
Valeria Cardellini
Universitá di Roma “Tor Vergata,” Italy

Emiliano Casalicchio
Universitá of Roma “Tor Vergata,” Italy

Kalinka Regina Lucas Jaquie Castelo Branco
Universidade de São Paulo, Brazil

Júlio Cezar Estrella
Universidade de São Paulo, Brazil

Francisco José Monaco
Universidade de São Paulo, Brazil

Performance and
Dependability in
Service Computing:
Concepts, Techniques and
Research Directions

Performance and dependability in service computing: concepts, techniques and
research directions / Valeria Cardellini ... [et al.], editors.
 p. cm.
 Includes bibliographical references and index.
 Summary: “This book focuses on performance and dependability issues
associated with service computing and these two complementary aspects, which
include concerns of quality of service (QoS), real-time constraints, security,
reliability and other important requirements when it comes to integrating
services into real-world business processes and critical applications”--
Provided by publisher.
 ISBN 978-1-60960-794-4 (hbk.) – ISBN 978-1-60960-795-1 (ebook) -- ISBN 978-
1-60960-796-8 (print & perpetual access) 1. Service-oriented architecture
(Computer science) 2. Web services. 3. Management information systems. I.
Cardellini, Valeria, 1973-
 TK5105.5828.P47 2012
 004.6’54--dc23
 2011017832

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Senior Editorial Director: Kristin Klinger
Director of Book Publications: Julia Mosemann
Editorial Director: Lindsay Johnston
Acquisitions Editor: Erika Carter
Development Editor: Mike Killian
Production Editor: Sean Woznicki
Typesetters: Jennifer Romanchak, Mike Brehm
Print Coordinator: Jamie Snavely
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2012 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

1

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

DOI: 10.4018/978-1-60960-794-4.ch001

INTRODUCTION

Utility computing (Yeo and Buyya 2006) deliv-
ers subscription-oriented computing services on
demand similar to other utilities such as water,
electricity, gas, and telephony. With this new
service model, users no longer have to invest

heavily on or maintain their own computing
infrastructures, and they are not constrained to
any specific computing service provider. Instead,
they can outsource jobs to service providers and
just pay for what they use. Utility computing has
been increasingly adopted in many fields includ-
ing science, engineering, and business (Youseff
et. al. 2008). Grid, Cloud, and Service-oriented
computing are some of the paradigms that have

Linlin Wu
The University of Melbourne, Australia

Rajkumar Buyya
The University of Melbourne, Australia

Service Level Agreement (SLA)
in Utility Computing Systems

ABSTRACT

In recent years, extensive research has been conducted in the area of Service Level Agreement (SLA) for
utility computing systems. An SLA is a formal contract used to guarantee that consumers’ service quality
expectation can be achieved. In utility computing systems, the level of customer satisfaction is crucial,
making SLAs significantly important in these environments. Fundamental issue is the management
of SLAs, including SLA autonomy management or trade off among multiple Quality of Service (QoS)
parameters. Many SLA languages and frameworks have been developed as solutions; however, there
is no overall classification for these extensive works. Therefore, the aim of this chapter is to present a
comprehensive survey of how SLAs are created, managed and used in utility computing environment. We
discuss existing use cases from Grid and Cloud computing systems to identify the level of SLA realization
in state-of-art systems and emerging challenges for future research.

2

Service Level Agreement (SLA) in Utility Computing Systems

made delivery of computing as a utility. In these
computing systems, different Quality of Service
(QoS) parameters have to be guaranteed to satisfy
user’s request. A Service Level Agreement (SLA)
is used as a formal contract between service
provider and consumer to ensure service quality
(Buco et. al. 2004).

Figure 1 shows typical utility computing sys-
tem architecture: User/Broker, SLA Management,
Service Request Examiner, and Resource/Service
Provider. User or Broker submits its requests via
applications to the utility computing system, which
includes bottom three layers. Service Request
Examiner is responsible for Admission Control.
SLA Management layer manages Resource Al-
location. Resource or Service Provider offers
resources or services.

In the above architecture, SLAs are used to
identify parties who engage in the electronic busi-
ness, computation, and outsourcing processes and
to specify the minimum expectations and obliga-
tions that exist between parties (Buco et. al. 2004).
The most concise SLA includes both general and

technical specifications, including business par-
ties, pricing policy, and properties of the re-
sources required to process the service (Yeo et.
al. 2006). According to Sun Microsystems Inter-
net Data Center Group’s report (2002), a good
SLA sets boundaries and expectations of service
provisioning and provides the following benefits:

•	 Enhanced customer satisfaction level:
A clearly and concisely defined SLA in-
creases the customer satisfaction level, as
it helps providers to focus on the customer
requirements and ensures that the effort is
put on the right direction.

•	 Improved Service Quality: Each item in
an SLA corresponds to a Key Performance
Indicator (KPI) that specifies the customer
service within an internal organisation.

•	 Improved relationship between two par-
ties: A clear SLA indicates the reward and
penalty policies of a service provision. The
consumer can monitor services according
to Service Level Objectives (SLO) speci-

Figure 1. A typical architectural view of utility computing system

3

Service Level Agreement (SLA) in Utility Computing Systems

fied in the SLA. Moreover, the precise con-
tract helps parties to resolve conflicts more
easily.

A clearly defined lifecycle is essential for ef-
fective realisation of an SLA. Ron, S. et. al. (2001)
define SLA lifecycle in three high level phases,
which are the creation phase, operation phase,
and removal phase. Sun Microsystems Internet
Data Center Group (2002) defines a practical SLA
lifecycle in six steps, which are ‘discover service
providers’, ‘define SLA’, ‘establish agreement’,
‘monitor SLA violation’, ‘terminate SLA’, and
‘enforce penalties for violation’.

The realization of an SLA can be traced back
to 1980s in telecommunication companies. Fur-
thermore, the advent of Grid computing reinforces
the necessity of using SLA (Yeo and Buyya 2006).
Specifically, in service-oriented commercial Grid
computing (Buyya et. al. 2001), resources are
advertised and traded as services based on an
SLA after users specify various levels of service
required for processing their jobs (Rashid et. al.
2004). However, SLAs have to be monitored and
assured properly (Sahai et. al. 2003). These works
identified some challenges in SLA management,
such as SLA violation control, which have been
partially addressed by frameworks such as WS-
Agreement (Andrieux et. al. 2007) and WSLA
(Keller et. al. 2003). Still, in dynamic environ-
ments such as Clouds several challenges have to
be addressed: automatic negotiation and dynamic
SLA management according to environmental
changes are the most important examples.

Recently, Cloud computing has emerged as
a new platform for delivering utility computing
services. In Clouds, infrastructure, platform and
application services are available on-demand and
companies are able to access their business services
and applications anywhere in the world whenever
they need. In this environment, massively scal-
able systems are made available to end users as

a service (Brandic 2009). In this scenario, where
both request arrival rate and resources availability
continuously vary, SLAs are used to ensure that
service quality is kept at acceptable levels despite
such dynamicity.

This chapter reveals key design factors and
issues that are still significant in utility computing
platforms such as Grids and Clouds. It provides
insights for extending and reusing components of
the existing SLA management frameworks and it
aims to be a guide in designing and implementing
enhanced SLA-oriented management systems.
This work guides the design and implementation
of enhanced SLA-oriented management systems.

The use cases selected for the chapter have
been proposed recently (since 2004), and reflect
the latest technological advances. The design
concepts and architectures of these works are
well-documented in publications to facilitate
comprehensive investigation.

The rest of the chapter is organised as fol-
lows: Utility architecture and SLA foundational
concepts are summarized in the second section.
In the third section, the key challenges and solu-
tions for SLA management are discussed. SLA
use cases are proposed in the fourth section. The
ongoing works addressing some of the issues in
current systems are presented in the fifth section.
Finally, the chapter concludes with the open chal-
lenges in SLA management.

UTILITY ARCHITECTURE
AND SLA FOUNDATIONS

In this section, initially, a typical utility computing
architecture is presented. SLA definitions from
different areas are summarized in Section “SLA
Definitions”. SLA components are described in
Section “SLA Components”. In Section “SLA
Lifecycle”, two types of SLA lifecycle are pre-
sented and compared.

4

Service Level Agreement (SLA) in Utility Computing Systems

Utility Architecture

The layered architecture of a typical utility com-
puting system is shown in Figure 2. From top
to bottom it is possible to identify four layers, a
User or Broker submits its requests using vari-
ous applications to the utility computing system,
the Service Request Examiner is responsible for
admission control, SLA Management balances
workloads, and a Resource or Service Provider
offers resources or services. Users or Brokers, who
act on users’ behalf, submit their service requests
and applications, from anywhere in the world, to
be processed by utility computing systems. When
a service request is submitted, the Service Request
Examiner uses Admission Control mechanism to
interpret its QoS requirements before determining
whether to accept or reject it. Thus, it ensures that
there is no overloading of resources whereby many
service requests cannot be fulfilled successfully
due to limited availability of resources/services.

Then, the Service Request Examiner interacts
with the SLA Management to decide whether to
accept or reject the request.

