
Simulation Modelling Practice and Theory 111 (2021) 102336

A
1

A
a
M
M
a

b

c

d

M

A

K
R
T
C
F

1

n
n

p
i
s
c
a
c
a

h
R

Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier.com/locate/simpat

scheduling-based dynamic fog computing framework for
ugmenting resource utilization
d Razon Hossain b, Md Whaiduzzaman a,b,∗, Alistair Barros a, Shelia Rahman Tuly b,
d. Julkar Nayeen Mahi b, Shanto Roy b, Colin Fidge c, Rajkumar Buyya d

School of Information Systems, Queensland University of Technology, Brisbane, Australia
Institute of Information Technology, Jahanirnagar University, Dhaka, Bangladesh
School of Computer Science, Queensland University of Technology, Brisbane, Australia
Cloud Computing and Distributed Systems (CLOUDS) Lab, School of Computing and Information Systems, The University of
elbourne, Australia

R T I C L E I N F O

eywords:
esource utilization
ask scheduler
loud computing
og computing

A B S T R A C T

Fog computing is one of the most important emerging paradigms in recent technological
development. It alleviates several limitations of cloud computing by bringing computation,
communication, storage, and real-time services near to the end-users. However, with the
rapid development of automation in smart cities, the number of task executions by fog nodes
are increasing, requiring additional fog nodes. In this paper, we present a Scheduling-based
Dynamic Fog Computing (SDFC) Framework to augment the utilization of existing resources
rather than adding further fog resources. It includes an additional layer, Master Fog (MF),
between the cloud and general-purpose fogs, which are addressed here as Citizen Fog (CF). The
MF is responsible for deciding task execution in CFs and the cloud. We use the Comparative
Attributes Algorithm (CAA) to schedule tasks based on their priority and a Linear Attribute
Summarized Algorithm (LASA) to select the most available CF with the highest computational
ability. Our empirical results validate our SDFC framework and show the dependency on the
cloud reduces by 15%–20% and overall execution time decreases by 45%–50%.

. Introduction

Automation and construction of smart cities have become essential components of modern civilization. Everyday, millions of
ew Internet of Things (IoT) devices are deployed, from personal use to industrial production [1–3]. According to Statista [4], the
umber of IoT-connected devices in previous and future years is shown in Fig. 1.

This rapid increase in IoT devices creates large amounts of data. A large portion of this data is big data that requires highly
owerful computing units for processing. Additionally, many devices require real-time services and higher accuracy [5] in object
dentification and decision-making, causing a direct impact on the internet and data centers [6], including the cloud. The cloud
upplies availability of data, computing units, software, and infrastructure with security, reliability, and flexibility. However, cloud
omputing has several limitations, including network congestion, request–response latency in real-time services [7], etc. Security for
distant computing unit operating over the internet may cause security vulnerabilities [8], and man-in-the-middle [9] attacks can

ause serious security breaches. As a solution, Cisco coined the term fog computing and offered a definition for fog computing that
ny device with computing, storage, and network connectivity, can be deployed anywhere with a network connection and extends

∗ Corresponding author at: School of Information Systems, Queensland University of Technology, Brisbane, Australia.
E-mail address: md.whaiduzzaman@qut.edu.au (M. Whaiduzzaman).
vailable online 27 April 2021
569-190X/© 2021 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.simpat.2021.102336
eceived 24 July 2020; Received in revised form 22 March 2021; Accepted 16 April 2021

http://www.elsevier.com/locate/simpat
http://www.elsevier.com/locate/simpat
mailto:md.whaiduzzaman@qut.edu.au
https://doi.org/10.1016/j.simpat.2021.102336
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpat.2021.102336&domain=pdf
https://doi.org/10.1016/j.simpat.2021.102336

Simulation Modelling Practice and Theory 111 (2021) 102336M.R. Hossain et al.
Fig. 1. Increasing number of IoT devices.

Fig. 2. Fog computing generic view.

the cloud near to IoT devices is a fog [10]. This approach offers advantages for services in several domains, including the smart grid,
Wireless Sensor Networks (WSNs) [11], the IoT, and Software Defined Networks (SDNs) [12], Service Delivery Framework (SDF)
in Software Oriented Architecture (SOA) [13], service synchronization [14,15], traffic systems and so on. Fog computing receives
a request from end devices, such as the IoT, and processes it to supply a real-time response back to the requester [16,17] and also
decides whether to send the computation to the cloud or not. Fog computing supplies data, computation, storage, and application
services to the end-users, similar to the cloud [3]. Bittencourt et al. [18] provided a generic overview of fog computing which is
shown in Fig. 2.

Although the concept of fog computing is promising, with time, the increase in data and required resources to process it grows
too frequently for fog computing to be effective. According to the International Data Group (IDC), 30% of generated data will be
real-time data by 2025 [19]. Hence, it shows the urgency of an alternative approach.

For instance, in a traffic control system [20], fog devices are integrated into each lamp post of the road. In the day time, these
roads become highly dense with vehicles and smart devices. As a result, the amount of generated data is very high and requires
executing different operations, which results in a data overflow of task within the queuing of the corresponding fogs [21–23]. A
general solution to meet this required computation request is to increase the number of fog nodes or add additional processors
to the existing fog nodes. For this increasing number of fog nodes, the conjoint network becomes complicated and more complex
while demanding an excessive degree of maintenance. An increase in electronic equipment has a direct impact on environmental
2

Simulation Modelling Practice and Theory 111 (2021) 102336M.R. Hossain et al.

r
p
c
o
t
e
r
i
A
t
a

C
f
o

O
e
n
a
e
o

2

r

2

a
o
a
t
t
c
s
l
c
e
i
d
o
g
a

and natural entities [24]. However, if we observe closely, we can find some idle or available fog nodes on the opposite side of the
road, nearby homes, or institutes, etc. that can execute some tasks for other fogs. In the daytime, fogs at the side of the road, at the
side of the nearby offices, industries, schools, etc. remain busier. On the other hand, home devices can be completely available for
additional task processing at this time. However, at night the situation is reversed. Therefore, in different circumstances and times,
some fogs are having a high overhead in executing a huge number of tasks whereas few fogs are available or idle. Consequently, a
better solution is the proper utilization of the available resources.

