remote cloud may cause delay. However, if the nearby fog device has that information, the user can get the response earlier.

The use of fog based framework in different applications such as health-care, home monitoring, has reduced the delay and energy
consumption over the only cloud-based system. In these types of applications, the intermediate devices perform preliminary data
processing. However, for large scale data storage and processing, cloud is still the only option. The major challenges of geospatial
application are [1,11-14]:

e For geospatial data analysis, a large volume of multidimensional data has to be processed.

® For exploration, multiple approximate geospatial queries are involved in rapid succession.

e The approximate geospatial queries involve ranges specified along the spatio-temporal dimensions. The geospatial query eva-
luations require other concurrent rigorous and approximate geospatial queries.

The traditional fog computing based model unable to provide satisfactory QoS in case of geospatial query resolution. In [15,16],
fog device is used for partial computation on geospatial data. However, the geospatial data storage and large scale processing are
performed inside the cloud, and the load on cloud servers remains high, whereas resourceful fog devices remain underutilized. Hence,
there should be a method for distributing the voluminous data among the fog devices and cloud, so that the resources of the fog nodes
will be utilized as well as the load on the cloud will be reduced. Our objective is to introduce a new hierarchical fog based framework
for the geospatial application, which will distribute the voluminous data among the fog devices and cloud servers. In such way, the
load on cloud data centre will be reduced as well as the geospatial query processing time will be minimal. The contributions of this
paper are:

o A fog computing based architecture is proposed where fog devices store the regional geospatial data based on the pre-calculated
volume of data of the regions. The proposed system is referred as Spatio-Fog.

e The geospatial data processing and geospatial query resolution are performed inside the fog device. When a mobile user queries
for geospatial information from his/her current location, the fog device resolves the geospatial query and sends the result to the
requesting device without loading the cloud servers.

e The communication and computation costs in terms of delay and power consumption for the proposed architecture are measured
in terms of empirical study and experimental analysis to show that the proposed framework is delay-sensitive and energy-efficient
than the existing model for geospatial query resolution.

The rest of the article is organized as follows. Section 2 discusses on the related existing strategies. Section 3 discusses on the
geospatial data analysis. Section 4 elaborates the proposed fog based architecture for geospatial query resolution. Section 5 presents
the performance analysis. Section 6 concludes the paper with future research direction in the context of the Spatio-Fog architecture.
The abbreviations of the terms and notations of the symbols used in this paper are listed in Table 1 and Table 2 respectively.

2. Related work

Geospatial data analysis is an emerging research challenge due to its large volume and computational intensity of processing the
geospatial data. Access to geospatial data is required for various applications such as mobility prediction, regional weather fore-
casting, reservoir water level forecasting [17], land-use/land-cover (LULC) distribution [18], wild fire spread estimation [19],
providing assistance in natural disaster using volunteered geographic information [20,21], urban growth prediction [22]. Mobility
prediction needs access to geospatial big data which can be captured using GPS of the users mobile device [23,24]. Regional weather
forecasting also needs access to the weather data e.g. temperature, humidity, along with the geospatial data of the region for which
the weather data has been collected and accessed [25-27].

Various researches have focused on the challenges of geospatial applications [1,11-14] and the use of cloud computing to address
them. However, the use of only cloud-based system may not be efficient in terms of accessing the data at low latency, low energy
consumption. Moreover, the load on the cloud data centre is also very high. Use of fog computing for distribution of the voluminous
data has not been explored much. In this section, we have discussed on the geospatial information and the query resolution along
with the existing approaches on geospatial cloud computing and fog computing.

Geospatial information refers to the data with respect to a geographical location in terms of geographic coordinates, collected
using Geographic Information System (GIS) [28]. Remote sensing images are recognized as important geospatial data. Geospatial
data are of two types: Raster data and Vector data. Indexing, scoring, and ranking of remote sensing images have been discussed
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Table 1
Abbreviations and it’s meaning.
Abbreviation Meaning
CSW Catalog Service for the Web
EPSG European Petroleum Survey Group
GB Gigabyte
GCP Google Cloud Platform
GHz Gigahertz
GIS Geographic Information System
GPS Global Positioning System
GQ Geospatial Query
GQ1 Geospatial Query 1
GQ2 Geospatial Query 2
HDD Hard Disk Drive
ICMP Internet Control Message Protocol
ID Identification Number
LULC Land-Use Land-Cover
MATLAB Matrix Laboratory
Mbps Megabits per Second
MB Megabyte
MGL Meghamala
MSM Mobile Station Modem
0OGC Open Geospatial Consortium
QGIS Quantum Geographical Information System
QoS Quality of Service
RAM Random Access Memory
sec Second
TB Terabyte
TCP Transmission Control Protocol
UDP User Datagram Protocol
vCPU Virtual Central Processing Unit
VM Virtual Machine
XBR+ External Balanced Regular Plus
w Watt
WMS Web Map Service
WCS Web Coverage Service
WEFS Web Feature Service
WPS Web Processing Service
Table 2
Notations used in the paper.
Notation Description
a Sub-area
Zq Zone under sub-area a
Tza Region under zone z,
Srza Geospatial data of region rz,
f Fog device of one region
g Fog device of another region
M Mobile device
N Number of Geospatial Query
GQ Geospatial Query
Teq Response time of a geospatial query
RTy Average system response time

in [29]. Geospatial dataset is multidimensional [1]. Various researches have been performed on geospatial big data analysis [11-15].
The use of cloud computing to deal with the large volume of geospatial data has been illustrated in [11,12]. The use of fog computing

for the big geospatial data analysis has been discussed in [15].

A method on location based service provisioning has been discussed in [30]. This method focuses on the creation, store, ma-
nipulation and display of location based data. A unique location identifier has been used which considers latitude, longitude along
with a time stamp or sequence number. This identifier has been used as a key and for geospatial data analysis to give geographic
context. Distributed location-sensitive hashing has been used for privacy-preserving and scalable service recommendation in [31].
For location based services, scalable data management method has been discussed in [32,33]. Dual data cache for managing spatial
and temporal locality has been proposed in [34]. For improving the locality of references, array layout has been suitable selected in

[35].

