
SLA-aware Provisioning and Scheduling of Cloud
Resources for Big Data Analytics

Mohammed Alrokayan, Amir Vahid Dastjerdi, and Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory,

Department of Computing and Information Systems,
The University of Melbourne, Parkville, Victoria 3010, Australia

Emails: m.alrokayan@student.unimelb.edu.au, amir.vahid@unimelb.edu.au, rbuyya@unimelb.edu.au

Abstract—The stunning growth in data has immensely im-
pacted organizations. Their infrastructure and traditional data
management system could not keep up to scale of Big Data.
They have to either invest heavily on their infrastructure or move
their Big Data analytics to Cloud where they can benefit from
both on-demand scalability and contemporary data management
techniques. However, to make Cloud hosted Big Data analytics
available to wider range of enterprises, we have to carefully
capture their preferences in terms of budget and service level
objectives. Therefore, this study aims at proposing a SLA and
cost-aware resource provisioning and task scheduling approach
tailored for Big Data applications in the Cloud. Current ap-
proaches assume that data is pre-stored in cluster nodes prior to
deployment of Big Data applications. In addition, their focus is
purely on task scheduling, and not virtual machine provisioning.
We argue that in the Cloud computing context this is not
applicable, because the nodes are provisioned dynamically (data
cannot be pre-stored) and leaving provisioning to user may lead
to under or over provisioning that can both lead to SLA or
budget constraint violations. Therefore, in this study we first
model the user request, which consist of Big Data analytics jobs
with budget and deadline. Then, we model infrastructures as a
list of data centers, virtual machines (offered in a pay-as-you-
go model), data sources, and network throughputs. After that, to
address the aforementioned issues, we propose and compare cost-
aware and SLA-based algorithms which provision cloud resources
and schedule analytics tasks.

Keywords—Cloud Computing, Big Data Computing, Big Data.

I. INTRODUCTION

With prodigious growth in Web and social network data,
more than ever before, it is clear that big data is coming.
The big data wave is going to surface new opportunities for
enterprises although constitutes series of challenges. The key
issues is how to ingest Big Data and convert it to information
and knowledge that possesses business value. However, this
conversion is not economically viable for small to medium
enterprises in a traditional infrastructure setting.

Cloud computing is growing rapidly as an extremely suc-
cessful paradigm offering on-demand infrastructure, platform
and software services to end users. Cloud computing, with its
on-demand elasticity, and pay-as-you-go model, enables data
intensive applications to dynamically provision resources and
process large data sets in parallel, which was not economically
feasible in a traditional data management systems. To pave the
way for organizations to adopt Cloud-hosted Big Data analyt-
ics, we have to carefully consider their preferences in terms of
budget and service level objectives through provisioning and

scheduling phases, which is the focus of this study. There are
three main deployment models in cloud computing: Private
Cloud, Public Cloud, and Hybrid Cloud [1]. Our focus is on
Hybrid Clouds, where applications are deployed and run across
private and public Clouds in seamless manner.

There is no single tool that provides a complete solution
for Big Data analytics. We use the Lambda architecture [2] to
tackle the problem of Big Data computing via three layers,
namely batch, serving, and speed layer. In this paper, we
restrict our focus to the batch layer that is responsible for
running a function on a the whole dataset to build batch views
which are indexed and later are utilized by other layers to
compute the final query result. Scalability, simplicity, and fault-
tolerance are among desired properties of the batch layer. We
utilized MapReduce [3] for the batch layer as it possesses the
aforementioned properties and is capable of processing large
set of data in parallel to overcome disk I/O bottlenecks.

The majority of SMEs are constantly looking for cutting
edge technologies and solutions to accomplish objectives of
the company more efficiently and at the minimum cost and big
data processing via Cloud resources is not an exception. There
are many SLA-based Big Data computing and MapReduce
scheduling studies [4], [5], [6], [7] in the Cloud context, how-
ever they do not provision Cloud resources dynamically. In-
stead, they have the resources already pre-provisioned (static)
on a private Cloud, which form a virtual cluster. We argue
that Cloud resources should be provisioned dynamically and
on-demand based on the application workload and the size
of the data. This introduces new challenges, namely: a) how
many and which type of cloud resources to provision; b)
which private infrastructure or public cloud provider to select
for a given request with budget and deadline constraints;
and c) given that data is geographically distributed, which
resources should be chosen that minimize the data transfer
and processing costs.