The SLA Management component is respon-
sible for resource allocation and consists of sev-
eral components: Discovery, Negotiation/Rene-
gotiation, Pricing, Scheduling, Monitoring, SLA
Enforcement, Dispatching and Accounting. The
Discovery component is responsible for discover-
ing service providers that can satisfy user require-
ments. In order to define mutually agreed terms
between parties, it is common to put in place price
negotiation mechanisms or to rely on quality
metrics. The Pricing mechanism decides how
service requests are charged. Pricing serves as a
basis for managing supply and demand of com-
puting resources within the utility computing
system, and facilitates in prioritizing resource
allocations. Once the negotiation process is com-
pleted, the Scheduling mechanism uses algorithms
or policies to decide how to map requests to re-

Figure 2. SLA-oriented utility computing system architecture

5

Service Level Agreement (SLA) in Utility Computing Systems

source providers. Then the Dispatching mecha-
nism starts the execution of accepted service re-
quests on allocated resources.

The Monitoring component consists of a
Resource Monitoring mechanism and a Service
Request Monitoring mechanism. The Resource
Monitoring mechanism keeps track of the avail-
ability of Resource Providers and their resource
entitlements. On the other hand, the Service
Request Monitoring mechanism keeps track of
the execution progress of service requests. The
SLA enforcement mechanism manages violation
of contract terms during the execution. Due to
the SLA violation, sometimes Renegotiation is
needed in order to keep ongoing trading. The Ac-
counting mechanism maintains the actual usage of
resources by requests so that the final cost can be
computed and charged to the users. At the bottom
of the architecture, there exists a Resource/Service
Provider that comprises multiple services such as
computing services, storage services and software
services in order to meet service demands.

SLA Definitions

Dinesh et. al. (2004) define an SLA as: “An ex-
plicit statement of expectations and obligations
that exist in a business relationship between two
organizations: the service provider and customer”.
Since SLA has been used since 1980s in a variety
of areas, most of the available definitions are con-

textual and vary from area to area. Some of the
main SLA definitions in Information Technology
related areas are summarised in Table 1.

SLA Components

An SLA defines the delivery ability of a provider,
the performance target of consumers’ requirement,
the scope of guaranteed availability, and the mea-
surement and reporting mechanisms (Rick, 2002).

Jin et. al. (2002) provided a comprehensive
description of the SLA components, including:
(Figure 3):

•	 Purpose: Objectives to achieve by using
an SLA.

•	 Restrictions: Necessary steps or actions
that need to be taken to ensure that the re-
quested level of services are provided.

•	 Validity period: SLA working time period.
•	 Scope: Services that will be delivered to

the consumers, and services that will not
be covered in the SLA.

•	 Parties: Any involved organizations or in-
dividuals involved and their roles (e.g. pro-
vider and consumer).

•	 Service-level objectives (SLO): Levels of
services which both parties agree on. Some
service level indicators such as availability,
performance, and reliability are used.

Table 1. Summary of SLA definitions classified by the area

Area Definition Source

Web Services “SLA is an agreement used to guarantee web service delivery. It defines the understanding
and expectations from service provider and service consumer”.

HP Lab (Jin et. al. 2002)

Networking “An SLA is a contract between a network service provider and a customer that specifies, usu-
ally in measurable terms, what services the network service provider will supply and what
penalties will assess if the service provider can not meet the established goals”.

Research Project

Internet “SLA constructed the legal foundation for the service delivery. All parties involved are users of
SLA. Service consumer uses SLA as a legally binding description of what provider promised to
provide. The service provider uses it to have a definite, binding record of what is to be delivered”.

Internet NG (Ron et.
al.2001)

Data Center
Management

“SLA is a formal agreement to promise what is possible to provide and provide what is promised”. Sun Microsystems Internet
Data Center group (2002)

6

Service Level Agreement (SLA) in Utility Computing Systems

•	 Penalties: If delivered service does not
achieve SLOs or is below the performance
measurement, some penalties will occur.

•	 Optional services: Services that are not
mandatory but might be required.

•	 Administration: Processes that are used
to guarantee the achievement of SLOs and
the related organizational responsibilities
for controlling these processes.

SLA Lifecycle

Ron et. al. (2001) define the SLA life cycle in three
phases (Figure 4). Firstly, the creation phase, in
which the customers find service provider who
matches their service requirements. Secondly, the
operation phase, in which a customer has read-only
access to the SLA. Thirdly, the removal phase,
in which SLA is terminated and all associated
configuration information is removed from the
service systems.

A more detailed life cycle has been character-
ized by the Sun Microsystems Internet Data

Center Group (2002), which includes six steps
for the SLA life cycle: the first step is ‘discover
- service providers’, in where service providers
are located according to consumer’s requirements.
The second step is ‘define – SLA’, which includes
definition of services, parties, penalty policies
and QoS parameters. In this step it is possible to
negotiate between parties to reach a mutual agree-
ment. The third step is ‘establish – agreement’,
in which an SLA template is established and filled
in by specific agreement, and parties are starting
to commit to the agreement. The fourth step is
‘monitor – SLA violation’, in which the provider’s
delivery performance is measured against to the
contract. The fifth step is ‘terminate – SLA’, in
which SLA terminates due to timeout or any
party’s violation. The sixth step is ‘enforce - pen-
alties for SLA violation’, if there is any party
violating contract terms, the corresponding pen-
alty clauses are invoked and executed. These steps
are illustrated in Figure 5.

The mapping between three high level phases
and six steps of SLA lifecycle is shown in Table

Figure 3. SLA components

7

Service Level Agreement (SLA) in Utility Computing Systems

2. The ‘creation’ phase of three phase lifecycle
maps to the first three steps of the other lifecycle.
In addition, the ‘operation’ phase of three phase
lifecycle is the same as the fourth step of the
other lifecycle. The rest of the phases and steps
map to each other.

The six steps SLA lifecycle is more reasonable
and provides detailed fine grain information,
because it includes important processes, such as

re/negotiation and violation control. During the
service negotiation or renegotiation, a consumer
exchanges a number of contract messages with a
provider in order to reach a mutual agreement.
The result of these processes leads to a new SLA
(Youseff et. al. 2008). In six steps lifecycle, steps
2 and 3 map to these processes. However, the
three phase’s lifecycle does not include them.
Furthermore, the ‘Enforce Penalties for SLA vio-

Figure 4. SLA high level lifecycle phases, according to the description of Ron et. al. (2001)

Figure 5. SLA life cycle six steps, as defined by Sun Microsystems Internet Data Center Group (2002)

8

Service Level Agreement (SLA) in Utility Computing Systems

lation’ phase is important because it motivates
parties adhere to follow the contract. We believe
that the six steps formalization of the SLA life
cycle provides a better characterization of the
phenomenon and from here onwards we will
refer to this as SLA life cycle.

SLA IN UTILITY COMPUTING
SYSTEMS

As highlighted by Patterson (Patterson, 2008),
there are many challenges involved in developing
software for a million users to use as a service via
a data center as compared to distributing software
for a million users to run on their individual per-
sonal computers. Using SLAs to define service
parameters that are required by users, the service
provider knows how users value their service re-
quests, hence it provides feedback mechanisms to
encourage and discourage service request submis-
sions. In particular, utility models are essential to
balance the supply and the demand of computing
resources by selectively accepting and fulfilling
limited service requests out of many competing
service requests submitted.

However, in the case of service providers
making available a commercial offer to enable
crucial business operations of companies, there
are other critical QoS parameters to be considered
in a service request, such as reliability and trust/

security. In particular, QoS requirements cannot
be static and need to be dynamically updated
over time due to continuing changes in business
operations and operating environments. In short,
there should be greater importance on customers
since they pay for accessing services. Therefore,
the emphasis of this section is to describe SLA
management in utility computing systems.

SLA Management in Utility
Computing Systems

SLA management includes several challenges and
in this section we will discuss them as part of the
steps of the SLA life cycle.

Discover - Service Provider

In current utility computing environments, espe-
cially Grid and Cloud, it is important to locate
resources that can satisfy consumers’ requirement
efficiently and optimally (Gong et. al. 2003). Such
computing environments contain a large collection
of different types of resources, which are distrib-
uted worldwide. These resources are owned and
operated by various providers with heterogeneous
administrative policies. Resources or services can
join and leave a computing environment at any-
time. Therefore, their status changes dynamically
and unpredictably. Solutions for service provider
discovery problems must efficiently deal with
scalability, dynamic changes, heterogeneity and
autonomous administration.

Define - SLA

Once service providers have been discovered, it
is necessary to identify the various elements of
an SLA that will be signed by agreeing metrics.
These elements are called service terms and
include QoS parameters, the delivery ability of
the provider, the performance target of diversity
components of user’s workloads, the bounds
of guaranted availability and performance, the

Table 2. Mapping between two types of SLA
lifecycle

Three Phases Six Steps

1. Creation Phase 1. Discover Service Provider

2. Define SLA

3. Establish Agreement

2. Operation Phase 4. Monitor SLA Violation

3. Removal Phase 5. Terminate SLA

6. Enforce Penalties for SLA
Violation

9

Service Level Agreement (SLA) in Utility Computing Systems

measurement and reporting mechanisms, the cost
of the service, the data set for renegotiation, and
the penalty terms for SLA violation. In this stage
of the SLA lifecycle, measurement metrics and
definition of each of these elements is done by a
negotiation process between both parties (Blythe
et. al. 2004) (Chu et. al. 2002).

