
Software Rejuvenation based Fault Tolerance
Scheme for Cloud Applications

Jing Liu, Jiantao Zhou
College of Computer Science

Inner Mongolia University
Hohhot, China

{liujing, cszjtao}@imu.edu.cn

Rajkumar Buyya
CLOUDS Laboratory

Department of Computing and Information Systems
The University of Melbourne, Australia

rbuyya@unimelb.edu.au

 Abstract—Cloud applications are typically composed of
multiple cloud service components communicating with each
other through web service interfaces, where each component
fulfills specified functionalities. Lack of effective fault tolerance
scheme is one of major obstacles for enhancing availability and
efficiency of complex and aging cloud application systems. In this
paper, we propose a holistic software rejuvenation based fault
tolerance scheme for cloud applications, which contains three
indispensible parts: adaptive failure detection, aging degree
evaluation, and checkpoint with trace replay based component
rejuvenation. Through a preliminary and qualitative evaluation,
it shows that our new fault tolerance scheme brings promising
improvement on the availability of cloud applications.

Keywords—software rejuvenation; failure prediction; live VM
migration; checkpoint; cloud computing

I. INTRODUCTION
Cloud computing is a large-scale and complex distributed

computing paradigm where the configurable resources (servers,
storage, network, data and software applications) are provided
as multi-level services via virtualization technologies. A cloud
application is typically developed as a distributed system that
utilizes multiple cloud services that communicate with each
other through web service interface. Every cloud service is also
composed of several service components that fulfill specified
functionalities. The cloud application framework is shown in
Figure 1. Most of cloud applications deployed in the cloud
environments have lots of complicated and non-deterministic
behaviors and interconnections. During their long time running,
the accumulation of software internal errors will very likely
lead to software aging problems, where unpredictable failures,
performance degradation, or eventual crash occurs [1]. So, how
to enhance the availability of cloud application execution
becomes a significant and desiderated research issue.

Lack of effective fault tolerance scheme is one of major
obstacles for enhancing availability of aging cloud application
systems [2]. Recently, more studies use software rejuvenation,
a proactive fault tolerance approach, to counteract the software
aging problem in cloud computing scenarios. Most of them
propose rejuvenation methods towards software components in
cloud infrastructure platforms, such as Eucalyptus, or specific
hypervisor software. They pay more attention on predicting the
aging error-prone state and optimal time to start rejuvenation

Fig. 1. Cloud Application Framework.

actions. Then they usually apply simple rejuvenation methods,
such as rebooting, to bring the software from a failure-prone
state to an aging-free state.

In this paper, we propose a novel and holistic software
rejuvenation based fault tolerance scheme to counteract aging
obstacles for cloud applications. Our major contribution comes
from two inherently related aspects. First, an adaptive failure
detection and aging degree evaluation approach is proposed to
predict which cloud service components deserve foremost to be
rejuvenated. Second, a component rejuvenation approach based
on checkpoints with trace replay is proposed to guarantee the
continuous running of cloud application systems. Through a
preliminary and qualitative evaluation, it shows that our new
fault tolerance scheme brings promising improvement on the
availability of cloud applications.

II. SOFTWARE REJUVENATION IN CLOUDS
Software aging phenomenon, which results from the

accumulation of internal errors occurring along with the
software long time running, will likely lead to the performance
degradation and progressive resource depletion, and eventually
to the software crash [1]. As to cloud computing scenarios,
cloud application systems require nearly uninterrupted running,
but software aging is one of serious barriers to achieve such
high availability. Software aging could occur in the hypervisor
level or in the upper cloud application system level. To
counteract this aging obstacle, software rejuvenation is utilized
as a proactive fault tolerant method to reduce probability of
future unpredictable cloud application outages [3].