Our major contributions are summarized as follows:
1) a model for SLA-based resource provisioning and tasks
scheduling for Big Data processing in cloud environments; 2)
an SLA-based and cost minimization algorithm to provision
cloud resources and schedule MapReduce tasks in the batch
layer of Lambda architecture, and a technique for reducing the
size of the search space; 3) an approach to enable the algorithm
to run in parallel taking the advantage of multi-core system to
find an optimal solution; and 4) the design and development
of a new extension to CloudSim to evaluate and compare the
algorithms.

Fig. 1. The Proposed Architecture for Cloud-hosted Big-Data Analytics

The rest of the paper is organized as follows: In the next
section, we position our work in the context of Cloud-hosted
Big Data analytics while we are describing the proposed archi-
tecture. Section III presents the MapReduce on cloud model
for the batch layer and discuses formulation of the problem,
objectives, and constraints. Next, the proposed algorithm is
described in Section IV following by performance evaluation
of the algorithms and experiments’ results in Section V. We
present related works and compare them with our approach in
section VI. We conclude the paper in Section VII with ideas
on future directions.

II. ARCHITECTURE

The proposed architecture is depicted in Figure 1. It is
based on the Lambda architecture [2] and its main components
are explained below:
Data Sources and Datasets- There are more objects than
humans connected to the Internet, and their numbers are
growing rapidly. These objects are called Data Sources and
can send what they have sensed from different locations and
environments. Datasets are raw data collected (eg. sensors
and social media feeds) from data sources and are source of
truth.
Batch Layer- When it comes to Big Data analytics, executing
a random query on the whole dataset in real time can be
computationally expensive. This problem can be alleviated by
the use of batch views and pre-computed results to speed up
query execution. The role of Batch Layer is to generate batch
views from datasets.
Map-Reduce Component- MapReduce On Cloud is an
attractive model for enterprises to build batch views due to its
flexibility, agility, and low cost. Apache Hadoop is among the
most popular implementations of MapRedcue. However, the
proposed model in this study is not Hadoop compatible. The
reason is Hadoop’s schedulers are designed for static cluster
of homogeneous machines in a single datacentre, while our
model considers heterogeneous virtual machines (VM) across
clouds. MapReduce consists of three phases: Map, Shuffle and
Sort, and Reduce. MapReduce data is presented in key-value
pairs for the mappers in the map phase for processing. Each
mapper process a block of key-value pairs, and the size of the

block is defined by the user. Mappers emit processed data in
key-value pairs, generating intermediate data for the reducers
in the reduce phase to aggregate the values. Shuffle and sort
phase groups the values with the same key, and sort the keys.
Reducers receive intermediate data with a set of values for
each key for aggregation, and send the result as batch views.
We consider the following characteristics for MapReduce in
our architecture : 1) The reduce phase can not start before
all map tasks finished. 2) Map tasks are almost homogeneous
because they have the same function and almost same data
block size. 3) Reduce tasks are heterogeneous because each
reduce task process different size of data based on the emitted
data (intermediate data) from the map phase. 4) A reduce
task can be scheduled in the same map node to reduce the
intermediate data transfer time and cost between nodes. 5)
Completed map tasks can start sending intermediate data to
reduce nodes even before all map tasks finished. This can
minimize network I/O bottleneck and to save on execution
time as well.
Serving Layer and Speed Layer- The Serving layer typically
consists of a database system which consumes batch views
and facilitates complex queries. To this extent, we are capable
of executing queries on the precomputed views, however to
execute an arbitrary query on an evolving dataset in real
time, we need the Speed Layer. Resource Scheduling and
Provisioning policies for these two layers will be presented in
our future works.
Monitoring and Profiling- This component consists of
a collection of monitoring services that, together with
benchmarking toolkits, extract and analyze performance
statistics about public and private Cloud instances for a
running or a benchmarking application. Profiling occurs while
Data procession is running, or separately for a new version of
application or instance to update and improve the collected
statistics.
Resource Scheduling and Provisioning Component- In
order to enable cloud-hosted MapReduce for application
with SLA, we require the Cloud resource provisioning and
scheduling component, which is a focus of this study. This
component make decisions on both how many and which
type of VM are required (provisioning phase) and which task

Fig. 2. An example of scheduling four map tasks and one reduce tasks in three virtual machines to achieve the deadline of 60 minutes

Fig. 3. Cloud (CLD) and User Request (R) Models

is running on which resource (scheduling phase) to meet the
deadline for creating batch views as well as minimizing the
cost. An efficient scheduling and provisioning component can
guarantee higher level of accuracy for Big Data analytics
by ensuring that there are always batch views built in time
for Serving Layer. Figure 2 demonstrates an example of
provisioning three resources (virtual machines) and running a
MapReduce job with four map tasks and one reduce task on
a Cloud within 50 minutes, where the deadline is 60 minutes.