Other challanges are related tothe negotiation
process. Firstly, parties may use different negotia-
tion protocols or they may not have the common
definition of the same service (Brandic et. al.
2008). Secondly, service descriptions, in an SLA,
must be defined unambiguously and be contex-
tually specified by the means of its domain and
actor. Therefore, an SLA language must allow the
parameterisation of service description (Loyall et.
al. 1998). Moreover it should allow a high degree
of flexibility and enable a precise formalisation of
what a service guarantee means. Another aspect is
how to keep SLA definition consistent throughout
the entire SLA lifecycle.

Establish - Agreement

In this step an SLA template is constructed.
A template has to include all aspects of SLA
components. In utility computing environments,
to facilitate dynamic, versatile, and adaptive IT
infrastructures, utility computing systems have to
promply react to environmental changes, software
failures, and other events which may influence
the system’s behavior. Therefore, how to manage
SLA-oriented adaptive systems, which exploit
self-renegotiation after system failure, becomes
an open issue (Brandic et. al. 2009). Although
most of the works recognise SLA negotiation as a
key aspect of SLA managemet, recent works only
provide little insight on how negotiation (espe-
cially automated negotiation) can be realised. In
addition, it is difficult to reflect the quality aspects
of SLA components in a template.

Monitor - SLA Violation

SLA violation monitoring begins once an agree-
ment has been established. It plays a critical role
in determining whether SLOs are achieved or
violated. There are three main concerns. Firstly,
which party should be in charge of this process.
Secondly, how fairness can be assured between
parties. Thirdly, how the boundaries of SLA vio-
lation are defined.

SLA violation means ‘un-fulfillment’ of ser-
vice agreement. According to the Principles of
European Contract Law, the term ‘un-fulfillment’
is defined as defective performance (parameter
monitored at lower level than agreed), late per-
formance (service delivered at the appropriate
level but with unjustified delays), and no per-
formance (service not provided at all). There
are three broad provisioning categories based on
the above definition (Rana et. al. 2008). ‘All-or-
Nothing’ provisioning, characterizes the case in
which all SLOs must be satisfied or delivered
by the provider. ‘Partial’ provisioning identi-
fies some SLOs as mandatory ones, and must be
met for the successful service delivery by both
parties. ‘Weighted Partial’ provisioning, is the
case in which the “provision of a service meets
SLO if it has a weight greater than a threshold
(defined by the client)” (Rana et. al. 2008). ‘All-
or-Nothing’ provisioning is used in most cases
of SLA violation monitoring, because violation
leads to complete failure and negotiation to create
a new SLA. An SLA contains mandatory SLOs
that must be delivered by the provider. Hence,
in ‘Partial’ provisioning, all parties assign these
SLOs the highest priority to reduce violation risk.
How much the SLO affects the ‘Business Value’
a measure of the importance of a particular SLO
term. The more important the violated SLO, the
more difficult it is to renegotiate the SLA, because
any party does not want to lose their competitive
advantages in the market.

10

Service Level Agreement (SLA) in Utility Computing Systems

Terminate - SLA

In terminating an SLA, a key aspect is to decide
when it should be terminated, and once decided, all
associated configuration information is removed
from the service systems. If the termination is
due to an SLA violation, two questions need to
be answered, who is the party that triggered this
activity and what are the consequences of it.

Enforce Penalties for SLA Violation

In order to enforce penalties for SLA violation,
penalty clauses are need to be defined. In utility
computing systems, where consumers and provid-
ers are globally distributed, the penalty clauses
work differently in various countries.

This leads to two problems, which particular
clause should be used and whether it is fair for
both sides. Moreover, due to the different types
of violations, the penalty clauses need to be com-
prehensive. Recently, some works used the linear
model for penalty enforcement of SLA violations
in simple contexts (Lee et. al., 2010) (Yeo et. al.,
2008). The linear model exhibits a poor perfor-
mance, thus, the selection of these best models
for SLA violation penalty clauses enforcement is
still an open problem.

Solutions for SLA Management
in Utility Computing Systems

This section introduces solutions for the problems
presented in the previous section. Six SLA man-
agement languages and frameworks are analyzed,
because they can be used as solutions in multiple
steps of SLA lifecycle.

SLA Management Frameworks
and Languages

SLA can be represented by specialized languages
for easing SLA preparation, automating SLA
negotiation, adapting services automatically ac-

cording to SLA terms, and reasoning about their
composition. In this section we introduce six
languages for SLA specification and manage-
ment. Among them, the WS-Agreement and Web
Service Level Agreement (WSLA) are the most
popular and widely used in research and industry.
The comparison among all of these languages is
shown in Table 3.

Bilateral Protocol: (Srikumar et. al. 2008)
presented a negotiation mechanism for advanced
resource reservation. It is a protocol for negotiat-
ing SLAs based on Rubinsteins Alternating Offers
protocol for bargaining between parties. Any
party is allowed to modify the proposal in order
to reach a mutually-agreed contract. The authors
implemented this protocol by using the Gridbus
Broker on the customer’s side and Aneka on the
provider’s side. Web services enable platform
independence, and are therefore used to com-
municate between consumers and providers be-
cause the Gridbus Broker is implemented in Java,
and Aneka is a.Net based enterprise Grid. The
advantage of these high level languages is that
they are object oriented and web services enable
semantic definition. Thus, this protocol supports
SLA component reuse, and type and semantic
definition.

WS-Agreement: Open Grid Forum (OGF)
has defined a standard for the creation and the
specification of SLAs called Web Services Agree-
ment Specification (WS-Agreement) (Andrieux
et. al. 2007). It is a language and a protocol for
establishing, negotiating, and managing agree-
ments on the usage of services at runtime between
providers and consumers. It uses an Extensible
Markup Language (XML) based language for
specifying the nature of an agreement template,
which facilitates discovery of compatible pro-
viders. Its interaction is based on request and
response. Moreover, it helps parties in exposing
their status, so SLA violation can be dynamically
managed and verified. Originally the language
did not support negotiation and currently it has
been complemented. WS-Agreement Negotia-

11

Service Level Agreement (SLA) in Utility Computing Systems

Ta
bl

e
3.

 C
om

pa
ri

so
n

of
 S

LA
 m

an
ag

em
en

t f
ra

m
ew

or
ks

 a
nd

 la
ng

ua
ge

s

N
am

e
Ty

pe
D

om
ai

n

D
yn

am
ic

E

st
ab

lis
h

/
M

an
ag

em
en

t
N

eg
ot

ia
tio

n
M

et
ri

cs

D
ef

in
e

M
an

ag
em

en
t

A
ct

io
ns

Su
pp

or
t

R
eu

se

Pr
ov

id
e

Ty
pe

Sy

st
em

s
D

ef
in

e
Se

m
an

tic

C
op

e
w

ith
 S

L
A

lif

ec
yc

le

B
ila

te
ra

l
Pr

o-
to

co
l

Ja
va

,.N
et

 a
nd

W

eb

Se
rv

ic
e

ba
se

d
pr

ot
oc

ol

O
rig

in
al

ly
 fo

r r
e-

so
ur

ce
 r

es
er

va
-

tio
n

in
 G

rid
s.

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s.

Ye
s

Su
pp

or
t

by
 W

eb

Se
rv

ic
e.

St
ep

 1
 to

St

ep
 4

.

W
S-

A
gr

ee
-

m
en

t
X

M
L

la
ng

ua
ge

;
Fr

am
ew

or
k;

 A

pr
ot

oc
ol

A
ny

 d
om

ai
n

E
st

ab
li

sh

an
d

m
an

ag
e

dy
na

m
i-

ca
lly

R
e/

ne
go

tia
tio

n
w

ith
 W

S-
A

gr
ee

-
m

en
t N

eg
ot

ia
tio

n

D
o

no
t

de
fi

ne

sp
ec

ifi
ca

tio
n

of
 m

et
ri

cs
 a

s-
so

ci
at

ed
 w

it
h

ag
re

em
en

t
pa

-
ra

m
et

er
s.

Ye
s

Ye
s

Ye
s

N
ot

fo

rm
al

ly

de
fin

ed

St
ep

 1
 to

st

ep
 6

W
SL

A
Pr

ov
id

e
la

ng
ua

ge
;

Fr
am

ew
or

k;

ru
nt

im
e

ar
ch

i-
te

ct
ur

e

O
ri

gi
na

ll
y

fo
r

W
eb

 se
rv

ic
es

E
st

ab
li

sh

an
d

m
an

ag
e

dy
na

m
i-

ca
lly

R
e/

ne
go

tia
tio

n.
A

llo
w

s
cr

ea
tio

n
of

 n
ew

 m
et

ric
s

Ye
s

Ye
s

N
A

N
ot

fo

rm
al

ly

de
fin

ed

St
ep

 1
 to

st

ep
 6

Q
M

L
la

ng
ua

ge
A

ny
 D

om
ai

n

Ye
s

Ye
s

A
llo

w
s

cr
ea

tio
n

of
 n

ew
 m

et
ric

s
Ye

s
Ye

s

Ye
s,

 a
llo

w
s

de
fin

iti
on

of

 n
ew

 t
yp

e
sy

st
em

s

Ye
s

St
ep

 1
 to

st

ep
 4

W
SO

L
X

M
L

O
ri

gi
na

ll
y

fo
r

W
eb

 S
er

vi
ce

s
Ye

s
O

rig
in

al
ly

 d
o

no
t

su
pp

or
t,

bu
t s

up
-

po
rt

no
w.