Concerning the problem stated above, this research aims to provide a convenient and efficient framework that increases the
eusability of existing resources. Our framework is a colonial framework where each colony consists of several existing general-
urpose fog nodes named citizen fog. Moreover, each colony has a special fog node, called master fog, which maintains the
orresponding citizen fogs. The range and the number of citizen fogs under a master fog are determined based on the density
f data generated from the end devices, and a citizen fog can use the computational power and storage of another citizen fog via
he master fog. The master fog node is responsible for load balancing and intercommunication among the citizen fogs by taking
ach request from a citizen fog and assigning the task to the most eligible citizen fog available. After task execution, the master fog
eturns the result or response to the requester citizen fog. The master fog keeps track of the computing status of the citizen fogs
n real-time and schedules the tasks based on their priority. To accomplish these goals, the process follows our new Comparative
ttributes Algorithm (CAA) to schedule tasks based on their priority and uses the Linear Attribute Summarized Algorithm (LASA)

o sort the available CFs according to their computing abilities. Besides this, it is also responsible for offloading data to the cloud
nd maintaining communication between the citizen fogs and the cloud.

ontribution. In this paper, we depict the scattered resource distribution which causes inefficiency in handling the increase of data
rom IoT devices and describe our new SDFC framework that augments the reusability of existing resources. The major contributions
f this paper are summarized as follows:

• We reconstruct the traditional fog-cloud framework into a three-layer framework SDFC, introducing a master fog that
communicates with the cloud and CFs to share available resources and computing ability for executing tasks.

• We address the problem of scattered resources and design a Comparative Attribute Algorithm (CAA) for the master fog to maintain
and sort the task queue based on priority and a Linear Attribute Summarized Algorithm (LASA) to sort out the appropriate fog
for a specific task.

• We simulate our SDFC framework, compare it with a traditional three-layer fog computing framework, and validate the
performance of our SDFC framework. It shows that our framework performs better than the alternatives in augmenting resource
utilization.

utline. The rest of the paper is organized as follows: Section 2 presents a brief overview of the literature and related work. We
xamine several papers and research studies to identify the current obstacles, solutions, and their limitations. Section 3 illustrates our
ew task scheduling fog computing framework, its layers and components, and their interactions and task scheduling parameters,
nd based on the parameters, we describe the process and scheduling algorithms and how they are used in the framework. Section 4
valuates the simulated results of the framework and presents comparisons with existing works in different situations followed by
ur concluding remarks on our work by discussing major findings, and future implications.

. Background and rationale

We have studied and analyzed different cloud-fog computing frameworks and scheduling algorithms. This section contains the
eview of these frameworks and algorithms along with the motive and necessity of our SDFC framework.

.1. Cloud-fog computing frameworks

Bonnet, et al. proposed a two-layer framework installing a management layer in the fog and a data semantic knowledge and
nalysis layer on the cloud to store, analyze, and learn from the managed fog instances (FIs) data [25]. The main idea is that
nce a solution to a problem is processed, the fog layer manages it and supplies it to the further requests from devices. This
pproach integrates the Machine to Machine Management (M3) framework [26] at the Road Side Units (RSU) and the Machine
o Machine (M2M) approach [27] to analyze the data and perform sensor-based tasks to offer the same solution to a new request
hat has already been computed, thus increasing real-time responses. However, the framework is completely dependent on the
loud. For the heterogeneous tasks, the foggy framework [28] proposed by Yigitoglu et al. is more effective. The proposed task
cheduling mechanism optimizes the resource usage and minimizes the latency by considering application requirements from its
atency, sensitivity, resource constraints, mobility support, dynamic workload, and privacy [29] as well as resource capabilities,
osts, and mobility. Santoro et al. offered a framework on the workload of orchestration using the foggy framework [30]. Bruin
t al. also proposed a coordinate-based foggy cloud and cloudy fog framework [31]. However, in this framework, each fogs are
ndependently and directly connected with the cloud and there is no methodology to share resources. Therefore, fogs are completely
ependent on the cloud, if there is any idle fog nearby, other busy fogs cannot take advantage of this. A Green and Timeliness-
riented Fog Computing Model called Spatio Fog [32] is provided by Das et al. which reduces power consumption and delay in
eospatial query resolution system. To meet the challenges of fast-growing users traffic, Habibi et al. [33] proposed a four-layer
3

rchitecture containing end device, fogs, core network, and cloud. It integrates and extends the ETSI NFV [34] and SDN [35]

Simulation Modelling Practice and Theory 111 (2021) 102336M.R. Hossain et al.

a
c
e
a
d
c
R
t
o
i
c
e
u
a
t
b

2

E
s
M
c
l
a
p
w
c
t
t

t
o
t
i
a
c
i
m

3

t

architecture. Another three-layer hybrid approach is provided by Velasquez et al. [36]. The authors use an orchestrator to manage the
communication, resource, service discovery to lookup service availability in the nearest location. Different orchestrator components
are in a different layer and cloud contains a single instance for global orchestration. Brito et al. [37] proposed another orchestration
based architecture, named Service Orchestration Architecture for Fog-enabled Infrastructures (SOAFI) to orchestrate fogs. It has
two main components, a Fog Orchestrator and Fog Orchestration Agent. The Fog Orchestrator converts the fog nodes into logical
infrastructure that makes an inventory of available resources in the fog domain and allocate them. Each cloudlet contains a Fog
Orchestration Agent and provides the management interface to the Fog Orchestrator.

2.2. Scheduling based fog computing frameworks

Pham and Huh presented a task-scheduling algorithm based on trade-offs and proposed a three-layer framework [38] in which
smart gateway communicates between the fogs and cloud. In this task scheduling cloud-fog computing system, a fog provider

an use the collaboration between its fog nodes and rent cloud nodes to execute requests while all the fogs are busy. Choudhari
t al. proposed a priority-based scheduling algorithm in [39] based on the Efficient Resource Allocation (ERA) [40] algorithm by
pplying prioritized scheduling. The priority queue depends on whether a particular fog can complete the task within the allowed
elay, estimated service time, and threshold time. The authors asserted that their algorithm significantly reduces the execution
ost. However, the priority scheduling is occurring in each fog which causes delays in real-time response. Verma et al. proposed a
eal-Time Efficient Scheduling (RTES) algorithm for load balancing in the fog computing environment [41]. The authors asserted

hat their scheduling algorithm ensures that all processors in the systems and every node in the network share an equal amount
f the workload requested by the client. The framework uses the load balancing algorithm in the fog computing ecosystem to
mprove real-time services. However, it is not concerned about the heterogeneous resource capability of fog devices, and in the
ase of a large amount of data, it continues to search for fog devices in the other regions, which delays the real-time services. Chu
t al. focused on the visual fog scheduling problem of assigning the visual computing tasks to various devices for optimal network
tilization [42]. The work of these authors proved that this problem is NP-complete, which is different from the usual scheduling,
nd they formulated a practical, efficient solution. The main idea was to divide the tasks and devices in parallel and map the tasks
o the devices in parallel as well. However, problems arise when the slices cannot work independently and there is a dependency
etween tasks. Therefore, although the task holds the resource, it cannot complete the execution.