Query resolution for spatiotemporal database has been discussed in [36]. Query processing for the geospatial database has been
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discussed in [37]. Usually Quadtree [38] and R-tree [39] are popular for geospatial query processing [37]. However, R*-tree [40], R*-
tree [41] and PMR Quadtree [42] are also used for geospatial query processing [37]. The authors in [37] have used XBR*-tree for
geospatial query processing, which is a dynamic, disk-resident and balanced Quadtree-based index structure. Multiple query opti-
mization for relational database has been highlighted in [43]. For geospatial query evaluation, a method has been discussed in [1],
where multi-dimensional data set has been considered. A predictive and exploratory analysis over high volume multi-dimensional
data set in a distributed environment has been performed in [44]. For land cover classification a geospatial web service has been
designed in [45]. For disaster-oriented regions, a geospatial service-oriented framework has been proposed in [21]. For storage and
analysis of high volume geospatial data, cloud data centres have been used [11,12,46]. For high-resolution geospatial interpolation,
cloud computing has been used in [47]. In the Geospatial Cloud framework, the application tier is used for geospatial services, such as
Web Map Service (WMS) [48], Web Coverage Service (WCS), Web Feature Service (WFS) [49], Catalog Service for the Web (CSW)
and Web Processing Service (WPS) [50]. Though cloud computing has been largely used for geospatial data analysis, use of long
distant cloud servers for geospatial query resolution increases delay and energy. Use of fog computing for geospatial data analysis has
been highlighted in [15,16,51]. Geospatial query processing in edge devices has been discussed in [16]. However, geospatial data is
of large amount. Hence, the processing of voluminous data requires high-end processing, which the edge or fog devices may not be
able to deal with. However, if this huge volume of data is stored in a distributed manner in fog devices and cloud servers, so that the
high-end processing will be executed by the cloud, there a trade-off will be maintained between communication and computation
costs.

In fog based frameworks, the fog devices are used for preliminary processing of data. Fog devices usually offload the compu-
tational tasks, rather than permanently storing massive volume of data. In the existing methods, the fog devices perform preliminary
processing before forwarding the data to the cloud, for example, overlay analysis or compression on the geospatial data is performed
inside the fog devices, and then the data is forwarded to the cloud [15,16,51]. However, from the perspective of geospatial data
analysis, the use of fog computing is promising due to the data intensity as well as the computational intensity of the geospatial data.
Hence, there should be a framework which will deal with decision making regarding the distribution of geospatial data, load bal-
ancing, and geospatial query resolution with energy-efficiency and delay optimization. The users will generate queries related to
relational regional geospatial data, and the system has to respond to it. The objective of using fog computing in our work is to process
a user-generated regional geospatial query at an optimum delay and power consumption of the client device. Towards the solution of
this, we have proposed a cloud-fog based distributed framework in this paper. For geospatial query processing in the geospatial
relational database, parse tree [52] is used in our work. The communication and computation costs in terms of delay and power
consumption of the user device in our framework are measured and compared with the existing systems on geospatial data analysis
and services in cloud and fog environment.

Comparison with existing schemes:

As our work is based on geospatial query processing in cloud-fog framework, we have compared the proposed model with the
existing strategies on geospatial data analysis and services in cloud and fog environment. Table 3 compares the contributions of the
proposed work with the existing schemes on geospatial data analysis and services. In the existing cloud-based systems, the geospatial
data storage and analysis take place inside the cloud servers [1,11,12,46]. In the existing fog based system, the fog devices are used to
perform only the preliminary processing such as compression, on the geospatial data [15]. In our system, the data to be contained by
the fog devices are categorized regionally, with an objective to optimize the delay and power consumption of the client device during
geospatial query resolution, as well as to reduce the load on cloud data centres. This is the uniqueness of the proposed model with
respect to the existing frameworks [1,11,12,15,46]. From Table 3, it is also observed that in our system, we have not only analysed

Table 3
Comparison with existing schemes on geospatial query resolution.

Feature Existing strategies Proposed strategy
Fast, ad hoc query Geospatial data Spatial cloud FogGIS [15] Geospatial services Proposed
evaluations over multi- analysis using computing [12] using cloud [46] Spatio-Fog
dimensional geospatial cloud [11]
datasets [1]

Contribution A novel indexing to The use of cloud The use of cloud Fog computing An architecture for Region-specific fog
model the correlations computing for big computing for spa- is used for geospatial data computing para-
among heterogeneous geospatial data st- tial data search, ac- preliminary pro- processing and data digm for geospa-
datasets is proposed orage and analysis cess and utilization cessing on geo- acquisition services tial query resol-
for approximate has been discussed. has been discussed. spatial data. has been proposed. ution by data
query resolution. analysis has

been proposed.

Fog comput- X X X v X v

ing is used

Delay is X X X X X v

calculated

Power is X X X X X v

calculated

Response time v X v X X v

is calculated
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the data for geospatial query resolution but also calculated the delay, power consumption, and system response time.

It is observed that most of the existing approaches on geospatial data analysis and geospatial query resolution are based on cloud
computing, and the fog computing has been used only for partial computation on the geospatial data before forwarding to the cloud.
However, none of them has focused on the use of fog nodes for distributing the storage and processing of the high volume geospatial
data in order to reduce the load on the cloud as well as for better utilization of the fog devices’ resources. We have focused on this,
and as a solution towards this challenge, we have proposed a fog-cloud based collaborative framework in Section 4. But before that,
we have discussed on the geospatial data analysis and different types of services required for geospatial query processing in Section 3.
The use of the proposed architecture for resolving these types of queries has been discussed in Section 4.

3. Geospatial data analysis

Geospatial data analysis [53] is a collection of techniques and models which are used to determine the spatial relationships among
geospatial data. In cartographic modelling, a map is represented by processed geospatial data. In mathematical modelling, results
depend upon the spatial interaction between the objects of the model. Geospatial data analysis improves the development and
application of statistical techniques. Differences between relational database query and geospatial query [54] are there are no fixed
set of operators for geospatial query evaluation, and databases deal with a large volume of geospatial data, computationally ex-
pensive due to spatial predicates.

The spatial data analysis comprises of two major operations: single layer operations, and multi-layer operations or topological overlay.
Former operation is associated with individual feature dataset. The variations of geospatial data operate on a single data layer. The
geospatial query, like buffer creation over a point or layer, filtering a feature from various features of a single layer, falls into the
single layer operation category. Whereas, multi-layer operations are associated with several layers spatial data manipulation. Two or
more spatial layers combine together and generate new layer through topological overlays. More information are generated from the
combined layer which are not present in the individual layer. We have illustrated these two operations below with two examples
GQ1, GQ2. Moreover, Open Geospatial Consortium (OGC) compliant geospatial services help to process and publish the results of the
geospatial queries [55]. They offer the following capabilities:

® Web Feature Service(WFS) helps to extract the featured data from the large volume of geospatial data.

e Web Processing Service(WPS) helps to process like buffer, intersection operations over the geospatial data.

® Web Map Service(WMS) helps to generate a map from the geospatial data according to its coordinates.

e Web Coverage Service(WCS) helps to access multi-dimensional geospatial data through the Internet for a precise geospatial query.
It can be considered as a feature service for raster data. It handles complex geospatial query and returns query result with detailed
information of the specific coverage area. This feature of WCS influences complex geospatial modelling and analysis.

e Catalog Service for Web(CSW) helps to maintain a catalog for geospatial records in xml format over the Internet. It provides an
interface for both service providers and service consumers. Service providers publish their services here and service consumers
discover, browse, and query metadata.

Two examples of the geospatial query are provided as follows.

Geospatial Query 1 (GQ1): List the ‘one. Way’ roads of Bengaluru, India.