N
A

Ye
s

Ye
s

Ye
s

N
o

St
ep

 1
 to

st

ep
 4

Q
U

O
CO

RB
A

sp
ec

ifi
c

fr
am

ew
or

k
A

ny
 d

om
ai

n
Ye

s
Ye

s
N

A
Ye

s
Ye

s
Ye

s
N

o
St

ep
 1

 to

st
ep

 4

SL
A

ng
X

M
L

La
ng

ua
ge

O
ri

gi
na

ll
y

fo
r

In
te

rn
et

 D
S

en
-

vi
ro

nm
en

t
N

A
Ye

s
N

o B
ut

 ba
se

d o
n

be
ha

vi
or

 of
 S

LA

pa
rti

es
N

A
Ye

s
Ye

s
Ye

s
St

ep
 1

 to

St
ep

 4

12

Service Level Agreement (SLA) in Utility Computing Systems

tion, which lies on the top of WS-Agreement and
describes the re/negotiation of the SLA. Its main
feature is the robust signaling protocol for the
negotiation.

Web Service Level Agreement (WSLA):
WSLA (Keller et. al. 2003) is a framework de-
veloped by IBM to specify and monitor SLA for
Web Services. It provides a formal XML schema
based language to express SLAs, and architec-
ture to interpret this language at runtime. It can
measure, and monitor QoS parameters and report
violations to the parties. It separates monitoring
clauses from contractual terms for outsourcing
purposes. It provides the capability to create
new metrics over existing metrics to implement
multiple QoS parameters (Keller et. al. 2003).
However, the semantic of metrics is not formally
defined, hence, there are limitations for the creation
of new terms based on existing terms.

WSOL: Web Service Offerings Language
(WSOL) defines a syntax for service offers’
interaction (Sakellariou et. al. 2005). It provides
template instantiation and reuse of definitions
(Buyya et. al. 2009). WSOL and WSLA support
definition of management information and ac-
tions, such as violation notifications. However,
they are not defined by a formal semantic. WSOL
and QML (Quality of Service Management Lan-
guage) support type systems allowing the same
SLA to be described either in abstract or specific
values to create a new SLA. The generalisation
relationships between SLAs facilitate definitions
of SLA types.

SLAng: Skeneet et. al. (2004) propose Service
Level Agreement Language (SLAng), which uses
XML to define SLAs. It is motivated by the fact
that federated distributed systems must manage the
quality of all aspects of their deployment. SLAng
is different from other languages and frameworks.
Firstly, it defines an SLA vocabulary for internet
services. Secondly, its structure is based on the
specific industry requirement, aiming to provide
usable terms. Thirdly, it is modeled using Unified

Markup Language (UML) and defined accord-
ing to the behavior of services and consumers
involved in service usage, unlike other languages,
such as WSLA and WSOL, where QoS definition
is based on metrics. Moreover, it supports third
party monitoring schemes. However, it lacks of
the ability to define management information,
such as associated financial terms. Thus, it is not
suitable for commercial computing environments.

QML: QML (Frolund et. al. 1998) defines a
type system for SLAs, allowing users to define
their own dimension types. However, it does not
support extension of individual defined metrics
because the exchange of SLAs between parties
requires a common understanding of metrics.
QML defines semantic for both its type system
and its notion of SLA conformance.

QuO: Quality Objects (QuO) is a CORBA
specific framework for QoS adaption based on
proxies (Loyall et. al. 1998). It includes a qual-
ity description language used for describing
QoS parameters, adaptations and notifications.
QuO properties are the response of invoking in-
strumentation methods on remote objects. Like
WSLA, no formal constraints are placed on the
implementation of these methods.

Discover - Service Provider

In the Grid computing community, Fitzgerald
(1997) introduced the Monitoring and Discovery
System, Gong et. al. (2003) proposed the VEGA
Grid Project and also relevant is the work of
Iamnitchi et. al. (2001).

Monitoring and Discovery System (MDS) is
the information service described in the Globus
project (Fitzgerald 1997). In its architecture,
Lightweight Directory Access Protocol (LDAP)
is used as directory service, and information
stored in information servers are organised in
tree topology. In utility computing systems, re-
sources’ availability and capability are dynamic
in nature. However, in MDS, the relationship

13

Service Level Agreement (SLA) in Utility Computing Systems

between information and information servers is
static. In addition, service provider’s information
is frequently updated in these dynamic changing
environments, whilst LDAP is not designed for
writing and updating information.

VEGA Infrastructure for Resource Discovery
(VIRD) follows three-level hierarchy architecture.
The top level is a backbone, which is responsible
for the inter-domain resource discovery and
consists of Border Grid Resource Name Servers
(BGRNS). The second level consists of several do-
mains and each domain consists of Grid Resource
Name Servers (GRNS). The third level includes
all clients and resource providers. There is no
central control in this architecture, thus resource
providers register themselves to GRNS server
within a domain. When clients submit requests,
GRNS respond to them with requested resources.
The limitation of this architecture is that it only
focuses on the issue of scalability and dynamic
environmental changes but not on heterogeneity
and autonomous administration.

Iamnitchi et. al. (2001) propose a resource
discovery framework using peer-to-peer (P2P)
technologies in Grids. P2P architecture is fully
distributed and all the nodes are equivalent. How-
ever, one major limitation of their work is that
every node has little knowledge about resources
distribution and their status. Specifically, when
there is a large number of resource types or the
work-set is very large, the opportunity for inac-
curate results increases, because the framework
is not able to use historical data to accurately
discover resources.

Define - SLA and Establish
- Agreement

‘Define – SLA’ and ‘Establish – Agreement’ are
two dependent steps, and SLA languages facili-
tate their development. For example, WSLA and
WS-Agreement are the most widely used lan-
guages in these steps. Creation and Monitoring
of Agreements (CREMONA) is a WS-Agreement

framework implemented by IBM (Dan et. al.
2004). It proposes a Commitment Agreement and
architecture for the WS-Agreement. All of these
agreements are normal WS-Agreements, follow-
ing a certain naming convention. This protocol
basically aims at solving problems related to the
creation of agreements on multiple sites. How-
ever, it is unable to solve limitations when service
providers and consumers have different standards,
policies, and languages during negotiations. For
example, if a consumer uses WSLA but a provider
uses WS-Agreement, the interaction is actually
not possible. In order to solve this, Brandio et.
al. (2008) proposed a Meta-Negotiation Archi-
tecture for SLA-Aware Grid Services based on
meta-negotiation documents. These documents
record supported protocols, document languages,
and the prerequisites for starting negotiations and
establishing agreements for all participants.

SLA-oriented Resource Management Systems
(RMS) have been developed for addressing nego-
tiation problems in Grids, for example, Wurman
et. al. (1998) state a set of auction parameters and
a price-based negotiation platform, which serves
as an auction server for humans and software
agents. Nevertheless, their solution only supports
one-dimensional auction (only focus on price),
but not multiple-dimensional auctions, which
are important in utility computing environments.

Monitor - SLA Violation

Monitoring infrastructures are used to measure
the difference between the pre-agreed and actual
service provision between parties (Rana et. al.
2008). There are three types of monitoring infra-
structures, which are trusted third party (TTP),
trusted module on the provider side, and trusted
module on the client side. Nowadays, TTP pro-
vides most of the functionalities for monitoring
in most typical situations to detect SLA violation.

14

Service Level Agreement (SLA) in Utility Computing Systems

Terminate - SLA

There are two scenarios in which an SLA may be
terminated. The first is termination due to normal
time out. The second one is termination because
any party violated its contract terms. Normally, in
Clouds, this step is conducted by customers and
termination typically is caused by normal time
out or the provider’s SLA violation. Sometimes,
providers also terminate SLAs depending on the
task priorities. If the reason for SLA termination
is violation, then the ‘Enforce Penalties for SLA
Violation’ step of the SLA lifecycle has to be ap-
plied. Usually this step is performed manually..

Enforce Penalties for SLA Violation

A penalty clause can be applied to the party who
violates SLA terms. First is a direct financial com-
pensation being negotiated and agreed between
parties. Second is a decrease in price along with
the extra compensation for any subsequent interac-
tion. In other words, this option is according to the
value of loss caused by the violation. In this case,
TTP is usually used as a mediator. The workflow
for this option is that clients transfer their deposit,
bond, and any other fees into the Third Party’s
account, and then if the SLOs have been met, the
money is paid to provider via TTP. Otherwise,
the TTP returns the amount of fees back to the
consumer as compensation for SLA violations.
The SLA violation has two indirect side impacts
on providers. The first is that consumers will use
less service from the provider in the future. The
second is that provider’ reputation decreases and
it affects other clients’ willingness to choose this
provider subsequently. The major indirect influ-
ence on consumer is that future request will be
rejected due to bad credit record.

A major issue, in the above discussion, is the
variety of laws enforced in different countries.
This problem can be solved by a ‘choice of law
clause’, which indicates explicitly which country’s
laws are applied when a conflict occurs between

parties. ‘Legal templates’ (Dinesh, 2004) can be
used to refine these clauses (Rana et. al. 2008).

SLA USE CASES IN UTILITY
COMPUTING SYSTEMS

Utility computing provides access to on-demand
delivery of IT capabilities to the consumer accord-
ing to cost-effective pricing schema. Typically, a
resource in a Data Center is idle during 85% of
time (Yeo et. al. 2008). Utility computing provides
a way for enterprises to lease this 85% of idle re-
source or to use outsourcing to pay for resources
according to their usage. Two approaches of utility
computing that achieve above goals are Grid and
Cloud. In the remaining part of this section, we
present use cases in Grid and Cloud computing
environments.

