
SLA-based virtual machine management for heterogeneous workloads
in a cloud datacenter

Saurabh Kumar Garg a,n, Adel Nadjaran Toosi b, Srinivasa K. Gopalaiyengar c,
Rajkumar Buyya b

a Department of Computing and Information Systems, Faculty of Engineering and ICT, The University of Tasmania, Australia
b Cloud Computing and Distributed Systems Laboratory, Department of Computing and Information Systems, The University of Melbourne, Australia
c Department of Computer Science and Engineering, M.S. Ramaiah Institute of Technology (MSRIT), Bangalore, Karnataka, India

a r t i c l e i n f o

Article history:
Received 13 September 2012
Received in revised form
30 June 2014
Accepted 16 July 2014
Available online 1 August 2014

Keywords:
Cloud computing
Service Level Agreement
Virtual machine migration
Resource management

a b s t r a c t

Efficient provisioning of resources is a challenging problem in cloud computing environments due to its
dynamic nature and the need for supporting heterogeneous applications. Even though VM (Virtual
Machine) technology allows several workloads to run concurrently and to use a shared infrastructure,
still it does not guarantee application performance. Thus, currently cloud datacenter providers either do
not offer any performance guarantee or prefer static VM allocation over dynamic, which leads to
inefficient utilization of resources. Moreover, the workload may have different QoS (Quality Of Service)
requirements due to the execution of different types of applications such as HPC and web, which makes
resource provisioning much harder. Earlier work either concentrate on single type of SLAs (Service Level
Agreements) or resource usage patterns of applications, such as web applications, leading to inefficient
utilization of datacenter resources. In this paper, we tackle the resource allocation problem within
a datacenter that runs different types of application workloads, particularly non-interactive and trans-
actional applications. We propose an admission control and scheduling mechanism which not only
maximizes the resource utilization and profit, but also ensures that the QoS requirements of users are
met as specified in SLAs. In our experimental study, we found that it is important to be aware of different
types of SLAs along with applicable penalties and the mix of workloads for better resource provisioning
and utilization of datacenters. The proposed mechanism provides substantial improvement over static
server consolidation and reduces SLA violations.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cloud computing has led to a paradigm shift where enterprises,
rather than maintaining their own infrastructure, started to out-
source their IT and computational needs to third party service
providers (Buyya et al., 2009). The clouds are large scale out-
sourcing datacenters that host thousands of servers which can run
multiple virtual machines (VMs) simultaneously. Therefore, they
host a wide range of applications and provide users with an
abstraction of unlimited computing resources on a pay-as-you-
go basis.

While there are several advantages of these virtualized infra-
structures such as on-demand scalability of resources, there are
still issues which prevent their widespread adoption (Ostermann
et al., 2008; Vouk, 2008). In particular, for a commercial success of

this computing paradigm, cloud datacenters need to provide
better and strict Quality of Service (QoS) guarantees. These
guarantees, which are documented in the form of Service Level
Agreements (SLAs), are crucial as they give confidence to custo-
mers in outsourcing their applications to clouds (Yeo and Buyya,
2005). However, current cloud providers give only limited perfor-
mance or QoS guarantees. For instance, Amazon EC2 (Schneider,)
offers only guarantees on availability of resources, not on perfor-
mance of VMs (Goiri et al., 2010; Nathuji et al., 2010).

Resource provisioning plays a key role in ensuring that cloud
providers adequately accomplish their obligations to customers
while maximizing the utilization of the underlying infrastructure.
An efficient resource management scheme would require dyna-
mically allocating each service request the minimal resources that
are needed for acceptable fulfillment of SLAs, leaving the surplus
resources free to deploy more virtual machines. The provisioning
choices must adapt to changes in load as they occur, and respond
gracefully to unanticipated demand surges. For these reasons,
partitioning the datacenter resources among the various hosted
applications is a challenging task. Furthermore, current cloud

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

http://dx.doi.org/10.1016/j.jnca.2014.07.030
1084-8045/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: skgarg@utas.edu.au, Saurabh.Garg@utas.edu.au (S.K. Garg),

adeln@student.unimelb.edu.au (A.N. Toosi),
kgs@csse.unimelb.edu.au (S.K. Gopalaiyengar), rbuyya@unimelb.edu.au (R. Buyya).

Journal of Network and Computer Applications 45 (2014) 108–120

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2014.07.030
http://dx.doi.org/10.1016/j.jnca.2014.07.030
http://dx.doi.org/10.1016/j.jnca.2014.07.030
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2014.07.030&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2014.07.030&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2014.07.030&domain=pdf
mailto:skgarg@utas.edu.au
mailto:Saurabh.Garg@utas.edu.au
mailto:adeln@student.unimelb.edu.au
mailto:kgs@csse.unimelb.edu.au
mailto:rbuyya@unimelb.edu.au
http://dx.doi.org/10.1016/j.jnca.2014.07.030


datacenters host a wider range of applications with different SLA
requirements (Goiri et al., 2010; Quiroz et al., 2009; Sotomayor
et al., 2008a). For instance, transactional applications require
response time and throughput guarantees, while non-interactive
batch jobs1 are concerned with performance (e.g., completion
time) (Balaji et al.,). Resource demand of transactional applications
such as web applications tend to be highly unpredictable and
bursty in nature (Hellerstein et al., 1999; Carrera et al., 2008),
while demand of batch jobs can be predicted to a higher degree
(Nudd and Jarvis, 2005; Smith et al., 2009). Hence, the satisfaction
of complex and different requirements of competing applications
make the goal of a cloud provider to maximize utilization while
meeting different types of SLAs far from trivial.

Traditionally, to meet SLA requirements, over-provisioning of
resources to meet worst case demand (i.e., peak) is used. However,
servers operate most of the time at very low utilization level
which leads to waste resources at non-peak times (Barroso and
Holzle, 2007). This over-provisioning of resources results in extra
maintenance costs including server cooling and administration
(Kim et al., 2008). Some companies such as Amazon (Schneider,)
are trying to utilize such slack of resources in the form of spot
“instances” by renting them out at much lower rate but with low
performance guarantees. Similarly, many researchers tried to
address these issues by dynamic provisioning of resources using
virtualization, but they focused mainly on scheduling based on
one specific type of SLA or application type such as transactional
workload. Although computationally intensive applications are
increasingly becoming part of enterprise datacenters and cloud
workloads, still research considering such applications is in
infancy. Today, most of the datacenters run different types of
applications on separate VMs without any awareness of their
different SLA requirements such as deadline, which may result in
resource under-utilization and management complexity.

To overcome these limitations, we present a novel dynamic
resource management strategy that not only maximizes resource
utilization by sharing resources among multiple concurrent appli-
cations owned by different users, but also considers SLAs of
different types. We handle scheduling of two types of applications,
namely, compute intensive non-interactive jobs and transactional
applications such as Web server, each having different types of SLA
requirements and specifications. Our strategy makes dynamic
placement decisions to respond to changes in transactional work-
load, and also considers SLA penalties for making future decisions.
To schedule batch jobs, our proposed resource provisioning
mechanism predicts the future resource availability and schedules
jobs by stealing CPU cycles, which are under-utilized by transac-
tional applications during off-peak times.

The rest of the paper is organized as follows: Section 2 presents
the related work in the area of resource provisioning in cloud
datacenters. Section 3 describes the system model and its compo-
nents in detail. We formally define the problem to be solved in
Section 4. The algorithms used for hybrid resource provisioning
are discussed in Section 5. The evaluation parameters, testbed and
performance related issues are elaborated in Section 6. Finally,
Section 7 concludes the paper and discusses future research
directions.

2. Related work

There are several works that relate to our research focus
particularly in the area of dynamic resource provisioning and

allowing mixed/heterogeneous workloads within a cloud datacen-
ter. We broadly classify the works with respect to dynamic
resource provisioning such as scheduling mixed workloads, SLAs,
and auto-scaling of applications. The comparison of the proposed
work with most important existing ones, with respect to various
parameters, is summarized in Table 1. The details of the related
works are discussed below.

Meng et al. (2010) proposed a joint-VM provisioning approach
by exploiting statistical multiplexing among the workload patterns
of multiple VMs, so that the unused resources of a low-utilized VM
is borrowed by other co-located VMs with high utilization. Zhang
et al. (2010) designed an approach to quickly reassign the
resources for a virtualized utility computing platform using
“ghost” virtual machines (VMs), which participate in application
clusters, but do not handle client requests until needed. These
works concentrate on fixed number of VMs, while we consider
variable amount of incoming workload.