.3. Generalized scheduling algorithms

There are various scheduling algorithms such as resource management [43], Minimum Completion Time (MCT), and Minimum
xecution Time (MET) algorithms [44], and MIN-MIN and MAX-MIN algorithms [45]. MCT does not maintain any scheduling or
equence for the processors or tasks. Instead, it assigns tasks to the nearest processors, without confirming the execution of the task.
ET assigns tasks to the most powerful processor for fast execution. However, load balancing is not stated here. HealthEdge [46]

ollects human health data to set various processing priorities to schedule tasks and determine which tasks should be executed
ocally and which should be executed in the cloud. Mijumbi et al. proposed a Greedy Best Availability (GBA) [47] process to define
n ideal task scheduling policy, and based on work completion time, they attempted to reduce the queuing time. Al-khafajiy et al.
rovided a fog upload algorithm in their Fog Computing Framework for IoT application [48] which decides which task to offload and
here to offload based on the task congestion and fog availability. The execution of the algorithm occurs in every fog which causes

omputation overhead. Moreover, Tychalas provided a Bag-of-Tasks [49] scheduling algorithm that uses all the available resources
o decrease cost. However, the algorithm sends a set of tasks to each resource and task to stay in a queue before executing, and
hus increases the response time.

In the literature review, we have discussed the advantages and disadvantages of several frameworks and algorithms. However,
here is still a lack of proper resource utilization and delays for high-priority task execution. For example, the RTES lacks the balance
f proper resource utilization and real-time services. Therefore, we develop the SDFC framework which provides the ability to use
he resources of adjacent CFs where sharing and task scheduling are handled by a new layer, titled Master Fog. The Master Fog
s similar to any other citizen fog regarding its resources with a list of selective responsibilities to track the CF resource status
nd sort CFs using the LASA algorithm, scheduling and assigning tasks based on their priority by using the CAA algorithm and
ommunicating with CFs and cloud. It stays as close to the end device as a citizen fog stays. Therefore, the computation overhead
s minimal. Moreover, it utilizes the resources of adjacent CFs instead of renting cloud resources all the time. Therefore, the cost is
inimal and execution time is faster, and hence reduces delays in real-time responses.

. System model and methodology

In this section, we describe our SDFC framework and its components, and we present the mathematical model for scheduling
4

asks.

Simulation Modelling Practice and Theory 111 (2021) 102336M.R. Hossain et al.
Fig. 3. Overview of SDFC framework with citizen fog, master fog, and fog colony concept.

3.1. Task scheduling fog computing framework

Fog computing is a recent paradigm, and therefore, many challenges and opportunities remain to cope with the increasing
requirement for resources and computation power. Researchers are attempting to overcome these challenges and looking for
optimized utilization of the resources to ensure better service and computing for IoT and edge devices (e.g., mobiles, laptops).
We added a new layer of a particular fog device between the general-purpose fog devices and cloud. This three-layer framework
places additional attention to processing and maintaining the complexity carried by the fog and cloud. Here, the workload is mostly
considered for the fog by classifying fog nodes according to their primary ability, as stated by Yigitoglu et al. [28], and a context-aware
queuing system for tasks coming into the master fog, as stated by Mostafa and Mohammad [50]. We have retained the end devices
as isolated and encapsulated from other fog layers to create a decoupled relationship between them.

These three layers (except for the user layer) consist of the fogs and cloud. The relationship between the end-user and our first
layer (general-purpose fog nodes) is retained as before. Our research results offer a better management process between the fog
and cloud that can reliably supply proper resource utilization, resulting in faster responses and fewer request failures for the end-user,
although they work with fog in the traditional manner by remaining unaware of the changes in the framework.

The first layer of the framework contains the general-purpose fogs, named as a citizen fog, which are the nearest nodes to
the end-user and usually control the communication between the cloud and the end-user through the master fog, when necessary.
This layer can manage subsequent computing on behalf of the cloud and supply real-time responses to the user but due to the
inconsistency of the computing request density over places and time, a dynamic task allocation controller for the citizen fogs must be
introduced.

The second layer can dynamically handle the request traffic that the citizen fog cannot execute. This layer is marked as the
master fog. The Master Fog (MF) creates a colony consisting of a few citizen fogs, and it aims to receive a request from one fog
and allocate the task to another fog on behalf of the requesting fog. After task completion, this layer receives the response from the
worker fog and redirects the response to the requesting fog.

The Cloud is the third layer of our SDFC framework. It communicates with the Master fog. If there is no citizen fog available
to execute a task, the Master fog sends the task and reference to the requesting Citizen fog to the cloud and after completion of
execution, the cloud sends the response to the referenced citizen fog directly.

The SDFC system model is shown in Fig. 3.

3.2. Component description

Fig. 4 shows the components of our solution and their intercommunication in depth.
5

Simulation Modelling Practice and Theory 111 (2021) 102336M.R. Hossain et al.

r
U

3

c

Fig. 4. Our task scheduling fog computing framework.

3.2.1. Citizen Fog (CF)
The first layer of our SDFC framework consists of Citizen Fogs. These fogs are the closest devices to the end-users. Smart devices,

laptops, and IoT devices, etc. are connected with these fogsfogs in the same way they usually connect with any other general-purpose
fog. Receiving tasks from end-users and the master fog, executing them, and sending the executed result to the corresponding CF
are its responsibilities. Moreover, if it cannot execute a task, it asks the master fog to execute the task. A CF consists of a Citizen
Fog Manager (CFM), the controlling unit of the fog. Besides this, there are processors as a computing unit, Task Receivers from the
Master Fog, and Resource Managers to manage the resources of the CF.

Citizen Fog Manager (CFM). This is the central controlling unit of the citizen fog. It consists of a Task Receiver (TR), a Fog Identifier
Interface (FII), a Task Executor Decider (TED), and a Response Processor (RP). It manages and routes the tasks using Algorithm 1.
The TR receives a task from an edge device and adds it to the task queue of the TED. For each task from the edge-device, the TED
gets the resource status from the Resource Manager and checks the ability to execute the task. If the execution is possible, it sends
the task to the processor. Otherwise, it sends the task to the FII to send to the master fog. Moreover, it allows the task from the
master fog to execute in the processor immediately because the master fog sends the task to a citizen fog only if the citizen fog
has sufficient resources to execute the task. After executing a task requested from the Master Fog, the processor sends the executed
result to the Master Network Handler (MNH), and MNH sends the result to the Response Processor (RP) of the corresponding CF. RP
receives the response from the MNH for the task the CF requested to MF and then, it distributes the responses to the corresponding
end-device.

Fog Identifier Interface (FII). When a citizen fog lacks the resources to execute a task, the FII attaches a unique identifier and fog
eference to this task and sends it to the master fog. The FII also receives the response from both the master fog and the cloud.
pon receiving the response, it uses the unique identifier to identify the task the response is mapped to.