SLA in Grid Computing Systems

In this section we introduce the definition of Grid
computing, and some recent significant Grid
computing projects that have focused on SLAs
and enabled them in their frameworks.

According to Buyya et. al. (2009) “A Grid is a
type of parallel and distributed system that enables
the sharing, selection, and aggregation of geo-
graphically distributed ‘autonomous’ resources
dynamically at runtime depending on their avail-
ability, capability, performance, cost, and users’
quality-of-service requirements.” Grid computing
is a paradigm of utility computing, typically used
for access to scientific resources, even though it
has been also used in the industry as well.

SLA has been adopted in Grid computing, and
many Grid projects are SLA oriented. We classify
them into three categories, which are SLA for busi-
ness collaboration, SLA for risk assessment, and
SLA renegotiation supporting dynamic changes.

SLA for Business Collaboration: GRIA (The
GRIA Project) is a service-oriented infrastructure
designed to support B2B collaborations across

15

Service Level Agreement (SLA) in Utility Computing Systems

organizational boundaries by providing services.
The framework includes a service manager with
the ability to identify the available resources
(e.g. CPUs and applications), assign portions of
the resources to consumers by SLAs, and charge
for resource usage. Furthermore, a monitoring
service is responsible for monitoring the activity
of services with respect to agreed SLOs.

The BREIN consortium (The BREIN Proj-
ect, 2006-2009) defines a business framework
prototype for electronic business collaborations.
Some capabilities of this framework prototype
include Service Discovery with respect to SLA
capabilities, SLA negotiation in a single-round
phase, system monitoring and evaluation, and
SLA evaluation with respect to the agreed SLA.
The WSLA/WS-Agreement specifications are
suggested for SLAs management. The project
focuses on dynamic SLAs. This initiative shows
that the industry is demonstrating their interest in
SLA management.

In the work of Joita et. al. (2005), WS-Agree-
ment specification is used as a basis to conduct
negotiation between two parties. An agent-based
infrastructure takes care of the agreement offer
made by the requesting party. In this scenario,
many one-to-one negotiations are considered in
order to find the service that matches the offer best.

Risk Assessment: The AssessGrid (Battre et.
al. 2007) project focuses on risk management and
assessment in Grid. It aims at providing service
providers with risk assessment tools, which help
them to make decisions on the suitable SLA offer
by assigning, mapping, and associating the risk
of failure to penalty fees. Similarly, end-users
get knowledge about the risk of an SLA violation
by a resource provider that helps them to make
appropriate decisions regarding acceptable costs
and penalty fees. A broker is the matchmaker
between end-users and providers. WS-Agreement-
Negotiation protocol is responsible for negotiating
SLAs with external contractors.

SLA renegotiation supporting dynamic
changes: Frankova et. al. (2006) propose an

extension of WS-Agreement allowing a run-
time SLA renegotiation. Some modifications are
proposed in the ’GuaranteeTerm’ section of the
agreement schema and a new section is added to
define possible negotiations, to be agreed by par-
ties before the offer is submitted. The limitation
is that it does not support run-time renegotiation
to adapt dynamic operational and environmental
changes, because after the agreement’s acceptance,
there is no interaction between the provider and
the consumer. Sakellariou et. al. (2005) specify
the guarantee terms of an agreement as variable
values rather than fixed values. This work aims
at minimizing the number of re-negotiations to
reach consensus with agreement terms. BabelNet,
is a Protocol Description Language for automated
SLA negotiation, has been proposed (Hudert et.
al. 2009) to handle multiple-dimensional auctions.

SLA in Cloud Computing

Cloud computing is a paradigm of service oriented
utility computing. In this section we introduce a
definition of cloud computing and SLA use cases
in industry and academia. Finally, we compare
SLA usage difference between Cloud computing
and traditional web services.

Cloud Computing

Based on the observation of the essence of what
Clouds are promising to be, Buyya et. al. (2009)
propose the following definition: “A Cloud is a
type of parallel and distributed system consisting
of a collection of inter-connected and virtualized
computers that are dynamically provisioned and
presented as one or more unified computing
resource(s) based on service-level agreements
established through negotiation between the
service provider and consumer”. Hence, Clouds
fit well into the definition of utility computing.

Figure 6 shows the layered design of Cloud
computing architecture. Physical Cloud resources
along with core middleware capabilities form

16

Service Level Agreement (SLA) in Utility Computing Systems

the bottom layer needed for delivering IaaS. The
user-level middleware aims at providing PaaS
capabilities. The top layer focuses on applica-
tion services (SaaS) by making use of services
provided by the lower layer services. PaaS/SaaS
services are often provided by 3rd party service
providers, who are different from IaaS providers.
(Buyya et. al. 2009)

User-Level Applications: this layer includes
the software applications, such as social comput-
ing applications and enterprise applications, which
will be deployed by PaaS providers renting re-
sources from IaaS providers.

User-Level Middleware: Cloud programming
environments and tools are included in this layer
facilitate creation of applications and their map-
ping to resources using Core Middleware Layer
services.

Core Middleware: this layer provides runtime
environment enabling capabilities to application
services built using User-Level Middleware. Dy-
namic SLA management, Accounting, Monitoring
and Billing are examples of core services in this
layer. The commercial examples for this layer are
Google App Engine and Aneka.

System Level: physical resources including
physical machines and virtual machines sit in this
layer. These resources are transparently managed
by higher level virtualization services and toolkits
that allow sharing of their capacity among virtual
instances of servers.

Use Cases

In this section, we present industry and academic
use cases in Cloud computing environments.

Industry Use Cases: In this section, we
present how Cloud providers implement SLA.
Important parameters are summarised in Table
4. All elements in Table 4, obtained from formal
published SLA documents of AmazonEC2 and S3
(IaaS provider), and Windows Azure1 Compute
and Storage (IaaS/PaaS provider).

A characterization of systems studied follow-
ing the six steps of SLA lifecycle model is sum-
marized in Table 5. From the users’ perspective,
the process of activating SLA lifecycle with
Amazon and Microsoft is simple because the SLA
has been pre-defined by the provider. According
to SLA lifecycle, the first step is to find the service

Figure 6. Layered Cloud computing architecture. (Buyya et. al 2009)

17

Service Level Agreement (SLA) in Utility Computing Systems

Table 4. SLA Use Cases of the most famous Cloud Provider and related characteristics in SLAs

Cloud
Provider Name Service Commitment Effective Date

Monthly Uptime
Percentage (MUP)%

Service Credits
Percentage (%)

Amazon AWS
EC2

“AWS use commercially reasonable efforts to make
Amazon EC2 available with an Annual Uptime Percent-
age of at least 99.95% during the Service Year. In the
event Amazon EC2 does not meet the Annual Uptime
Percentage commitment, you will be eligible to receive
a Service Credit ”(AWS EC2 Service Level Agreement).

October 23, 2008 MUP1<99.95% 10%

Amazon AWS
S3

“AWS use commercially reasonable efforts to make
Amazon S3 available with a Monthly Uptime Percentage
(defined below) of at least 99.9% during any monthly
billing cycle (the “Service Commitment”). In the event
Amazon S3 does not meet the Service Commitment,
you will be eligible to receive a Service Credit “(AWS
S3 Service Level Agreement).

October 1, 2007 99%=<MUP<99.9% 10%

MUP<99 25%

Windows Azure
Compute

“Windows Azure has separate SLA’s for compute and
storage. For compute, we guarantee that when you deploy
two or more role instances in different fault and upgrade
domains your Internet facing roles will have external
connectivity at least 99.95% of the time. Additionally,
we will monitor all of your individual role instances
and guarantee that 99.9% of the time we will detect
within two minutes when a role instance’s process is
not running and initiate corrective action.” (Windows
Azure Service Level Agreement)

NA <99.95% 10%

<99% 25%

Windows Azure
Storage

NA <99.9% 10%

<99.5% 25%

Table 5. From users’ perspective SLA use cases of cloud provider follows six steps SLA lifecycle

Cloud
Service

Provider Service Type

Step 1:
Discover-
Service

Provider
Step 2:

Define-SLA

Step 3:
Establish-
Agreement

Step 4:
Monitor-SLA

Violation

Step 5:
Terminate-

SLA

Step 6:
Enforce
Penalties
for SLA

Violation

Amazon EC2 IaaS
(Computing)

Discover
manually (e.g.
via web site)

Pre-defined
SLA terms
and QoS
parameters

Pre-defined
SLA docu-
ment by pro-
vider

Can use third
party monitor
systems (e.g.
CloudWatch)

By user, or
provider pro-
grammatically
or manually

Service Credit
given by
provider

Amazon S3 IaaS
(Storage)

Discover
manually

Pre-defined
SLA terms
and QoS
parameters

Pre-defined
SLA docu-
ment by pro-
vider

Can use third
party monitor
systems (e.g.
CloudStatus)

By user, or
provider pro-
grammatically
or manually

Service Credit
given by
provider

Microsoft
Azure Com-

pute

PaaS Discover
manually (e.g.
via web site)

Pre-defined
SLA terms
and QoS
parameters

Pre-defined
SLA docu-
ment by pro-
vider

Can use third
party monitor
systems (e.g.
Monitis)

By user, or
provider pro-
grammatically
or manually

Service Credit
given by
provider

Microsoft
Azure Storage

PaaS Discover
manually

Pre-defined
SLA terms
and QoS
parameters

Pre-defined
SLA docu-
ment by pro-
vider

Can use third
party monitor
systems (e.g.
Monitis)

By user, or
provider pro-
grammatically
or manually

Service Credit
given by
provider

18

Service Level Agreement (SLA) in Utility Computing Systems

providers according to users’ requirements. For
example, users find the provider via searching on
the Internet, and then explore the providers’ web
site for collecting further information. Most Cloud
service providers offer pre-defined SLA docu-
ments. In this case, the second step and third step
are pre-defined and always be entwined together.
The check for SLA violation monitoring can be
done by third party tools, such as Cloudwatch,
Cloudstatus, Monitis, and Nimsoft. Developers
are able to develop their own monitoring systems
by using these tools.