III. SYSTEM MODEL

There are two models in our system: Cloud Provider (CP)
and User Request (R) Models. The Cloud model (shown in
Equation 1) consist of: a set of data centres (DC), a set of
data sources (DS), a matrix (TVM) that shows throughputs
between a virtual machine type and other types of all data
centres in megabits per second (mbps), and a matrix (TDS)
that shows throughputs between a data source and a virtual

machine type in megabits per second (mbps). Each DS has
a cost for transferring the data from it (CTDS) per terabyte.
Each data centre has a set of virtual machine types (VM).
Each virtual machine type has: cost of leasing (CVM) per hour,
the cost of transferring the data from it (CTVM) per terabyte,
the performance of the virtual machine (MIPS) in million
instructions per second.

CP = {[DS], [DC], [[TVM]], [[TDS]]} (1)
DC = {[VM]} (2)
VM = {CVM , CTVM ,MIPS} (3)
DS = {CTDS} (4)

User request (R) model (shown in Equation 5) consists of:
SLA objectives (SLO) and MapReduce Job (J). Each SLO
includes: Budget (B) and Deadline (D).

R = {SLO, J} (5)
SLO = {B,D} (6)

A MapReduce Job (J) (shown in Equation 7) consists of a
DS, a set of map tasks (MTask), and reduce tasks (RTask).
Each MTask consists of: Input Data Size (DSize), the required
million CPU instructions(MI), and the size of the intermediate
data (IDSizeRTask

) to each reducer RTask. Each RTask has
the required instructions in million instructions (MI). The
optimization algorithm receives a J as a part of R.

J = {DS, [MTask], [RTask]} (7)
MTask = {DSize,MI, [IDSizeRTask

]} (8)
RTask = {MI} (9)

The objective is to satisfy the SLA requirements of the
user while minimizing the total cost. The total cost of running
the MapReduce job is denoted as TC. Given that total of
n machines and m data sources are used, the TC can be
computed as shown in Equation 10 where LP is the leasing
period for a virtual machine and TDVM and TDDS are
total data in terabyte transferred from a machine and a data
source respectively. The total execution time for running the
MapReduce job is denoted as: ET , which is the total time of
executing a task and transferring the data in and out from data
centres.

TC =

n∑
i=1

CVMi
∗ LPVMi

+ CTVMi
∗ TDVMi

+

m∑
j=1

CTDSj ∗ TDDSj

(10)

As descried in Section III, the SLA requirements consist
of Budget (B) and Deadline (D). As a result, algorithms’
objective is given as:

Min (TC)Subject to TC < B and ET < D (11)

IV. ALGORITHMS

The provisioning and scheduling problem described in the
last section is a multidimensional knapsack problem that was
shown to be NP-complete. To tackle the problem, one may
consider a greedy algorithm [8]. However, it cannot be directly
adopted as it is not capable of satisfying the budget constraint.
In addition, it is important to emphasize that the optimization
algorithms are required to both determine what is the best
set of Cloud resources to provision and also how to schedule
tasks on those resources. Knowing the the characteristics of
the problem, series of algorithms are presented and later in
Section V their performances are compared. Algorithms are:
List and First Fit sorted by Cost (LFFCost), Backtracking
sorted by Cost (BTCost), Branch and Bound sorted by Cost
(BBCost), Branch and Bound sorted by Cost and Performance
(BBCostPerf), Branch and Bound with Multiple trees sorted
by Cost (BBMultiCost), and finally Branch and Bound sorted
by cost based on a Pruned Tree (BBPruned), which will be
describe in detail.