2015 IEEE 8th International Conference on Cloud Computing

2159-6190/15 $31.00 © 2015 IEEE

DOI 10.1109/CLOUD.2015.164

1115

Applying software rejuvenation technologies to the cloud
computing scenario is a new and promising research frontier.
Two major research issues are studied. One is to predict aging
error-prone state and optimal time to schedule rejuvenation
actions via measurement-based analysis or model-based (i.e.,
time-based) analysis. The other one is to perform rejuvenation
methods to bring the software from a failure-prone state to an
aging-free state, where the most intuitive and widely-adopted
rejuvenation method is to terminate software transiently, clean
up their internal runtime states (e.g. reinitializing internal data
structures or garbage collection), and finally restart it. Typical
related works are listed as follows. Bruneo et al. [3] propose a
time based optimal rejuvenation policy, utilizing symbolic
algebraic techniques. It improves the Virtual Machine Monitor
(VMM) availability in variable workload conditions. Melo et al.
[4] propose a pre-checking and live migration mechanisms
based rejuvenation scheduling approach toward the VMM
software, which brings a significant improvement on system
availability. Araujo et al. [5] investigate the aging faults in a
private cloud infrastructure due to the accumulation of memory
leaks in key functional components of Eucalyptus platform.
Langner et al. [6] detect software aging issues by investigating
anomalous behaviors among different development versions of
the same software, according to runtime metrics, such as CPU
usage or number of running threads.

Compared with these studies, we focus on dealing with the
software aging problems occurring in cloud application system,
not in VMM-level systems, and we propose a proactive error
detection approach and a software rejuvenation approach to
enhance the high availability of aging cloud applications.

III. SYSTEM ARCHITECTURE
In our study we consider one specific cloud application

system deployed in a private cloud environment. It composes
of several interconnected cloud services with several functional
service components respectively. We assume that Tight-
coupling components (TCC) execute in the same virtual
machine (VM), while loose-coupling components (LCC)
execute in different virtual machines. Service components
often communicate with each other via RPC over local high-
speed network, and cloud services always communicate with
each other via web services protocols over Internet. However,
network caused failures are not considered in our study.

The system architecture is presented in Figure 2. Besides
the running cloud application, four fault tolerance entities work
cooperatively to carry out the holistic cloud application aging
failure detection and rejuvenation process. Specifically, Aging
Failure Detector (AFD) inspects CPU and memory usage, and
communication status of service components periodically for
detecting their aging failures. When a specific probable failure
is detected, Aging Degree Evaluator (ADE) is used to record
contexts of this failure, and then assign a fatal degree number
to this failure event through an evaluation process, and finally
insert this event into a failure event queue. The event queue is
ordered according to the fatal degree number of every failure
event automatically. That is, the failure that tends to result in
more fatal consequence, such as service crash, will be firstly
rejuvenated. Detailed algorithm in the aging failure detection
and fatal degree evaluation approach is shown in section IV.

Fig. 2. System Architecture.

The practical execution of service component rejuvenation
is controlled by the Software Rejuvenation Manager (SRM). In
order to avoid re-executing aging service components from
their initial states, we adopt the checkpoint and VM migration
based service component rejuvenation to guarantee continuous
running of cloud applications to a larger extent. That is, when a
TCC or LCC is detected as most failure-prone, a checkpoint of
its running state is made first and stored into the Interim Node,
which locates in a separate physical machine in the same local
network. Next, the VM that hosts failure-prone TCC or LCC is
migrated to the Interim Node to keep service communications.
When the migration is done, the original VM environment is
rebooted to clear aging effects. Finally, on this new VM, the
same TCC or LCC software re-executes based on the retrieved
checkpoint data and subsequent behavior trace-log. After last
trace-log is replayed, there is a consistent replica of that TCC
or LCC both in this new VM and in the Interim Node, and then
the migrated VM will terminate to run to indicate a successful
rejuvenation procedure. Detailed algorithm in the service
component rejuvenation approach is shown in section V.

We assume that all TCCs or LCCs, together with four
functional entities are running on a VM, and besides these parts,
there is a remote storage volume which is accessed by such
VMs for easy live migration.

IV. FAILURE DETECTION AND EVALUATION
As shown in Figure 2, cloud service components execute in

separated VMs. Some VMs may be active, some may be busy
or heavy-loaded, and the others may be offline or even crashed.
Meanwhile, communications among service component are not
always available and stable. Thus, to design effective fault
tolerant methods for mitigating the aging problem for cloud
applications, we need at first to detect both VM and network
performance status as certain credible metrics for accurately
identifying which service components need rejuvenation.