.2.2. Master Fog (MF)
The Master fog (MF) is the core component of our SDFC framework. It maintains communication with other citizen fogs and the

loud. The master fog creates a colony, consisting of multiple CFs. The number of CFs depends on the density of the computation
6

Simulation Modelling Practice and Theory 111 (2021) 102336M.R. Hossain et al.

m
M
C
f

M
t
t
a
r

M
c
a
F
S
(
t
n
a
o

T
t
t
t
s
t

L
i
C
C

F
o
M
t
C

Algorithm 1 Citizen Fog Task Management
1: taskQueue = Queue of tasks from end-devices
2: CF = Citizen Fog
3: MF = Master Fog
4: procedure CitizenFogManager(𝑡𝑎𝑠𝑘)
5: while 𝑡𝑎𝑠𝑘𝑄𝑢𝑒𝑢𝑒 ≠ 0 do
6: 𝑡𝑎𝑠𝑘 ← 𝑡𝑎𝑠𝑘𝑄𝑢𝑒𝑢𝑒.𝑝𝑜𝑝()
7: if taskIsFromEdgeDevice() then
8: if isCFCanExecute(𝑡𝑎𝑠𝑘) then
9: computeTheTaskInProcessor(𝑡𝑎𝑠𝑘)

10: sendResourceStatusToMF()
11: else
12: askFIItoAddIdentifierTo(𝑡𝑎𝑠𝑘)
13: sendTaskToMF(𝑡𝑎𝑠𝑘)
14: else
15: computeTheTaskInProcessor(𝑡𝑎𝑠𝑘)
16: sendResourceStatusToMF()

requested by the end-devices. For instance, computation requests from end-devices vary in roads, residential areas, economic areas,
industrial areas, and rural areas. All the CFs must be within the MF’s coverage area.

Receiving and scheduling tasks from CFs, managing and keeping track of the resource status of the CFs, assigning a task to the
ost eligible CF or the cloud, and sending execution results as a response to the corresponding CF are its primary responsibilities. The
aster Fog Manager (MFM) and Decision Manager (DM) are its major components. Furthermore, it consists of the Location Table,
F Status Table, and Citizen Fog Assigner (CFA). The CFA assigns each task to the most eligible CF and receives the acknowledgment

rom the assigned CF with the resources.

aster Network Handler (MNH). The Master Network Handler (MNH) is the communication module of the Master Fog. It accepts
he task request from the FII of a CF and adds the task to the task queue of the Master Fog Manager (MFM). Furthermore, it receives
he execution response of an assigned task from a CF and sends the response to the corresponding CF. To handle these incoming
nd outgoing operations, it follows the Message Queuing Telemetry Transport (MQTT) protocol [51], which results in a low latency
esponse to the requesting CF.

aster Fog Manager (MFM). The Master Fog Manager (MFM) is the management component of the Master Fog. This module
onsists of the MNH, Task Queue (TQ), Task Manager (TM), and CF Availability Checker. The MFM checks for the availability of
n eligible CF for each task in the Task Queue and assigns the task to the CF. If no CF is available, it sends the task to the cloud.
urthermore, it is responsible for managing CFs and assigning tasks. It receives resource statuses from the CFs and updates the CF
tatus Table. The MFM follows Algorithm 2 to accomplish its responsibilities. For each task in the TQ, it asks the Decision Manager
DM) to provide a CF. The DM performs various calculations to define the most eligible CF and returns to the MFM. It assigns the
ask to the CF and updates the CF status table with resource information in acknowledgment of the assignee CF. If the DM returns
o suitable CF for a specific task, it sends the task to the cloud. Moreover, the MFM pushes the task to the waiting queue if neither
CF is available nor the cloud. Besides this, for each completed task, the MFM updates the CF status table. Therefore the latency

f assigning a task to the eligible CF decreases and improves the performance of the latency aware real-time services.

ask Queue (TQ). The Task Queue (TQ) has three sorts of priority queues, a queue for the incoming tasks, a queue for the waiting
asks, and another queue for the completed task. Whenever the TQ receives a task from the MNH, it pushes the task to the incoming
ask queue and the Task Manager (TM) sorts the queue according to our Comparative attributes algorithm (CAA) and schedules
he tasks accordingly. The process of the TM and the CAA algorithm is discussed in the next section. If the MFM cannot find any
uitable CF for a task, the TQ pushes the task into the waiting queue. Moreover, the completed task is pushed into the completed
ask queue.

ocation Table (LT). This table contains the current locations of the CFs to determine their position. The location of CFs of an MF
s listed as latitude and longitude. MFM uses Dijkstra’s algorithm to find the shortest distance between the MF and correspondent
F and ensures that the CF is inside the predefined region of MF. This region for a particular MF is defined at the time of MF and
F placement.

og Status Table (FST). The table contains the resource and computing status of each CF under the corresponding MF. It consists
f the available amount of RAM, the number of Processing Elements (PEs), Bandwidth (BW), and processing speed, expressed as
illions of Instruction Per Second (MIPS). The decision Manager calculates these resources and defines an efficiency point to sort

he CFs. Whenever a CF executes a task or completes its execution, in other words, if there is any change in the resources of the
F, it notifies the MF and sends the resource status to update the CF status table.
7

Simulation Modelling Practice and Theory 111 (2021) 102336M.R. Hossain et al.
Algorithm 2 Master Fog Task Management
1: incomingTaskQueue = Queue of tasks from CF.
2: ackCF = Acknowledgment from CF with resource status.
3: waitingQueue = Waiting queue for tasks that could not be assigned to any CF.
4: computedTaskQueue = Queue for the tasks that has completed execution.
5: result = Execution result of a task.
6: cfResource = Resource of a particular citizen fog.
7: procedure MasterFogManager()
8: while 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑇 𝑎𝑠𝑘𝑄𝑢𝑒𝑢𝑒 ≠ 0 do
9: 𝑡𝑎𝑠𝑘 ← 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑇 𝑎𝑠𝑘𝑄𝑢𝑒𝑢𝑒.𝑝𝑜𝑝()

10: if 𝑖𝑠𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒𝐶𝐹𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑡𝑎𝑠𝑘) then
11: 𝑎𝑐𝑘𝐶𝐹 ← 𝑠𝑒𝑛𝑑𝑇 𝑎𝑠𝑘𝑇 𝑜𝐶𝐹 (𝑡𝑎𝑠𝑘)
12: updateCFStatusTable(ackCF.CFResource())
13: else if 𝑖𝑠𝑃 𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑇 𝑜𝑆𝑒𝑛𝑑𝑇 𝑜𝐶𝑙𝑜𝑢𝑑(𝑡𝑎𝑠𝑘) then
14: sendTaskToCloud(𝑡𝑎𝑠𝑘)
15: else
16: waitingQueue.push(𝑡𝑎𝑠𝑘)
17: while 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝑇 𝑎𝑠𝑘𝑄𝑢𝑒𝑢𝑒 ≠ 0 do
18: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝑇 𝑎𝑠𝑘 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝑇 𝑎𝑠𝑘𝑄𝑢𝑒𝑢𝑒.𝑝𝑜𝑝()
19: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝑇 𝑎𝑠𝑘.𝑟𝑒𝑠𝑢𝑙𝑡()
20: sendComputedResultToRequestedCF(𝑟𝑒𝑠𝑢𝑙𝑡)
21: cfResource← computedTask.CFResource()
22: updateCFStatusTable(cfResource)

Decision Manager (DM). The Decision Manager (DM) is the CF management module of the Master Fog. It consists of a Task Type
Handler (TTH) and a Fog Manager (MF). The TTH has different categories of CFs according to different types of tasks. The working
process of TTH and FM is portrayed in Fig. 5.