Soundararajan and Anderson (2010) focused on the analysis
and resource provisioning for workloads management with con-
siderable network and disk I/O requirements. The management
workloads scale with an increase in compute power in the
datacenter. Singh et al. (2010) argue that the workload in Internet
applications is non-stationary and consider the workload mix
received by a Web application for their mix-aware dynamic
provisioning technique. Our paper also considers non-interactive
applications. Goiri et al. (2010) define a unique resource-level
metric (i.e., SLA) for specifying finer level guarantees on CPU
performance. This metric allows resource providers to dynamically
allocate their resources among the running services depending on
their demand. In contrast to the proposed work, they do not
handle multiple types of SLAs and SLA penalty-related issues.

Steinder et al. (2008) take advantage of virtualization features to
co-allocate heterogeneous workloads on one server machine, thus
reducing the granularity of resource allocation. Ejarque et al. (2010)
developed a working prototype of a framework for facilitating
resource management in service providers, which allows both cost
reduction and fulfillment of the QoS based on SLAs. In contrast, our
work concentrates on handling multiple types of SLAs both for High
Performance Computing (HPC) andWeb based workloads with a new
admission control policy. Quiroz et al. (2009) presented a decentra-
lized and robust online clustering approach for a dynamic mix of
heterogeneous applications on clouds, such as long running compu-
tationally intensive jobs, bursty and response-time sensitive requests,
and data and IO-intensive analytics tasks. When compared to our
approach, the SLA penalties are not considered. Sotomayor et al.
(2008b) developed a lease management architecture called Haizea,
that implements leases as VMs, leveraging their ability to suspend,
migrate, and resume computations and to provide leased resources
with customized application environments. Again, this paper does not
consider the issues of SLAs and QoS.

Wang et al. (2007) evaluated the overhead of a dynamic
allocation scheme in both system capacity and application-level
performance relative to static allocation. They also provided
implications and guidelines for a proper feedback controller
design in dynamic allocation systems. In our work, the idea of
dynamic allocation is extended for multiple types of workloads
including HPC and Web. Sahai et al. (2003) proposed a technique
where guarantees have to be specified in terms of SLAs that have
to be monitored and assured. In contrast, we propose architecture
for specifying and monitoring SLAs to achieve the above. Van et al.
(2009) proposed a SLA-aware virtual resource management for
cloud infrastructures, where an automatic resource manager
controls the virtual environment which decouples the provision-
ing of resources from the dynamic placement of virtual machines.
Even though the paper fulfills the SLA and operating costs, it does
not deal with SLA penalty related issues. Carrera et al. (2008)

1 In this paper, we use non-interactive batch jobs, batch application, HPC
application and non-transactional application interchangeably.

S.K. Garg et al. / Journal of Network and Computer Applications 45 (2014) 108–120 109



developed a technique that enables existing middleware to fairly
manage mixed workloads both in terms of batch jobs and
transactional applications. The aim of this paper is towards a
fairness goal while also trying to maximize individual workload
performance. But our aim is to efficiently utilize the datacenter
resources while meeting the different types of SLA requirements of
the applications.

Hu et al. (2009) developed an efficient and effective algorithm to
determine the allocation strategy that results in the smallest required
number of servers. Paton et al. (2009) describes how utility functions
can be used to make explicit the desirability of different workload
evaluation strategies, and how optimization can be used to select
between such alternatives. In our paper, these ideas are mapped in a
different manner to handle multiple types of SLAs with dynamic
workloads. Nathuji et al. (2010) proposed a QoS-aware control frame-
work that tunes resource allocations to mitigate performance inter-
ference effects. These works only dealt with one type of application
workloads and the number of applications is constant during resource
allocation. On the other hand, our work focuses on designing
approaches for handling multiple types of SLAs with admission control
to allow more submission of applications.

There are other several works that focus on dynamic resource
provisioning in cloud. Casalicchio and Silvestri (2013) proposed five
resource allocation policies with workload prediction model to deter-
mine the allocation or deallocation of new resources. Thework focuses
on web-based applications not on batch type workloads. Sharma et al.
(2011) presented a dynamic provisioning system called Kingfisher
which exploits differences in pricing and elasticity mechanisms for
resource selection in order to optimize the incurred cost. In this work,
single application provisioning is considered; SLA andmixed workload
are not considered. Bonvin et al. (2011) proposed a decentralized
approach to dynamically adapt cloud resources for different applica-
tions so that they can meet their SLA requirements. The focus again
was onweb applications and considered public cloud. Fito et al. (2010)
proposed a web hosting system called CHP which provides scalable
web services using cloud resources in outsourcing economic model.
In our work, we have considered in-house cloud resources rather than
external resources. Zhu et al. (2011), similar to our work, presented a
datacenter architecture for hosting multi-tier web applications using
virtualized resources with an aim to satisfy user's SLA and maximize
overall profit of IaaS providers. Wang et al. (2012) considered a similar
scenario of a service provider with several clients having individual
requirements and SLAs. They proposed a resource management
method to maximize profit of service provider by optimizing the
resources allocated to applications executing MPI or MapReduce.
This work does not consider the requirements of web applications.
Casalicchio et al. (2013) proposed a near optimal algorithm for
allocating virtual resources to its client based on hill-climbing.
The scenario here is slightly different than others as they also con-
sider renting resources from other cloud providers in peak times.
In contrast, we consider only in-house resources. Qiu et al. (2012),

focusing on Online Transaction Processing systems, proposed an
online algorithm for provisioning resources dynamically to minimize
response time to end users. They utilized neural network based
technique to predict user demand on the system. Islam et al. (2012)
proposed a Neural Network and Linear Regression based prediction
model which is used to develop various resource provisioning
strategies for dynamically allocating resources for upcoming demand.
Minarolli and Freisleben (2014) presented a distributed Artificial
Neural Network based resource allocation to optimize the trade-off
between the conflicting objectives of satisfying applications QoS
requirements and reducing power costs. These works again focussed
on specific applications, not heterogeneous workloads, which are
considered in our proposed work. Pfitscher et al. (2014) presented a
complimentary work and thus proposed a model to measure memory
usage of virtual machines allocated to the customer application.

Antonescu et al. (2013) proposed a prediction-based method of
virtual machine allocation in order to maximize profit and SLA
satisfaction. Xiao et al. (2013) proposed a dynamic resource allocation
system which optimizes the resource allocated to virtual machines
based on application demand. Kim et al. (2013) presented a virtual
machine allocation mechanism that takes into account the correlated
information among various virtual machines and thus minimizes
energy usage. Even though these works consider performance profile
of different types of virtual machines, they do not consider auto-
scaling requirements of applications.

The main contributions of this paper lie within the design of an
efficient admission control and scheduling mechanism to max-
imize utilization of cloud datacenters with the following salient
features:

� Adaptive admission control and dynamic resource provisioning
facility that maximizes resource utilization considering SLAs of
different types.

� Consideration of multiple types of SLAs based on application
requirements.

� Integration of mixed/heterogeneous workloads (such as non-
interactive and transactional applications) for better utilization
of resources.

� Variable penalties depending on the type of SLA violation.
� Support for auto-scaling of resources in order to satisfy SLAs

and thus, cope with peak time demands.

3. System model

3.1. Datacenter model

We consider a virtualized datacenter with identical physical
machines that can support the execution of multiple and hetero-
geneous VMs. It is assumed that each server is interconnected

Table 1
Summary of comparison of the proposed work with existing literature.

