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Software-as-a-Service Applications in
Cloud Computing Environments

Linlin Wu, Saurabh Kumar Garg, Steve Versteeg, and Rajkumar Buyya

Abstract—Cloud computing is a solution for addressing challenges such as licensing, distribution, configuration, and operation of
enterprise applications associated with the traditional IT infrastructure, software sales and deployment models. Migrating from a

traditional model to the Cloud model reduces the maintenance complexity and cost for enterprise customers, and provides on-going
revenue for Software as a Service (SaaS) providers. Clients and SaaS providers need to establish a Service Level Agreement (SLA)
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SLA-Based Resource Provisioning for Hosted

to define the Quality of Service (QoS). The main objectives of SaaS providers are to minimize cost and to improve Customer
Satisfaction Level (CSL). In this paper, we propose customer driven SLA-based resource provisioning algorithms to minimize
cost by minimizing resource and penalty cost and improve CSL by minimizing SLA violations. The proposed provisioning algorithms
consider customer profiles and providers’ quality parameters (e.g., response time) to handle dynamic customer requests and
infrastructure level heterogeneity for enterprise systems. We also take into account customer-side parameters (such as the
proportion of upgrade requests), and infrastructure-level parameters (such as the service initiation time) to compare algorithms.
Simulation results show that our algorithms reduce the total cost up to 54 percent and the number of SLA violations up to 45 percent,

compared with the previously proposed best algorithm.

Index Terms—Cloud computing, Service Level Agreement (SLA), resource allocation, scheduling, software as a service,
customer-driven, Key Performance Indicator (KPI), resource provisioning

1 INTRODUCTION

LOUD computing has emerged as a new paradigm for

delivery of applications, platforms, and computing
resources (processing power/bandwidth/storage) to cus-
tomers in a ““pay-as-you-go-model”. Cloud computing falls
into three categories: Software as a Service (SaaS), Platform
as a Service (PaaS) and Infrastructure as a Service (laaS).
SaaS Clouds provide software services to end users. IaaS
Clouds provide a virtual computing environment, where
computing capacity is delivered by assigning Virtual
Machines (VMs) to [aaS users on demand. In the middle
of SaaS and laaS, the PaaS Clouds provide application
development, deployment tools and execution manage-
ment services. Prior to the Cloud and in the early days
of Web-based enterprise application deployment, the
administration task was easy since the single important
objective of resource provisioning was the performance,
such as the time spent on resource provisioning [23]. Over
the course of time, the complexity of applications has
grown, which has increased the difficulties in their
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administration. Accordingly, enterprises have realized
that it is more efficient to outsource some of their
applications to third-party SaaS providers enabled by
Cloud computing due to the following reasons [18]:

- It reduces the maintenance cost, because along with
the growth in the complexity, the level of sophisti-
cation required to maintain the system has increased
dramatically.

- By using SaaS, enterprises do not need to invest in
expensive software licenses and hardware upfront
without knowing the business value of the solution.

Therefore, by moving to the SaaS model customers benefit
from continuously maintained software. The complexity of
transitioning to new releases is managed transparently by the
Saa$S providers. Thanks to the flexibility, scalability and cost-
effectiveness of the SaaS model, it has been increasingly
adopted for distributing many enterprise software systems,
such as banking and e-commerce business software [7], [9]. In
this scenario, enterprises need to establish a Service Level
Agreement (SLA) with Saa$S providers. SLA is a legal contract
between participants to ensure that their Quality of Service
(QoS) requirements are met and if any party violates the SLA
terms, the defaulter has to pay penalty according to the clauses
defined in the SLA.

To guarantee SLAs, enterprise software providers
(such as Compiere ERP) in the industry allocate dedicated
VMs for each customer [17], so they can ensure software
response time. However, this can cause wastage of hardware
resources due to the under-utilized resources at non-peak
load as discussed in our previous work [22].
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TABLE 1
The Summary of Penalty Delay Time According to Request Types
Upgrade Service
R Ti First Time Rent-fir
esponse Lime) Fust fume Ben Add account-addAcc Upgrade product-upServ

Defined in SLA |respT (ftr)

respT(upServ, addAcc)

respT (upServ, upPro)

Actual Time iniT

iniT + totalDTT

iniT +total DTT

Research publications related to SLA-based cost
optimisation and Customer Satisfaction Level (CSL)
maximization for SaaS providers are still in their prelim-
inary stages, and current publications in Cloud computing
[2],[10], [13] are focused mostly on market oriented models
for laa$S providers. Many authors do not consider customer
driven management, where resources have to be dynamically
reallocated according to the customer’s on-demand require-
ments. Our previous work [22] proposed algorithms to
minimize the total cost and SLA violations without consid-
ering a customer’s profile (such as company size), which is
important for SaaS providers to reserve resources based on
this information.

Our focus, with respect to CSL, is on delivering
acceptable response times. CSL is impacted by SLA
violations, when the pre-defined response time in the
SLA is violated by the provider. The SLA violation causes
penalty. The service quality improvement (SQI) is defined
as how much faster the actual response time compares
to the minimum response time documented in the SLA.
To maximize the CSL, we design algorithms to minimize
SLA violations by resource reservation and requests
rescheduling. In addition, the SQI will also impact the
CSL but this is a minor factor because many customers
may do not consider whether the quality provider offer is
better than expected. Therefore we did not consider this
in our algorithms but only plotted the figures related to it
in experiments.

This paper proposes customer driven heuristic algo-
rithms to minimize the total cost (including infrastructure
and penalty cost) by resource provisioning. These algo-
rithms also take into account customer profiles (such
as their credit level) and multiple Key Performance
Indicator (KPI) criteria. A holistic way to quantify the
customer experience is by considering KPIs from seven
categories: Financial, Agility, Assurance, Accountability,
Security and Privacy, Usability and Performance [23]. To
improve a SaaS application’s performance quality rating,
we consider three KPIs, including one from provider’s
perspective: cost (part of the Financial category) and two
from customers’ perspective: service response time (part
of the Performance category) and SLA violations (related
to Assurance):

e Cost: the total cost including VM and penalty cost.

e Service response time: how long it takes for users to
receive a response. Four types of response time are
summarized in Table 1.

e SLA violations: the possibility of SLA violations
creates a risk for SaaS providers. In this paper, SLA
violations are caused by elapse in the expected

response time, and whenever a SLA violation
occurs, a penalty is charged.

To satisfy customer requests to minimize the total cost
and SLA violations for SaaS providers, the following key
questions are addressed:

e How to manage dynamic customer demands? (such
as upgrading from a standard product edition to an
advanced product edition or adding more accounts)

e How to reserve resources by considering the
customer profiles and multiple KPI criteria?

e How to map customer requirements to infrastruc-
ture level parameters?

e How to deal with the infrastructure level heterogeneity
(such as different VM types and service initiation time)?

The key contributions of this paper are:

1. Design of a resource provisioning model for SaaS
Clouds considering customer profiles and multiple
KPI criteria. These considerations are important for
resource reservation strategies to improve the CSL.

2. Development of innovative scheduling algorithms to
minimize the total cost and number of SLA violations.

3. Extensive evaluation of the proposed algorithms
with new QoS parameters such as credit levels.

The rest of the paper is organized as follows. Section 2
presents the detailed scenario from both customers” and
providers’ perspective, outlines mathematical models, ex-
plains mapping strategy, and describes the problem defini-
tion. Section 3 describes a reference algorithm (BestFit) and
two proposed advanced optimization algorithms
(BFResvResource and BFReschedReq), and a lower bound
of the problem. Section 4 presents experimental methodolo-
gies including the testbed and evaluation metrics, discusses
the overall comparison among performance evaluation
results, and compares the algorithms by providing insights
into when to apply which algorithm. Section 5 discusses prior
research papers related to SLA-based market driven resource
allocation in Grid and Cloud computing to identify the
novelty of our work. Section 6 concludes the paper by
summarizing the comparison results and future directions.