Based on the failure detection methods shown in [7, 8], we
propose an adaptive failure detection method. The CPU and
memory usage of certain VMs, and the transmission delay of
monitoring packets between service components and the AFD
unit are chosen as the basic runtime metrics for indicating more

1116

comprehensively whether aging problems tend to cause service
failures. That is, if a TCC or LCC is suffering from an aging
problem, its host VM may have intuitionally high CPU usage
and/or small free memory available data, as well as it is unable
to send monitoring packets to the AFD at every interval
regularly, or even fail to send packets.

In our study, we assume that in every VM that hosts a TCC
or a LCC, a monitoring agent is running for periodically
collecting runtime metrics of that VM. Specifically, in every
sampling interval �ti, the agent collects the CPU usage Ci and
the free memory available data FMi, encapsulates Ci and FMi
data into a packet and sends it to the AFD. From the AFD point
of view, it should achieve two related tasks.

1) Computing Expected Arrival Time (EAT). EAT indicates
the expected time of next packet arrival in regular case. If next
metrics data packet arrives after EAT or totally does not arrive,
it indicates some kinds of failures tend to appear. To improve
computing accuracy, the computation of EAT utilizes actual
arrival time of recent packets as the historical information in a
sliding window, i.e., recent n packet p1, p2, ..., pn, and T1, T2, ...,
Tn are their actual arrival time according to AFD's local clock.
EATk+1 (k>n) is the theoretically expected arrival time of next
packet, and it is estimated as follows based on studies in [7].

1
1

1)1())((1
+

+−=
+ Δ++×Δ−= � k

k

nki
iik tkitT

n
EAT

Intuitively, it computes the average of packet transmission time
of latest n packets and shifts forward the average for next pk+1.
Then, EAT for next packet could be added an offset to EATk+1
to mitigate effects of possible normal packet delay.

2) Software Aging Degree Evaluation. Evaluation process
in ADE utilizes the recorded running metrics from two aspects.
One is whether next data packet arrives before EAT, after EAT,
or totally lost. The other one is the degree of Ci and FMi data
from the data packet. According to the aging severity and when
to perform rejuvenations, the aging degree of TCC or LCC is
roughly divided into four levels. Level 1 indicates the crucial
case which is very likely to result in fatal consequence, such as
service crash, and needs rejuvenation immediately. Level 2
indicates the serious case which tends to result in serious
consequence, e.g., long transmission delay or high performance
loss, and needs rejuvenation as soon as possible. Level 3
indicates the suspectable case which may cause unsatisfied
consequence or false detection. It needs on-going monitoring
and now rejuvenation is just a suggestion. Level 4 indicates the
normal case without any rejuvenation. It is assumed that for a
cloud application which is not computing-intensive, the metric
significance follows that EAT > Mi > Ci. Based on the Pareto
principle (also known as the 80-20 rule), we present an
exemplified aging degree decision in Table I according to
different levels of three metrics.

In every interval of metric packet arrival, AFD will trigger
ADE to detect proactively whether an aging failure is present.
ADE records the context of the failure with a corresponding
aging degree number, as a new failure event, and insert it into a
centralized failure event queue. This queue is automatically
ordered based on their aging degree number in ascending order.
So, top events in the queue should be rejuvenated inevitably
using the approaches discussed in the next section.

TABLE I. DECISION RELATION

Metrics Level Decision Scenarios

EAT
Lost Y
After Y Y Y Y

Before Y Y Y Y

Mi
� 20% Y Y Y Y
> 20% Y Y Y Y

Ci
� 80% Y Y Y Y
< 80% Y Y Y Y

Aging Level 3* 1 2 2 3 2 3 3 4

* If packets are all lost in three sequential EAT interval, value 1 is set instead.