Parameter Related works Our work

Admission Control None √
Quality of Service (QoS) {Ejarque et al., 2010; Nathuji et al., 2010; Casalicchio and Silvestri, 2013; Sharma et al., 2011; Qiu et al., 2012; Kim et al., 2013} √
Service Level Agreement

(SLA)
{Sahai et al., 2003; Qiu et al., 2012; Van et al., 2009; Casalicchio and Silvestri, 2013; Bonvin et al., 2011; Zhu et al., 2011;
Wang et al., 2012; Antonescu et al., 2013}

√

Dynamic Resource
Provisioning

{Meng et al., 2010; Singh et al., 2010; Wang et al., 2007; Hu et al., 2009; Casalicchio and Silvestri, 2013; Sharma et al., 2011;
Bonvin et al., 2011; Fito et al., 2010; Zhu et al., 2011; Wang et al., 2012; Qiu et al., 2012}

√

SLA Penalty Zhu et al. (2011), Wang et al. (2012), Antonescu et al. (2013), Antonescu et al. (2013), Xiao et al. (2013), Kim et al. (2013) √
Autoscaling Sharma et al. (2011), Bonvin et al. (2011), Fito et al. (2010), Zhu et al. (2011) √
Mixed/Heterogeneous

Workloads
{Steinder et al., 2008; Quiroz et al., 2009; Carrera et al., 2008; Paton et al., 2009; Antonescu et al., 2013; Xiao et al., 2013;
Kim et al., 2013}

√

S.K. Garg et al. / Journal of Network and Computer Applications 45 (2014) 108–120110



with a high-speed LAN network and high bandwidth link to the
Internet. Figure 1 shows the key components involved in schedul-
ing of an application on a VM. The admission control component
decides if the requested VM (for an application) can be allocated
and the QoS requirements can be met with a given number of
available resources. If an application is accepted for execution, SLA
is signed and penalty rates are negotiated with the user. The VM
scheduler decides which server this new application (also known
as VM) should be executed and thus generates execution sche-
dules for all the accepted applications (VMs). The VM manager
initiates a VM and allocates it to a server having the required
capacity. The job scheduler schedules the applications on this
newly initiated VM. The SLA manager monitors current SLAs and
service level for each accepted application. It is assumed that the
datacenter will receive two types of application workloads, i.e.,
transactional and non-interactive batch jobs. Since both applica-
tions have different QoS requirements, different charging models
are used. Transactional applications are offered a set of VMs with
varying capacity and hourly charges to allow the user to choose as
per his/her requirements. The auto-scaling facility can also be
provided if resource demand exceeds the allocated VM size. It is
assumed in our model that combined resources promised for all
the applications sharing the host will not exceed the total available
resources such as bandwidth, memory and CPU. To run a batch job,
the datacenter charges users based on the time taken to execute
the job on a lowest capacity VM. In the next section, we discuss
two types of application workloads considered in this work along
with their SLA definitions.

3.2. Application models and SLA

We have modeled the resource allocation to map the mix of
two types of user applications. The transactional applications/
workloads include Web applications, whose resource demand can
vary with time based on incoming requests to the application. On
the other hand, for the non-interactive workloads, we model the
HPC compute intensive bag of task applications. “Bag of tasks” are

a common type of parallel applications highly used in a variety of
scientific applications, such as parameter sweeps, simulations,
fractal calculations, computational biology. Most of these scientific
applications include independent single-machine jobs (tasks)
grouped into a single bag of tasks (Iosup and Epema, 2010). It is
assumed that there is no data communication between each task.

The SLA model that is used as the basis for determining the VM
capacity is discussed in detail below. For scheduling purposes, we
consider a discrete-time scenario in which time is divided into
intervals with identical length (T). During each interval, the system
checks the requirements of each application and their SLAs, and
allocates resources accordingly.

3.2.1. SLA model for transactional workload
A user gives QoS requirements in terms of response time rti of

each transactional application i. This response time requirement can
be translated to CPU capacity αi needed to achieve this response
time (Carrera et al., 2008). The SLA is violated if the capacity Ct
allocated to the application is less than the required capacity at
time t. A penalty qwill incur whenever there is any violation of SLA.
Thus, the net amount the user needs to pay at the end of the period
ðt1; t2Þwould be: rnαinðt2�t1Þ�Q ðPenalty_TypeÞ, where r is amount
of money charged by the provider per unit capacity per unit time
for the provisioned capacity and Q ðPenalty_TypeÞ is the total penalty
that must be credited to the user by the provider for the SLA
violation according to the agreed type of penalty. Here, the user can
choose three types of penalties (Garg et al., 2002):

� Fixed penalty: For fixed penalty, Q ð�Þ is independent of the
time interval for which service is not provided as per the SLA.
The fixed penalty q (Q ðfixedpenaltyÞ ¼ q) is charged whenever
the cloud provider fails to fulfill the agreed capacity demand.
For example, given that there are two time intervals (t1, t2) and
(t3, t4) in which the provider fails to provide the agreed
capacity, q will be charged for each of them independent of
the interval length.

Fig. 1. Datacenter model.

S.K. Garg et al. / Journal of Network and Computer Applications 45 (2014) 108–120 111



� Delay-dependent penalty: The penalty is proportional to the
delay incurred by the service provider in returning the capacity.
If q0 is the agreed penalty per unit time in the SLA and t1 and t2
are the time instants between which the capacity for the
current demand is less than the reserved capacity (according
to the SLA), then the penalty to the service provider is
calculated as: Q ðdelaydependentÞ ¼ ðq0 � ðt2�t1ÞÞ.� Proportional penalty: This is also a form of delay-dependent
penalty, where the penalty to be credited to a user is propor-
tional to the difference between the user's provisioned capacity
C1 and its current allocation C2. If q″ is the agreed penalty rate
per unit capacity per unit time, t1 and t2 are the respective
times when the capacity C1 was requested and capacity C2
allocated, then the penalty is given as: Q ðProportionalÞ ¼
ðq″� ðt2�t1Þ � ðC1�C2ÞÞ.

The SLA also contains the information regarding the user's
choice of opting for the auto-scaling facility. If the user chooses
this facility, when demand for resources increases beyond the
initial requested amount, more resources are allocated to meet this
spike. They will be automatically reduced when demand decreases
below a threshold. Let ΔcðtÞ be the extra CPU capacity that must be
allocated to the application at time t to handle the spike in
resource demand such that response time remains below the
agreed rti on the SLA. If ΔcðtÞZ0, then a VM of size ΔcðtÞ will be
initiated. The cloud provider can charge an additional amount for
offering such flexibility.

3.2.2. SLA model for non-interactive batch jobs
Deadline and the amount of CPU time allocated is used as QoS

requirements for batch jobs. Deadline is a commonly used QoS
parameter defined by various works. In the context of cloud
computing, these jobs also require performance based guarantees.
Since the performance of allocated VMs can vary with the usage of
datacenter, we define SLA as the p amount of CPU Cycles (calculated
in terms of Millions of Instructions (MIs)) to be provided by the
cloud provider before the deadline d in order to ensure successful
completion of the job. Let db be the delay with respect to deadline
before allocating p CPU cycles. For example, a user specify in the SLA
that he requires resources to be allocated to the job equivalent to X
number of CPU cycles before the deadline d. If the job has utilized
the required resources (i.e., X CPU cycles) at time t and t is larger
than d then the delay is t�d, otherwise it is zero. If the provider
fails to complete the given job within the deadline, the following
penalty applies: Q ðbatchÞ ¼ y� db, where y is the penalty rate.

4. Problem statement

The aim of cloud service providers is to maximize the utiliza-
tion of their datacenters by efficiently executing the user applica-
tions using minimal physical machines. Let n be the number of
applications (virtual machines) to be executed in the datacenter at
time t and K be the required number of physical machines with
CPU capacity Ck to run these applications. Let ci(t) be the CPU
capacity allocated to the virtual machine running application i at
time t and αi is the promised CPU capacity specified in the SLA for
transactional applications. For batch jobs, prem(i) is the remaining
number of CPU cycles in MIs that need to be executed before the
deadline di. The problem can be formulated as an optimization
problem at time t as follows:

minimize K
subject to

∑
n

i ¼ 1
ciðtÞxikrCk where 0rkrK ;

ciðtÞrαi 8 iA Transactional application
� �

ciðtÞZ
premðiÞ
di�t

8 iA Batch jobs
� � ð1Þ

xik is 1 if application i is running on physical machine k, otherwise
it is zero. The above optimization problem has two types of
constraints: (a) due to the capacity of the physical machine and
(b) due to CPU capacity promised for a transactional application
and batch application. Given the online nature of the problem and
the variation of applications' requirements with time, it is not
trivial to solve the above optimization problem. Moreover, this
mapping problem maps to the bin-packing problem which is
known to be NP-hard. Hence, we use a heuristic approach to solve
the above mapping problem.

5. Admission control and scheduling policy

As discussed in the earlier sections, we consider the require-
ments of two different application workloads before accepting
new requests and also while serving the accepted one. The main
idea is to monitor the resource demand during the current time
window in order to make decision about the server allocations and
job admissions during the next time window. Datacenter resource
allocation is monitored and reconfigured in regular intervals. At a
given point of time, it is assumed that if a host is idle for a certain
amount of time or not running any application, then it will be
switched-off. In each scheduling cycle,2 admission control and
scheduling can perform three functions:

� Admission Control: It makes the decision to accept or reject a
new application (transactional or batch) based on present and
future resource availability.

� SLA Enforcement: The resource demand of each application is
monitored by the SLA Manager based on agreed QoS level
guaranteed in the SLA. In this step, dynamic resource reconfi-
guration is done to handle the demand bursts of transactional
applications and to meet SLA requirements.