2 SyYSTEM MODEL

The SaaS model for serving customers in the Cloud is
shown in Fig. 1. Customers submit requests for utilizing a
Web-based enterprise application service offered by a SaaS
provider. The SaaS provider uses a three layered Cloud
model, namely the application layer, the platform layer and
the infrastructure layer, to satisfy the customer requests.
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The application layer manages all the secured application
services, such as the Customer Relationship Management
(CRM) or Enterprise Relationship Package (ERP) applica-
tions, that are offered to customers by the SaaS provider.
The platform layer is responsible for application develop-
ment and deployment (such as Aneka [14], Google App
Engine [45], Spring framework). In our model, the function
of this layer also includes mapping and scheduling policies
for translating the customer side QoS requirements to
infrastructure level parameters. The mapping policy con-
siders customer profiles and KPI criteria to measure the
SaaS provider’s QoS.

The infrastructure layer includes the virtualization VM
management services (such as VMWare [47], Hyper-V [46])
and controls the actual initiation and termination of VMs
resources, which can be leased from laaS providers, such as
Amazon EC2, S3 [14] or own private virtualized clusters. In
both cases, the minimization of the number of VMs will
deliver savings for the providers.

2.1 Actors

The actors involved in our system model are described
below along with their objectives, activities and constraints.

2.1.1 SaaS Providers

SaaS providers lease web-based enterprise software as
services to customers. The main objective of SaaS providers
is to minimize cost and SLA violations. We achieve this
objective by proposing customer-driven SLA-based re-
source provisioning algorithms for Web-based enterprise
applications. In our context, a SaaS service provider X
offers CRM or ERP software packages with three product
editions (for example, Standard, Professional and Enter-
prise) and each product edition with a fixed price. The
current SaaS providers, such as ‘Compiere ERP’, use a
similar service model [15]. In this service model, when a
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customer Company Y submits its ‘first time rent’ request
with a product edition (Standard), and additional number
of accounts, the SaaS provider needs to allocate resources
and then provides the login information to the customer.
Company Y may require an upgrade in their service by adding
additional user accounts or an upgrade of the software edition.
In this case, sometimes a new VM is created and the content
from the previous VM is migrated to the new one. In practice,
the provider has to handle these on-demand customer
requests in line with the SLA. The SLA properties including
the provider’s pre-defined parameters and the customer
specified QoS parameters are as follows:

e Product Edition (p): It is defined as the software
product package that is offered to customers. For
example, SaaSX offers Standard, Professional, and
Enterprise product editions.

e Request Type (j): This defines the type of customer
request, which may be a ‘first time rent’ or a ‘service
upgrade’ request. ‘First time rent’ means the customer
is renting a new service from this SaaS provider. A
‘service upgrade’ includes two types of upgrade, which
are ‘add account’ and ‘upgrade product’. To down-
grade a service, first, the customer needs to terminate
the current contract, and then processing of this
downgrade request will be treated as a new request.

e Contract Length (cl): How long the customer is going
to use the software service.

e Number of Accounts (a): The actual number of user
accounts that a customer wants to create. The
maximum number of accounts is related to and
restricted by the type of product edition.

e Number of Records (n): The average number of
records that a customer is able to create for each
account during a transaction and this may impact the
data transfer time during the service upgrade (The
value of this parameter is predefined in the SLA).

e Response Time (respT): It represents the time taken
by the provider to process a particular customer
request. For example, An SLA violation occurs when
the actual response time is longer than it was defined
in the SLA. We consider four types of response time:

1. first time renting ( ftr) of the service—respT'( ftr),

2. upgrading the service(upServ) by adding addi-
tional accounts (addAcc)—respT (upServ, add Acc)

3. upgrading the product (upProd)—respT (upServ,
upProd), and

4. the service usage (useServ), such as for saving a
document (the value of each type of response
time is different and predefined in the SLA).

e Penalty Conditions: For each SLA violation the SaaS
provider needs to pay a penalty, which is based on
the delay in the response time to the customer. For
each request type there is a different penalty
(detailed in the cost model on Section 2.2.2). Penalty
rate is the monetary cost incurred to the provider for
unit time delay in serving the customer request.

The infrastructure layer (Fig. 1) uses VM images to create
instances on their physical infrastructure according to
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mapping decisions. The following infrastructure layer
properties are important for mapping:

e VM types (I): The type of VM image that can be
initiated. For instance, there may be three types of
VMs: large, medium, and small. The three types of
VMs have different capability to serve different
numbers of accounts and records since different
requests may consume different memory and stor-
age. Therefore, for a particular type of VM, price,
and the maximum capabilities are listed in Table 1.

e Service Initiation Time (iniT): How long it takes to
initialize the service, which includes the VM initi-
ation time and application deployment and instal-
lation time.

e Service Processing Time (procT): It is defined as the
time taken to process an operation of SaaS service.
For example, how long it takes to generate a report,
or save a transaction record.

e VM Price (VM Price): How much it costs for the SaaS
provider to use a VM for the customer request per
hour. It includes the physical equipment, power,
network and administration cost.

e Data Transfer Time (DIT): How long it takes to
transfer one Gb record from one VM to another. This
depends on the network bandwidth.

2.1.2 Customers

When customers register on the SaaS provider’s portal,
their profile information is gathered. In practice, this
happens via forms that customers fill during the registra-
tion process. To categorize customers, high level informa-
tion such as company size in range is collected. For
example, the number of information workers, who may be
the potential users is between 5 to 10. The following items
are considered:

e Company Name (compName): The legally registered
trade name.

e Company Size (compSize): The number of information
workers (staffs who may use the software service) in
the company.

e Company Type (compType): The classification of a
customer’s company based on the number of
employees and revenue. Customer companies are
categorized into three divisions, i.e., small, medium,
and large.

e Future Interest Expression (futurelnterest): The cus-
tomer’s expected future upgrade requirements.
Such as the need for additional user accounts. This
allows the SaaS provider to plan for possible
offering of discount as it helps them in making
resource reservation decisions. The provider’s re-
duced cost due to advance booking is shared with
customer by offering them a discounted price. Such
practice is quite commonly used by current indus-
tries and service providers. Therefore, we believe
that this model will work well for Cloud computing.

Moreover, in the service market, there are two types of
sales models, which are one off and long term relationships.

JULY-SEPTEMBER 2014

The entire sales process is based on relationship building
and trust [39]. In addition, the application type we provide
is enterprise application, which is used as a pay-as-you-go
and most of time with the customer repeatedly using the
service. For instance, Company Y may need to use the
invoice and report services only a few times a month, but
they will use these services repeatedly over the long term.
Therefore, we focus on the relationship model but not the
once off model (e.g. spot pricing).

2.2 Mathematical Models
2.2.1 Customer Profile Model

Credit Level (creditLevel): It measures the creditability of a
customer, which depends on the value of the company type
and credit level factor (Equation (1)).

creditLevel = compTypeValue x o (1)

The CompTypeValue indicates the company type,
which is categorized based on the range of company size.
In practice, the company size can be verified during the
registration identity and security verification process. The
CompTypeValue for small, medium and large company
types are 1, 2, and 3 respectively. The reason we use the
values 1, 2, and 3 rather than say 10, 20, 30 or other sets of
values, because the trend of other value sets are found to be
the same during the evaluation. The company type is
considered when calculating the credit level, because
having larger companies as customers adds more value
to the SaaS provider’s market share. The credit level factor
(o) is determined by the customer’s historical upgrade
requests and the actual upgrade action. The actual upgrade
is a boolean value. If an actual upgrade happened, the
actual upgrade is true, and otherwise it is false. The value
of actual upgrade (actualUpgradeValue) is the actual
value, such as number of account, that service upgrades
requested. The credit level factor (o) is the ratio of the
actualUpgradeValue and futurelnterestValue (which can
not be 0) (Equation (2)).

_actualUpgradeValue

7= futureInterestValue 2)

For example, Company Y expresses a future interest to
add 2 user accounts before the contract expiry date. In this
case the future interest is ‘add user accounts’ and the value
of the future interest (futurelnterestValue) is 2. If they do
not come back to request more user accounts (the actual
upgrade is false, and the actualUpgradeValue is 0), its
credit level factor (o) is 0; but if it adds one user account
(the actual upgrade is true, and the actualUpgradeValue
is 1), the credit level factor (o) is 1/2 = 0.5 (Eq. (2)). If it
adds 3 user accounts (the actualUpgradeValue is 3), the
credit level factor is 3/2 = 1.5. If there is no history about
previous actions or user does not specify the future interest
value, then o is 0 (in this case the ‘future interest value’ is
not used for new requests). The customers will specify the
future interest every time they submit requests.