The LFFCost algorithm [5] is a heuristic that is expected
to have lower execution time. However, it can not handle
budget and deadline constraints. The rest of the algorithms
(BTCost, BBCost, BBCostPerf, BBMultiCost, and BBPruned)
are tree-based which can cover all possible solutions. Prior
to describing the algorithms we would like to describe two
types of trees that are used by the aforementioned algorithms:
Standard Tree and Pruned Tree.

A. Standard Trees

Figure 4 illustrates an example of a constructed Standard
Tree for two tasks (Task#1 and Task#2) and two VM types (L
for Large VM and XL for X.Large VM). The depth (levels) of
the tree is the total number of map and reduce tasks (Task#1
and Task#2 in Figure 4), while the breadth (branches) is
the total number of tasks multiplied by the number of VM
instances. Therefore, in each level of the tree, each node is a
VM type that can be selected for a task execution. The number
of branches of all nodes are the same, which is the number of
tasks (map and reduce tasks) multiplied by the number of VM
instances. The reason why the Standard Tree is constructed
in this way is that we need to cover all of the possibilities
for scheduling MapReduce tasks. For example, in Figure 4 we
have two tasks and two type of VMs. As a result, we have
four branches under each node. This can be considered as a

disadvantage in the Standard Tree as it grows exponentially as
number of tasks and VM instances increases.

Standard Tree is sorted by cost ascending from left to
right, so it will start consolidating all MapReduce tasks into
the cheapest virtual machine, which is the most left leaf
solution. If that solution does not satisfy the deadline con-
straint; it schedule one of the tasks to the next cheapest virtual
machine. However, if the budget is violated the traversing
process will stop with no solution found. An example of a
solution set/vector is the the third leaf node in Figure 4 (v =
{L1, XL1}), which means that the first task will be scheduled
in a Large VM L1, and the second task in an X.Large VM
XL1.

B. Pruned Tree

Figure 5 illustrates an example of a constructed Pruned
tree for two tasks (Task#1 and Task#2) and two types of VM
(L for Large VM and XL for X.Large VM). We managed to
reduce the size of the tree compared to the Standard Tree.
Similar to the Standard Tree, the depth (levels) of the tree
is the total number of map and reduce tasks. However, the
breadth in Pruned Tree is different than the Standard Tree. As
shown in Figure 4 and 5, L2 is eliminated from children of the
root node. The reason is that there is no difference in cost and
execution time of scheduling the first task in L1 compared
to L2. Similarly, XL2 (and generally for root children, all
instances of each specific VM Type except one) is eliminated.
The rest of the nodes are built from: 1) the set of nodes in the
path from the root to the current node, and 2) an extra VM
instance from each VM type, where the maximum number of
VM instances to be added from each type is the number of
MapReduce tasks. As illustrated in Figure 5, node branches
are not of the same root branches, not like Standard Tree
branches. The path will be selected as an optimal solution
once it does not violate the SLA constraints. In summary the
solution space of Pruned Tree is considerably smaller in size
compared to Standard tree, as out of VM instances with similar
performance, we have only kept one and removed the others
when it makes no difference in total cost and execution time.

Traversing the Pruned Tree is similar to the Slandered
Tree, as nodes are sorted by cost ascending from left to right.
Hence, it will start consolidating all MapReduce tasks into the
cheapest VM (i.e the most left leaf solution). If that solution
does not satisfy the deadline SLA objective; it moves one task
to the next cheapest virtual machine, and so on. However, if the
budget SLA objective is violated at any time the traversing will
stop and return no solution is found. An example of a solution
set/vector is the fifth leaf node in Figure 5 (v = {XL1, XL1})
- the first task and the second task will be scheduled in the
same X.Large VM XL1.

C. Algorithms for Provisioning and Scheduling

We propose several algorithms including a modified ver-
sion of branch and bound algorithm and backtracking for
the problem. As described in Section III, algorithms aim
at satisfying SLA constraints (budget and deadline) while
minimizing the cost. When algorithms employ the standard
tree,it takes long time (days) to traverse the tree and find
an optimal solution, especially for certain deadlines and low

Fig. 4. An Example of a constructed Standard Tree with two tasks (Task#1 and Task#2) and two types of VMs (L for Large VM and XL for X.Large VM).
BTCost, BBCost, BBCostPerf, and BBMultiCost algorithms use this type of tree

budget. Therefore, we have limited the maximum running time
for algorithms to three minutes and chosen the best solution
(even if it is not the optimal one). For all algorithms, solutions
are stored in vectors (v). The vector index is a task and the
vector value is a virtual machine.