� Auto-Scaling: If the resource demand of any application
exceeds the requested (reserved) capacity in the SLA, a new
VM instance can be initiated based on the resource availability
and an auto-scaling threshold specified in the SLA by the VM
Manager.

All the above operations depend on the forecasting module
which predicts the future resource availability and the expected
resource demand of each application. We will discuss the above
three functions and methodologies in the following sections. The
batch job queue component represents the queue of VMs (corre-
sponding to each batch job) that are waiting for execution.

The batch job queue is sorted based on a threshold time up to
which a batch job can be delayed without any penalty. Let d be the
deadline, MI be the CPU cycles (Millions of Instructions (MI)
Benchmarks,) required for completion of job, and Cmin be the
Million of Instruction Per Second (MIPS) (Benchmarks,) of the
smallest standardized VM offered by the cloud provider, then the
threshold time threshTime(i) for batch job i is calculated as below.

threshTimeðiÞ ¼ d� MI
Cmin

Assuming that there is no delay due to I/O, threshold time is an
approximation of the delay that can be tolerated in the execution
of jobs and is used to decide whether to allocate the resources to
the job at a given time or not.

2 Scheduling cycle occurs at the beginning of every slot T.

S.K. Garg et al. / Journal of Network and Computer Applications 45 (2014) 108–120112



5.1. Forecasting model

Artificial neural networks are computational models inspired
by working of neurons on the brain that are capable of learning.
They can compute values from inputs through the complex net-
work. They consist of sets of numerical parameters (Weights) that
are tuned by a learning algorithm and can approximate non-linear
functions. The weights represent connection strengths between
neurons and are activated during training and prediction.

Artificial Neural Network (ANN) has proven itself as an eminent
method for irregular series and multiple-period-ahead forecasting
(Srinivasa et al., 2006; Azoff, 1994). Such neural network techni-
ques have also been used and well studied in previous works for
distributed application scheduling in the context of Grids
(Dodonov and de Mello, 2010). In this paper, we have used ANN
to forecast future CPU utilization for VMs of transactional applica-
tions based on past data. It is important to note that it is not our
goal to determine the best prediction technique here. However,
our contribution is that if the resource requirements of an
application are well predicted, we can maximize the resource
utilization considering different SLA requirements of different
applications. In addition, our scheduling policy is designed to be
robust and tolerant towards incorrect predictions of the forecast-
ing model. We considered CPU utilization as an univariate time
series with equally spaced time intervals of 5 min. The term
univariate time series refers to a time series that consists of set
of values over time of a single quantity observed sequentially over
equal time increments. Our analysis of the CPU utilization in the
used traces showed that 5 min interval is small enough to capture
the CPU utilization variations for our purpose. Our forecasting ANN
is modeled with three layers, one input layer, one output layer and
one hidden layer between the inputs and output as shown in
Fig. 2.

The forecasting model has been formed based on the multi-
layer feed-forward neural network. The standard Back Propagation
(BP) algorithm with minimum Root Mean Square Error (RMSE) is
used to train the neural network. RMSE is a measure to quantify
differences between forecasted value and the true value of the
quantity being estimated. It is calculated as follows:

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n ∑

n

i ¼ 1
ðŷi�yiÞ2

s
ð2Þ

where ŷi and yi are the predicted value and the true value of the
ith elements of the sample set respectively and n is size of the
sample set.

A hyperbolic tangent sigmoid function is used as the transfer
function for all hidden layer neurons and a linear transfer function
is used for all output layer neurons. All neural networks are fully

connected, that is, all input nodes are connected to all the hidden
layer nodes, and all hidden layer nodes are connected to all linear
output nodes. As observed from Fig. 2, the network is a single
output neural network that actually performs the following map-
ping from the inputs to the output: ut ¼ f ðut�1;ut�2;…;ut�pÞ,
where ut is the utilization at time t, p is the dimension of the
input vector (the number of past observed utilization) used to
predict the future, and f in general is a nonlinear function
determined by the network structure and its weights. Since web
applications usually require long-running VMs, we assume that
there is enough available data to train the neural networks at
training phase. Each VM is considered as a web application and a
neural network was created for that.

In the experiments,3 a time series vector of CPU utilization for
one week for each VM is given as an input and CPU utilization of
that VM is predicted for one day ahead. To avoid the overhead of
training and forecasting, this process was done in offline mode
before running the experiments. The inputs of the network are the
past observations of the VM CPU utilization and the output is the
forecasted value. Each input pattern is composed of a moving
window of fixed length along the series. One of the challenging
issues in using neural network for univariate time series forecast-
ing is how to determine the most suitable number of input and
hidden nodes in the network. In order to find the most suitable
number of nodes in input layer (window length) and hidden layer,
in the training phase combination of different number of nodes in
input and hidden layer has been created and the performance of
the network has been tested through validation data. To be
precise, we trained the network with initial 80% of the one week
input data and tested it with the remaining 20%. Optimal network
structure is selected based on the minimum RMSE of the test
result. Each network was trained for 1000 epochs when the
learning rate was set at 0.1. Early stopping method has been used
to solve the over-fitting problem.

In order to demonstrate the accuracy of the prediction model,
a comparative analysis is done between a commonly used forecast-
ing technique, i.e., generalized autoregressive conditional hetero-
skedasticity (GARCH) and the adopted ANN. GARCH has been
widely used in financial and econometric modeling and analysis
to characterize time series data. The trained ANN for a sample VM
was used to predict the next two hours utilizations and the result
for actual and predicted values by ANN and GARCH have been
plotted in Fig. 3 for every 5 min interval. Numbers in x-axis indicate
the index of the 5 min intervals (e.g., 3 stands for minute 15).

From the prediction plots, it can be observed that the proposed
ANN model performs better, when compared to other linear
models like GARCH (Srinivasa et al., 2006; Azoff, 1994). Figure 3
(a), (d) and (e) shows that the forecast using ANN model is quite
close to the actual data, although it starts deviating with time,
while in Fig. 3 (b) and (f), predicted values by ANN model almost
overlapped with actual values. In contrast, for Fig. 3 (c) and (e), we
find that the predicted utilization is most of the times above the
actual utilization. The reason for such different behavior of ANN
model for different machines is the change in the CPU utilization
of training and actual CPU utilization data in the prediction
window. In the cases where the change is large, we find that
ANN model prediction deviates significantly from the actual value.
However, we can notice that not only the deviation is not very
high in most of the cases but also ANN model slightly over-
predicts the CPU utilization. From Fig. 3, it can be closely observed
that the prediction is near to accuracy and in very few cases the
ANN model predicts lower utilization when compared to original
values and in some cases (e.g., Fig. 3 (c)) GARCH performs better

Fig. 2. The 3-layer feed-forward artificial neural network. 3 Details about the workload used in this experiment are given in Section 6.1.

S.K. Garg et al. / Journal of Network and Computer Applications 45 (2014) 108–120 113



than ANN model. The ANN model prediction overestimates the
actual value which is better for our scheduling scheme, as under-
estimation may lead to unnecessary SLA violations. In addition,
even though 100% accuracy cannot be achieved through any
forecasting models, non-linear models such as ANN serve the
purpose better when compared to many other statistical methods.

5.2. Admission control and scheduling

In this process, the decision is made on whether an application
can be accepted and executed based on the available resources and

QoS requirements of the application. To estimate how much
resources will be available, we used ANN forecasting model
(described in the previous section) which predicts future demand
of all accepted applications. If free resources on a host are
sufficient to run the application, it is accepted. The scheduling of
the application is based on the following simple but effective
principle:

“In the initial allocation, for transactional applications, reserved
resources are equivalent to their peak demand. For non-interactive
jobs, the scheduler tries to allocate slack of resources remaining on a
host which is running a transactional application. At regular intervals,

Fig. 3. Comparison of prediction accuracies of GARCH and ANN. Numbers in x-axis indicate the index of each 5 min interval for the period of 2-h prediction.

S.K. Garg et al. / Journal of Network and Computer Applications 45 (2014) 108–120114



consolidates those VMs deployed on hosts which are not running any
non-interactive jobs”.

The job scheduler always tries to run non-interactive jobs with
transactional applications whose resource demand is highly
dynamic. This strategy aims to minimize the SLA violations and
network overhead of VM migration. It is clear that, this strategy
differs from general approaches used in previous works where,
during migration, multiple type of SLAs are not considered.

Each type of application has different resource demand character-
istics and different QoS requirements. The details of admission control
and scheduling for each of them are described below:

Non-interactive job: The QoS requirements and SLAs for this
type of applications are already discussed in previous sections.
Thus, in this section we discuss directly the methodology used for
admission control. The datacenter accepts request for execution of
a non-interactive batch job only when it can be allocated with the
required amount of CPU capacity before its deadline. The steps
used in this process are described in Algorithm 1.