This model is used to adjust the inaccuracy or ensure
information from the customer using the actually verified
and historical data. However it is necessary for providers to
keep gathering future interest data from customers, since
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customers supplied high level “future” expectations/
requirements guided in the initial planning and helps
resource providers to plan about possible incentives they
may offer to their ““high” value customers.

2.2.2 Cost Model

Let C be the number of customer requests and c indicates a
customer request id. At a given time ¢, a customer submits a
service request c¢ to the SaaS provider. The customer
specifies a product edition, contract length, and number
of accounts after agreeing with the pre-defined SLA clauses
(response time). After the SLA establishment, the SaaS
provider will reserve the requested software services
which are translated at the infrastructure level to match
the VM capacity.

Let Coost be the total cost incurred to the SaaS provider to
serve all customer requests C' and as described in Equation
(3). It depends on the VM cost and the penalty cost.

Cost = VMCost 4+ PenaltyCost. (3)

Let I be the number of initiated VMs, and ¢ indicates
the VM id. The VM cost is the total cost for all VMs and is
expressed by Equation (4):

I
VMCost =y (VMCost;) i€l (4)

1=1

The Penalty cost is the total penalty cost for all customer
requests C and is expressed by (5):

c
PenatyCost = Z PenaltyCost. c e C. (5)
c=1

For each VM ¢, the VM cost depends on the VM price of
type ! (VM Price;), the time slot when the VM is on (s;), and
the time slot when the VM is off (f;) and the set up time of
the VM i (ts;) and it is expressed by Equation (6):

VMCost; = VMPrice; X (f; —s; +ts;)) iel,leL. (6)

Let ¢ be the previous request from the same customer.
The time spent on a VM set up is expressed by Equation (7)
and it depends on the request type j, VM initiation time
1niT;, total data transfer time for ¢’ (totalDTT,). If j is “first
time rent’ then the data transfer time is zero. Only when j is
‘service upgrade’ and requires data migration, the data
transfer time occurs.

ts; = iniT; + totalDTT, i€ Il,le L,c €C. (7)

The total data transfer time depends on the number of
accounts (a.) that previously were requested by the same
customer, the data records created by previous request ¢/,
the storage size per record (rs.) and data transfer time per
size (DTTy). N indicates the total number of records and n
is the record id.

N
totalDTT, = ay X erd x DIT, meN,deC. (8)

n=1

The SLA violation penalty (Penalty) model is similar to
the models used in the related publications [1], [3], [4] and

is modeled as a linear function. The penalty model is
shown in (9). The constant factor « is used to make sure the
minimum penalty is always greater than 0. 5 is the penalty
rate and td indicates delay time. (3 is based on the request
type, and each type of request incurs the same range of
penalty rate. This is a similar model to credit card penalty,
in which the late payment for a particular type of card will
have the same range of penalty [42].

Penalty = a + 3 x td. (9)

The penalty function penalizes the service provider by
increasing the cost. According to the penalty model, the
penalty cost equation for each customer request c is
depicted as follows where the customer request ¢ is of
request type j and td. indicates the delay time for customer
request c.

PenaltyCost, = a+ 8; x td, j€ J,ceC. (10)

The delay time td is the variation between the value of
the response time defined in the SLA and the actual
experienced response time. There are four situations in
which a penalty delay can occur (Error! Reference source
not found.). If the request type is ‘first time rent’, the delay
(violation) can occur due to a long service initiation time. If
the request type is ‘upgrade service’, the delay can be
caused by adding accounts or upgrading the product
edition. Moreover, during the service usage, the delay can
be caused by machine performance degradation, which is
out of the scope of this paper.

Average performance can be calculated based on a per-
user (macroaverage) or per-request (microaverage). Macro-
average performance treats all users equally, although
some users will be more active and generate more traffic than
others. In contrast, microaverage performance emphasizes the
requests made by highly active users. Authors [51] claimed
that “we don’t always build per-user predictive models.
Individual models of behavior tend to be less accurate because
they see less data than a global model. Thus for comparison,
we will report only per-request average”. In addition, we
consider penalties caused by service preparation response
time which are once-off activities without moving average.

The service initiation time varies subjected to the
physical machine’s capability

iniT; — respT) where j = first time rent
intT; + total DTT

—respT)

td, =
where j = upgraded service.

(11)
2.3 Mapping of Products to Resources
In our work, the infrastructure layer focuses on the VM and
the host level. The mapping between a host and hosted
VMs is depicted in Fig. 2. Our VM to physical machine
‘Mapping configuration” supports heterogeneous physical
machines. Homogeneous physical machines are depicted
just for easy comparison and presentation of results.

We use a similar record model as ‘Salesforce.com’ to
restrict each account to create the maximum number of
records. This configuration is chosen to avoid/minimize
the SLA violations due to service response delay. Because
the VM performance can degrade after a certain number of
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Fig. 2. Mapping between VMs and a Host.

VMs are hosted on the same server due to using shared
resources, such as CPU. An example of a mapping strategy
between customer requests and VM resources is shown in
Table 2.

2.4 Problem Description

Let a SaaS provider have I VMs initiated in a data center,
and C is the number of requests currently arriving to the
SaaS provider. The SaaS provider charges a fixed service
price from customers for an application based on their
request parameters. The request parameters include
request type (j), product edition (p), contract length (cl),
and the number of accounts (a). The SaaS provider has a
dual objective, i.e., minimizing the cost and improving
CSL. The objective functions and constraint functions are
explained below with input parameters and variables:

Input Parameters

L: Set of VM type.

n: Time-slot size.

I: Set of VM has been initiated from time 0 to time T.

T is divided in slots of size 7

VMPrice;: The cost of VM of type [, I € {1,2,3}.

6. c: The particular request. The parameter of this request
includes the number of accounts, when the contract
starts, when the contract finishes, which type of
request it is, and what type of product it is requesting.

7. C:Set of customer requests received from time 0 to T.

B: Penalty rate thatis associated with request type j.

9. A;: Maximum number of accounts that can be
allocated for VM type L.

10.  a,: The number of accounts requested by request c.

11.  s.: The time slot when this customer request contract

started.

12.  f.: The time slot when this customer request contract

finished.

13. Variables

14. yy; =1,if VM i is of type [, otherwise = 0.

15. z: For request ¢, z = 1, if request c is of request

type J.
16. f;: The time slot when the VM is off.

Ll

o

®
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17. s;: The time slot when the VM is on.

18. x. = 1, if request c is served by VM i at time slot t.
19. td.: The time delayed to serve request c.

20. ts;: The time spent in setting up the VM 4.

Objective Functions In our model we are interested in
minimizing the total cost and SLA violations. Consequently,
cost minimization can be described by the following function:

Minimize (Cost) = VMCost + PenaltyCost (12)
where
I 3
VMCost = Z ( (Z VMPricelyﬂ)
=0 \ \1=1
X(fi — i +t5;)) (13)

(&

3
PenaltyCost = Z (oz + Z(ch X ﬂj)tdc) (14)
=

c=1

In (12), the minimization of cost depends on the VM
Cost, and Penalty Cost due to SLA violations. In (13), the
VM Cost depends on the type of VM [ and the time period
VM is on, which is calculated by (f; —s;). VM Cost is the
cost of all initiated VM of type ! during the time period
when the VM is on. In Equation (14), the Penalty Cost
depends on the, penalty rate §; of request type j and time
delayed to serve request c (td,).

The other objective function is to maximize of the CSL by
minimizing the SLA violations, which is expressed below:

Minimize (SLA violations) (15)

The number of SLA violations impacts CSL, so we
consider minimizing the number of SLA violations as the
objective function for maximizing CSL.

Constraints: The SaaS provider needs to ensure that
the customer requested product edition, and the number
of accounts are allocated before a threshold time (refer
to Table 1) to minimize the penalty delay. To this end,
we define the following set of constraint functions:

c 3
Zxcita/c< ZAIZM (16)
c=0 =1
s; = min{x.its.} (17)
Ve
f; = Hbax{xmsc} (18)
I 3
0<a. < Z (Z l’cz'tyqtzAz> (19)
i=0 \/I=1

TABLE 2
The Summary of Mapping Between Requests and Resources
VM Type | VM Capacity and Price Product Edition Max Account# | Min Account #
1 CPU Unit, 2Gb RAM, 160 G Disk Standard M 1
Small
$0.12 per hour
Medium 2 CPU Unit, 4Gb RAM, 850 G Disk Standard, Professional 2m m+1
$0.48 per hour
Large 4 CPU Unit, 8Gb RAM, 1690 G Disk Standard, Professional, | 10m 2m+1
$0.96 per hour Enterprise
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Base Algorithm Pseudo-code for BestFit

Input request ¢ with QoS parameters
Output Boolean
Functions  FirstTimeRent (), Upgrade ()

First Time Rent (¢)

3 | Foreach VM i of type ‘I’ from ‘L’ to ‘Large’

11 | If (upgrade type is‘upgrade service’)
{

1 | Let p be the product edition and a. be the number of accounts required by request ¢
2 | Let L be type of VM which can serve c after applying mapping strategy.