There are varied types of road segments in the underlying road network dataset such as ‘Metal’, ‘Non-Metal’, ‘One way’, ‘Two
way’. Any location-based service-provider may require to extract a specific type of roads in a particular spatial region. For instance,
through GQ1, a user wants to know about one way roads in Bengaluru city. This is an example of single layer operated geospatial
query. In this query, only road layer of the Bangaluru city has been considered. ‘One_way’ feature has been extracted from the road
layer. For GQ1 the query command takes the following form.

SELECT B.road_name

FROM Bengaluru Road B

WHERE B.road type = ‘One Way’;

Query parsing tree for GQ1 is presented in Fig. 1. A ‘filter’ spatial operation is done over the road network shapefile of Bengaluru.
For resolving GQ1, the following geospatial services are required.

’ B.road_name

B.road_type = 'One_Way'

B.Road
Fig. 1. Query Parsing Tree of GQI.
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o WFS getFeature service is used for filtering the ‘One_Way’ roads from Bengaluru road network.
o WMS GetMap service is used to display the ‘One_Way’ road map of Bengaluru.

Geospatial Query 2 (GQ2): List of areas which are present within 10 km of each hospital in Bankura district.

There are several thematic layers namely LULC, Road Network, River, Facilities (Hospitals, ATMs, Schools, Universities, Oil
Pumps, Post Office, Markets, Rail, and Bus Stations) available in a geospatial dataset. GQ2 is an example of multi-layer operation
query. In this query, two layers (LULC and Hospital) are considered. While two layers are individual, the user is not able to determine
the distance or shortest path between a point of an area and a hospital. But after the overlaying of these two layers, user can easily
determine the shortest path or distance of a specific point and the hospital. Through GQ2, the user wants to know the name of areas of
Bankura district covered by each hospital. The distance of the areas should be within 10 km from hospitals. For this geospatial query,
the following geospatial query command is generated.

SELECT B.area name

FROM Bankura B

WHERE Overlap (area.shape, Buffer (hospital.shape, 10))=1

GROUP BY hospital name

ORDER BY area desc;

Here,‘.shape’ stands for shapefile. A shapefile' is a simple, nontopological format for storing the geometric location and attribute
information of geographic features. Geographic features in a shapefile can be represented by points, lines, or polygons (areas). The
workspace containing shapefiles may also contain database tables, which can store additional attributes that can be joined to a
shapefile’s features.

Query parsing tree for GQ2 is presented in Fig. 2. In GQ?2, first, select the hospitals of Bankura and create a 10-kilometer buffer of
each Hospital. Now, make an ‘overlap’ spatial operation between buffered hospital shapefile and area shapefile of Bankura. From
there, we obtain area names of Bankura which are within 10 km of hospitals. For resolving GQ2, the following geospatial services are
required.

e WPS BufferFeatureCollection service is used for the creation of 10 km buffer of the hospitals.
e WPS IntersectionFeatureCollection service is used for the overlap operation.
o WMS GetMap service is used to display the final area map of Bankura.

In this section, we have discussed on the geospatial data analysis and geospatial query processing. In the next section, we have
proposed the Spatio-Fog architecture for geospatial data storage and geospatial query processing. These types of geospatial queries
will be processed by the fog devices or cloud based on the geospatial area for which the geospatial query has been made.

4. Proposed Spatio-Fog architecture

The fog based system architecture for geospatial query processing is presented in Fig. 3. The total geographical area is divided into
sub-areas, e.g., countries. Each geographical sub-area has coverage which is decomposed into several zones, e.g., in a country, there
are a number of states. Each zone is decomposed into several regions, e.g., each state contains a number of districts. In our system, we
are considering a hierarchical architecture (see Fig. 4), where level 1 is a sub-area, e.g., country, which is then decomposed into
several zones, e.g., states, in level 2. Each zone, e.g., the state is then decomposed into several regions, e.g., districts, in level 3.

Let a is a sub-area and z, is a zone under sub-area a, then z, € a. Let r,, is a region under zone z,, then r;, € z,. The geospatial data
of region r;, is denoted by S,, . If f is a fog device located in r,,, then f will contain S,,,.

In our system, fog devices located in each region contains the geospatial information of that region. Usually, switch, gateway, an
indoor base station with storage and computation ability [56] are used as fog devices. In our system, the intermediate devices
between the end node and cloud servers, possessing high storage and computation ability are considered as fog devices, because they
will store the geospatial data of the region as well as process the data for geospatial query resolution. When a user generates one or
multiple queries to retrieve information related to a region where he/she is currently present, then instead of accessing the cloud
servers the fog device accesses its geospatial data and responds accordingly, e.g., the geospatial query resolution is performed by the
fog device instead of the cloud servers. The advantages of this framework are:

e As the fog device stores the geospatial data of the region instead of the cloud data centres, the propagation and communication
delays are reduced, which in turn helps to reduce the total delay.

e As the fog device is containing the region-specific geospatial data instead of the cloud, the load on cloud data centre will be
reduced. Moreover, an extra layer for regional data privacy will be maintained. However, the geospatial data of the regions to be
frequently accessed, are stored in the cloud, which will not compromise with the delay over remote cloud if a geospatial query is
generated regarding such regions other than the current region.

! http://desktop.arcgis.com/en/arcmap,/10.3/manage-data/shapefiles/what-is-a-shapefile.htm .
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A. area_name

overlap(A.shape, buffer(H.shape,10))

Area A o buffer (10)

Hospital H
Fig. 2. Query Parsing Tree of GQ2.
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Data Server Processmg Server Data Server Catalog Server

Geospatlal Cloud
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Laptop
g @ o
User 1 User 2 User n

Fig. 3. Architecture of fog based system for geospatial query resolution.

4.1. Geospatial query generation from mobile user

A mobile device located in a region is connected with a fog device. The mobile device generates a geospatial query and sends to
the fog device.

Let a mobile device M currently located in region r,, is connected with a fog device f of the region and the geospatial data stored
by fis S,,,. M generates a geospatial query GQ and sends to f.

4.2. Geospatial query resolution by fog device

The fog device of a region contains the geospatial data of that region. The geospatial data storage and processing are performed by
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Cloud Contains Frequently Accessed Geospatial Data

Sub-Area
Zone 1 Zone 2 mmm Zonen
I—---’ﬁ‘ﬁ'_---.....----’ﬁ‘ﬁ'_-_--‘
: Region 1 mmm  Regionm Region 1 mmm  Regionw :
1 1
: Geospatial Data Geospatial Data Geospatial Data Geospatial Data :
N e e e e e e e e e ——————————————————————————————— - -

Fog Nodes Contain Regional Geospatial Data

Fig. 4. Hierarchy of the proposed Spatio-Fog framework.

the fog device. When the fog device receives a geospatial query from the mobile device, first it verifies whether the geospatial query is
related to the current region where both the mobile device and fog device are located. If the geospatial query is related to the current
region, the fog device analyses its geospatial data and responds accordingly. Otherwise, the fog device forwards the geospatial query
to the cloud servers. If the geospatial query GQ received by the fog device f is related to S, , f responds after analysing the data.
Otherwise, f forwards GQ to the cloud.