In the branch and bound (BB) algorithms (BBCost, BB-
CostPerf, BBMultiCost, and BBPruned), we use two functions
to estimate the execution time and cost: 1) GetT (v) function:
returns the execution time for a given solution vector. 2)
GetC(v) function: returns the cost for a given solution vector.

• LFFCost - an implementation of the List and First
Fit (LFF) algorithm proposed by Hwang and Kim [5].
Virtual machines (VMs) in LFFCost are sorted by
cost. It requires two steps for any algorithm to run
MapReduce jobs on Cloud: resource provisioning and
tasks scheduling. However, Hwang and Kim skipped
the resource provisioning step and jumped into tasks
scheduling. Therefore, we feed LFFCost with all pos-
sible combinations of VMs to compare it with our
proposed algorithm.

• BTCost - a backtracking algorithm traversing the

Fig. 5. An example of pruned tree used in BBPruned algorithm with two
tasks (Task#1 and Task#2) and two types of VMs (L for Large VM and XL
for X.Large VM)

Algorithm 1: Branch and bound algorithm on Standard
Tree sorted by cost

input : Request (R) = {SLO, J}
output: Scheduling vector v

1 v ← 1 ;
2 done← false ;
3 while !done do
4 T ← GetT(v) ;
5 C ← GetC(v) ;
6 if T < D & C < B then
7 if is in leaf then
8 return v ;
9 else

10 v ← GoDeep(v) ;
11 end
12 else
13 v ← GoNextOrBack(v) ;
14 if v has no values then
15 done← true ;
16 end
17 end
18 end
19 return no solution is found ;
20 GoDeep (v)
21 return v + 1 ;
22 end
23 GoNextOrBack (v)
24 if last element of the branch then
25 return v without the last value of the vector ;
26 else
27 return v with last value of the vector increased

by one ;
28 end
29 end

whole Standard Tree. It checks the execution time
and cost on all leafs, and returns the solution with
minimum cost that does not violate the deadline.
BTCost is a Depth First Search (DFS) algorithm on
the described Standard Tree.

Algorithm 2: Branch and bound algorithm on a Pruned
Tree sorted by cost

input : Request (R) = {SLO, J}
output: Scheduling vector v

1 foreach vm from each type of VM do
2 vectors← vectors+ Search({vm},null) ;
3 end
4 return Min(vectors); Search (currentBranch, path)
5 foreach vm of currentBranch do
6 newPath← path+ vm ;
7 T ← GetT(newPath) ;
8 C ← GetC(newPath) ;
9 if T < D & C < B then

10 if is in leaf then
11 return newPath ;
12 else
13 nextBranch← newPath ;
14 Add to nextBranch one VM instance

from each type ;
15 return Search(nextBranch, newPath)

;
16 end
17 end
18 end
19 end

• BBCost - uses branch and bound to improve the
backtracking algorithm (BTCost) by using a vali-
dation function on each node (bounding step) to
decide whether to go deep on the tree (branching
step) or discard the rest of the tree (pruning step).
This validation function calculates the execution time
(GetT (v)) and cost (GetC(v)) and compares it with
the defined SLA constraints. Algorithm 1 shows the
pseudo code of the branch and bound algorithm that
is used in BBCost, BBCostPerf, and BBMultiCost.
BBCost uses the Standard Tree sorted by cost and
initialize the vector v with the value of v = {1},
which is the cheapest VM. Then the algorithm keeps
going deep in the tree unless the solution vector v
violates the constraints. After the completion of every
major branch (major branches are branches under the
root), one of following occurs: 1) If there is a budget
violation in any point during the search, the algorithm
returns: a) “low budget” if no solution is founded, or b)
the solution just before the violation. 2) If the budget
is not violated, it goes to the next major branch until
a solution which can meet the deadline is found.