{ //getlist of VMs of type / which can serve the request ‘c’

4 Let vmList=GetVMlist(/, p , a.)
5 If (vimList is empty)
6 continue;
i/ Else
8 Allocate capacity of VM,,;, with minimum available space in vmList to request ¢
9 update the available capacity of VM,,;, o (VM,,;, s available capacity — a.)
10 break;
}
}
11 | If(request c is still not served)
12 Initiate a new VM of type L and deploy the product type p on the VM
13 Allocate capacity of the new VM to request ¢
14 update the available capacity of the new VM to (available capacity — a.)
}
Upgrade(c)
1 If (upgrade type is ‘add account’)
{
2 Get VM;; which is processing the previous request from the same customer as ¢
3 If ( VM;has enough space to serve request ¢ and can guarantee SLA objectives of existing requests)
{
4 Process request ¢ using VM
}
5 Else
{
6 Let a.-be the number of account that are already rented by the customer.
7 Let new a, be the number of more accounts requested by the customer
8 Using similar process as of the function First Time Rent(c) search a newVM; which can serve request with
(a.+new a.) accounts
9 Transfer data from VM;; to new VM
10 Release the space in old VM

12 get the VM;; which processed the previous request from the same customer as ¢

13 Using similar process as of the function First Time Rent (¢) search a newVM; which can serve the request
14 Transfer data from VM, to newVM;

15 Release the space in old VM

The Equation (16) restricts the number of accounts
requested by all customers on VM i which should be within
the maximum capability of the VM of type [ (the VM
capability is listed in Table 2). In Equation (17), s; represents
the minimum time when customer contract started. In
Equation (18), f; represents the max time when customer
contract finished. In Equation (19), the number of accounts
(ac) should be less than or equal to the maximum capability
of the VM of type [, which is serving the customer request c.

The objective functions (12) and (15) of the SLA based
resource provision problem are to minimize cost and
SLA violations for a SaaS provider. The constraints ensure that
the customer requirements of an application are met.
However, it is difficult to allocate the exact number of
accounts to a VM to avoid space wastage within the response
time, because customer requests have different parameters,
require different types of VMs, and have dynamic arrival rates
[43]. Moreover, this problem maps to the 2-dimensional
bin-packing problem which is NP-hard [44] (see Appendix A

for the proof), hence we propose various algorithms to
heuristically approximate the optimum.

3 RESOURCE PROVISIONING ALGORITHMS

As discussed on the provider side, the main objective of our
work is to minimize cost and SLA violations using resource
provisioning strategies. We use the best algorithm
(ProfminVMMinAvaiSpace) proposed in our previous
paper [22] as a benchmark algorithm (renamed to BestFit)
and propose two new algorithms: BFResvResource and
BFReschedReq, which consider customer profiles and
provider KPI criteria.

3.1 Base Algorithm: Maximizing the Profit by
Minimizing the Cost by Sharing the Minimim
Available Space VMs (BestFit)

A SaaS provider can maximize its profit by minimizing the

resource cost, which depends on the number and type of
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Fig. 3. Best Fit Strategy.

initiated VMs. Therefore, this algorithm is designed to
minimize the number of VMs by utilizing the same already
initiated one for serving other user requests as well. The
algorithm avoids SLA violations of existing requests by not
allocating new request to the initiated VM if the new
request can cause an SLA violation to existing customers.

The strategy of this algorithm is illustrated in Fig. 3, where
the gray space indicates unavailable space, x axis indicates the
id of VM, which has the same VM type and is deployed with
the same type of product as customer ¢ requested; y axis
indicates the number of accounts a VM can hold.

Customer request c is the input of the algorithm, which
includes the request type, product edition, and the number
of accounts. The algorithm involves two main request
types: a) first time rent and b) upgrade service.

If the request type is ‘first time rent’, the algorithm
gets the VM type L using a mapping table similar to
Table 2 (Line 1). Then, it checks and gets the list of all
initiated VMs of type L (Line 2) that can serve the request
‘¢’ (Line 4). If there is no such initiated VM, it will find
space in other types of VMs which are larger in size
(Line 5-6). Otherwise, the request c is assigned to the VM
from ‘vmList’ that has minimum available space (Line 8).
The available capacity of VM,,;, is updated (Line 9-10)
(it is illustrated in Fig. 3). If there is no initiated VM,
which can serve the request, then it initiates a new VM
according to the mapping strategy and deploys the
requested product on this VM (Line 13).

If the request type is ‘upgrade’, then it checks the type
of upgrade. If upgrade type is ‘add account’, the algorithm
gets the id (i) and type (I) of VM, which has placed the
previous request from the same customer as ¢ (Line 2). If
VM;; has enough space to place the new request ¢, the
algorithm schedules ¢ to VM;; (Line 3, 4). Otherwise, the
algorithm searches for a newVMj using a similar way as
given in First Time Rent (Line 6-8).Then, the algorithm
transfers data stored on the old VM to the new VM and
releases space on the old VM (Line 9, 10). On the other
hand, if a customer requests an upgrade to a more advanced
product edition, the new request is placed to a suitable VM
by using the First Time Rent() function, and then the
customer’s old data is migrated to the new VM and the
space occupied by the old request on the old VM is released
(Lines 11-15). The time complexity of this algorithm is
O(IC + I), where I represents the total number of VMs and
C represents the total number of requests.

The ““BestFit” algorithm minimizes the number of
initiated VMs to minimize cost. However, the disadvantage
is that it can increase the cost in some cases due to delay
penalties. For example, when a new customer requests to
add more accounts on the VM which has been fully
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occupied by other requests, initiating a new VM may be
more expensive than the delay penalty.

3.2 Proposed Algorithms

e Minimizing the cost by minimizing the penalty cost
through resource provisioning based on the custo-
mer’s credit level (BFResvResource).

e Minimizing the cost by rescheduling the existing
requests (BFReschedReq).

3.2.1 Algorithm 1: Minimizing the cost by Minimizing the

Penalty Cost Through Resource Provisioning
Based on the Customer’s Credit Level
(BFResvResource)

The base algorithm can cause upgrade penalties in the
situations when a customer requests to add more accounts
and the available space is filled by other requests, because
this could trigger the initialization of a new VM. To
optimize the cost caused by adding new accounts,
Algorithm 1 provisions more resources than requested
based on the customer’s credit level (which is driven by
customer’s actual requirements, the credit level is 0 when
the request type is new). When a request’s credit level is
greater than the provider’s expected value, more resources
will be provisioned to minimize the time spent on adding
user accounts. The algorithm is designed to minimize
penalty cost due to the addition of new accounts to the
system by reserving resources according to the customer
requirements (Line 11). Penalty cost is caused by SLA
violations; therefore the reduction of penalty cost will
automatically reduce SLA violations. The algorithm also
reserves resources according to the historical record and
customer estimate to reduce VM cost. Therefore, the total
cost (based on VM cost and penalty cost) are minimized.
The customers may be unsure about their future interest,
so we design two types of reservation strategies (dynamic
and fixed) to figure out how much resources should be
reserved. Dynamic reservation (dynamicR) strategy re-
serves resources for customer request ¢ depending on its
credit level (creditLevel.), the number of accounts
(ac(futureInterest)) specified in the future interest and
provider’s expected value for credit level (its value is ‘1" in
the experiments) using Equation (20). Fixed reservation
strategy uses a fixed percentage (e.g., 20 percent) customer
specified future interest value instead of credit level.

dynamicR
credit Level,

xa. (futurelnterest), if creditLevel,

= > provider expected value

0, otherwise.
(20)