Algorithm 1. Admission control for non-interactive jobs.

Input: Request for Execution of a non-interactive batch Job
Output: Accept/Reject the job with respect to available capacity

versus deadline
Notation: Exp_Stj and Exp_Etj are the expected start and finish

time of the non-interactive job on Server Sj, Deadline is the
deadline of the submitted job, and threshTime is the time by
which job must start execution to finish before deadline.

1: for All host j Which are ON do
2: Forecast the demand for the server resources by other

hosted applications
3: Calculate Exp_Stj // Expected Start Time
4: Calculate Exp_Etj // Expected Finish Time
5: end for
6: 8 j, Calculate: Exp_ET ¼minfExp_Etjg
7: if Exp_EToDeadline & threshTime40 then
8: Find the Sj with minimum Exp_Stj & hosted Web VM and

deploy New HPC VM
9: If not found, deploy New HPC VM along with existing

HPC VM
10: if Exp_St 4 Current_Time then
11: Queue up the Job in the Batch Job Queue
12: else
13: A VM is Initiated on the Physical Host w.r.t Exp_Et by

VM manager.
14: end if
15: else
16: Execute the Job by Initiating the VM on a Server in

Switched Off Mode, if its deadline can be met.

17: if No server is available then
18: reject the request
19: end if
20: end if

At any moment, when a job arrives for execution, the datacen-
ter has some servers running the workload and others which are
switched-off to save power. Thus, the VM scheduler first checks
the resource availability of active servers where a Web application
is already hosted. The resource availability on each host is
calculated based on the forecasted server demand. To know
whether the job can be successfully executed within its deadline,
the start and completion time of each job is estimated based on
resource availability on each host. Figure 4 shows the four possible
ways a job can be scheduled. If the job can be completed before
the deadline on any host, the job is accepted by the datacenter for
execution, otherwise it is rejected. SLA is signed between both the
user and provider.

For scheduling, a VM based on QoS requirements of a given job
is created. The VM is deployed on a server (Sj) where the expected
start time (Exp_St) of job is minimum and with an already hosted
Web VM. Thus, for execution in the new HPC VM, it will utilize the
slack resources on the server and such VM is termed as dynamic
HPC VM. These HPC VMs are allowed to migrate and the resources
allocated to them are also dynamic. In this case, if on the given
penuthere is already one HPC VM running, then the new VM is
deployed after the completion of the job on the current VM (as
demonstrated in Fig. 4 case 2); otherwise, the new VM is deployed
immediately (as demonstrated in Fig. 4 case 1).

If no such server is available and the threshold time of job is
greater than the next scheduling interval, then the deployment of
VM is delayed and the job is inserted into the batch job queue. This
is done to exploit errors in the resource demand forecast. If the
actual demand of the resources is less than the forecasted one,
some HPC jobs can finish before their estimated completion time.
Thus, the new VM can be deployed without switching on new
servers. If the threshold time of the job is less than the next
scheduling interval, then either it is scheduled on a server running
only HPC VMs (as demonstrated in Fig. 4 case 4), or on a new
server which is switched on (as demonstrated in Fig. 4 case 3).
In this case, the VM deployment is static. Therefore, these VMs are
not allowed to migrate, and the resources allocated to them will
not be changed until the agreed amount (as in SLA) of CPU cycles is
used for its execution. These VMs are called static HPC VM
indicated by a different color in Fig. 4 (case 3 and 4). This is done
to avoid the effects of rescheduling VMs on the network and on
the other VMs hosted on the server.

Fig. 4. HPC job scheduling. (HPC VMs allocated static amount of resources are indicated by red color, other HPC VMs are indicated by light red color.) (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this article.).

S.K. Garg et al. / Journal of Network and Computer Applications 45 (2014) 108–120 115



Transactional applications: As discussed previously, a user who
wants to run a transactional application can ask for VMs of different
standard sizes offered by the cloud providers. Let the user requests a
VM with capacity Ck. A request is accepted when the VM scheduler
can schedule the VM with capacity Ck on any server assuming all
hosted Web VMs are running at 100% utilization and without
considering resources used by dynamic HPC VMs. The Web VM is
scheduled based on the best-fit manner. As Fig. 5 shows, there are
again four possibilities to deploy the new Web VM.

Case 1: If new Web VM is deployed on a server hosting both a
dynamic HPC VM and Web VMs, then the future resources available
to the dynamic HPC VM will get affected. This scarcity of resources
will delay the completion time of HPC job. Thus, the HPC VM is
paused and rescheduled (migrated) to other servers if the HPC job is
missing its deadline after the deployment of the new Web VM. The
rescheduling of HPC job is done by the VM scheduler in such a way
that the minimum penalty occurs due to SLA violation.

Case 2–4: In these cases, while scheduling a new Web applica-
tion, the full utilization of resources by other VMs is considered.
Therefore, there will not be any perceptible effect on the execution
of other VMs. It can be noted that in Case 4, since a static HPC VM
(denoted by red color) is hosted, the available resources on the
server for executing the new Web application will be the amount
of resources unused by the HPC VM.

5.3. SLA enforcement and rescheduling of VMs

To fulfill SLAs, the regular SLA monitoring of each application is
required, since our initial allocation and admission control is based
on forecasting. The forecasting model only gives approximate
future resource demand and thus there may be a time when SLAs
are violated. The steps involved during SLA enforcement process is
given in Algorithm 2.

Algorithm 2. SLA enforcement and rescheduling.

Input: Current Utilization of VMs and Current Resource
Demand

Output: Decision on Capacity Planning and Auto-scaling
Notations: VMweb-i: VM running Transactional (Web)

Applications; CurResDemandðVMweb� iÞ: Current Resource
Demand; CurAllocResVMweb� i: Current Allocated Capacity;
ReservedResðVMweb� iÞ: Reserved VMs Capacity Specified in
SLA; VMhpc-i: VM running HPC Application

1: for Each VMweb-i do
2: Calculate the current resource demand

CurResDemandðVMweb� iÞ
3: if CurResDemandðVMweb� iÞoCurAllocResVMweb� i then

4: Reduce the resource capacity of VMweb-ito match the
demand

5: else
6: if CurResDemandðVMweb� iÞrReservedResðVMweb� iÞ

then
7: Increase the resource capacity of VMweb-i to match

the demand
8: Reduce correspondingly the resource capacity allocated

to HPC application (VMhpc-i ) on the same server
9: else
10: if SLA contains Auto-scaling Option then
11: VM manager initiates new VMs and offload the

application demand to new VMs
12: end if
13: end if
14: end if
15: end for
16: for Each Batch Job VMhpc-i do
17: if slack resources available on the server where HPC VM

is running then
18: Allocate the slack resources
19: end if
20: Recompute the estimated finish time of the job
21: Reschedule the Batch Job VM if missing the deadline.
22: end for

In every scheduling cycle, the VM scheduler performs the
following actions: (a) enforce SLAs and (b) schedule the jobs from
batch job queue, and (c) consolidation.

For SLA enforcement, the resource demand for each transac-
tional application until next scheduling cycle is recalculated
(Algorithm 2: Lines 1–2). If any Web VM requires less than the
forecasted (currently allocated) capacity, then the extra resources
are allocated to the HPC VM running on the same host (Algorithm 2:
Lines 3–5 and 20–21). Otherwise, if the Web VM requires more
resources than allocated (r promised capacity in SLA), then the
resources allocated to the VM are increased to match the demand
(Algorithm 2: Lines 6–7). Correspondingly, the resources allocated to
the HPC VM will be reduced (Algorithm 2: Line 8). If the Web VM
requires more resource capacity than specified in the SLA, the
decision is made based on whether the user has opted for auto-
scaling or not (Algorithm 2: Lines 10–15). This process is repeated for
each transactional application.

After that, for each HPC job, its VM capacity is increased if some
slack resources is available on the server where the VM is hosted
(Algorithm 2: Lines 17–18). Based on allocated resources to the

Fig. 5. Transactional application scheduling.

S.K. Garg et al. / Journal of Network and Computer Applications 45 (2014) 108–120116



HPC VM, the job completion time is recomputed (Algorithm 2:
Line 20). If any HPC job is expected to miss its deadline, its
corresponding VM is migrated and scheduled on another server
using strategies discussed in the previous section (Algorithm 2:
Line 21). The process is repeated for each HPC job (VM) in batch
job queue. The VM manager consolidates Web VMs which are
running on servers having no HPC VM. For consolidation, VM
manager uses a greedy algorithm where VMs are sorted in
decreasing order of CPU utilization and mapped to physical
machines in a first-fit manner (Calheiros et al., 2011). If due to
consolidation, some Web VMs are short of resources, SLA can be
violated. In this case, HPC VMs will be migrated to a server where
the minimum penalty occurs due to SLA violation.