• BBCostPerf - runs two trees at the same time, one
sorted by cost (CostTree) and the other one by per-
formance (PerfTree). CostTree uses BBCost algorithm
to find optimal solution, while PerfTree uses an al-
gorithm similar to BBCost but the tree is sorted by
the performance of VMs. Our model in Section III
shows the measurement of the VM performance is
based on Million Instruction Per Second (MIPS). As
soon as PerfTree finds a candidate solution, it will be
sent to CostTree. CostTree will check its best solution
up to this point with the one that has been received

by PerfTree. If PerfTree’s solution costs less and
satisfies both of the budget and deadline objectives,
then PerfTree’s solution will be taken as the best
solution. On the other hand, having another tree sorted
by performance (PerfTree) helps us to find out whether
there is a feasible solution at all or not (if deadline is
violated before finding a solution) earlier than BTCost
and BBCost.

• BBMultiCost - is an improved version of BBCostPerf.
It splits the CostTree into multiple equal parts to
search them in parallel along with PerfTree. The
number of CostTree trees that runs in parallel depends
on the capacity of the machine that runs BBMultiCost
algorithm. In general, we based it on the number
of cores considering one core for the main applica-
tion/thread and another core for PerfTree tree. In our
case, we leveraged the Hyper-Threaded technology on
our machine, which allows us to run two trees in
parallel on each core.

• BBPruned - described in Algorithm 2 and stands
for Branch and Bound algorithm for a Pruned Tree.
It uses branch and bound algorithm on a Pruned
Tree to find an optimal solution. BBPruned uses a
recursive function (Search) to find a solution. The
Search function is called on each node except leaf
nodes and its inputs are the current branch nodes
(currentBranch) and the path solution vector. The
core functionality of this recursive function is to iterate
on each node of currentBranch and return path as
an optimal solution if it is a leaf node and it does not
violate the constraints, or call Search if it is not a leaf
node and it does not violate the constraints. However,
the node will simply be skipped if it violates any of
constraints. To find a solution with the minimum cost,
the Pruned Tree is sorted by cost ascending from left
to right, so it will start consolidating all MapReduce
tasks into the cheapest virtual machine, which is the
most left leaf solution. If that solution does not satisfy
the objectives, it evaluates the next cheapest solution.

V. PERFORMANCE EVALUATION

We have extended CloudSim [9] to build a model for a
Cloud-hosted Big data analytics environment. For the batch
layer, it is worth mentioning that the model is not compatible
with Hadoop because Hadoop’s scheduler is not designed for
Cloud computing and it can not schedule tasks on heteroge-
neous VMs. VM types that are used in simulation1 are similar
to Amazon AWS VM types and OpenStack private Cloud VM
flavours. We performed three sets of experiments as follows:

• SLA Violation: Table I listed the SLA violation
percentage for the algorithms. The table shows that
BTCost has 50% SLA violation for the scheduled
MapReduce jobs, which is the highest reported per-
centage. BBCost and BBCostPerf come next with a

1The data, workloads, and algorithms implementations are available at:
https://github.com/Cloudslab/CloudSimEx/tree/master/cloudsimex-mapreduce

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

L
F

F
C

o
s
t

B
T

C
o

s
t

B
B

C
o

s
t

B
B

C
o

s
tP

e
rf

B
B

M
u

ltiC
o

s
t

B
B

P
ru

n
e

d

150 200 250 300

Deadline

C
o

s
t

Fig. 6. The cost in dollar for provisioning and scheduling MapReduce jobs
on cloud using different algorithms on different deadlines (solid line = SLA
satisfied)

TABLE I. SLA VIOLATION PERCENTAGE FOR DIFFERENT
ALGORITHMS

Algorithm SLA Violation Percentage

LFFCost 20%
BTCost 50%
BBCost 45%
BBCostPerf 30%
BBMultiCost 5%
BBPruned 0%

slight decrease in SLA violation percentage. The next
algorithm is LFFCost, which violates 20% of the SLA
constraints. BBMultiCost shows a good performance
with about 5% SLA violation. Finally, this experiment
shows BBPruned algorithm causes no SLA violation,
and manages to meet MapReduce jobs deadline within
the defined budget. That is because BBPruned is
capable of traversing the tree faster than the others,
and therefore can find a feasible solution within the
time limit (three minutes).