V. MIGRATION BASED SOFTWARE REJUVENATION
To avoid re-executing of a TCC or a LCC from its initial

states, which costs more due to high downtime and complex
synchronization behaviors, we integrate checkpoint technique
with trace record and replay and live VM migration technique
to develop a novel and holistic service rejuvenation based fault
tolerant method to guarantee the continuous running of cloud
applications to a larger extent. The intuitive idea is mentioned
in section III with Figure 2. In this section, we present in detail
three significant procedures during service rejuvenation. Figure
3 present the framework of rejuvenation workflows.

Fig. 3. Rejuvenation Workflows.

1) Checkpoint Generation and Remote Storing. When a
TCC or a LCC is detected with aging failure-prone in level 1 or
2, the ADE will trigger the SRM to generate a rejuvenation
starting message and send it to the interim node, which locates
in the same LAN with the VM hosting aging TCC or LCC. It is
also assumed that in every working VM, a rejuvenation agent
is running for executing rejuvenation related actions. Thus, the
interim node will establish a connection with the agent, and ask
it to generate a checkpoint of the runtime status of that aging
cloud service component, and finally transmit the checkpoint
image to interim node for temporarily storing. The checkpoint
data records variable values of running process, register values,
runtime environment control information, and so on. It makes
the aging TCC or LCC re-execute easily and reliably. From the
checkpoint time on, all their subsequent external behaviors are
recorded into a local trace-log file, containing functional input
and communicating interactions. This trace-log file is used to
guide the replay path of recorded behaviors accurately from the
checkpoint time. Such replay executions using trace-log file do
not need adding additional interface into original components.

1117

2) Live Migration of the Original VM. After generating the
checkpoint, the VM hosting those failure-prone TCC or LCC is
migrated in pre-copy scheme [9] to the interim node, while the
continuous communication of upper cloud service components
are kept on as the migration occurs in the same LAN. It should
be noted that during this live migration process, the trace-log
file for recording subsequent behaviors of the aging TCC or
LCC is still written by the rejuvenation agent.

3) Rejuvenation from Checkpoint. When migration is done,
the original VM environment could be rebooted automatically
controlled by the rejuvenation agent. That means a totally new
VM environment (VMs) for the cloud service running are well
available. Next, the checkpoint image is transmitted from the
interim node to VMs to restore the TCC or LCC running from
that checkpoint time. Then following iterations copy the trace-
log file from the VM in interim node (VMin) to VMs, to replay
the subsequent behaviors accurately. This iterative process is
executed until trace-log files generated during the previous
transfer round is reduced to a pre-defined threshold value. Till
now, VMin is suspended for running and the remaining trace-
log file is transferred to the VMs. Based on [10, 11], after last
trace-log file is replayed, there is a consistent replica of cloud
service component both in the VMs and the VMin. Together, all
network traffic is redirected to VMs destination, and VMin is
shut down. Until then, the rejuvenation of aging component is
successful finally. Subsequently, the interim node will become
available for next rejuvenation requests by clearing temporary
checkpoint and trace-log data and delete the migrated VM.

VI. DISCUSSION
Our rejuvenation based fault tolerance scheme effectively

counteracts aging obstacles of cloud application systems. Its
effectiveness could be qualitatively evaluated from both spatial
and temporal aspects. First, it need one interim node for spatial
redundancy in every cloud service group. Compared with the
replication-based fault tolerance scheme which needs enough
replication nodes for every service component, our method
definitely has less spatial cost. Second, cooperation of the VM
migration and trace-log based checkpoint replay techniques
guarantee continuous running of cloud applications to a larger
extent. Compared with the VM-rebooting based rejuvenation
methods, it highly reduce the downtime of cloud application
executions because the cloud applications do not need to re-
execute from their initial states. Besides, our method can be
directly used to handle multiple rejuvenations of independent
VMs that host respective aging components at the same time.

Furthermore, our aging failure detection tends to be more
comprehensive and more accurate because we consider both
runtime metrics of VMs and communication liveness of cloud
services as credible guidance to identify which cloud service
components need rejuvenation imperatively.