The ReservationStrategy is depicted in Fig. 4 (The
pattern with horizontal line indicates the reserved re-
sources for the same customer; gray space, « axis and y axis
are the same as Fig. 3). The other lines are the same as
those in the base algorithm. The time complexity of this
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Algorithm 1. Pseudo-code for BFResvResource
Input request ¢ with QoS parameters
Output Boolean
Functions:  FirstTimeRent (), Upgrade ()
First Time Rent (c)
1 Let p be the product type and a.be the number of accounts required by request ¢
2 Let L be type of VM which can serve c after applying mapping strategy.
3 Foreach VM i of type ‘I’ from ‘L’ to ‘Large’
{
4 Let vmList=GetVMlist(/, p , a.)//get list of VMs of type / which can serve request ‘c’
5 If (vmList is empty)
6 continue;
7 Else
{
8 Allocate capacity of VM,,,;, with minimum available space in vmList to request ‘c’
9 CreditLevel = getCreditLevel(Profile Information)
//get the credit level for request ‘c’
10 If (CreditLevel > Threshold)
11 | update the available capacity of VM,,;, t0 (VM,,i, s available capacity — a.(futurelnterest))
12 Else
13 | update the available capacity of VM,,;, to (VM,,;, ‘s available capacity — a,)
14 break;
}
}
15 If (request c is still not served)
{
16 Initiate a new VM of type L and deploy the product type p on the VM
17 Allocate capacity of the new VM to request ¢
18 update the available capacity of the new VM to (available capacity — a,)
}
Upgrade(c)
1 If (upgrade type is ‘add account’)
{
2 Get VM;; which is processing the previous request from the same customer ¢
3 If ( VM, has enough space to serve request ¢ and can guarantee SLA objectives of existing requests)
4 Process request ¢ using VM,
}
5 Else
{
6 Let a.-be the number of account that are already rented by the customer.
7 Let new a, be the number of more accounts requested by the customer
8 Using similar process as of the function First Time Rent (c) search a newVM; which can serve request with (a.+new a.)
accounts
Transfer data from VM;; to newVM;
10 Release the space in old VM
}
}
11 | If (upgrade type is ‘upgrade service’)
{
12 get the VM) which processed the previous request from the same customer ¢
13 Using similar process as of the function First Time Rent (c) search a newVMj; which can serve the request
14 Transfer data from VM;;to newVM;
15 Release the space in old VM
}

algorithm is O(IC + I) where I indicates the total number
of VMs and C indicates the total number of requests.

3.2.2 Algorithm 2: Minimizing the Cost by Rescheduling
Existing Requests. (BFReschedReq)

Algorithm 1 prevents the penalties caused by adding accounts
but does not prevent penalties caused by upgrading the
product edition. Algorithm 2 further minimizes the product
edition upgrade penalty by rescheduling accepted requests,
which leads to a reduction of SLA violations and total cost
(Line 11-26).

The strategy of this algorithm is depicted in Fig. 5
(The pattern with horizontal line indicates the reserved
resources for the same customer; gray space, z axis
and y axis are the same as Fig. 3). The time complexity of
this algorithm is O(IC + I?) where I indicates the total
number of VMs and C indicates the total number of requests.

This algorithm is designed in a way that all VMs are
deployed with the full software package to reduce the
resource discovery and content migration time for resche-
duling accepted requests. If the request type of c is ‘service
upgrade’, the algorithm checks the available space of VM;
which has served the previous request ¢. If the available
space of VM, is less than the ¢ required and there is an
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Fig. 4. The Reservation Strategy.
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Algorithm 2. Pseudo-code for BFReschedReq
Input request ¢ with QoS parameters
Output Boolean
Functions: | FirstTimeRent (), Upgrade ()
First Time Rent (¢)
1 Let p be the product type and a.be the number of accounts required by request ‘¢’
4 Let vmList=GetVMlist(p , a.)//get list of VMs of which can serve request ‘c’
5 If (vmList is empty){
8 Allocate capacity of VM,,;, with minimum available space in vmList to request ‘c’
9 CreditLevel = getCreditLevel(Profile Information)
//get the credit level for request ‘¢’
10 If (CreditLevel > Threshold )
11 update the available capacity of VM,,;, fo (VM s available capacity — a.(futurelnterest))
12 Else
13 update the available capacity of VM,,;, to (VM,i, ‘s available capacity — a.)
}
14 Else
{
15 Initiate a new VM of type L and deploy the product type p on the VM
16 Allocate capacity of the new VM to request ¢
17 Update the available capacity of the new VM to (available capacity — a.)
}
Upgrade(c){
1 If (upgrade type is ‘add account’)
{
2 Get VM;; which is processing the previous request from the same customer as ¢
If ( VM;; has enough space to serve request ¢ and can guarantee SLA objectives of existing requests)
4 Process request ¢ using VM
}
5 Else
{
6 Let a.-be the number of account that are already rented by the customer.
7 Let new a. be the number of more accounts requested by the customer
8 Using similar process as of the function First Time Rent (c¢) search a newVM; which can serve request with (‘a.+newa,)
accounts
Transfer data from VM;; to newVM;
10 Release the space in old VM,
}
11 | If (upgrade type is ‘upgrade service”)
{
12 get the VM which processed the previous request from the same customer as ¢
13 If ( the available space of VM;; is less than request ¢ required in VM; ) {
15 If ( migrating ¢’generates minimum penalty cost || after trying to migrate all requests, available space in
16 VM; is still less than request ¢ required) {
17 Find or initiate the VM where new and previous requests generate minimum penalty cost
18 Migrate ¢’ and assign ¢ to the VM found or initiated in last step.
19 Transfer all the data to this VM.
20 Else {
21 Find or initiate the VM where migrating other requests generate minimum penalty cost
22 Migrate these requests to the VMs found or initiated in last step.
23 Transfer all the data to this VM.
}
24 Release the space in old VM,
D |
s
25 Else {
26 Allocate ¢ to VM,
}
}

existing request ¢., which causes a lower (or zero) penalty
than the current request ¢, then request c is scheduled on
VM; and the c. is migrated to another available and
capable VM (Upgrade (c)). The request c, is rescheduled to
the cheapest VM. The rest of the lines are the same as those
in Algorithm 1 except that Algorithm 2 does not differentiate
VM types, because all VMs are deployed with the full
package. When the customer requests more accounts than
the reserved fixed percentage for upgrade, the upgrade
function will take care of the exception (Lines 13-26).
Briefly, the algorithm checks if the current VM has enough
available resources to fit the extra accounts. If yes, the
extra accounts will be allocated to the same VM. If no, we

will search for the same type of VM with minimum
available but enough capability. If there is no suitable VM,
Algorithm 2 need to check if a new VM can be initiated. This
may require content migration and incurs penalty cost.

3.3 Lower Bound

Due to the NP hardness of the SLA-based resource
provisioning problem described in the system model
section, it is difficult to find the optimal solution in
polynomial time. Thus, to estimate the performance of
our algorithms, we present a lower bound for the cost. The
lower bound is derived from the scenario when we can get
the minimum cost in case all requests are allocated to the
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Fig. 5. The Reschedule Strategy.

VM to minimize the VM space wastage, penalty cost and
number of SLA violations.

The constraint of the request and VM mapping
relationship depends on the number of accounts, product
edition, and request type. For the sole purpose of
deriving the lower bound, we relax these constraints to
minimize the VM space wastage and penalty cost by
initiating the large VM to deploy and install the
enterprise edition on them. Take the product edition as
an example, when the type of the old VM is small, but
the customer requests to upgrade product edition to
enterprise, which requires the VM of type large but the
existing large VMs may do not have enough space for the
new request, which causes the penalty. Because all VMs
have the same capability, when one VM does not have
enough space, we can allocate some accounts to other
VMs to minimize VM space wastage. In addition, to relax
the dynamic request constraint, the incoming customer
requests are known in advance. This forms the ideal
lower bound scenario, where all incoming applications
are known in advance without any request constraint. ¢
denotes the individual customer request and C' denotes
the total number of customer requests arrived at time ¢.
a. denote the number of accounts requested by customer
request c¢. The maximum number of accounts can be
accepted by the large VM is defined as M. According to
(3), the equation for lower bound is expressed by:

Minimize (Cost)
= VMCost + PenaltyCost; Where PenaltyCost = 0

(21)
PerUnitTimeVMCostiarge
= Vl\lPI‘iCelarge X Min(VR{Iarge) = VMPricehﬂge
c
Z(’:l Ac (22)

X ——.
M(VMlarge)

However, this lower bound solution is the ideal
solution, whereas in real dynamic and constraint Cloud
environment we cannot achieve the lower bound but can
optimize proposed algorithms to be as close as possible to
the lower bound. The reason for initiating the large VM to
minimize the total cost is proved in Appendix B.