6. Performance evaluation

We simulated a datacenter that comprises 1500 physical nodes.
Simulation approach gives advantage of repeating the experiments
under a similar environment. Thus, it allows the comparison of
different scheduling strategies. In addition, it is considerably diffi-
cult to obtain workloads for several applications from commercial
cloud providers as they are considered in this work. The CloudSim
toolkit (Calheiros et al., 2011) has been chosen as a simulation
platform since it allows the modeling of virtualized environments
with on-demand resource provisioning and management.

Each node is modeled to have one CPU core with performance
equivalent to 4000 Million Instructions Per Second (MIPS), 16 GB
of RAM, 10 GB/s network bandwidth and 1 TB of storage. We
consider four different types of VMs with 1000, 2000, 2500 or
3500 MIPS. The smallest instance has 1 GB of RAM, 100 Mb/s
network bandwidth and 1 GB of storage. The CPU MIPS ratings
are similar to different Amazon EC2 instance sizes. Users submit
requests for provisioning of 500 heterogeneous VMs. Each VM is
randomly assigned a workload trace from one of the servers from
the workload data as described in the following section. The
pricing for each VM instance is the same as used by Amazon EC2
for different sizes of VM. Even though only four types of VMs are
considered, our model can be easily extended for other types of
VM instances.

6.1. Workload data

To make precise conclusions from a simulation study, it is
important to conduct experiments using real workload traces. For
our experiments, we used two different workload data, each for
transactional and non-interactive applications. For transactional
data, data is collected from CoMon (Park and Pai, 2006), a
monitoring infrastructure for PlanetLab.4 The data contains the
CPU utilization, memory and bandwidth usage of more than one
thousand servers located at about 500 places around the world.
The data has been collected for every five minutes during the
period between 22nd and 29th of July 2010. The data is inter-
polated to generate CPU utilization for every second. The data
satisfy our requirements of transactional application and thus have
some peak utilization levels and very low off-peak utilization
level: the average CPU utilization is below 50%.

For non-interactive batch jobs, the LCG workload traces from
Grid Workload Archive (GWA) (Iosup et al., 2008) are used. Since
this paper focuses on studying cloud users with non-interactive
applications, the GWA meets our objective by providing workload
traces that reflect the characteristics of real applications running
on one VM. From this trace, we obtain the submission time,

requested number of VMs, and actual runtime of applications.
Since workload traces do not contain any data on deadline and
penalty rates specified in SLAs, for our evaluation, these are
generated using uniform distribution which is commonly used
in the literature (Yang et al., 2011; Garg et al., 2010). The deadline
of a non-interactive application i is given by: SubTimeðiÞþ
ExeTimeðiÞþExeTimeðiÞnλ, where SubTime is the submission time
and ExeTime is the execution time. λ is the urgency factor derived
from uniformly distribution (0,2).

6.2. Performance metrics

The simulations ran for 10 h of each workload category to
determine the resource provisioning policy that delivers the best
utilization, the least number of SLA violation and VM migrations,
and accepts the maximum number of user requests. We have
observed the performance from both user and cloud provider
perspectives. From the provider perspective, two metrics are
necessary to compare the policies: number of hosts utilized, and
revenue generated. From the user perspective we have compared
the number of SLA violations and the number of users accepted.

We have compared our resource provisioning policy Mixed
Workload Aware Policy (MWAP) against two other well-known
strategies used in current datacenters:

1. Static Approach (also known as Traditional): In this approach,
during the whole VMs life cycle, an application will be allocated
the capacity of the server as specified in the SLA. Thus, VM
allocation will not change with time.

2. VM Migration and Consolidation Approach (aka withMigration):
This strategy is used in various papers to address the problem of
maximizing the utilization of datacenters (Beloglazov et al.,).
In this approach, many VMs are consolidated in one server based
on their usage. If an application demands more server capacity,
either it is migrated or the capacity of server assigned to the VM
running the application is increased. Since VM migration, in
general, does not consider the SLA requirements of non-
interactive applications, for fair comparison the VM capacity
allocated to each such application does not change with time.
This reduces the chance of batch applications to miss their
deadline.

6.3. Analysis of results

Although several experiments are conducted by varying differ-
ent parameters, in this section, we discuss only the key and most
relevant results of our evaluation. All the results are summarized
in Figs. 6 and 7, and Tables 2 and 3.

6.3.1. Effect on datacenter utilization
Since our main objective is to maximize the utilization of the

datacenter, first we compare all the techniques based on their
effectiveness in maximizing the datacenter utilization. The data-
center utilization is indicated by the number of hosts which are
used for a given workload. Figure 6 shows how the number of
hosts utilized varied with time to meet the SLA requirements of
applications and complete them successfully. It can be noticed that
the number of VMs utilized by MWAP policy remains constant
with time and utilized about 60% less servers on average. The
reason for such a large difference is that MWAP tries to run VMs of
batch jobs by using unutilized resources of VMs running Web
applications. With more batch job submissions, the number of
servers used by the static approach is increased from almost zero
to 200. This is due to static allocation of server capacity to VMs4 http://comon.cs.princeton.edu

S.K. Garg et al. / Journal of Network and Computer Applications 45 (2014) 108–120 117

http://comon.cs.princeton.edu


based on SLA requirements. In this case, with the time the number
of active servers becomes almost constant since enough servers
are available to meet the resource demand of incoming non-
transactional workload. In the case of withMigration resource
provisioning policy, there is an increase in the number of servers
between Time¼300 to Time¼400 due to high volume of batch job
submissions. The latter due to consolidation, withMigration policy
reduces the number of server utilized to about 83. This clearly
shows the importance of considering resource usage pattern of
different types of applications, which can result in efficient
datacenter utilization. Thus, the datacenter can simultaneously
serve more users with same server capacity.

6.3.2. Effect on revenue generated and SLA violation
In general, the most important thing for a cloud provider is the

profit generated by serving VM request of users. Secondly, the cloud
provider wants to satisfy as many users as possible by meeting their
SLA requirements. Table 2 gives the details of revenue generated for
each type of applications, i.e., batch jobs and transactional applica-
tions. The revenue generated from Static policy and the proposed
policy MWAP are similar because of zero number of violations both
for transactional and batch jobs. The withMigration policy results in
about 26 SLA violations due to the migration delays, which results
in lower revenue. WithMigration policy also results in very low
batch job revenue. The reason behind this is migration delays which

result in SLA penalty. Therefore, the consideration of SLA penalty
with VM migration and consolidation plays an important role in
dynamic resource provisioning; otherwise cloud provider will incur
huge revenue loss.

6.3.3. Migration overhead and batch job completion
It is well known that VM migration is not free and it always

incur some network and CPU overhead. In this section, we show
the number of migrations that MWAP performs in order to meet
the SLA requirements in comparison to withMigration approach.
It can be observed from Table 2 a significant reduction in VM
migration by the MWAP policy, which results in almost 75% less
migrations. WithMigration policy tries to optimize the utilization
by migrating and consolidating the underutilized VMs, which
results in very high number of migrations. The migration overhead
causes unnecessary delays in batch job execution which results in
almost 45% (Table 2: Batch Job Completed) successful completions
before deadline. This problem can further increase if the number
of VMs initiated is not constant, which is accounted in our MWAP
by using intelligent admission control policy.

6.3.4. Effect of SLAs types
In this section, we present further results on the importance of

considering different types of SLA penalties (requirements) along
with dynamic provisioning of VMs within a cloud datacenter. Since
there is no SLA violations noticed in the case of MWAP, we
conducted the experiments using withMigration policy to under-
stand the role of different types of SLA penalties (fixed, delay
dependent and proportional) in resource allocation. For each
application, Table 3 summarizes the results with variation of
penalty rate (q) from low to high. The low penalty rate (qlow) is
generated using a uniform distribution between (0, 1). The
medium penalty rate is 2.5nqlow and the high penalty rate is 5nqlow.
The proportional penalty incurs almost 50% more in comparison to
other penalties. As the penalty rate varies, the total penalty
incurred becomes more and more prominent. In withMigration
policy, there is no consideration of different types of SLA penalties,
as it results in more number of SLAs with delay-dependent and
proportional penalty, and this further enhances the penalty. Thus,
while doing resource allocation, the provisioning policy should
take into account these penalty types and give priority to the
applications with low penalty rates.Fig. 6. Effect on datacenter utilization.