4.3. Cloud servers

The fog devices are connected with the cloud servers. The cloud servers contain the geospatial data of the regions for which the
users frequently generate queries. When the cloud receives a geospatial query, it checks whether it has the intended geospatial data to
solve the geospatial query. If so, it analyses the data and sends the result. Otherwise, the cloud servers identify the region related to
the geospatial data and forward the request to the fog device of that region.

If the geospatial query GQ received by the cloud is related to the geospatial data which it contains, it resolves the geospatial query
and sends the result to the fog device, which further forwards it to the mobile device. Otherwise, the cloud forwards GQ to a fog
device g which contains geospatial data related to GQ. Here, fog devices f and g belong to two different regions. To find out the sub-
area, zone, and region of a geospatial query and then finding out the respective fog device, area registry is maintained inside the
cloud servers. The registry is containing the sub-area IDs under the area and the zone IDs under the sub-areas. The zone IDs are
referring to the region IDs of the respective zones. The region IDs are referring to the fog device IDs containing the geospatial data of
the respective regions. The registry for area a is presented in Fig. 5. There are as sub-areas present under the area a. Each sub-area has
several zones, which are pointing to the regions under them. The regions are pointing to the fog devices containing the geospatial
data of those regions. By accessing the area registry, the cloud can find out the fog device containing the geospatial data related to a
particular region.

4.4. Case study

In Section 3, we have discussed on the queries and the services for processing those queries. Now, the mobile user when generates
such queries, then the proposed framework resolves them based on the location for which the geospatial query has been made. For

—|—> Region_a111 | | Fog_allll
Zone_all
Sub-area_al
Fog_a2111
Zone_a21 || Region_a211 I g
Sub-area_a2
Fog_aslll
_|—> Region_as11 >
Zone_asl
Sub-area_as

Fig. 5. Area registry maintained inside the cloud.
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Mobile Fog Device

sendGeospatiaIOuery(}l

Geospatial
Query
result " Processing

Fig. 6. Case 1- Sequence diagram of geospatial query resolution by fog device of current region.

resolving these queries, the WPS, WFS, and WMS services are used according to the type of operation required. Based on the location
for which the geospatial query is made, the following three cases come into the scenario:

® Geospatial query resolution by fog device of the current region
e Geospatial query resolution using cloud servers
e Geospatial query resolution using fog device of another region

These three cases are discussed as follows.

4.4.1. Case 1: Geospatial query resolution by fog device of current region

In this case, the mobile device sends a geospatial query to the connected fog device of its region. The geospatial query is related to
the geospatial data of the current region. Thus the fog device analyses its geospatial data and sends the result to the mobile device.
The corresponding sequence diagram is presented in Fig. 6.

4.4.2. Case 2: Geospatial query resolution using cloud servers

In this case, the mobile device sends a geospatial query to the connected fog device of its region. The geospatial query is related to
the geospatial data of the other region, whose data the cloud servers contain. The fog device forwards the geospatial query to the
cloud servers. The cloud servers analyse the intended geospatial data to resolve the geospatial query and send the result to the fog
device. The fog device then sends the result to the mobile device. The corresponding sequence diagram is presented in Fig. 7.

4.4.3. Case 3: Geospatial query resolution using fog device of another region

In this case, the mobile device sends a geospatial query to the connected fog device of its region. The geospatial query is related to
the geospatial data of the other region, whose data is not available inside the cloud servers. The fog device forwards the geospatial
query to the cloud servers. The cloud accesses the area registry and finds out the fog device containing the corresponding geospatial
data. After that, the cloud forwards the request to that fog device along with the ID of the requesting fog device and the geospatial
query ID. The corresponding fog device analyses its geospatial data to resolve the geospatial query and sends the result to the
requesting fog device directly. The fog device then sends the result to the mobile device. The corresponding sequence diagram is
presented in Fig. 8.

4.5. Computation offloading

In the previous sections, we have discussed on geospatial query resolution. When a mobile device of a region raises a geospatial
query, then using the fog device or the cloud the query is resolved. However, if a mobile device requests for offloading a computation,
then also the fog device or cloud will be used. The computation offloading method has been stated in Algorithm 1.

When a mobile device has to offload a computation, it will send a request to the nearby fog device for offloading the computation.

Mobile Fog Device GeospatialCloud

sendGeospatiaIOuery()

_forwardGeospatialngry()

Geospatial
Query
result .- Processing

Fig. 7. Case 2- Sequence diagram of geospatial query resolution using cloud servers.
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Fig. 8. Case 3- Sequence diagram of geospatial query resolution using fog device of other region.

If the fog device is able to execute the computation based on its processing capability, current load, memory, it will send the result to
the device after execution. Otherwise, it will forward the request to the cloud along with the ID of the requesting mobile device. The
cloud sends the result to the mobile device after execution.

4.6. Delay and power consumption in geospatial query resolution

The parameters used in delay and power calculation are defined in Table 4.

The sum of propagation delay [5,10], communication delay [5,10], processing delay [5,10,24] and queuing delay [5] is the total
delay while resolving geospatial query generated from a mobile device. The probabilities of occurrences of case 1 i.e. query resolution
by fog device of present region, case 2 i.e. query resolution by cloud and case 3 i.e. query resolution by fog device of another region
are denoted by p,, p» and p; respectively. Hence, the values of p;, p, and p3 are calculated as (Nease1/Treq), (Nease2/ Treq) @and (Negses/
Trq) respectively, where Negse1, Neasez and Niqse3 are the number of requests arrived for case 1, case 2 and case 3 respectively, and Treq
is the total number of requests. Therefore the values of p;, p» and p3 are considered as less 1 i.e. p; < 1,p, < 1, p3s = 1 and
py+p, +p;=1

In the first case, the propagation delay is (dprop1/Sp) as the fog device of current region resolves the geospatial query. However, in
the second case, the cloud resolves the geospatial query. Therefore, the propagation delay is (dprop2/Sp). In the third case, the fog
device of another region resolves the geospatial query. Hence, the propagation delay is (dprp3/Sp). If all the three cases are considered
with their probability of occurrences (p;, p2, ps3), then the propagation delay is given as,

Dp = (pl*dpropl + pz*dpmpz + p3*dprop3)/sp (1)

wherep; < 1,po < 1,ps < landp, +p, +p; =1

In the first case, the fog device of current region resolves the geospatial query. Hence, for the first case, the uplink and downlink
communication delays between mobile device and fog device are considered. The communication delay from mobile device and fog
device is given as,

Dupl = (Dmf/Ume)*(l + fumf) (2)
The communication delay from fog device to mobile device is given as,
de1 = (Dfm/DWmf)*(l + fdmf) 3)

In the second case, the cloud resolves the geospatial query. Hence, for the second case, the uplink and downlink communication
delays between fog device and cloud are taken into account along with the delays in the first case. The communication delay from fog
device to cloud is given as,

upz (ch/ Upfc)*(l + fuﬁ. (4)
The communication delay from cloud to fog device is given as,
dez = (Dcf/Dch)*(l + fdfc) (5)