4 PERFORMANCE EVALUATION

We present the performance results obtained from an
extensive set of experiments comparing the proposed
algorithms with the best algorithm introduced in our
previous paper [22]. We discuss the experiment method-
ology along with performance metrics and detailed QoS
parameters. Our analysis of results shows the impact of

1) reservation strategies and 2) QoS parameters: customer’s
QoS parameters (request arrival rate, proportion of upgrade
requests, and credit level) and SaaS provider’s parameters
(service initiation time and penalty rate).

41 Experimental Methodology

We used CloudSim Toolkit [11] to model and simulate the
proposed algorithms for resource provisioning. We simu-
lated a data center with 500 physical machines whose
configuration resembles are Amazon EC2 large image. A
number of VMs of different types that are mapped to a
physical machine is shown in Fig. 2. Configuration details
of three different types of VMs (small, medium and large)
are given in Table 2. The bandwidth of the network
connecting physical machine is 10 Gb. The general
scheduling policy is time shared scheduling. We have
extended the existing Cloud environment and added our
algorithm for SLA-based resource provisioning. We model
the execution time (i.e. service processing time) based on
what we measured from dynamic CRM 4.0 system on a VM
with Windows Server 2008R2 OS and 10Gb bandwidth
over 2 weekdays and a weekend. For an operation of 303
items records, the mean time for query response time was
2.0 second with a standard deviation of 0.2 second.

We observe the performance of the proposed algo-
rithms by considering performance criteria from both
customers’” and SaaS providers’ perspectives. From
customers’ perspective, CSL improvement is considered
as reducing SLAs violations (from provider’s perspectives
this is KPI Assurance) and improving service quality (from
provider’s perspectives this is KPI Performance) in the
experiment section. Although in the proposed algorithms
only minimization of SLA violations is considered. The
number of SLA violations is defined as the number of
requests which experience slower response time than the
specified in the SLA. Service Quality Improvement (SQI) for
an algorithm in the system model is defined as how much
faster the actual response time respT’ (actual) than the SLA
pre-defined response time respT’ (SLA).

SQI = respT(SLA) — respT (actual). (23)

In experiments, Service quality improvement (Service-
QualityImp.) is defined as how much faster the response
time of a proposed algorithm is than the base algorithm
and is calculated as below:

ServiceQualityImp.
= SQI (base algorithm) — SQI (proposed algorithm) (24)

From Saa$S providers’ perspective, how much the total cost
is reduced by minimizing the number of VMs is observed.
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Therefore, there are four performance measurement metrics:
the total cost, number of initiated VMs, percentage of SLA
violations, and service quality improvement.

In this paper, experiments are designed from the
following three high level considerations:

1. Impact of reservation strategies: The credit level is
defined by multiple parameters including 1) company
type, which is based on company size 2) customer
actual requirements 3) customer expressed future
interest. We look into different resource reservation
strategies to analyse how dynamic (based on credit
level) and fixed reservation strategies impact on
performance metrics.

2. Impact of QoS parameters: Which algorithm per-
forms better in which situation by varying arrival
rate, proportion of upgrade requests, credit level,
service initiation time and penalty rate?

3. Performance Analysis under Uncertainty Future
Interest Value: To evaluate the performance of our
algorithms in handling the uncertainty in the future
interest value.

All the parameters used in the simulation study are
given in the following sections.

4.1.1 QoS Parameters

a) Customers’ side: From the customers’ side, three
parameters (request arrival rate, proportion of upgrade
requests, and credit level) are varied to evaluate their
impact on the performance of our proposed algorithms.
Requests arrival rate follows a Poisson distribution as
suggested by previous publications [36], [48]. We use a
normal distribution (standard deviation = (1/2) x mean) to
model all parameters, because there is no available
workload specifying these parameters.

e Five different types of request arrival rate are used by
varying the mean from 200 to 650 simulated customers
per second. The probability of a customer to have
small, medium and large company type is equal.

e Five different variations in the proportion of upgrade
requests are used by varying the mean proportion of
upgrade requests from 20 percent to 80 percent.

e Five scenarios vary the proportion of customers
having a credit level factor >1. This proportion is
varied from 10 percent to 90 percent (‘very low’ to
‘very high’ proportion of companies having high
credit level).

b) SaaS providers’ side: A SaaS provider offers three
product editions (Table 2). Due to unavailability of the
public data of the SaaS provider’s spending on VMs, we
have used the price schema of Amazon EC2 [14] to estimate
the cost per hour of using a hosted VM. It is a reasonable
assumption, since today many SaaS providers lease
resources from JaaS providers rather than maintaining
their own resources. Resource price and capabilities, which
are used for modeling VMs, are shown in Table 2.

e Five different types of service initiation time
(mean value varies from 5 to 15 min) were used
in the experiments. The mean of initiation time
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is calculated by conducting real experiments of
60 samples on Amazon EC2 [14] over four days
(2 week days and a weekend) by deploying
different editions of products.

e The penalty cost is modelled by (10) and it depends
on the request type. The mean of penalty rate (5)
varies from $3 per second (very low) to $12 per
second (very high).

4.2 Results Analysis

We evaluate our proposed algorithms—BFResvResource and
BFReschedReq by examining the impact of QoS parameters
on the providers’ KPIs. For all results, we present the average
obtained from 5 experiment runs. In the following sections,
we examine various experiments by varying both customers’
and SaaS providers” SLA properties to analyze the impact of
each parameter. The mean response time which governs SLA
violations is set at 5 seconds for ‘first time rent’ requests,
10 seconds for “upgrade product’ requests and 3 seconds for
‘add account’ requests.

4.2.1 Impact of reservation strategies

In this set of experiments a dynamic and four fixed
(20 percent, 40 percent, 60 percent, and 80 percent)
reservation strategies are examined by varying the pro-
portion of high credit level customers, for instance, 20
percent reservation strategies mean reserve 20 percent
more space during resource reservation.

In Fig. 6, the variation in credit level (x-axis) indicates
the variation in the proportion of customers having high
credit level. For instance, the ‘very low’ credit level
indicates that most customers have very low credit level.
Fixed (20 percent) reservation strategy costs the least (about
20 percent higher) by utilizing the least number of VMs, but
responses slowest (about 60 percent slower) when the credit
level is not very low. The dynamic strategy performs the
best with respect to the response time but costs the most,
because it initiates the largest number of VMs, when the
credit level is high.

In regard to the customer satisfaction level, there are two
aspects: 1) how many requests experience violations
(Fig. 6¢), and 2) the service quality improvement (Fig. 6d). In
conclusion, during the service type variation experiments,
dynamic reservation gives the best service quality improve-
ment, but the fixed reservation saves the most cost. Varying
the credit level has the greatest impact on the results, although
the overall conclusions are the same as those obtained
from the experiments which varied the other parameters,
such as upgrade frequency. On the other hand, when the credit
level is very low, the dynamic strategy saves the largestamount
of cost and incurs the smallest number of SLA violations.

4.2.2 Impact of QoS parameters

I) Impact of arrival rate variation: In this section, we
present the performance results of our proposed algo-
rithms in different scenarios. In each experimental scenar-
io, we varied one QoS parameter and set others as constant.
For instance, the scenario considered for credit level is
‘medium’, which indicates the medium proportion of
companies with high credit level. The reason for presenting
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Fig. 6. Impact on reservation strategy during the variation in proportion of customers with high credit level. (a) Total Cost. (b) Number of initiated VMs.

(c) Percentage of SLA Violations. (d) Service Quality Improvement.

the ‘medium’ is to minimize the impact of other factors
during the evaluation of reservation strategies. For all
experiments, only dynamic reservation strategy is used in
algorithms, since it performs best among other evaluated
reservation strategies.

The impact of arrival rate on our algorithms is depicted
in Fig. 7 with the following parameter settings: ‘low’
upgrade frequency, ‘low’ initiation time, and ‘medium’ for
all rest parameters. The lower bound is plotted in line chart.
The BFReschedReq is the closest to the lower bound, and it
is 18 times and 13 times closer than the BFResvResource
and the base algorithm respectively.