Table 2
Effect of SLA consideration on provider and user parameters.

Policy Revenue
(batch jobs)

Revenue
transactional

VM Migrations SLA violation
(Transactional)

Batch job
completed

Static 481848 647 700 0 0 285
With migration 31 605 623 370 267 26 160
MWAP 475 732.8 647 700 69 0 284

Table 3
Effect of different type of SLA penalties.

Penalty rate Fixed Delay dependent Proportional

Penalty ($) SLA violation Penalty ($) SLA violation Penalty ($) SLA violation

Low 87.78063157 6 146.3010526 10 292.6021052 10
Medium 219.4515789 6 365.7526316 10 731.5052631 10
High 438.9031579 6 731.5052631 10 1463.010526 10

S.K. Garg et al. / Journal of Network and Computer Applications 45 (2014) 108–120118



6.3.5. Effect of deadline urgency
In this section, we evaluate how deadlines of HPC (non-

interactive) applications affect the performance of our SLA-based
scheduling algorithm MWAP. Even though in real cloud datacen-
ters the number of servers is almost unlimited, for this experiment
we limited it to 30 and number of Web applications 40. Fixing
these numbers allowed us to only observe the effects from dead-
line urgency. We varied the urgency factor λof jobs from low (20)
to very high (.002) by decrementing factor of 10. Figure 7 shows
how number of VM migration and SLA violation increases with
user's urgency to execute the job. The results for low urgency are
not presented since no violation was observed for that value.
As the urgency level increases, from medium to high, the number
of SLA violations drastically increases from about 30–120. But,
after certain threshold, it reaches saturation. The reason for such a
trend is that due to limited number of servers, our scheduler could
not initiate new VMs without missing any new deadline. To avoid
SLA violations, the scheduler tries to migrate the VMs from one
server to another, which results in an increase in the number of
migrations.

7. Conclusions and future directions

In this paper, we discussed how current cloud datacenters are
facing the problem of underutilization and incurring extra cost.
They are being used to run different types of applications from
Web to HPC, which have different QoS requirements. This makes
the problem harder, since it is not easy to predict how much
capacity of a server should be allocated to each VM. Therefore, in
this paper, we proposed a novel technique that maximizes the
utilization of datacenter and allows the execution of heteroge-
neous application workloads, particularly, transactional and non-
interactive jobs, with different SLA requirements. Our approach
dynamically assigns VMs in such a way that SLA signed with
customer is met without any penalty. The paper also described
how the proposed technique can be easily integrated with the
admission control and facilities such as auto-scaling offered by
cloud providers. By extensive performance evaluation, it is demon-
strated that the proposed mechanism MWAP reduces the number
of servers utilized by 60% over other strategies like consolidation
and migration with the negligible SLA violation. Our proposed
mechanism MWAP performs reasonably well and is easily imple-
mentable in a real cloud computing environment.

The key reason here is that MWAP is able to manage different
workload and exploits their usage patterns and QoS requirements
to obtain efficient utilization of datacenter resources. Thus, we

demonstrate that for designing more effective dynamic resource
provisioning mechanisms, it is a must to consider different types
of SLAs along with their penalties and the mix of workloads for
better resource provisioning and utilization of datacenters; other-
wise, it will not only incur unnecessary penalty to cloud providers
but can also lead to under utilization of resources. This motivates
further enquiry into exploration of optimizing the resource provi-
sioning techniques by extending our approach to other type of
workloads such as workflows and parallel applications. We also
intend to include multiplexing strategies to remove interference
from other applications when multiple VMs are consolidated on
the same server. In future, we also plan to extend our model by
considering multi-core CPU architectures as well as network and
memory conflicts.

Acknowledgments

This work is partially supported by Linkage Project funding
from the Australian Research Council (ARC) and CA Australia. This
paper is a substantially extended version of our previous short
conference paper presented at the 11th international Conference
on algorithms and Architectures for Parallel Processing (ICA3PP
2011) (Garg et al., 2011). Srinivasa's visit to the University of
Melbourne was supported by a fellowship from the Government of
India.

References

Antonescu A-F, Robinson P, Braun T. Dynamic sla management with forecasting
using multi-objective optimization. In: Proceeding of 2013 IFIP/IEEE interna-
tional symposium on integrated network management (IM 2013). Ghent,
Belgium; 2013.

Azoff E. Neural network time series forecasting of financial markets. New York, NY,
USA: John Wiley & Sons Inc.; 1994.

Balaji P, Sadayappan P, Islam M. Techniques for providing hard quality of service
guarantees in job scheduling. In: Buyya, R., Bubendorfer, K, editors. Hoboken,
New Jersey, USA: Wiley Press. ISBN: 978-0470287682.

Barroso L, Holzle U. The case for energy-proportional computing. Computer
2007;40(12):33–7.

Beloglazov A, Buyya R, Lee YC, Zomaya A. A taxonomy and survey of energy-
efficient data centers and cloud computing systems. In: Zelkowitz, M, editor.
Advances in computers. Elsevier. ISBN 13: 978-0-12-012141-0.

Benchmarks S. Standard performance evaluation corporation, Manassas, VA, USA.
Bonvin N, Papaioannou TG, Aberer K. Autonomic SLA-driven provisioning for cloud

applications. In: Proceedings of the 11th IEEE/ACM international symposium on
cluster, cloud and grid computing, Newport Beach, CA, USA; 2011.

Buyya R, Yeo C, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging IT
platforms: vision, hype and reality for delivering computing as the 5th utility.
Future Generat Comput Syst 2009;25(6):599–616.

Calheiros R, Ranjan R, Beloglazov A, DeRose C, Buyya R. Cloudsim: a toolkit for
modeling and simulation of cloud computing environments and evaluation of
resource provisioning algorithms. Softw: Pract Exp 2011;41(1):23–50.

Carrera D, Steinder M, Whalley I, Torres J, Ayguadé E. Enabling resource sharing
between transactional and batch workloads using dynamic application place-
ment. In: Proceedings of the ACM/IFIP/USENIX 9th international middleware
conference, Leuven, Belgium; 2008.

Casalicchio E, Silvestri L. Mechanisms for SLA provisioning in cloud-based service
providers. Comput Netw 2013;57(3):795–810.

Casalicchio E, Menascé DA, Aldhalaan A. Autonomic resource provisioning in cloud
systems with availability goals. In: Proceedings of the 2013 ACM cloud and
autonomic computing conference, Miami, FL, USA; 2013.

Dodonov E, de Mello R. A novel approach for distributed application scheduling
based on prediction of communication events. Future Gener Comput Syst
2010;26(5):740–52.

Ejarque J, dePalol M, Goiri N, Julià ÍF, Guitart J, Badia RM, et al. Exploiting semantics
and virtualization for SLA-driven resource allocation in service providers.
Concurr - Pract Exp 2010;22(5):541–72.

Fito JO, Goiri Í, Guitart J. SLA-driven elastic cloud hosting provider. In: Proceedings
of 18th Euromicro international conference on parallel, distributed and
network-Based processing (PDP). Pisa, Italy; 2010.

Garg R, Saran H, Randhawa R, Singh M. Asla framework for QOS provisioning and
dynamic capacity allocation. In: Proceedings of the 10th IEEE international
Workshop on Quality of Service. Dalian, China; 2002.

Garg SK, Buyya R, Siegel HJ. Time and cost trade-off management for scheduling
parallel applications on utility grids. Future Generat Comput Syst 2010;26(8):
1344–55.

Fig. 7. Effect of deadline urgency.

S.K. Garg et al. / Journal of Network and Computer Applications 45 (2014) 108–120 119

http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref2
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref2
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref2
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref4
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref4
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref8
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref8
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref8
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref9
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref9
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref9
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref11
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref11
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref13
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref13
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref13
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref14
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref14
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref14
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref17
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref17
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref17


Garg S, Gopalaiyengar S, Buyya R. SLA-based resource provisioning for hetero-
geneous workloads in a virtualized cloud datacenter. In: Proceedings of the
11th international conference on algorithms and architectures for parallel
Processing, Melbourne, Australia 2011.

Goiri I, Julià F, Fitó JO, Macías M, Guitart J. Resource-level QOS metric for CPU-based
guarantees in cloud providers. In: Proceedings of 7th international workshop
on economics of grids, clouds, systems, and services. Naples, Italy; 2010.