Whenever the TTH receives a task from the Task Manager, it picks the CF with the highest computing and resource capability
from the corresponding task type CF category. If a task with a new type arrives, the TTH sends the type to the Fog Manager (FM)
and the FM provides the list of CFs that can execute the task. Thereafter, the TTH adds this list as a new category, fetches the
data from the CF Status Table, and sorts them using our Linear Attribute Summarized Algorithm (LASA). Moreover, when a task is
assigned to a CF, it uses the HBB method [52] to receive the status from the acknowledgment of the assignee CF and updates the
corresponding CF category.

3.2.3. Cloud
The third layer of our SDFC framework is the Cloud. Instead of receiving tasks from general-purpose fogs or end-devices [53],

it receives tasks from the Master Fog. The MF sends tasks to the cloud only if there is no CF available and as the task is assigned
to the cloud, there is no need to keep track of resource consumption for the task. Subsequently executing the task, the cloud sends
the execution’s result directly to the corresponding CF.

The main focus of our framework is to execute the task as close to the end user as possible and ensure the proper utilization of
available resources to provide a latency aware real-time service. To do that, we emphasize use of fog devices rather than the distant
cloud and low computing end-devices. The MF is introduced to handle the heavy task of resource distribution and task management.
A CF status table keeps the resource and computing status of each CF updated and the Decision Manager keeps the CFs prepared
according to the task types. Therefore, if any CF fails to execute a task, the MF assigns the task immediately to another CF.

3.3. Task scheduling mathematical model

The execution time of a task depends on the resources and computational ability of a CF. A CF with higher resource and
computation ability executes a task faster than others. Besides this, all the tasks are not equally important. If we consider a traffic
system, identifying an ambulance and clearing forthcoming traffic for the ambulance is more important than maintaining overall
traffic flow. Furthermore, executing a task with higher priority with a CF with higher resource and computation ability reduces
latency in real-time services. The abbreviation and mathematical notation of the algorithms are accumulated in Table 1.

In our SDFC framework, the Task Manager is scheduling the tasks according to their priority and the Decision Manager is sorting
the CFs according to their resource capacity and performance. The dependency attributes to determine the priority of tasks and
attributes to sort the CFs are as follows:
8

Simulation Modelling Practice and Theory 111 (2021) 102336M.R. Hossain et al.
Fig. 5. Decision manager working process.

3.3.1. Capacity and performance
Fog capacity is the number of resources available for a specific task, such as MIPS, RAM, CPU, and the clock speed of the

processor. The computational capability of a fog device depends on a specific set of resource constraints such as RAM, CPU,
Bandwidth, and Processor Performance. To compare the performance of a particular CF, we have considered the Execution Time
to execute a task with the base requirement. We have considered these attributes to sort the CFs according to their computing
ability.

Execution Time. We use the Performance Equation [54] to calculate the estimated execution time. To compare the execution time
to execute a specific task of each CF, we are calculating the ratio of the execution time for each CF with the Minimum Execution
Time (MET) of a particular CF. We considered the unit task with 109 instructions. For a CF 𝑐, the execution time according to the
Performance Equation is

𝑇𝑐 = 𝐼𝐶 × 𝐶𝑃𝐼 × 𝐶𝑇 (1)

where,

𝑇𝑐 = Execution time for c

𝐶𝑇 = 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝑐𝑙𝑜𝑐𝑘𝑠

𝐶𝑃𝐼 = 𝑐𝑙𝑜𝑐𝑘𝑠
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

𝐼𝐶 = 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
𝑝𝑟𝑜𝑔𝑟𝑎𝑚

This execution time 𝑇𝑐 is different for different configuration. However, our aim is to find the device that can execute a number
of tasks faster than other devices, independent of configurations. Therefore, we are considering the overall execution time only. If
a device executes a certain number of tasks faster than other devices, gets a higher point.

Now, for n number of CFs,

𝑀𝐸𝑇 = 𝑚𝑖𝑛
𝑛
⋃

𝑖=1
𝑇𝑖 (2)

where, 𝑇𝑖 = Execution time for 𝑖th CF.
Therefore, the Execution Time Ratio (𝐸𝑇𝑅) for a CF 𝑐 is

𝐸𝑇𝑅𝑐 =
𝑇𝑐

𝑀𝐸𝑇
(3)
9

Simulation Modelling Practice and Theory 111 (2021) 102336M.R. Hossain et al.

3

n
d
l
i
t

W
t
c

w

Table 1
The abbreviations in the framework and notations used in the mathematical model and algorithms.

Symbol Description

System and framework model

CF Citizen Fog
MF Master Fog
CAA Comparative Attributes Algorithm
LASA Linear Attribute Summarized Algorithm
FII Fog Identifier Interface
TED Task Executor Decider
MNH Master Network Handler
MFM Master Fog Manager
TM Task Manager
DM Decision Manager
TQ Task Queue
CST CF Status Table

Algorithms

c Citizen Fog
𝑇𝑐 Execution time for c
IC Instruction Count
CPI Clock Per Instruction
CT Clock Time
MET Minimum Execution Time
𝐸𝑇𝑅𝑐 Execution Time Ratio of c
U, V, m Task
𝑊𝑢 ,𝑊𝑣 ,𝑊𝑚 Workload for u, v, and m
𝑛(𝑚) Number of common subtasks in m
𝑀𝑠 Set of subtasks of m
𝑊𝑢𝑠 Net workload for 𝑊𝑢
MW MinimumWorkload
WLR Workload Ratio
NRR Number of Request Ratio
MNR Minimum Number of Requests
𝑁𝑖 Number of requests of the 𝑖th task
𝐷𝑢 Number of tasks depend on u
S Set of depending tasks
𝐷𝑢𝑣 Task v depends on u
RR RAM Ratio
PR Processor Ratio
BR Bandwidth Ratio

Fig. 6. Common workload.

.3.2. Priority
Consider a social media system where all users must log in or sign up to go to the newsfeed page or profile page. Therefore the

ewsfeed module depends on the authentication module. Besides, the user does not login each time they access the newsfeed, they
o it once but requests for newsfeed several times. Therefore to improve the browsing experience, the newsfeed page is required to
oad faster which implies being executed in a fog that has higher resource capability. In other words, all the tasks are not equally
mportant. Consequently, we have considered the number of requests for each task, inter-dependency among the tasks, approximate
ime to execute a task, and workload or task-length of the task to prioritize the tasks and sort the tasks according to their priority.

orkload or task length. Consider two tasks u and v in Fig. 6. 𝑊𝑢 and 𝑊𝑣 are their workloads respectively. Both the task requires
o execute a common sub task m with workload 𝑊𝑚. Therefore, if u executes m, v does not need to execute it, and vice-versa,
onsequently, reducing the workload of a task.