In the third case, the fog device of another region resolves the geospatial query. Hence, for the third case, the uplink and downlink
communication delays between two fog devices are taken into account along with the delays in the first case. As the fog device
responds to the geospatial query using fog device of another region, the communication delay from requesting to serving fog device is
given as,

Dup3 = ((ch/UPfc)*(l + fufc)) + ((Dch/Dch)*(l + fdfc)) 6)

In this case, the geospatial query is sent from the requesting fog device to the serving fog device through the cloud. However, after
resolving the geospatial query the serving fog device directly delivers the result to the requesting fog device. Therefore, the
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Table 4
Notations used in delay and power calculation.
Parameter Definition
dprop1 Distance to be covered during propagation while fog device of current region resolves geospatial query
Aprop2 Distance to be covered during propagation while cloud resolves geospatial query
Aprops Distance to be covered during propagation while fog device of other region resolves geospatial query
Sy Propagation speed
Dy Data amount processed for resolving geospatial query
S¢ Data processing speed of fog device
Sa Data processing speed of cloud
Dyns Data amount transmission from mobile device to fog device while sending geospatial query
D Data amount transmission from fog device to mobile device while sending result
Dy Data amount transmission from fog device to cloud while sending geospatial query
Desq Data amount transmission from cloud to fog device while sending geospatial query
Dy Data amount transmission from cloud to fog device while sending result
Dy Data amount transmission from serving fog device to requesting fog device while sending result
Upms Data transmission rate from mobile device to fog device
DWyys Data transmission rate from fog device to mobile device
Upye Data transmission rate from fog device to cloud
Dwy, Data transmission rate from cloud to fog device
Dwyy Data transmission rate from serving to requesting fog device
Sutms Link failure rate from mobile device to fog device
fdms Link failure rate from fog device to mobile device
fug Link failure rate from fog device to cloud
fdse Link failure rate from cloud to fog device
fdy Link failure rate from serving fog device to requesting fog device
D, Queuing delay
P, Power consumption of mobile device for data transmission per unit time
P, Power consumption of mobile device for data reception per unit time
P, Power consumption of mobile device in idle mode per unit time
Nease1 Number of requests arrived for case 1
Nease2 Number of requests arrived for case 2
Negses Number of requests arrived for case 3
Treq Total number of requests arrived
D1 Probability of case 1
D2 Probability of case 2
D3 Probability of case 3

communication delay from serving to requesting fog device is given as,

Dgw; = (Dg/Dwg)*(1 + fdgr)

7)

After considering the probabilities of occurrences (p;, p», p3) of all the three cases, the uplink communication delay is therefore given

as,

Dyp = py*Dup, + P2*(Dup, + Dup,) + P3*(Dup, + Dup,)

= Dup, + P,*Dup, + P;*Dup, 8)
wherep; < 1,po < 1,ps<landp, +p, +p; =1
Accordingly, The downlink communication delay is given as,
Daw = Py*Dawy + P2 *(Dawy + Daw,) + P3*(Dawy + Daws)
= Daw; + P>*Daw, + P3*Daws 9)
wherep; < 1,po < 1,ps < landp, +p, +p;, =1
The communication delay as a sum of the uplink and downlink communication delays, is therefore given as,
Deom = Dup + Daw (10)
In the first and third cases, fog device processes the geospatial query. The data processing delay of fog device is given as,
Dyrogg = Dy/Sy amn
In the second case, cloud processes the geospatial query. The data processing delay of cloud is given as,
Dprocet = Dy/Sa (12)
After considering the probabilities of occurrences of all the three cases, the processing delay is given as,
Dyroc = P1*Dprocs + P2*Dprocet + P3*Dproct (13)
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where p; is the probability of occurrence of first case where fog device of current region processes the geospatial query, p, is the
probability of occurrence of second case where cloud processes the geospatial query, ps is the probability of occurrence of third case
where fog device of other region processes the geospatial query,p; < 1,p, < 1,ps < landp, +p, +p; =1.

The total delay as the sum of the propagation, communication, processing and queuing delays is given as,

Dy = Dp + Deom + Dproc + Dy, a4

During propagation the mobile device’s idle mode is considered [5]. Hence, the power consumption of mobile device during pro-
pagation is given as,

P, = B*Dy (15)

where P,, is the power consumption of mobile device per unit time if it is in idle mode.

During uplink communication, when data transmission takes place from the mobile device, the device’s power consumption per
unit time in data transmission mode is considered [5]. Otherwise, the device’s power consumption per unit time in idle mode is
considered [5]. Hence, the power consumption of mobile device during uplink communication is given as,

Pmu = B*Dupl + pz*Pm*Dupz + p3*Pm*Dup3 (16)

where P,, is the power consumption of mobile device per unit time if it is in idle mode and P, is the power consumption of mobile
device per unit time if it is in data transmission mode.

During downlink communication, when data reception takes place by the mobile device, the device’s power consumption per unit
time in data reception mode is considered [5]. Otherwise, the device’s power consumption per unit time in idle mode is con-
sidered [5]. Hence, the power consumption of mobile device during downlink communication is given as,

Bug = Pr*de1 + Pz*Pm*dez + p3*Pm*DdW3 a7

wherep, < 1,ps < 1and p, + p, + p; = 1, P, is the power consumption of mobile device per unit time if it is in idle mode and P, is
the power consumption of mobile device per unit time if it is in data reception mode.
Therefore, the power consumption of mobile device during communication is given as,

Bucom = Buu + Bnd (18)
The power consumption of mobile device during data processing by fog device or cloud, is given as [5],
Pprac = Pm*mec (19)

where Py, is the power consumption of mobile device per unit time if it is in idle mode.
The power consumption of mobile device during queuing period is given as [5],

quu = Pm*Dw (20)

where P,, is the power consumption of mobile device per unit time if it is in idle mode.
Therefore the total power consumption of the mobile device as a sum of the power consumption during propagation, commu-
nication, geospatial query processing (inside the fog device/cloud) and queuing periods, is given as,

Bot = Pp + Bucom + Pproc + quu (21)

In the next section, using this mathematical model we have determined the delay in resolving a mobile user-generated geospatial
query using the proposed Spatio-Fog framework, and the power consumption of the user device during geospatial query resolution
period, and compared with the existing cloud-based geospatial query resolution framework. After that we have validated the results
of the empirical study with the experimental results obtained by carrying out different types of geospatial query resolution using the
proposed framework in the laboratory.

5. Performance evaluation

In this section, we have performed empirical study using MATLAB and experimental analysis using OpenStack Cloud and Google
Cloud Platform. We have compared our framework with the existing query processing system in terms of delay and power con-
sumption of the mobile device. We have also performed a comparison between the results obtained from the empirical study and
experimental analysis in this section.