For what concerns the termination of an SLA
we can consider IaaS services as a reference ex-
ample. In this case three scenarios may occur. The
normal termination of an SLA is constituted by
the release of Cloud release of Cloud resources
by the user. An SLA can also be actively termi-
nated by a provider if the resource usage lasts
beyond the predefined expiry time. A termination
with penalty may occur in case the provider is
unable to provide resources according to the
expected Quality of Service. The last step of SLA
lifecycle will be invoked if any party violates
contract terms. Currently most of the service
providers give service credits to customer if they
violate SLA.

Academic Use Cases: In this section, we
present SLA-Oriented projects and algorithms
as academy use cases.

SLA-Oriented Resource Allocation for
Data Centers and Cloud Computing Systems:
The Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, at the University of
Melbourne has proposed the use of market-based
resource management to support utility-based
resource management for cluster computing
(Yeo C. S. et. al. 2005) (Yeo C. S. et. al. 2007).
The initial work successfully demonstrated that
market-based resource allocation strategies are
able to deliver better utility for users than tradi-
tional system-centric strategies. However, early
research focused on satisfying only two static
Quality of Service (QoS) parameters: the deadline

for completing a service request and the budget
that the consumer is willing to pay for completing
the request before the deadline. In the commercial
computing environment, there are other critical
QoS parameters to consider in a service request,
such as reliability and trust/security. In particular,
QoS requirements cannot be static and need to be
dynamically updated over time due to continuing
changes in business operations and operating
environments.

SLA@SOI: A European Union funded Frame-
work 7 research project, SLA@SOI (SLA@SOI
project), is researching aspects of multi-level,
multi-provider SLAs within service-oriented
infrastructure and cloud computing. Currently,
this project aims to build an ad-hoc architecture
and integration approach for a basic SLA manage-
ment framework. It provides a major milestone for
the further evolution towards a service-oriented
economy, where IT-based services can be flexibly
traded as economic goods, i.e. under well defined
and dependable conditions and with clearly associ-
ated costs. SLA@SOI provides two major benefits
to the provisioning of services. First, service pre-
dictability and dependability means that the quality
characteristics of service can be predicted and
enforced at run-time. Second, automation means
that the whole process of negotiating SLAs and
provisioning, delivery and monitoring of services
can be automated allowing highly dynamic and
scalable service consumption.

SLA based Management and Scheduling:Lee
et. al. (2010) propose profit-driven SLA based
scheduling algorithms in Clouds to maximize
the profit for service providers. The application
model used in this work can be classified as SaaS
and PaaS. The service types supported by their
algorithm are dependent services, which mean
one sub-service can not start until the prerequisite
services are completed. However, their work does
not support multiple providers and full simulation
configuration is not available. We recommend
possible future research direction is SLA manage-
ment with multiple providers, since it is required

19

Service Level Agreement (SLA) in Utility Computing Systems

for emerging research in InterCloud.We define
InterCloud as multiple Cloud providers with peer
agreement to support collaborative activities.

SLA Related Difference Between
Cloud and Web Service

In this section we compare the differences between
SLAs applied in cloud computing and in traditional
web services as follows:

QoS Parameters: Most web services focus on
parameters such as response time, SLA violation
rate for the task, reliability, availability, levels of
user differentiation, and cost of service. In Cloud
computing more QoS parameters than traditional
web services need to be considered, for example,
energy related QoS, Security related QoS, Privacy
related QoS, trust related QoS. More than 20
QoS parameters are defined by the SMI (Service
Management Index) consortium to be used in the
industry and academia as standard benchmark.

Automation: The whole process of SLA
negotiation and provisioning, service delivery
and monitoring needs to be automated for highly
dynamic and scalable service consumption. Re-
searchers in traditional web services explored this
topic, for example, Jin L.J et. al. (2002) proposed
a model for SLA analysis of Web Services. Nev-
ertheless, SLA automation is a rapidly growing
area in Cloud computing. In fact there are some
research projects starting to focus on it, such as
CLOUDS Lab at the University of Melbourne
and SLA@SOI.

Resource Allocation: SLA oriented resource
allocation in Cloud computing is possible differ-
ent from allocation in traditional web services,
because web services have a Universal Description
Discovery and Integration (UDDI) for advertising
and discovering between web services. However,
in Clouds, resources are allocated and distributed
globally without central directory, so the strategy
and architecture for SLA based resource allocation
in such environment are different from traditional
web services.

ONGOING WORKS

SLA management must provide ways for reli-
able provisioning of services, monitoring of
SLA violations and detection of any potential
performance decrease during service execution
(Kuo et. al. 2006) (Marilly et. al. 2002). The goal
of SLA management is to establish a scalable and
automatic SLA management framework that can
adapt to dynamic environmental changes by con-
sidering multiple QoS parameters. In addition, an
SLA has to be suitable for multiple domains with
heterogeneous resources. Some of the research
are works towards to this direction. The VIRD
architecture is a three-level hierarchy focused on
scalability. Wurman et. al. (1998) state a set of
auction parameters and price-based negotiation
platform. Nevertheless, this solution only supports
one-dimensional auction, thus could not handle
multiple-dimensional auctions, which are impor-
tant in utility computing environments. Recently,
BabelNet handles multiple-dimensional auctions.

Nevertheless, somehow consumers still need to
be involved in the management process to certain
extent. Moreover, multiple QoS parameters have
been investigated by CLOUDS Lab’s initial work.
Whilst that work only focused on the most com-
mon QoS parameters (price and deadline), there
are other critical QoS parameters that should be
considered in a service request, such as reliability
and trust/security. In particular, QoS parameters
are must be updated dynamically over time due to
continuing changes in business operating environ-
ments. Thus, multiple QoS parameters should be
investigated in the future research work.

More specifically, there are some open chal-
lenges for SLA management. First and foremost,
different SLA negotiation protocols and processes
constrain the negotiation for establishing SLAs,
the modification of an implemented SLA, and
SLA negotiation between distinct administrative
domains. Second, The SLA has to be established
between providers and consumers from different
end-to-end viewpoint. For example, if the system

20

Service Level Agreement (SLA) in Utility Computing Systems

service has been outsourced from one provider to
another, there should be SLA agreement between
them as well. Third, admission control policies
need to be defined, because decision on which user
request to accept affects the performance, profit,
and reputation of the resource provider. Moreover,
the resource allocation management has to be
considered carefully, because it addresses which
resource is best suitable for currently admitted
requests from both parties’ point of view. Some
termination related problems are management
of QoS metrics, different parties use different
parameters, and the failure to manage becomes
an issue especially for the automatic handling,
such as cause analysis, automatic problem resolu-
tion. We can also mention, performance forecast
management is another open question in utility
computing environments because it enables the
recommendation for performance improvement.

SUMMARY

This chapter presented the literature survey, issues
and solutions of SLA management in utility com-
puting systems and how SLAs have been used in
these systems. An SLA is a formal contract between
service providers and consumers to guarantee that
the service quality is delivered to satisfy pre-agreed
consumers’ expectations. SLA management is
important in utility computing systems because
it helps to improve the customer satisfaction level
and to define clear relationship between parties.
In this chapter, we have summarised the main
fundamental concepts of SLA and analyzed two
types of SLA lifecycle. One is the three phase high
level lifecycle, which includes creation phase,
operation phase and removal phase; the other is
more specific lifecycle including six steps, which
are ‘discover-service provider’, ‘define-SLA
elements’, ‘establish-agreement’, ‘monitor-SLA
violation’, ‘terminate-SLA’ and ‘SLA violation
control’. The second type of lifecycle is more
comprehensive, and introduces the characteriza-

tion of SLA violation that is a foundation in util-
ity computing environments where services are
consumed on a pay-as-you-go basis.

The analysis carried out in this book chapter
has identified four major goals in case of SLA-
oriented utility computing. First, supporting
customer-driven service management based on
customer profiles and requested service require-
ments. Second, defining computational risk
management tactics to identify and manage risks
involved in the execution of applications with
regards to service requirements and customer
needs. Third, deriving appropriate market-based
resource management strategies encompassing
both customer-driven service management and
computational risk management to sustain SLA-
oriented resource allocation. Fourth, incorporat-
ing autonomic resource management models and
self-manage changes in service requirements to
satisfy both new service demands and meet exist-
ing service obligations.