VII. CONCLUSIONS AND FUTURE WORK
In order to counteract software aging obstacles for service

components in cloud applications, a novel and holistic software
rejuvenation based fault tolerance scheme is well presented to
improve their running availability. By a preliminary evaluation,

we discuss that the adaptive failure detection and aging degree
evaluation approach can accurately predict which cloud service
components deserve foremost to be rejuvenated, and the
checkpoint with trace-log replay based rejuvenation approach
is a very promising fault tolerance mechanism choice to
guarantee continuous running of cloud applications.

As to future works, we intend to improve the accuracy of
the failure detection metrics and propose method to rule out the
false positive scenarios. More importantly, we will conduct a
more quantitative evaluation based on stochastic models to
validate availability and performance of our method.

ACKNOWLEDGMENTS
This work is partially supported by the National Natural

Science Foundation of China (No.61262017, No.61262082)
and Inner Mongolia Key Engineering Lab of Cloud Computing
and Service Software. The first author is currently visiting
Melbourne CLOUDS Laboratory.

REFERENCES
[1] D. Cotroneo, R. Natella, R. Pietrantuono and S. Russo, "Software Aging

and Rejuvenation: Where we are and where we are going", in Proc. of
the 3rd International Workshop on Software Aging and Rejuvenation
(WoSAR 2011), pp. 1–6, Nov. 2011.

[2] R. Jhawar and V. Piuri, "Fault Tolerance and Resilience in Cloud
Computing Environments", in Cyber Security and IT Infrastructure
Protection, J. R. Vacca, Eds. Elesvier: USA, 2014, pp. 1–28.

[3] D. Bruneo, S. Distefano, F. Longo, A. Puliafito and M. Scarpa,
"Workload-Based Softwar Rejuvenation in Cloud Systems", IEEE
Transactions on Computers, vol. 62, no. 6, pp. 1072–1085, Jun. 2013.

[4] M. Melo, J. Araujo, R. Matos, J. Menezes and P. Maciel, " Comparative
Analysis of Migration-Based Rejuvenation Schedules on Cloud
Availability", in Proc. of the 2013 IEEE International Conference on
Systems, Man, and Cybernetics (SMC 2013), pp. 4110–4115, Oct. 2013.

[5] J. Araujo, R. Matos, P. Maciel and R. Matias, “Software Aging Issues
on the Eucalyptus Cloud Computing Infrastructure,” in Proc. of the 2011
IEEE International Conference on Systems, Man, and Cybernetics (SMC
2011), pp. 1411–1416, Oct. 2011.

[6] F. Langner, A. Andrzejak, "Detecting Software Aging in a Cloud
Computing Framework by Comparing Development Versions", in Proc.
of the 2013 IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013), pp. 896–899, May 2013.

[7] N. Xiong, A. V. Vasilakos, J. Wu, etc., "A Self-tuning Failure Detection
Scheme for Cloud Computing Service", in Proc. of the IEEE 26th
International Parallel and Distributed Processing Symposium (IPDPS
2012), pp. 668–679, May 2012.

[8] I. P. Egwutuoha, S. Chen, D. Levy, B. Selic and R. Calvo, "Energy
Efficient Fault Tolerance for High Performance Computing (HPC) in the
Cloud", in Proc. of the IEEE 6th International Conference on Cloud
Computing (CLOUD 2013), pp. 762–769, Jun. 2013.

[9] V. Medina and J. M. GarcIa, "A Survey of Migration Mechanisms of
Virtual Machines", ACM Computing Surveys, Vol. 46, No. 3, pp. 30.1–
30.33, Jan. 2014.

[10] H. Liu, H. Jin, X. Liao, C. Yu, and C. Xu, "Live Virtual Machine
Migration via Asynchronous Replication and State Synchronization",
IEEE Transactions on Parallel and Distributed Systems, Vol. 22, No. 12,
pp. 1986–1999, Dec. 2011.

[11] S. Di, Y. Robert, F. Vivien, etc., "Optimization of Cloud Task
Processing with Checkpoint-Restart Mechanism", in Proc. of the 25th
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC 2013), pp.1–12, Nov. 2013.

1118