5.1. Empirical study

In this section, the delay and power consumption during geospatial query resolution using proposed fog based system and existing
cloud-based system are compared [11,46]. MATLAB 2015 is used for empirical study. For empirical study, the total amount of
geospatial data is considered 1 to 10 TB. It is assumed thatp; < 1,p, < 1,p3 < 1 and p, + p, + p; = 1. For empirical study the data
amount transmitted in uplink and downlink is assumed 1.25 to 2.50 MB and 15 to 27.5 MB respectively, the uplink and downlink data
transmission rate are assumed 5 to 10 Mbps and 10 to 30 Mbps respectively, and the power consumption of mobile device per unit
time in transmit, receive and idle modes are assumed 0.01 to 0.1 W, 0.005 to 0.05 W, and 0.005 W respectively. Fig. 9 shows the
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Fig. 9. Delay in geospatial query resolution using proposed Spatio-Fog and existing system.

delay in geospatial query resolution using proposed fog based system Spatio-Fog, calculated using Eq. (14) and using existing cloud-
based system [11,46]. The simulation results show that Spatio-Fog reduces the delay by approximately 47-83% than the existing
system.

Fig. 10 shows the power consumption of mobile device during geospatial query resolution using proposed fog based system
Spatio-Fog, calculated using Eq. (21) and using existing cloud-based system [11,46]. The simulation results show that Spatio-Fog
reduces the power by approximately 43-47% than the existing system.

If the geospatial query size and the size of the result to be sent to the device are large, then communication delay will be high. The
processing delay depends on the volume of data has to be processed to resolve the geospatial query. Hence, the reduction in delay and
power consumption while using the proposed architecture will differ for large, medium, or small data size.

5.2. Analysis of the experimental results

The configurations of the devices used in the experimental analysis are presented in Table 5. Two mobile phones are used, which
generate geospatial queries. The first mobile phone has 3 GB RAM, 32 GB HDD, and Qualcomm MSM8940 Octa Core processor. The
second mobile phone has 2 GB RAM, 8 GB HDD and 64-bit 1.2 GHz Qualcomm Snapdragon 410 Quad Core processor. The operating
system of both the mobile phones is Android 6.0.1. Two laptops with 4 GB RAM, 250 GB HDD, and Intel Core i5 processor have been
used as fog devices. The operating system of these two devices is Windows 7 Professional and Ubuntu. For local cloud environment,
we have used OpenStack Cloud Platform of IIT Kharagpur, referred as Meghamala (MGL), where we have taken a regular VM (2
vCPU, 4 GB RAM). For remote cloud environment, we have used Google Cloud Platform (GCP), where we have created one Virtual
Machine (VM) instance (zone: asia-southl-c). The machine type is nl-standard-1 (1 vCPU, 3.75 GB RAM). The protocols used are
TCP, UDP, ICMP. The mobile devices are connected through Wi-Fi Access points. The data transmission rate is 10-50 Mbps.

Mobile phone 1 and mobile phone 2 are connected with fog device 2 and fog device 1 respectively. In this work, we have used the

Rl v T T v v

—0—Proposed system
~©0 ~ Existing system /s

Power consumption (W)

0 i 1 1 i 1 i

L

1 2 3 Rl s 6 7 8 9 10
Amount of data (TB)

Fig. 10. Power consumption by mobile device during geospatial query resolution using proposed Spatio-Fog and existing system.
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Table 5
Configurations of devices used in experiment.
Device RAM HDD Processor Operating system
Mobile phone 1 3 GB 32 GB Qualcomm MSM8940 Android 6.0.1
Octa Core
Mobile phone 2 2 GB 8 GB 64-bit 1.2 GHz Qualcomm Android 6.0.1
Snapdragon 410 Quad Core
Fog device 1 4GB 250 GB Intel Core i5 Windows 7 Professional
Fog device 2 4GB 250 GB Intel Core i5 Ubuntu
VM instance in Google 3.75 GB 250 GB 1vCPU Windows Server 2012
Cloud Platform R2 Datacenter
(Remote Cloud referred as GCP)
IITKGP_regular VM 4 GB 45 GB 2 vCPU Ubuntu 14.04
OpenStack

(Local Cloud referred as MGL)

spatial reference system, EPSG:32645. We have considered the geospatial data related to road, land area and railway track of Purulia,
India, road network of Mumbai, India, road network of Delhi, India, and forest and road network of Raipur, India. Geospatial data are
of two types: vector data and raster data. In this experiment, we have considered vector data. Two mobile phones send geospatial
queries related to geospatial data of Purulia, Delhi, Mumbai and Raipur. Fog device 1 and fog device 2 are containing the data of
Purulia and Raipur respectively. The data of Mumbai and Delhi are stored in the cloud. The two mobile devices generate total six
geospatial queries which come under the three case studies, discussed in Section 4. Concerning the three cases, the analysis of
generated geospatial queries from two mobile devices is discussed in the Subsections 5.2.1-5.2.3.

We have used QGIS (version 2.18.28) for analysing the geospatial queries. The time complexity for buffer creation is O(N), for
insertion and retrieval of event points is O(log N), for intersection is O(N?), where N is the number of edges for a geometric buffer. The
results of data analysis are presented in Figs. 11-16. The total delay in geospatial query resolution are presented in Table 6. In this
case we have measured the round trip delay (difference between the time stamp of sending request and receiving response). The
power consumption of the mobile phones during this period is presented in Table 6. To determine the power consumption we have
multiplied the measured delay with the power consumption of mobile device per unit time. The results are compared with geospatial
query resolution using the existing remote cloud-based system [11,46], and local cloud-based system.

5.2.1. Experimental results of geospatial query analysis by fog device of current region

The user of mobile phone 1 generates the first geospatial query, where he asks for an information related to Raipur, and the
geospatial query is sent to Fog device 2, with which it is connected. As fog device 2 is containing the geospatial data of Raipur, it
responds. The user of mobile phone 2 generates the second geospatial query, where he asks for an information related to Purulia, and
the geospatial query is sent to Fog device 1, with which it is connected. As fog device 1 is containing the geospatial data of Purulia, it
responds.

Result of geospatial query 1 resolution: In Fig. 11, the result of geospatial query 1 is displayed. The geospatial query is to find the

Road

Forest and road network of Raipur Roads adjacent to forest of Raipur

Fig. 11. Result of Geospatial Query 1: connecting roads to forest in Raipur.
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Road network of Purulia High roads in Purulia

Fig. 12. Result of Geospatial Query 2: high roads in Purulia.

AN T R T

Road network of Delhi One-way roads in Delhi

Fig. 13. Result of Geospatial Query 3: one-way roads in Delhi.

road adjacent to the forest of Raipur. The forest area data and road network data of Raipur are analysed by fog device 2 to resolve the
geospatial query. The following three geospatial services used to resolve this geospatial query:

e WPS BufferFeatureCollection service is for 1 km buffer creation around Raipur forest shape file.
e WPS IntersectionFeatureCollection service is for the overlap of Raipur road and buffered forest shape file.
o WMS GetMap service is used to display the resultant map of geospatial query 1.