𝑊𝑢𝑠 =

{

𝑊𝑢 −
∑𝑛(𝑚)

𝑖=1 𝑊𝑚𝑖
if 𝑣 executes 𝑚

𝑊𝑢 if 𝑢 executes 𝑚
(4)

here,
𝑚𝑖 ∈ 𝑀𝑠
𝑀 = Set of common sub tasks for the task u
10

𝑠

Simulation Modelling Practice and Theory 111 (2021) 102336M.R. Hossain et al.

t

𝑛(𝑚) = Number of common subtasks of 𝑢 and
𝑊𝑢𝑠 = Net workload for 𝑊𝑢

Likewise, for the ETR, to compare the workload of each task, we determine the Minimum Workload (𝑀𝑊) of a task and calculate
he Workload Ratio (𝑊𝐿𝑅) of the workload of each task against 𝑀𝑊 .

𝑊𝑀 = 𝑚𝑖𝑛
𝑛
⋃

𝑖=1
𝑊𝑖 (5)

Therefore,

𝑊𝐿𝑅𝑢 =
𝑊𝑢𝑠
𝑊𝑀

(6)

where,
𝑊𝑖 = Workload of 𝑖th task and
𝑊𝐿𝑅𝑢 = Workload Ratio for task u

Number of requests for each task. All the tasks are not equally requested by the end-devices. In a social media system the newsfeed
module or a service system, a dashboard is frequently used. In contrast, a personal profile module or signup module is requested
much less often than that. Moreover, the authentication module is necessary for each operation in the system. Likewise we did for
the 𝐸𝑇𝑅 and 𝑊𝐿𝑅, we calculate the Number of Requests Ratio (𝑁𝑅𝑅) to compare the task requests. Therefore, the Minimum
Number of Requests (𝑀𝑁𝑅) for 𝑖th task,

𝑀𝑁𝑅 = 𝑚𝑖𝑛
𝑛
⋃

𝑖=1
𝑁𝑖 (7)

where n is the number of tasks and 𝑁𝑖 is the number of requests of the 𝑖th task. Therefore, the Number of Requests Ratio (𝑁𝑅𝑅)
for 𝑖th task,

𝑁𝑅𝑅𝑖 =
𝑁𝑖

𝑀𝑁𝑅
(8)

where 𝑁𝑖 = Number of request for 𝑖th task.

Dependencies. Different tasks are dependent on one another. In any secure system, a transaction depends on the security module.
The user’s financial data and transaction media must be secure and needs to be applied before the transaction can execute. To make
way for an ambulance, the destination hospital must be known. Consequently, the task, on which other tasks depends, needs to
execute faster and before the other task is executed. We calculate the priority of a particular task based on these dependencies using
the arithmetic sum of each task that depends on this particular task. That is, for a task 𝑢, the dependency point 𝐷𝑢 is

𝐷𝑢 =
𝑛(𝑆)
∑

𝑖=1
𝑖 (9)

where, 𝑆 = Set of tasks that depends on 𝑢 and 𝑖 ∈ Z

3.4. Process and algorithm

Based on the attributes and challenges in the previous subsection, we construct two algorithms, 𝐶𝐴𝐴 and 𝐿𝐴𝑆𝐴. The Task
Manager and the Task Type Handler of the Master Fog execute these algorithms respectively. To execute LASA, the TTH requires
the Fog Status Table to be updated always. The Master fog does this update task as well. It subscribes the resource module of each
citizen fog and whenever any changes occur in the resource of a citizen fog, the master fog is notified. We follow the MQTT protocol
for this subscriber–observer actions. These three are the major activities of the Master Fog.

3.4.1. Comparative attributes algorithm (CAA)
We have considered four attributes to define the Comparative Attribute Algorithm (CAA) 3: tasks Dependency on each-other,

the Number of tasks dependent on a particular task, the NRR, and the WLR. Whenever a TQ receives a task, it sends the incoming
task queue to the TM. The TM prioritize the queue based on these aforementioned attributes. To do so, the TM uses a Divide and
Conquer process. Divide and conquer recursively divides the queue until there are two adjacent tasks. Then it compares these two
tasks based on our defined attributes. In this comparison, we use our CAA algorithm.

First of all, it compares whether there is any dependency between the two tasks or not. If yes, the independent task is selected
as the prioritized task. If there is no dependency, then the 𝐶𝐴𝐴 compares the number of other tasks dependent on each of these
tasks. The 𝐶𝐴𝐴 prioritizes a task with higher dependency points than all another. Consider Fig. 7, task 𝑢 depends on 𝑣. Therefore,
𝐷𝑢 = 0 and 𝐷𝑣 = 1. On the other hand, 𝑢 and 𝑛 are independent. However, both 𝑛 and 𝑢 depend on 𝑚, hence, 𝐷𝑚 = 2. Consequently,
in the case of 𝑢 and 𝑣, 𝑣 is the prioritized task and in the case of 𝑣 and 𝑚, 𝑚 is the prioritized task.

Afterward, if both the tasks have equal dependency points, the 𝐶𝐴𝐴 compares the Number of Requests Ratio (𝑁𝑅𝑅). The task
with the higher 𝑁𝑅𝑅 is the high priority task. Subsequently, if 𝑁𝑅𝑅 is equal, the 𝐶𝐴𝐴 compares the 𝑊𝐿𝑅 of the adjacent tasks.
11

Simulation Modelling Practice and Theory 111 (2021) 102336M.R. Hossain et al.

3

s
t
q
t
a

Algorithm 3 Comparative attributes algorithm (CAA) using divide and conquer
1: Step 1:
2: Input: 𝑈𝑇 = list of unsorted tasks, 𝑛 = 𝑈𝑇 .𝑠𝑖𝑧𝑒()
3: Output: A sorted 𝑈𝑇
4: Step 2: Using 𝐶𝐴𝐴 in 𝑀𝑒𝑟𝑔𝑒𝑆𝑜𝑟𝑡 until 𝑈𝑇 is sorted.
5: Step 3: Inside the comparison of Merge sort: 𝑢 and 𝑣 are two tasks to compare, 𝑃 = prioritized task to return from 𝐶𝐴𝐴 ⊳

Merge sort uses divide and conquer and sorts a list by dividing it into a number of pair, compare between them and continues
merging.