On average, the BFReschedReq performs the best by
saving about 50 percent of the cost and reducing 60 percent
of the SLA violations by using approximately half the
number of VMs compared with the base algorithm. As
Fig. 7c shows, when the request arrival rate is ‘very high’,
the BFResvResource causes more SLA violations than
other algorithms, because when a large number of concur-
rent requests arrive, they increase the response time for
upgrading the services (Fig. 7d). However, the total cost
generated by this algorithm is lower than the by the base
algorithm due to a lower VM cost. It can be seen from
Fig. 7d that BFReschedReq has a smaller improvement in
service quality compared with other algorithms, because of
the additional time consumed by request rescheduling in

transferring data and initiating new VMs. In addition,
Fig. 7a and d show that as the service quality improves but
costs more. Therefore, during the variation of the arrival
rate, the BFReschedReq performs best in respect to the total
cost, the number of initiated VMs and causes the least
number of SLA violations.

II) Impact of proportion of upgrade requests variation: We
investigate the strengths and weaknesses of the algorithms
by varying the proportion of upgrade requests from ‘very
low’ to ‘very high’. In Fig. 8, ‘very low” is when there is no
product upgrade but low level of ‘add account” upgrade.
‘low” is when there is low proportion of both ‘product
upgrade” and ‘add account upgrade’. ‘medium’, ‘high’, and
‘very high’ is when there is ‘medium’, ‘high’, and ‘very
high” proportion of both upgrades respectively. Other
parameter settings are: ‘very high’ for request arrival rate,
‘low” for service initiation time, and ‘medium’ for the rest
of parameters. As it can be seen from Fig. 8, the proportion
of upgrades increases, the total cost of the base algorithm
slightly increases because of more SLA violations while
utilizing the similar number of initiated VMs. In contrast,
the total cost that is generated by two proposed algorithms
decreases, because less number of VMs are initiated by
utilizing reserved resources. In the worst case scenario, our
proposed algorithms deliver results similar or close to the
Best-fit algorithm.
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When the proportion of upgrade requests is ‘very low’,
BFResvResource saves more cost than the BFReschedReq,
because BFReschedReq uses large VMs, which cost more than
the small and medium VMs. However, when the proportion
of upgrade requests varies from ‘low’ to ‘very high’, the
BFReschedReq saves cost over the BFResvResource, because
BFReschedReq takes care of product upgrade penalty (SLA
violations) and utilizes less VMs to serve an increasing
number of product upgrade requests.

To compare with the base algorithm, on average
BFReschedReq reduces the cost more than 27 percent
when the proportion of upgrade requests varies from ‘very
low’ to “very high’, because it initiates about 30 percent of the
number of VMs (Fig. 8b) and SLA violations reduces to about
1 percent (Fig. 8c). The overall trend of SLA violations is
increasing (Fig. 8c). Nevertheless, when the upgrade fre-
quency varies from ‘low’ to ‘very high’, the BFReschedReq
causes more SLA violations than the BFResvResource, be-
cause the BFReschedReq cannot prevent SLA violations
caused by product upgrade.

In regard to the service quality improvement, the
BFReschedReq takes more time for rescheduling and the
BFResvResource provides better service quality, because
the BFResvResource takes about half of the time than that
the BFReschedReq takes to respond to the customers’
requests (Fig. 8d).

III) Impact of credit level: To investigate the impact of
customer profiles, we investigate how the proportion of
high credit level customers impacts the performance of our
algorithms. In Fig. 9, the variation in credit level (x-axis)

indicates the variation in the proportion of customers with
high credit level. Parameter settings are: ‘very high” value
of requests arrival rates, ‘very high’ value of upgrade
proportion, and ‘medium” value of all rest parameters. It
can be seen from Fig. 9 that there is no influence on the base
algorithm, which does not consider customer profiles.
However, our proposed algorithms are affected during the
variation of proportion of high credit level customers,
because our algorithms reserve resources according to the
credit level.

When the proportion of high credit level customers
varies from ‘very low’ to ‘very high’, proposed algorithms
generates less cost than the base algorithm by initiating up
to 12 percent less number of VMs (Fig. 9b) and violating
up to 6 percent less SLA violations (Fig. 9c). This is be-
cause the wastage of reserved resources is lower, when the
credit level increases. The service quality improvement
decreases for both proposed algorithms (Fig. 9d), because it
takes longer to serve the same number of requests using
fewer VMs.

IV) Impact of service initiation time variation: Fig. 10
shows how service initiation time variation impacts the
SaaS provider’s total cost. Parameter settings are: ‘very
high’ value of requests arrival rate, and ‘medium’ value of
all rest parameters. When the initiation time varies from
‘very short’ to ‘very long’, the trend of the total cost
generated by all algorithms increases about 1.5 times,
because it causes penalty delays (SLA violations) for new
service initiation. The base algorithm is affected more when
service initiation time varies from ‘long’ to ‘very long’,
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because it initiates more VMs. The service quality im-
provement falls down during the enlargement of service
initiation time, because the service initiation time includes
the time for deploying software services.

V) Impact of penalty rate variation: We investigate how the
penalty rate (3) impacts our algorithms. Parameter settings
are: ‘very high’ requests arrival rate, ‘low” value of service
initiation time, and ‘medium’ value of all rest parameters. It
can be observed from Fig. 11 that all algorithms are affected
during the variation of the penalty rate, because requests
are scheduled with shared resources. When penalty rate
varies from ‘very low’ to ‘very high’, the base and the
BFResvResource algorithms cost more because of more
SLA violations. However, the BFResched Req saves cost and
causes very small number of SLA violations (the maximum
percentage is less than 1 percent).

When penalty rate varies from ‘medium’ to ‘very high’,
the BFResvResource initiates less VMs by using reserved
resources, which causes more SLA violations. Because the
BFResvResource may delay first time rent requests to serve
upgrade requests. In summary, Fig. 11 shows that the
BFReschedReq minimizes the total cost, although penalty
cost grows during penalty rate variation.

4.2.3 Performance analysis under uncertainty future
interest value:

Since customer may be uncertain about their future interest

value, they may under-claim or over-claim the value. To

evaluate the performance of our algorithms in handling the

uncertainty in the future interest value, we carried out two
sets of experiments by varying the 1) future interest from 10
percent to 50 percent over-claim (Fig. 12). 2) future interest
from 10 percent to 50 percent under-claim (Fig. 13). The
base algorithm (BestFit) is not impacted since it does not
consider resource reservation.

Fig. 12 shows that during the over-claim of customers’
specified future interest value, the total cost (Fig. 12a)
increases for both proposed algorithms (up to 10 percent).
This is because more VMs are initiated for resource
reservation. However, the SLA violations has decreased
due to availability of more reserved resources than
required.

Fig. 13 shows that during the under- claim of the future
interest, the total cost (Fig. 13a) is increasing for both
proposed algorithms (up to 2 percent). This is because of
more SLA violations, which is due to under allocation of
required resources.

The summary of heuristic comparison results regarding
to total cost to show on which condition each algorithm can
get best and worst results are listed in Table 3.

5 RELATED WORK

Research on market driven resource allocation was started
in early 80s [5], [8]. Most market-based resource allocation
methods [10] are designed for fixed number of resources [3],
[6], [26], [27]. Our work is related to user driven SLA-based
economic-oriented resource provision with dynamic number
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of resources. In addition, the resource usage patterns and
usage prediction are related areas to our work. The
discipline of Web Usage Mining (WUM) has grown rapidly
in the past few years, despite the crash of the e-commerce
boom of the late 1990s. WUM is the application of data
mining techniques to Web clickstream data to extract usage
patterns [49]. In the current WUM area, the data has been
classified as content, structure, usage and user profile [50].
The first three data categories are related to the usage of
Web sites but not the e-commerce transactions. Current
three types of usage prediction algorithms, which are
history-based, sequence-based and Markov-based algo-
rithms [51], [52] are mainly used in the first three data
categories. Thus, in this paper rather than focusing on
designing such strategies, we consider user profile and
using history-based method for predicting the transaction-
based enterprise system usage to calculate the credit level.

In the following sub-sections, we present related
publications in Grid and Cloud computing that focus on
the area of resource allocation and SLA management.