• Cost Minimization: Figure 6 shows the performance
of algorithms and their total cost of provisioning and
scheduling with different deadlines. In this experiment
the budget is fixed to $2.5 and the deadline varies from
120 seconds to 310 seconds. When an algorithm fails
to find a solution within the defined budget and/or
deadline, no value for the cost has been reported. We
have noticed that BBCost, BBCostPerf, and BBMul-
tiCost manage to find solutions on loose deadlines or
tight deadlines. This is because when a deadline is
tight, the bounding step prunes most of the tree due
to SLA violation, and as the solution space becomes

smaller. As a result the algorithms manage to find a
solution within the defined period of time. When we
have loose deadlines the algorithms manages to find a
feasible solution quicker due to the higher probability
of spotting a solution at the early stage of search.
Figure 6 shows that BBPruned outperforms the other
algorithms and minimizes the cost without violating
the SLA.

• Algorithm Running Time: Figure 7 shows the al-
gorithm running time when deadline varies from 120
seconds to 310 seconds. BBPruned algorithm manages
to find solutions in comparability short period of time
similar to LFFCost. BTCost (the backtracking algo-
rithm) takes considerably longer time to find a solution
on tight deadlines. However, BBCost, BBCostPerf,
and BBMultiCost (branch and bound algorithms) do
not following a consistent trend. Figure 7 shows the
variations for different deadlines- from less than one
second to three minutes (which is the maximum al-
lowed running time). We notice that when the deadline
gets looser majority of the algorithms managed to
find solution relatively faster. The reason behind this
variations of running time for the cases of BBCost,
BBCostPerf, and BBMultiCost (branch and bound
algorithms) is that for some deadline, especially for
tight deadlines, the bounding step prunes most of the
tree and the algorithms manage to find a solution
within the defined period of time. In addition, when
we have loose deadlines there is a higher probability of
spotting a solution at the early stage of the search. As
shown in Figure 7, BBCostPerf algorithm runs faster
than BTCost and BBCost because it stops traversing
the tree in early stages when PerfTree finds a solution
with less cost earlier than CostTree.

0

50000

100000

150000

0

50000

100000

150000

0

50000

100000

150000

0

50000

100000

150000

0

50000

100000

150000

0

50000

100000

150000

L
F

F
C

o
s
t

B
T

C
o

s
t

B
B

C
o

s
t

B
B

C
o

s
tP

e
rf

B
B

M
u

ltiC
o

s
t

B
B

P
ru

n
e

d

150 200 250 300

Deadline

A
lg

o
ri

th
m

_
R

u
n

n
in

g
_

T
im

e

Fig. 7. The running time for the six algorithms in seconds

VI. RELATED WORK

Most existing MapReduce schedulers and frameworks do
not consider budget as a constraint [4], [10], [6], [5], [7],
[11], although they help in efficiently running a MapReduce
job in Cloud environments. In addition, the majority of the
implementations are Hadoop-based and use Hadoop default
scheduling algorithms to schedule jobs on Clouds [4], [10],
[6], [11]. Nevertheless, Hadoop scheduling algorithms were
designed for clusters of homogeneous machines, which is not
applicable for Cloud heterogeneous resources. However, the
proposed model in this paper is designed for provisioning
and scheduling MapReduce applications across instances of
multiple clouds.

In addition, majority of prior works [4], [10], [6], [5], [7],
[11] did not consider the time it takes to upload data to Cloud
when modelling the scheduling and provisioning problems.
Conversely, we consider the time it takes to transfer the input
data to the mappers and intermediate data to the reducers. The
transfer time is computed based on the size of data and network
throughput.

Lama et al. [4] developed a Hadoop auto-reconfiguration
and Cloud resource provisioning system called AROMA. It
has two main operations modes: offline and online. The offline
mode uses a machine learning techniques to cluster Hadoop
jobs to feed the online operations. The online mode operations
uses optimization to allocate resources and configure Hadoop.
They used Hadoop’s default scheduler to run MapReduce jobs
on Cloud, which is designed to schedule tasks on Cluster.
Hwang et al. [5] proposed a deadline-constrained MapReduce
scheduler on Clouds. Their scheduling algorithms skip the
resource selection and assume that the user will provide those
resources (VMs) to the scheduler. Lee et al. [6] built a system
called TARA (Topology-Aware Resource Allocation). TARA
does not consider any constraints on budget and deadline. It
aims at minimizing the execution time of running MapReduce
jobs on Clouds. TARA does not play any role in allocating
and provisioning resources on Clouds. Instead, it manages the
virtual machine placement. In other words, TARAs goal is
limited to VM placement by mapping them to hosts.