6: procedure CAA(𝑢, 𝑣)
7: if 𝐷𝑢𝑣 exists then
8: 𝑃 ← 𝑢
9: else if 𝐷𝑣𝑢 exists then

10: 𝑃 ← 𝑣
11: else
12: Compute 𝐷𝑢 and 𝐷𝑣 from Eq. (9)
13: if 𝐷𝑢 > 𝐷𝑣 then
14: 𝑃 ← 𝑢
15: else if 𝐷𝑢 < 𝐷𝑣 then
16: 𝑃 ← 𝑣
17: else
18: Compute 𝑁𝑅𝑅𝑢 and 𝑁𝑅𝑅𝑣 from Eq. (8)
19: if 𝑁𝑅𝑅𝑢 > 𝑁𝑅𝑅𝑣 then
20: 𝑃 ← 𝑢
21: else if 𝑁𝑅𝑅𝑢 < 𝑁𝑅𝑅𝑣 then
22: 𝑃 ← 𝑣;
23: else
24: Compute 𝑊𝐿𝑅𝑢 and 𝑊𝐿𝑅𝑣 from Eq. (6)
25: if 𝑊𝐿𝑅𝑢 > 𝑊𝐿𝑅𝑣 then
26: 𝑃 ← 𝑣
27: else
28: 𝑃 ← 𝑢
29: return 𝑃
30: End

Fig. 7. Dependencies among tasks.

Complexity of CAA. For 𝑛 tasks, the 𝐶𝐴𝐴 calculates 𝐷, 𝑁𝑅𝑅, and 𝑊𝐿𝑅 of a specific task while comparing. However, each of these
operation calculates their ratio against other task. Consequently, the complexity of each operations is (𝑛). Besides this, to apply
divide and conquer, we use Merge Sort. This algorithm divides our task queue into the size of the two tasks and compares them. The
complexity to compare between the attributes of two tasks is (1). The complexity of the merge sort is (𝑛 log 𝑛). Consequently,

(𝐶𝐴𝐴) = 3 ∗ (𝑛) + (1) + (𝑛 log 𝑛)

= (3𝑛 + 1 + 𝑛 log 𝑛)

= (𝑛 log 𝑛)

.4.2. Sorting citizen fog in master fog manager
The Task Type Handler (𝑇𝑇𝐻) sorts the CFs using our Linear attribute summarized algorithm (𝐿𝐴𝑆𝐴). Primarily, all the CFs are

tored in Fog Manager (FM) in 𝐹𝐶𝐹𝑆 pattern. When a task arrives at the TTH, the FM returns the list of CFs that can execute the
ype of that task. Afterward, the TTH applies LASA to sort the CFs and assigns the task to the CF which is on top of the sorted
ueue. It follows the HoneyHoney Bee Behavior inspired Load Balancing (HBB-LB) method [52], that is when a CF is assigned with a
ask, it allocates resources to the task and returns an acknowledgment. This acknowledgment contains the resource status of the CF
nd the TTH updates the sorted queue of that specific task type category.
12

Simulation Modelling Practice and Theory 111 (2021) 102336M.R. Hossain et al.

F

m
C
E
t
l
p
e
c
t
t

LASA considers four attributes of a CF, the number of available processors, the time to execute a task (𝐸𝑇𝑅), available RAM,
and available Bandwidth. Similar to ETR, we define the Processor Ratio (𝑃𝑅), RAM Ratio (𝑅𝑅), and Bandwidth Ratio (𝐵𝑅) by
calculating the available overall resource against the minimum amount.

Therefore, for a particular task the Execution Time Ratio (𝐸𝑇𝑅) for a CF 𝑐 from Eq. (3)

𝐸𝑇𝑅𝑐 =
𝑇𝑐

𝑀𝐸𝑇
where 𝑀𝐸𝑇 = Minimum Execution Time among the CFs. It is calculated in Eq. (2). Likewise, we perform the following calculations.
For RAM,

𝑅𝑅 =
𝑅𝐴𝑀𝑐

𝑚𝑖𝑛
⋃𝑛

𝑖=1 𝑅𝐴𝑀𝑖
(10)

or Processor,

𝑃𝑅 =
𝑃𝑅𝑐

𝑚𝑖𝑛
⋃𝑛

𝑖=1 𝑃𝑅𝑖
(11)

For Bandwidth,

𝐵𝑅 =
𝐵𝑊𝑐

𝑚𝑖𝑛
⋃𝑛

𝑖=1 𝐵𝑊𝑖
(12)

where 𝑛 is the number of CFs and 𝑖 ∈ Z. The LASA algorithm is presented in Algorithm 4

Algorithm 4 Linear Attribute Summarized Algorithm
1: Input: 𝑈𝐹 = list of unsorted fog, 𝑛 = 𝑈𝑇 .𝑠𝑖𝑧𝑒()
2: Procedure:
3: Step 1: Using 𝐿𝐴𝑆𝐴 in 𝑀𝑒𝑟𝑔𝑒𝑠𝑜𝑟𝑡 until 𝑈𝐹 is sorted
4: Step 2: Inside the comparison of Merge sort: 𝐹𝑜𝑔𝐴 and 𝐹𝑜𝑔𝐵 are two CFs to compare, 𝐹 = The task with higher resource to
return from 𝐿𝐴𝑆𝐴 ⊳ Merge sort uses divide and conquer and sorts a queue by dividing it into a number of pair, compare
between them and continues merging.

5: procedure LASA(UF)
6: Compute 𝐸𝑇𝑅𝑎 and 𝐸𝑇𝑅𝑏 from Eq. (3)
7: Compute 𝑅𝑅𝑎 and 𝑅𝑅𝑏 from Eq. (10)
8: Compute 𝑃𝑅𝑎 and 𝑃𝑅𝑏 from Eq. (11)
9: Compute 𝐵𝑅𝑎 and 𝐵𝑅𝑏 from Eq. (12)

10: Compute 𝑃𝑜𝑖𝑛𝑡𝐴 = 1
𝐸𝑇𝑅𝑎

+ 𝑃𝑅𝑎 + 𝑅𝑅𝑎 + 𝐵𝑅𝑎

11: Compute 𝑃𝑜𝑖𝑛𝑡𝐵 = 1
𝐸𝑇𝑅𝑏

+ 𝑃𝑅𝑏 + 𝑅𝑅𝑏 + 𝐵𝑅𝑏

12: if 𝑃𝑜𝑖𝑛𝑡𝐴 > 𝑃𝑜𝑖𝑛𝑡𝐵 then
13: 𝐹 ← 𝐹𝑜𝑔𝐴
14: else if 𝑃𝑜𝑖𝑛𝑡𝐵 > 𝑃𝑜𝑖𝑛𝑡𝐴 then
15: 𝐹 ← 𝐹𝑜𝑔𝐵
16: else
17: if 𝐸𝑇𝑅𝑏 ≥ 𝐸𝑇𝑅𝑎 then
18: 𝐹 ← 𝐹𝑜𝑔𝐴
19: else
20: 𝐹 ← 𝐹𝑜𝑔𝐵
21: return 𝐹
22: End