The amount of data transmission, delay and power consumption of the user device are presented in Table 6. The amount of data
transmission between consecutive nodes, in this case, is 1.98 MB. The delay in geospatial query resolution using the proposed model,
only GCP (remote cloud VM) and only MGL (local cloud VM) are 1.72 s, 4.71 s, and 3.31 s respectively. The power consumptions of
the user device during this period are 0.19 W, 0.52 W, and 0.365 W respectively for geospatial query resolution using the proposed
model, only GCP, and only MGL. The experimental results show that the proposed model reduces the delay in geospatial query
resolution by 63% and 48% approximately than only GCP and only MGL respectively. The experimental results also show that using
the proposed model the power consumption of the user device is reduced by 63% and 48% approximately than only GCP and only
MGL respectively.

Result of geospatial query 2 resolution: In Fig. 12, the result of geospatial query 2 is displayed. The geospatial query is to find the
high roads in Purulia. The geospatial data of road of Purulia is analysed by fog device 1 to resolve the geospatial query. The following
two geospatial services are used to resolve this geospatial query:

o WFS getFeature service is used for filtering the ‘High Roads’ from Purulia road network.
o WMS GetMap service is used to display the ‘High Roads’ map of Purulia.

The amount of data transmission, delay, and power consumption of the user device are presented in Table 6. The amount of data
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Road network of Mumbai One-way roads in Mumbai

Fig. 14. Result of Geospatial Query 4: one-way roads in Mumbai.

Rail gates in the junction of road
and rail track

Rail track

Road network and rail network of Purulia

Fig. 15. Result of Geospatial Query 5: rail gates in the junction of road and rail track in Purulia.

transmission between consecutive nodes, in this case, is 1.56 MB. The delay in geospatial query resolution using the proposed model,
only GCP (remote cloud VM) and only MGL (local cloud VM) are 1.13 s, 3.61 s, and 2.21 s respectively. The power consumption of the
user device during this period are 0.124 W, 0.397 W, and 0.243 W respectively for geospatial query resolution using the proposed
model, only GCP, and only MGL. The experimental results show that the use of the proposed model reduces the delay in geospatial
query resolution by 71% and 49% approximately than only GCP and only MGL respectively. The experimental results also show that
using the proposed model, the power consumption of the user device is reduced by 68% and 49% approximately than only GCP, and
only MGL respectively. Hence, it is observed that the proposed framework has ~ 60% less power consumption of user device and
~ 60% less delay than the existing remote cloud only system [11,46].

5.2.2. Experimental results of geospatial query analysis by cloud
The user of mobile phone 1 generates the third geospatial query, where he asks for an information related to Delhi, and the
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Waste lands with area>50 acres within
distance of 1 km from high road

LULC

LULC and road network of Purulia

Fig. 16. Result of Geospatial Query 6: waste lands with area of greater than 50 acres within the distance of 1 km from high road in Purulia.

geospatial query is sent to Fog device 2. Nevertheless, fog device 2 does not have the geospatial data of Delhi. Hence, it forwards the
request to the cloud. The cloud has the geospatial data of Delhi. Thus, it processes the geospatial query and then sends the result to
fog device 2. Fog device 2 forwards the result to mobile phone 1. The user of mobile phone 2 generates the fourth geospatial query,
where he asks for an information related to Mumbai, and the geospatial query is sent to Fog device 1. However, fog device 1 is not
containing the geospatial data of Mumbai. Hence, it forwards the request to the cloud. The cloud has the geospatial data of Mumbai,
and it sends the result to fog device 1 after processing the geospatial query. Fog device 1 forwards the result to mobile phone 2.

Result of geospatial query 3 resolution: In Fig. 13, the result of geospatial query 3 is displayed. The query is to find one-way roads in
Delhi. The road network data of Delhi is analysed by the cloud to resolve the geospatial query. The following two geospatial services
are used to resolve this geospatial query:

® WEFS getFeature service is used to filter out the ‘One_Way’ roads from the Delhi road network.
o WMS GetMap service is used to exhibit the geospatial query 3 result.

The amount of data transmission, delay, and power consumption of the user device are presented in Table 6. The amount of data
transmission between consecutive nodes, in this case, is 2.28 MB. The delay in geospatial query resolution using the proposed model,
only GCP (remote cloud VM), and only MGL (local cloud VM) are 2.85 s, 4.91 s, and 4.45 s respectively. The power consumption of
the user device during this period are 0.31 W, 0.54 W, and 0.49 W respectively for geospatial query resolution using the proposed
model, only GCP, and only MGL. The experimental results show that the use of the proposed model reduces the delay in geospatial
query resolution by 41% and 35% approximately than only GCP and only MGL respectively. The experimental results also show that
using the proposed model, the power consumption of the user device is reduced by 42% and 36% approximately than only GCP, and
only MGL respectively.

Result of geospatial query 4 resolution: In Fig. 14, the result of geospatial query 4 is displayed. The geospatial query is to find one-
way roads in Mumbai. The road network data of Mumbai is analysed by cloud to resolve the geospatial query. The following two
geospatial services are used to resolve this geospatial query:

® WFS getFeature service is used to filter the ‘One_Way’ roads from the Mumbai road network.
e For displaying the result of geospatial query 4, WMS GetMap service is used.

The amount of data transmission, delay, and power consumption of the user device are presented in Table 6. The amount of data
transmission between consecutive nodes, in this case, is 2.32 MB. The delay in geospatial query resolution using the proposed model,
only GCP (remote cloud VM) and only MGL (local cloud VM) are 2.91 s, 5.22 s, and 4.45 s respectively. The power consumption of the
user device during this period are 0.32 W, 0.57 W, and 0.49 W respectively for geospatial query resolution using the proposed model,
only GCP, and only MGL. The experimental results show that the use of the proposed model reduces the delay in geospatial query
resolution by 44% and 35% approximately than only GCP and only MGL respectively. The experimental results also show that using
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the proposed model, the power consumption of the user device is reduced by 43% and 34% approximately than only GCP, and only
MGL respectively. Hence, the proposed framework has ~ 40% less power consumption of user device and ~ 40% less delay than the
existing remote cloud only system [11,46].

5.2.3. Experimental results of geospatial query analysis by fog device of another region

The user of mobile phone 1 generates the last two geospatial queries, where he asks for information related to Purulia, and the
geospatial query is sent to Fog device 2. However, fog device 2 is not containing the geospatial data of Purulia. Hence, it forwards the
fifth and sixth geospatial queries to the cloud. But the cloud is also not containing the data of Purulia, hence forwards it to fog device
1 that is containing the data of Purulia. Fog device 1 then processes the fifth and sixth geospatial queries and sends the result directly
to fog device 2. Fog device 2 forwards the result to mobile phone 1.

Result of geospatial query 5 resolution: In Fig. 15, the result of geospatial query 5 is displayed. The geospatial query is to find the rail
gates in the junction of road and rail track in Purulia. The geospatial data of rail track and road of Purulia are analysed by fog device 1
to resolve the geospatial query. The following two geospatial services are used to resolve this geospatial query:

e WPS LinelntersectionFeature service is used for performing the cross operation on the road network and rail tracks of Purulia.
o WMS GetMap service is used to display the final map of geospatial query 5.