We have identified three different MapReduce Cloud in-
frastructure types in the literature: 1) MapReduce Cluster on
Cloud: This infrastructure uses virtualization technology to
pre-provision a static set of homogeneous virtual machines
(VMs), and run MapReduce jobs on all of them. The major
contribution in this type of infrastructure is limited to task
scheduling, ignoring resource selection and provisioning [6],
[7], [11]. 2) MapReduce Grid on Cloud: Likewise, in this
category virtualization technology is used to pre-provision
resources. However, in this category they are shared between
users, and they are not destroyed and re-provisioned for each
user. The focus here is on fair resource distribution [4], [5]. 3)
MapReduce on Cloud: The use of a Cloud Infrastructure as a
Service (IaaS) to dynamically provision resources is the focus
of this category. The contribution here is designing efficient
resource provisioning and task scheduling [7].

VII. CONCLUSIONS AND FUTURE WORK

In this paper we discussed the problem of provisioning
and scheduling heterogeneous Cloud resources for Big Data

analytics and narrowed our focused to Batch layer. We pre-
sented an efficient architecture and algorithm (BBPruned) to
provision resources and schedule MapReduce tasks in Batch
layer for users with SLA constraints (budget and deadline). The
proposed algorithm is a modified version of branch and bound
algorithm that traverses a customized Pruned Tree, which is
smaller than a Standard Tree. The designed algorithm splits
the tree into almost equal branches and traverses them in
parallel to utilize multi-core systems. Finally, we have shown
the efficiency of the proposed algorithm and its ability to
generate more prominent solutions faster without violating the
SLA constraints. This allows to build batch views in timely
manner for Serving layer and bring us one step closer to build
a SLA-aware Big Data analytics solution in Cloud.

For future work, we develop algorithms for the other
layers and for private clouds with different classes of users
to decrease SLA violation for users with higher priorities.
In addition, we will investigate a hybrid Cloud scheduling
and provisioning strategy that decreases the intermediate data
transfer between different datacentres and clouds. This helps
to satisfy tighter deadlines and reduce the cost of data transfer.

REFERENCES

[1] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
NIST special publication, vol. 800, p. 145, 2011.

[2] N. Marz and J. Warren, Big Data Principles and best practices of
scalable realtime data systems. Manning Publications; First edition.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in Proceedings of the 6th conference on Symposium
on Opearting Systems Design and Implementation (OSDI) 2004, ser.
OSDI’04. Berkeley, CA, USA: USENIX Association, 2004.

[4] P. Lama and X. Zhou, “AROMA: Automated Resource Allocation
and Configuration of MapReduce Environment in the Cloud,” in
Proceedings of the 9th International Conference on Autonomic
Computing (ICAC ’12). ACM, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2371536.2371547

[5] E. Hwang and K. H. Kim, “Minimizing Cost of Virtual Machines
for Deadline-Constrained MapReduce Applications in the Cloud,” in
Proceedings of ACM/IEEE 13th International Conference on Grid
Computing (GRID’12), 2012.

[6] G. Lee, N. Tolia, P. Ranganathan, and R. H. Katz,
“Topology-Aware Resource Allocation for Data-Intensive Work-
loads,” in Proceedings of the First ACM Asia-Pacific
Workshop on Systems (APSys’10), 2010. [Online]. Available:
http://doi.acm.org.ezp.lib.unimelb.edu.au/10.1145/1851276.1851278

[7] M. Mattess, R. N. Calheiros, and R. Buyya, “Scaling mapreduce ap-
plications across hybrid clouds to meet soft deadlines,” in Proceedings
of the 27th IEEE International Conference on Advanced Information
Networking and Applications (AINA’13), 2013.

[8] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathe-
matics of operations research, vol. 4, no. 3, pp. 233–235, 1979.

[9] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Software: Practice and Experience, vol. 41, no. 1, pp. 23–50,
2011.

[10] K. Kambatla, A. Pathak, and H. Pucha, “Towards optimizing hadoop
provisioning in the cloud,” in Proceedings of the First Workshop on Hot
Topics in Cloud Computing (HotCloud ’09), 2009.

[11] A. Verma, L. Cherkasova, and R. Campbell, “Aria: automatic resource
inference and allocation for mapreduce environments,” in Proceedings
of the 8th ACM International Conference on Autonomic Computing
(ICAC’11), 2011.