5.1 Grid

Harnscher et al. discussed typical scheduling strategies in
computational Grids [24]. They have considered scientific
tasks, which run for short term, whereas we consider
transaction based applications, which run for long term.
Moreover, customer driven scenarios are out of their scope.
In addition, the evaluation metrics are different, because

they focused on the response time and utilization, while we
focus on the cost and the number of SLA violations.

Gomoluch et al. proposed market-based resource allo-
cation algorithms for Grid computing [25]. The common
points between their and our paper are: firstly, the
consideration of state-based and pre-emptive strategies.
The state-based strategy indicates all resource allocation
based on the current service/system state. The pre-emptive
strategy means tasks assigned to a resource, and they are
allowed to be migrated to other resources for some
advantageous purposes. Secondly, both papers focused
on market-based resource allocation. Nevertheless, their
work considered independent tasks with input data,
deadline as QoS parameters using fixed number of
resources. In our case, a customer requests the enterprise
applications with multiple QoS parameters using dynamic
and flexible resources.

He et al. introduced a QoS guided task scheduling
algorithm in Grid [38]. The bandwidth was considered as
one of the major QoS parameters; and their strategy was
based on the earliest completion time, while our paper
focuses on minimizing the cost by considering QoS
parameters on both customer and provider side.

Reig et al. contributed to minimizing the resource
consumption for serving requests and executing them
within the deadline with a prediction system [12]. Their
prediction system enables the scheduling policies to
discard the service of a request, if the available resource
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cannot complete the request within its deadline. However,
in our work, we consider the data intensive transaction
based application, which run for long term, whereas they
considered compute intensive independent application,
which are relatively short term. Moreover, the QoS
parameters we considered are different from the ones in
their work. In addition, our model considers penalty and
market oriented targets which do not exist in their work.

Fu et al. proposed an SLA-based dynamic scheduling
algorithm of distributed resources for streaming [20].
Moreover, Yarmolenko et al. evaluated various SLA-based
scheduling heuristics on parallel computing resources with
two evaluation metrics: resource (number of CPU nodes)
utilization and income [21]. Nevertheless, our work focuses
on scheduling enterprise applications on VMs in Cloud
computing environments (the minimum unit of resources
in our work is the number of VMs).

5.2 Cloud

As virtualization is a core technology of Cloud computing,
the VM placement has become crucial [31], [32], [33] in the
resource management and scheduling, while the virtuali-
zation at the operating system (such as, VMware [27]) and
storage (such as [28]) level is entering the mainstream. For
instance, Grit et al. investigated various algorithms for as-
signment of VMs [31]. Similarly, Van et al. proposed the re-
source provisioning and VM placement [32]. Hermenier et al.
designed a dynamic consolidation mechanism for homoge-

neous resources [33]. However, these related publications
[31]-[33] did not consider monetary cost or uncertainty of
future demand. Bobroff proposed a dynamic heuristic-
based VM placement methodology that did not focus on
customer-driven scenario to minimize the total cost for SaaS
providers [34].

Kimbre et al. proposed an allocation algorithm to
minimize the number of VM migrations during resource
reallocation [29]. Khanna et al. pursued the goal to minimize
the number of VM migrations and the number of physical
machines [30]. In contrast, the objective of our work is to
minimize the total cost and number of initiated VMs by
considering request migrations instead of VM migrations.

Popovici et al. mainly considered QoS parameters on the
resource provider’s side, such as price and offered load in
Cloud computing [6]. Lee ef al. investigated the profit
driven service requests scheduling for dependent tasks
without user-driven consideration [2]. In contrast, our
work focuses on SLA driven QoS parameters on both user
and provider sides; and solves the challenge of assigning
dynamically varying customer requests to minimize the
cost and number of SLA violations.

Chaisiri et al. proposed optimisation of resource provi-
sioning cost in Cloud computing by applying stochastic
programming approach in multiple phases [35]. They
minimized the cost by considering the uncertainty which
is only a part of our objective. In the context of the resource
allocation algorithms for enterprise applications, Yang et al.
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used Genetic Algorithm (GA) in their paper [18]. As GA-
based algorithms create a pre-planing schedule, they will
not be able to deal with dynamic environment such as
Cloud. Therefore, this approach is not suitable for SLA-
based resource provisioning in dynamic Cloud computing
environments. This paper improves our previous work [22]
by proposing two extended algorithms and considering
additional QoS parameters such as credit level. We also
propose resource provisioning and request migration
strategies to optimize the total cost and SLA violations.

In summary, our work is unique in the following ways:

e It manages the CSL based on the customer QoS
requirements by minimizing the SLA violations.

e The utility function is time-varying that considers dy-
namic VM deployment time (service initiation time).

e It considers KPI criteria as a decision making
approach for scheduling.

e Scheduling algorithms consider the customer pro-

files to minimize penalty cost.
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e Itadapts to dynamic resource pools and consistently
evaluates the cost of adding new instances, while
most of the previous papers deal with a fixed size of
resource pool.

6 CONCLUSION AND FUTURE DIRECTIONS

In Cloud computing environments, there are primarily
three types of on-demand services that are available to
customers: Software as a Service (SaaS), Platform as a
Service (PaaS) and Infrastructure as a Service (IaaS). This
paper focused on resource allocation for SaaS providers
with the explicit aim of cost minimization while maximiz-
ing CSL by minimizing the number of SLA violations. To
achieve this goal, we answered questions raised in the
introduction section by considering customer profiles and
KPI criteria while using mapping and scheduling mechan-
isms to deal with the dynamic demands and resource level

heterogeneity. We implemented two customer driven
algorithms which considered various QoS parameters
(such as arrival rate, service initiation time and penalty
rate) from both customers’ and SaaS providers’ perspec-
tives using respectively resource reservation and request
rescheduling strategies. In addition, to find out how many
resources should be reserved to further optimize the
solution, for each QoS parameter, we implemented five
sets of reservation strategies (one dynamic and four fixed
percentage reservation strategies). The dynamic reserva-
tion strategy performed best during the service type
variation with respect to the total cost, number of initiated
VMs and percentage of SLA violations in general.

The CRM application scenario is a good representative
example of many enterprise applications. In addition,
the scenario can also be applied to HPC (High Perfor-
mance Computing) and scientific applications by map-
ping VM capabilities and QoS requirements. The package
upgrade scenario may not be required by them, which

TABLE 3
The Summary of Best and Worst Results (Cost) Comparison
Algorithms Overall performance
Arrival Rate Proportion of Upgrade Credit Level Service Initiation Penalty Rate
Requests Time Factor
BestFit Best (very small) | Best (no upgrade) No effect Best (very short) | Best (very high)
Worst (very large) | Worst (very high) Worst (very long) | Worst (very low)
BFResvResource | Best (very small) | Best(only add account | Best (very high) | Best (very short) | Best (very high)
Worst (very large) | upgrade) Worst(very low) | Worst (very long) | Worst (very low)
Worst (very high
proportion of product
upgrade)
BFReschedReq Best (very small) | Best (very high Best (very high) | Best (very short) | Best (very high)
Worst (very large) | proportion of product | Worst(very low) | Worst (very long) | Worst (very low)
upgrade)
Worst (no product
upgrade)
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simplifies the scenario compared to enterprise web applica-
tions. Therefore, techniques and algorithms proposed in
our paper can support a wide range of applications from
many domains.

The analysis of our evaluation focused on customers’
and SaaS providers’ perspectives to maximize various KPI
criteria, including the total cost, number of initiated VMs,
percentage of SLA violations, and service quality improve-
ment. Simulation results showed that on average, the
BFReschedReq results in maximum cost savings and the
lowest number of SLA violations compared with the other
evaluated algorithms. In general, both proposed algo-
rithms improved service quality to a level higher than that
specified in the SLAs and the BFResvResource improved
most in regard to the service quality. The lower bound is
the ideal solution and the BFReschedReq is the closest to
the ideal solution. In addition, in appendix we prove that
our problem is NP hardness.

In future, we plan to explore:

1. the SLA negotiation process in Cloud computing
environments to improve customer satisfaction levels,

2. resource provisioning for multi-tier applications,

3. considering other pricing strategies such as spot
pricing to minimize the cost for service providers,

4. modeling the inaccuracy of customer information
and its impact by exploring sophisticated credit
level calculation based on the usage pattern and
usage prediction technologies, and

5. integration of this work with admission control in
Clouds for compute-intensive applications.
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