To achieve these goals, we discussed the main
challenges and solutions of SLA implementation
and management in utility computing environ-
ments by following the steps of SLA lifecycle. In
the ‘discover-service provider’, the main issues are
scalability, dynamic changes, heterogeneity, and
autonomous administration. Some architectures
and algorithms have been proposed to cope with
them, such as MDS architecture and the VIRD
architecture. Effective negotiation protocols and
processes are main challenges for the ‘define-
SLA’ and ‘establish- agreement’ steps, because
two parties need to negotiate before they agree
on the terms that have to be included in SLAs.
SLA frameworks and languages are used as solu-
tions. Currently the most widely used languages
are WSLA and WS-Agreement. However, there
are not many effective solutions for the automatic
negotiation. Thus, the automatic negotiation is
still an open issue. Regarding the ‘monitor SLA
violation’, which party should be responsible for
the monitoring process is a debate issue. The most
popular solution for this problem is using Third

21

Service Level Agreement (SLA) in Utility Computing Systems

Party (TTP) who provides most of functionalities
for monitoring a service in most typical situations
to detect SLA violations. The main issues for the
last two steps ‘terminate SLA’ and ‘enforce penal-
ties for SLA violation’, are automatic failure man-
agement, such as cause analysis, penalty clauses
invocation, and automatic failure resolution. Some
penalty strategies have been presented. However,
automatic problem resolution and cause analysis
are still open challenges and more investigation
is needed in the future.

In conclusion, SLA in utility computing sys-
tems is a rapidly moving target although some
works have been explored in the past. Therefore,
there are still some open challenges such as scal-
ability, dynamic environmental changes, heteroge-
neity, SLA management automation, multiple QoS
parameters, and SLA suitable for cross domains
need to be explored in future research.

ACKNOWLEDGMENT

The authors would like to acknowledge all re-
searchers of works described in this book chapter
and thank them for their outstanding work. We
also thank for Yoganathan Sivaram, Christian Vec-
chiola, Saurabh Kumar Garg, Rodrigo Calheirós,
William Voorsluys, Tong Zou, Shanshan Wu and
Daryl de Penha for their comments to improve the
quality of this book chapter.

REFERENCES

Andrieux, A., Czajkowski, K., Dan, A., Keahey,
K., Ludwig, H., Nakata, T., Pruyne, J., Rofrano,
J., Tuecke, S., & Xu, M. (2007). Web Services
Agreement Specification (WSAgreement). OGF
proposed recommendation (GFD.107).

AWS. EC2 Service Level Agreement. Retrieved
03 28, 2010, from AWS: http://aws.amazon.com/
ec2-sla/

AWS S3. Service Level Agreement. Retrieved 03
28, 2010, from AWS: http://aws.amazon.com/
s3-sla/

Battre’. D., Hovestadt, M., Kao, O., Keller, A., &
Voss, K. (2007). Planning-based scheduling for
SLA-awareness and grid integration. PlanSIG,
(pp. 1).

Blythe, J., Deelman, E., & Gil, Y. (2004). Au-
tomatically Composed Workflows for Grid
Environments. IEEE Intelligent Systems, 16–23.
doi:10.1109/MIS.2004.24

Bonell, M. (1996). The UNIDROIT Principles
of International Commercial Contracts and the
Principles of European Contract Law: Similar
Rules for the Same Purpose (pp. 229–246). Uni-
form Law Review.

Boniface, M., Phillips, S., Sanchez-Macian, A.,
& Surridge, M. (2009). Dynamic service pro-
visioning using GRIA SLAs. Service-Oriented
Computing-ICSOC 2007 Workshops, (pp. 56-67).
Vienna, Austria.

Brandic, I. Music, D., & Dustdar, S. (2009). Ser-
vice Mediation and Negotiation Bootstrapping as
First Achievements Towards Self-adaptable Grid
and Cloud Services. In Grids and Service-Oriented
Architectures for Service Level Agreements. P.
Wieder, R. Yahyapour, and W. Ziegler (eds.),
Springer, New York, USA.

Brandic, I., Venugopa, S., Mattess, M., & Buyya,
R. (2008). Towards a Meta-negotiation Architec-
ture for SLA-Aware Grid Services. International
Workshop on Service-Oriented Engineering and
Optimization, (pp. 17). Bangalore, India.

Buco, M. J., Chang, R. N., Luan, L. Z., Ward, C.,
Wolf, J. L., & Yu, P. S. (2004). Utility computing
SLA management based upon business objec-
tives. IBM Systems Journal, 43(1), 159–178.
doi:10.1147/sj.431.0159

22

Service Level Agreement (SLA) in Utility Computing Systems

Buyya, R., & Alexida, D. (2001). A case for
economy Grid architecture for service ori-
ented Grid computing. In Proceedings of the
10th International Heterogeneous Computing
Workshop(HCW). San Francisco, CA.

Buyya, R., Pandey, S., & Vecchiola, C. (2009).
Cloudbus Toolkit for Market-Oriented Cloud
Computing, In Proceedings of the 1st International
Conference on Cloud Computing (CloudCom
2009, Springer, Germany). Beijing, China.

Buyya, R., Ranjan, R., & Calheiros, R. N. (2009).
Modeling and Simulation of Scalable Cloud Com-
puting Environments and the CloudSim Toolkit:
Challenges and Opportunities. In Proceedings
of the 7th High Performance Computing and
Simulation Conference (HPCS 2009), ISBN:
978-1-4244-4907-1, IEEE Press, New York, USA,
Leipzig, Germany.

Buyya, R., Yeo, Ch., Venugopal, S., Broberg, J.,
& Brandic, I. (2009, June). Cloud computing and
emerging IT platforms: Vision, hype, and reality
for delivering computing as the 5th utility. Future
Generation Computer Systems, 25(6), 599–616.
doi:10.1016/j.future.2008.12.001

Chu, X., Nadiminti, K., Jin, Ch., Venugopal, S.,
& Buyya, R. (2002). Aneka: Next-Generation
Enterprise Grid Platform for e-Science and e-
Business Applications. In Proceedings of the 3rd
IEEE International Conference on e-Science and
Grid Computing, (pp. 10-13). Bangalore, India.

Dan, A., Ludwig, H., & Kearney, R. (2004). CRE-
MONA: an architecture and library for creation and
monitoring of WS-Agreements. In Proceedings of
the Second International Conference on Service-
Oriented Computing, (pp. 65-74). NY, USA.

Dinesh, V. (2004). Supporting Service Level
Agreements on IP Networks. In Proceedings of
IEEE/IFIP Network Operations and Management
Symposium, 92(9), (pp. 1382-1388). NY, USA.

Fitzgerald, S., Foster, I., & Kesselman, C. (1997).
A directory service for configuring high-perfor-
mance distributed computations. In Proceedings
of the 6th IEEE Sympusium on High-Performance
Distributed Computing. (pp. 365-375).

Foster, A. K. (2003). The Grid 2: Blueprint for a
New Computing Infrastructure. San Francisco,
CA: Morgan Kaufmann.

Frey, N. (2000). A Guide to Successful SLA Devel-
opment and Management. Stamford, CT: Gartner
Group Research, Strategic Analysis Report.

Frolund, S., & Koistinen, J. O. (1998). A language
for quality of service specification. HP Labs
Technical Report. California, USA.

Gong, Y. L., Dong, F. P., Li, W., & Xu, Zh. W.
(2003). VEGA Infrastructure for Resource Dis-
covery in Grids. Journal of Computer Science
and Technology, 18(4), 413–422. doi:10.1007/
BF02948915

Hiles, A. (1999/2000). The Complete IT Guide
to Service Level Agreements-Matching Service
Quality ot Business Needs. Oxford, UK: Elsevier
Advanced Technology.

Hudert, S., Wirtz, G., & Eymann, T. (2009).
BabelNeg-A Protocol Description Language for
automated SLA Negotiations, In Procedings of the
IEEE Conference on Commerce and Enterprise
Computing, (pp. 162-169). ShangHai, China.

Iamnitchi, A., & Foster, I. (2001). On fully decen-
tralized resource discovery in grid environments.
In Proceedings of the 2nd International Work-
shop on Grid Computing, (pp. 51-62). Denver,
Colorado.

Jin, L. J., & Machiraju, V. A. (2002). Analysis on
Service Level Agreement of Web Services. Techni-
cal Report HPL-2002-180, Software Technology
Laboratories, HP Laboratories.

23

Service Level Agreement (SLA) in Utility Computing Systems

Joita, L., Rana, O. F., Chacn, P., Chao, I., & Ar-
daiz, O. (2005). Application deployment using
catallactic grid middleware. In Proceedings of
the 3rd International Workshop on Middleware
for Grid Computing. (pp. 1-6). Grenoble, France.

Karaenke, P., & Kirn, St. (2010). Towards Model
Checking & Simulation of a Multi-tier Negotiation
Protocol for Service Chains. In Proceedings of the
9th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2010),
Toronto, Canada, May 10-14, 2010.

Keller, A., Kar, G., Ludwig, H., Dan, A., & Hell-
erstein, J. L. (2002). Managing dynamic services:
A contract based approach to a conceptual archi-
tecture. In Proceedings of the 8th IEEE/IFIP Net-
work Operations and Management Symposium,
(pp. 513-528). Florence, Italy, April 15-19, 2002.

Keller, A., & Ludwig, H. (2003). The WSLA
framework: specifying and monitoring service
level agreements for web services. Network and
Systems Management Special Limitation on E-
Business Management, 11(1), (pp, 57-81). USA.