Hellerstein J, Zhang F, Shahabuddin P. An approach to predictive detection for
service management. In: Proceedings of the sixth IFIP/IEEE international
symposium on integrated network management, 1999. Distributed Manage-
ment for the Networked Millennium. Boston, MA, USA; 1999.

Hu Y, Wong J, Iszlai G, Litoiu M. Resource provisioning for cloud computing. In:
CASCON ’09: Proceedings of the 2009 conference of the Center for Advanced
Studies on Collaborative Research, Ontario, Canada; 2009.

Iosup A, Epema D. Grid computing workloads: bags of tasks, workflows, pilots, and
others. IEEE Internet Comput 2010;15(2):19–26.

Iosup A, Li H, Jan M, Anoep S, Dumitrescu C, Wolters L, et al. The grid workloads
archive. Future Gener Comput Syst 2008;24(7):672–86.

Islam S, Keung J, Lee K, Liu A. Empirical prediction models for adaptive resource
provisioning in the cloud. Future Gener Comput Syst 2012;28(1):155–62.

Kim J-K, Siegel HJ, Maciejewski AA, Eigenmann R. Dynamic resource management
in energy constrained heterogeneous computing systems using voltage scaling.
IEEE Trans Parallel Distrib Syst 2008;19(11):1445–57.

Kim J, Ruggiero M, Atienza D, Lederberger M. Correlation-aware virtual machine
allocation for energy-efficient datacenters. In: Proceedings of the conference on
design, automation and test in Europe. Ghent, Belgium; 2013.

Meng X, Isci C, Kephart J, Zhang L, Bouillet E, Pendarakis D. Efficient resource
provisioning in compute clouds via VM multiplexing. In: Proceedings of the 7th
international conference on autonomic computing, Washington, USA; 2010.

Minarolli D, Freisleben B. Distributed resource allocation to virtual machines via
artificial neural networks. In: Proceedings of 22nd Euromicro international
conference on parallel, distributed and network-based processing (PDP), Turin,
Italy; 2014.

Nathuji R, Kansal A, Ghaffarkhah A. Q-clouds: managing performance interference
effects for qos-aware clouds. In: Proceedings of the 5th European conference on
Computer systems (EuroSys 2010). Paris, France; 2010.

Nudd GR, Jarvis SA. Performance-based middleware for grid computing. Concurr -
Pract Exp 2005;17(2–4):215–34.

Ostermann S, Iosup A, Yigitbasi N, Prodan R, Fahringer T, Epema D. An early
performance analysis of cloud computing services for scientific computing.
Delft University of Technology, PDS-2008-006.

Park K, Pai V. CoMon: a mostly-scalable monitoring system for PlanetLab. ACM
SIGOPS Oper Syst Rev 2006;40(1):65–74.

Paton NW, Aragão MAT, Lee K, Fernandes AAA, Sakellariou R. Optimizing utility in
cloud computing through autonomic workload execution. IEEE Data Eng Bull
2009;32(1):51–8.

Pfitscher RJ, Pillon MA, Obelheiro RR. Customer-oriented diagnosis of memory
provisioning for IAAS clouds. ACM SIGOPS Oper Syst Rev 2014;48(1):2–10.

Qiu X, Hedwig M, Neumann D. SLA based dynamic provisioning of cloud resource in
OLTP systems. In: Proceeding of 2012 workshop on e-life: web-enabled
convergence of commerce, work, and social life. Shanghai, China; 2012.

Quiroz A, Kim H, Parashar M, Gnanasambandam N, Sharma N. Towards autonomic
workload provisioning for enterprise grids and clouds. In: Proceedings of 10th
IEEE/ACM international conference on grid computing. Melbourne, Australia;
2009.

Sahai A, Graupner S, Machiraju V, Moorsel AV. Specifying and monitoring guarantees
in commercial grids through SLA. In: Proceedings of the 3rd international
symposium on cluster computing and the grid. Tokyo, Japan; 2003.

Schneider J, Amazon ec2: 〈http://aws.amazon.com/ec2/〉.
Sharma U, Shenoy P, Sahu S, Shaikh A. A cost-aware elasticity provisioning system

for the cloud. In: Proceedings of 31st international conference on distributed
computing systems (ICDCS). Minneapolis, Minnesota, USA; 2011.

Singh R, Sharma U, Cecchet E, Shenoy P. Autonomic mix-aware provisioning for
non-stationary data center workloads. In: Proceedings of the 7th international
conference on autonomic computing. Washington, USA; 2010.

Smith M, Schmidt M, Fallenbeck N, Doernemann T, Schridde C, Freisleben B. Secure
on-demand grid computing. Future Gener Comput Syst 2009;25(3):315–25.

Sotomayor B, Keahey K, Foster IT. Combining batch execution and leasing using
virtual machines. In: Proceedings of the 17th international ACM symposium on
high-performance parallel and distributed computing. Boston, USA; 2008.

Sotomayor B, Keahey K, Foster I. Combining batch execution and leasing using
virtual machines. In: Proceedings of the 17th international symposium on
HPDC. Boston, MA, USA; 2008.

Soundararajan V, Anderson J. The impact of MNGT. Operations on the virtualized
datacenter. In: Proceedings of the 37th annual international symposium on
computer architecture. France; 2010.

Srinivasa K, Venugopal K, Patnaik L. An efficient fuzzy based neuro-genetic
algorithm for stock market prediction. Hybrid Intell Syst 2006;3(2):63–81.

Steinder M, Whalley I, Chess D. Server virtualization in autonomic management of
heterogeneous workloads. SIGOPS Oper Syst Rev 2008;42(1):94–5.

Van HN, Tran FD, Menaud J-M. SLA-aware virtual resource management for cloud
infrastructures. In: CIT '09: proceedings of the 2009 ninth IEEE international
conference on computer and information technology. Xiamen, China; 2009.

VoukM. Cloud computing Issues, research and implementations. In: Proceedings of 30th
international conference on information technology interfaces. Croatia; 2008.

Wang Z, Zhu X, Padala P, Singhal S. Capacity and performance overhead in dynamic
resource allocation to virtual containers. In: Proceedings of the 10th IFIP/IEEE
international symposium on integrated network management. Munich, Germany;
2007.

Wang C, Chen J, Zhou BB, Zomaya AY. Just satisfactory resource provisioning for
parallel applications in the cloud. In: Proceedings of 2012 IEEE eighth world
congress on services (SERVICES). Honolulu, HI; 2012.

Xiao Z, Song W, Chen Q. Dynamic resource allocation using virtual machines for
cloud computing environment. IEEE Trans Parallel Distrib Syst 2013;24(6):
1107–17.

Yang B, Xu X, Tan F, Park D-H. An utility-based job scheduling algorithm for cloud
computing considering reliability factor. In: Proceedings of international con-
ference on cloud and service computing (CSC’11). Hong Kong; 2011.

Yeo C, Buyya R. Service level agreement based allocation of cluster resources:
handling penalty to enhance utility. In: Proceedings of the 7th IEEE interna-
tional conference on cluster computing. Boston, USA; 2005.

Zhang W, Qian H, Wills C, Rabinovich M. Agile resource management in a
virtualized data center. In: Proceedings of Ist joint WOSP/SIPEW international
conference on performance engineering. California, USA; 2010.

Zhu Z, Bi J, Yuan H, Chen Y. SLA based dynamic virtualized resources provisioning
for shared cloud data centers. In: Proceedings of 2011 IEEE international
conference on cloud computing (CLOUD). Washington DC, USA; 2011.

S.K. Garg et al. / Journal of Network and Computer Applications 45 (2014) 108–120120

http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref22
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref22
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref23
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref23
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref24
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref24
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref25
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref25
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref25
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref30
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref30
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref32
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref32
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref33
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref33
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref33
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref34
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref34
http://aws.amazon.com/ec2/
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref41
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref41
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref45
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref45
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref46
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref46
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref51
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref51
http://refhub.elsevier.com/S1084-8045(14)00178-7/sbref51

	SLA-based virtual machine management for heterogeneous workloads in a cloud datacenter
	Introduction
	Related work
	System model
	Datacenter model
	Application models and SLA
	SLA model for transactional workload
	SLA model for non-interactive batch jobs


	Problem statement
	Admission control and scheduling policy
	Forecasting model
	Admission control and scheduling
	SLA enforcement and rescheduling of VMs

	Performance evaluation
	Workload data
	Performance metrics
	Analysis of results
	Effect on datacenter utilization
	Effect on revenue generated and SLA violation
	Migration overhead and batch job completion
	Effect of SLAs types
	Effect of deadline urgency


	Conclusions and future directions
	Acknowledgments
	References