The amount of data transmission, delay, and power consumption of the user device are presented in Table 6. The amount of data
transmission between consecutive nodes, in this case, is 2.12 MB. The delay in geospatial query resolution using the proposed model,
only GCP (remote cloud VM) and only MGL (local cloud VM) are 2.76 s, 3.94 s, and 3.32 s respectively. The power consumption of the
user device during this period are 0.31 W, 0.45 W, and 0.38 W respectively for geospatial query resolution using the proposed model,
only GCP, and only MGL. The experimental results show that the use of the proposed model reduces the delay in geospatial query
resolution by 30% and 18% approximately than only GCP and only MGL respectively. The experimental results also show that using
the proposed model, the power consumption of the user device is reduced by 31% and 17% approximately than only GCP and only
MGL respectively.

Result of geospatial query 6 resolution: In Fig. 16, the result of geospatial query 6 is displayed. The geospatial query is to find
wastelands with an area greater than 50 acres within the distance of 1 km from the high road in Purulia. The geospatial data of road
and land use land cover (LULC) of Purulia are analysed. The amount of data transmission, delay and power consumption of the user
device are presented in Table 6. The following four geospatial services are used to resolve this geospatial query:

o WFS getFeature service is used twice to filter the ‘High Road’ roads from Purulia road network and to filter areas which are greater
than 50 acres from Purulia LULC.

® To create 1 km buffer of each filtered area using WPS BufferFeatureCollection service.

e WPS IntersectionFeatureCollection service is used to make intersection Land buffer with filtered Roads.

e Finally, WMS GetMap service is used to display the resultant map of the geospatial query 6.

The amount of data transmission between consecutive nodes in this case is 3.15 MB. The delay in geospatial query resolution
using the proposed model, only GCP (remote cloud VM) and only MGL (local cloud VM) are 5.25 s, 7.66 s and 6.35 s respectively. The
power consumption of the user device during this period are 0.577 W, 0.842 W and 0.69 W respectively for geospatial query
resolution using the proposed model, only GCP and only MGL. The experimental results show that use of the proposed model reduces
the delay in geospatial query resolution by 31% and 17% approximately than using only GCP and only MGL respectively. The
experimental results also show that using fog device the power consumption of the user device is reduced by 31% and 16% ap-
proximately than using only GCP and only MGL respectively.

Hence, from this two experimental studies it is observed, the proposed framework has ~ 30% less power consumption and
~ 30% less delay than the existing remote cloud only system [11,46].

The experimental results in Table 6 illustrate that the use of the proposed model reduces delay and power than existing cloud-
based system. In the first two experimental studies the fog device connected with the requesting mobile phone is containing data of
the region for which the geospatial queries are made. Hence, the reduction in delay and power consumption of user device is ~ 60%
than the existing remote cloud-based system [11,46]. In the next two experimental studies the fog device connected with the re-
questing mobile phone is not containing data of the region for which the geospatial queries are made, whereas the cloud is containing
the data. Hence, the communication cost in terms of delay and power consumption is same as in the existing cloud-based system.
However, in the existing system the cloud has to access a huge volume of data to respond to the geospatial query, as the geospatial
data of all the regions is contained by the cloud. As a result the computational cost is higher than the proposed system where cloud is
containing only the frequently accessed geospatial data. Consequently the total cost (sum of communication and computation) is
higher in the existing system. It is observed that use of cloud for geospatial query resolution in case of the proposed Spatio-Fog
architecture achieves ~ 40% less delay and power consumption of user device than the existing remote cloud-based system [11,46].
In the last two experimental studies the third case is considered i.e. the use of another fog device for geospatial query resolution. In
this case the proposed model has higher communication cost than the existing cloud-based system. Nevertheless, the computational
cost in case of the remote cloud-based system is much higher (as discussed earlier) than the proposed model. As a result the total cost
becomes less in the proposed framework. It is observed that use of fog device of another region for geospatial query resolution in case
of the proposed Spatio-Fog architecture achieves ~ 30% less delay and power consumption of user device than the existing remote
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Fig. 17. Comparison between the results of empirical study and experimental analysis of geospatial query resolution.

cloud-based system [11,46]. Hence, from the six experimental studies, it is observed that the proposed system provides 30% — 60%
less power consumption of user device and 30% — 60% less delay than the existing system.

5.3. Comparative study

In the empirical study, we have considered large data size, whereas in the experimental analysis, we have a comparatively small
amount of data. Hence the results differ. However, we have performed the empirical study also for the six geospatial queries discussed
above. Using the mathematical model, the delay in geospatial query resolution and power consumption of user device during that
period have been calculated and compared with the experimental results, which is graphically presented in Fig. 17. It is observed
from Fig. 17 that the empirical study and corresponding experimental results are approximately the same. Experimentally it is
already noted that the proposed framework reduces the power consumption and delay than the existing frameworks. In the proposed
framework, the use of fog device in geospatial query resolution reduces the delay and consequently the power consumption of the
mobile device during the time of query resolution. Moreover, the storage of regional geospatial data inside the fog devices instead of
putting the entire geospatial data inside the cloud reduces the probability of accessing the cloud for geospatial query resolution. This
in turn reduces the power consumption of the cloud for spatial query resolution. Further, the network load to the cloud servers via
internet is also reduced. Hence, it is concluded that the proposed fog computing system Spatio-Fog is a low power, i.e., green and
delay-sensitive system. Here, green refers to power-efficiency. Usually a green system refers to a low power system. As the proposed
Spatio-Fog has low power consumption, it is referred as a green i.e. power-efficient framework.

5.4. System response time

System response time refers to the time difference between receiving a request and sending the corresponding response by a
system i.e. the sum of waiting time and service time is the response time [12]. If a system receives N geospatial queries and the

N
ZGQ:1 TeQ
N

response time of a geospatial query GQ is T, then the average system response time is given as, RTy = . The average system
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response time with respect to the number of geospatial queries received are presented in Fig. 18. From the figure it is observed that
the average system response time for the proposed Spatio-Fog system is < 25 s for the number of received geospatial queries 5-30.

6. Conclusions and future work

In this paper, a fog computing based architecture, namely Spatio-Fog, has been proposed for geospatial query resolution. The fog
devices, located in the different regions, contain geospatial data of the respective regions. When a geospatial query is received from a
mobile device related to the current region, the fog device resolves the geospatial query after analysing the data and responds to the
mobile device. Otherwise, if the geospatial query is related to other regions, the fog device responds using cloud servers or fog device
of the corresponding region. The empirical study shows that the proposed framework reduces the power consumption and delay by
approximately 43-47% and 47-83% respectively than the existing system. The experimental results illustrate that the proposed
framework reduces the power consumption and delay by 30-60% approximately than the existing query resolution system. Thus, we
conclude that the proposed framework is a green and delay aware framework.

The availability of the network connectivity is a challenge if the mobile client is present at a remote location. Hence, the client
needs the service with minimal network facility even in offline mode. If such a mobile user has a geospatial query, then to resolve it
dew computing can be a solution. Thus, creation, update, and access to raw geospatial data set for resolving the geospatial query for
the devices connected in offline mode, use of dew computing will be a promising future research scope of this work.
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