Kuo, D., Parkin, M., & Brooke, J. (2006). A frame-
work & negotiation protocol for service contract.
In Proceedings of the 2006 IEEE International
Conference on Services Computing (SCC 2006),
(pp. 253-256). Chicago, USA.

Lee, Y. C., Wang, C., Zomaya, A. Y., & Zhou, B.
B. (2010). Profit-driven Service Request Schedul-
ing in Clouds. In Proceedings of the International
Symposium on Cluster Computing and the Grid
(CCGRID). Melbourne, Australia.

Loyall, J. P., Schantz, R. E., Zinky, J. A., & Bak-
ken, D. E. (1998). Specifying and measuring
quality of service in distributed object systems.
In Proceedings of the 1st International Sympo-
sium on ObjectOriented Real-Time Distributed
Computing, (pp. 43-54). Kyoto, Japan.

Ludwig, A., & Franczyk, B. (2006). SLA Lifecycle
Management in Services Grid-Requirements and
Current Efforts Analysis. In Proceedings of the
4th International Conference on Grid Services
Engineering and Management (GSEM), (pp.
219-246). LeipZig, Germany.

Marilly, E., Martinot, O., Papini, H., & Goderis,
D. (2002). Service Level Agreements: A Main
Challenge For Next Generation Networks. In
Proceedings of the 2nd European Conference on
Universal Multiservice Networks, (pp. 297-304).
Toulouse, France.

Mobach, D. G. A., Overeinder, B. J., & Brazier,
F. M. T. (2006). A ws-agreement based resource
negotiation framework for mobile agents. Scal-
able Computing: Practice and Experience, 7(1),
(pp. 23-26). March 2006.

Patterson, D. A. (2008). The Data Center Is The
Computer. [). NY. USA.]. Communications of the
ACM, 105. doi:10.1145/1327452.1327491

Philipp, W., Jan, S., Oliver, Z., Wolfgang, Z., &
Ramin, Y. (2005). Using SLA for Resource Man-
agement And Scheduling. Grid Middleware and
Services-Challenges and Solutions, 8(1), 335–347.

Rana, O. F., Warnier, M., Quillinan, T. B., Brazier,
F., & Cojocarasu, D. (2008). Managing Violations
in Service level agreements. In Proceedings of the
5th International Workshop on Grid Economics
and Business Models (GenCon), (pp. 349-358).
Gran Canaria, Spain.

Rashid, A. A., Hafid, A., Rana, A., & Walker, D.
(2004). An approach for quality of service adapta-
tion in service-oriented Grids. Concurrency and
Computation, 16, 401–412. doi:10.1002/cpe.819

Rick, L. (2002). IT Services Management a
Description of Service Level Agreements. RL
Consulting.

24

Service Level Agreement (SLA) in Utility Computing Systems

Ron, S., & Aliko, P. (2001.). Service level agree-
ments. Internet NG. Internet NG project (1999-
2001) http://ing.ctit.utwente.nl/WU2/

Rosenberg, I., & Juan, A. (2009). The BEinGRID
SLA framework, Report available at http://www.
gridipedia. eu/slawhitepaper.html

Sahai, A., Graupner, S., Machiraju, V., & Van
Moorsel, A. (2003). Specifying and Monitoring
Guarantees in Commercial Grids through SLA.
In Proceedings of the Third IEEE International
Symposium on Cluster Computing and the Grid,
(pp. 292). Tokyo, Japan.

Sakellariou, R., & Yarmolenko, V. (2005). On the
flexibility of WS-Agreement for job submission.
In Proceedings of the 3rd International Workshop
on Middleware for Grid Computing (MGC05),
(pp. 1-6). Grenoble, France.

Service Level Agreement in the Data Center.
(April 2002). Retrieved 03 28, 2010, from Sun
Microsystems: http://www.sun.com/blueprints

Skene, J., Lamanna, D. D., & Emmerich, W.
(2004). Precise Service Level Agreements. In Pro-
ceedings of the 26th International Conference on
Software Engineering (ICSE’04), (pp. 179-188).

Tosic, V., Pagurek, B., Patel, K., Esfandiari, B.,
& Ma, W. (2005). Management applications of
the web service offerings language (wsol) (pp.
564–586). Galway, Ireland: Web Services, E-
Business, and the Semantic Web.

Venugopal, S., Chu, X., & Buyya, R. A Negotiation
Mechanism for Advance Resource Reservation us-
ing the Alternate Offers Protocol. In Proceedings
of the 16th International Workshop on Quality
of Service (IWQoS2008, IEEE Communications
Society Press, New York, USA), Twente, NL.

Wieder, P., Seidel, J., Yahyapour, R., Waldrich,
O., & Ziegler, W. (2008). Using SLA for Re-
source Management and Schedurling-A Survey.
GRID Middleware and Services, 4, 335–347.
doi:10.1007/978-0-387-78446-5_22

Windows Azure Service Level Agreement. Re-
trieved 03 28, 2010, from http://www.microsoft.
com/windowsazure/sla/

Wurman, P. R., Wellman, M. P., & Walsh, W. E.
(1998). The Michigan Internet Auctionbot: A con-
figurable auction server for human and software
agents. In Proceedings of the 2nd International
Conference on Autonomous Agents, (pp.301-308).
Irsee, Germany.

Yeo, C. S., & Buyya, R. (2005). Service Level
Agreement based Allocation of Cluster Resources:
Handling Penalty to Enhance Utility. In Proceed-
ings of the 7th IEEE International Conference on
Cluster Computing (Cluster 2005), (pp. 1-10).
MA, USA.

Yeo, C. S., & Buyya, R. (2006). A Taxonomy of
Market-based Resource Management Systems
for Utility-driven Cluster Computing. Software:
Practice and Experience (SPE), 36 (13), (pp.1381-
1419). Jan. 2006.

Yeo, C. S., & Buyya, R. (2007, Nov.). Pricing
for Utility-driven Resource Management and
Allocation in Clusters. International Journal
of High Performance Computing Applications,
21(4), 405–418. doi:10.1177/1094342007083776

Yeo, C. S., & Buyya, R. (2007). Integrated Risk
Analysis for a Commercial Computing Service.
In Proceedings of the 21st IEEE International
Parallel and Distributed Processing Symposium
(IPDPS 2007), (pp. 1-10). CA, USA.

Yeo, C. S., DeAssuncao, M. D., Yu, J., Sulistio, A.,
Venugopal, S., Placek, M., & Buyya, R. (2006).
Utility computing on Global Grids. In Bidgoli,
H. (Ed.), Handbook of Computer Networks. New
York, USA: John Wiley & Sons.

Youseff, L., Butrico, M., & Da Silva, D. (2008).
Toward a unified ontology of cloud computing.
Grid Computing Environments Workshop, (pp.
1-10). Austin, Texas.

25

Service Level Agreement (SLA) in Utility Computing Systems

ADDITIONAL READING

Broberg, J., Venugopal, S., & Buyya, R. (2008)
Market-oriented Grids and Utility Computing:
The state-of-the-art and future directions. Journal
of Grid Computing, 6(3), (pp. 255-276), ISSN:
1570-7873, Springer Verlag, Germany.

Buyya, R., & Venugopal, S. (2004). The Gridbus
Toolkit for Service Oriented Grid and Utility
Computing: An Overview and Status Report. In
Proceedings of the 1st IEEE International Work-
shop on Grid Economics and Business Models
(GECON 2004), (pp. 19-36), ISBN 0-7803-8525-
X, IEEE Press, New Jersey, USA.

Buyya, R., Venugopal, S., Ranjan, R., & Yeo, C.
S. (2009). The Gridbus Middleware for Market-
Oriented Computing. In Buyya, R., & Bubendor-
fer, K. (Eds.), Market Oriented Grid and Utility
Computing. Hoboken, New Jersey, USA: Wiley
Press. doi:10.1002/9780470455432.ch26

Guitart, J., Macías, M., Rana, O., Wieder, P., Ya-
hyapour, R., & Ziegler, W. (2009). SLA-based Re-
source Management and Allocation. In Buyya, R.,
& Bubendorfer, K. (Eds.), Market Oriented Grid
and Utility Computing. Hoboken, New Jersey,
USA: Wiley Press. doi:10.1002/9780470455432.
ch12

Koller, B. Oliveros, & E. Sánchez-Macián, A.
(2009). Service Level Agreements in the Grid
Environment. Market Oriented Grid and Utility
Computing, R. Buyya and K. Bubendorfer (eds),
ISBN: 978-0470287682, Wiley Press, Hoboken,
New Jersey, USA.

McKee, P., Taylor, S., Surridge, M., & Lowe, R.
(2009). SLAs, Negotiation and Potential Problems.
In Buyya, R., & Bubendorfer, K. (Eds.), Market
Oriented Grid and Utility Computing. Hoboken,
New Jersey, USA: Wiley Press.

Netto, M. A. S., Bubendorfer, K., & Buyya, R.
(2007). SLA-based Advance Reservations with
Flexible and Adaptive Time QoS Parameters. In
Proceedings of the 5th International Conference
on Service-Oriented Computing (ICSOC 2007),
LNCS Volume 4749, Springer-Verlag Press,
Berlin, Germany.

Ranjan, R., Harwood, A., & Buyya, R. (2006).
SLA-Based Coordinated Superscheduling Scheme
for Computational Grids. In Proceedings of the
8th IEEE International Conference on Cluster
Computing (Cluster 2006), IEEE CS Press, Los
Alamitos, CA, USA.