The algorithm uses divide and conquers which divides the CF list until there is two CF. Afterward, it compares those two CF and
erges them by backtracking until the whole list is sorted. To compare, it calculates the 𝐸𝑇𝑅, 𝑅𝑅, 𝑃𝑅, and 𝐵𝑅 for each of the
F. In calculating the resources such as RAM, Bandwidth, and the Number of Processors, the more the better. However, in case of
xecution time, the less the better. The Execution Time Ratio (𝐸𝑇𝑅) shows how many times a CF requires to execute a specific
ask than the CF which requires the lowest execution time among all CFs in the list. Therefore, the inverse of ETR shows how much
ess time the CF with the lowest execution time requires. In the LASA we are adding the inverse of ETR with resources to define the
oints and sort in descending order. The CF with higher resources has higher RAM than others, better performance, therefore faster
xecution time than others, higher Bandwidth availability, and higher Processor performance than others. Consequently, the LASA
onsiders these 𝐸𝑇𝑅, 𝑅𝑅, 𝑃𝑅, and 𝐵𝑅 values as points and sum them to calculate a point for a specific CF and return the CF with
he highest point. However, if these points are equal, LASA compares the execution time and prioritize the CF with less execution
13

ime.

Simulation Modelling Practice and Theory 111 (2021) 102336M.R. Hossain et al.

t
t
C

d
a
l
a
f

4

c

4

a
o
p
d
c
o
i
M

p
H
c
s
s
c
s
r

4

T
s
4

Table 2
System descriptions for simulation environments.

System properties Specification

Operating System Windows 10
Processor i3-4100M, CPU 2.50 GHz
Storage RAM 16 GB, SSD 256 GB
Number of Cores 4
System Architecture 64 bit, x64
Simulator iFogSim
Programming Language Java
IDE Intellije IDEA 2019.2.4

Complexity . For 𝑛 CFs, the 𝐿𝐴𝑆𝐴 calculates 𝐸𝑇𝑅, 𝑅𝑅, 𝑃𝑅, and 𝐵𝑅 values of a specific CF while comparing them. However, each
of these operations calculates their ratio against other CFs. Consequently, the complexity of each operation is (𝑛). Besides this,
o apply divide and conquer, we use the Merge Sort. This algorithm divides our CF list into the size of the two CFs and compares
hem. The complexity to calculate and compare the points between the CFs is (1). The complexity of the merge sort is (𝑛 log 𝑛).
onsequently,

(𝐿𝐴𝑆𝐴) = 4 ∗ (𝑛) + (1) + (𝑛 log 𝑛)

= (4𝑛 + 1 + 𝑛 log 𝑛)

= (𝑛 log 𝑛)

In this section, we discussed our SDFC framework, its layers, and different attributes. Furthermore, based on the attributes, we
iscussed our priority-based task sorting algorithm CAA to schedule the tasks and resource-based CF sorting algorithm LASA to
llocate the highest amount of resources to the task with the highest priority. The Master Fog does the heavy tasks to keep the CF
ist up to date continuously with the most qualified CF on top so that, whenever a high priority task arrives, it can be assigned
nd execute immediately. In the next section, we discuss the simulation and data gathering of our task-scheduling fog computing
ramework, SDFC.

. Performance evaluation

In this section, we analyze and discuss the simulation results of our SDFC framework and its CAA and LASA algorithms and
ompare them with an implemented three-layer cloud-fog computing framework in iFogSim [55].

.1. Simulation platform

Our SDFC framework contains three layers, Citizen Fog (CF), Master Fog (MF), and Cloud. The framework considers each CF’s
vailable resources and schedules tasks to maintain the proper utilization of the available resources. To simulate our scheduling based
ptimized resource allocation framework, we use the iFogSim simulator [55]. Moreover, to compare and evaluate our framework’s
erformance, we consider a three-layer cloud-fog computing framework, simulated in the iFogSim simulator. The layers are end
evices, gateway devices, and the cloud. The end device requests the gateway device for resources, and if the gateway device is not
apable of providing enough resources, it redirects the task to the cloud. It is assigning tasks without considering any scheduling
r priority and considered as First Come First Serve (FCFS) fog computing framework. However, similar to our SDFC framework,
t also considers the resources of fog devices, though, unlike our SDFC framework, it does not follow any scheduling algorithm.
oreover, we compare the execution time with the RTES framework.

The iFogSim simulator has a Sensor class that emits tasks called Tuple, FogDevices process the task, and Actuator receive the
rocessed task. We use the Object-Oriented programming feature, Inheritance to use the FogDevice class as CF, MF, and Cloud.
owever, the execution time calculated in Eq. (1) is different for different device configuration. Therefore, in the simulation, we
onsider same software environment and same citizen fog devices. In addition, iFogSim also generates similar tasks. The system
pecification is shown in Table 2. Moreover, Table 3 shows the CF and MF specification and, Table 4 shows the task required resource
pecification. The PowerModelLinear class of the iFogSim simulator is used to calculate the energy consumed by a node [56]. We
onsider the cloud with infinite resources. The simulation result depends on the system specification; therefore, we execute the
imulation ten times with two minutes and consider the average of each attribute in the simulation’s output. To differentiate the
esources among CFs, we generate and allocate random values of RAM, MIPS, BW, and PE to a CF.

.2. Result and analysis

The SDFC framework schedules the tasks according to their priority and sorts the CFs according to their resource availability.
herefore, whenever MF receives a task, it assigns the most eligible CF to the task immediately. We have analyzed 500 tasks in the
imulation. To describe the impact of scheduling these tasks, we consider 4 random tasks stated in Table 5. Task 2 depends on Task
14

, Task 3 depends on Task 2, and Task 4 depends on Task 1. Consequently, if we execute the tasks in FCFS fashion as displayed in

Simulation Modelling Practice and Theory 111 (2021) 102336M.R. Hossain et al.
Table 3
Citizen fog and master fog resource and system specification.

Attribute Specification

Number of CF under a MF 5
MIPS 1024 * Random(8, 12)
RAM 512 * Random(1, 3)
UpBW 10000
DownBW 270
Busy Power 87.59
Idle Power 82.44
Number Of PE Random(1, 3)
Storage 1000000
Bandwidth 1024 * Random(8, 12)
Architecture x86
OS Linux
VMM xen

Table 4
Required resource specification of task.

Attribute Specification

Number of task 500
RAM 32
MIPS 1024
TaskLength 1024
Bandwidth 128

Table 5
Tasks in CAA before scheduling.

Task ID Dependent on Workload Number of requests

Task 1 None 1000 3
Task 2 Task 4 1700 5
Task 3 Task 2 500 4
Task 4 Task 1 1250 3

Fig. 8. Tasks executing in FCFS, creating waiting queue and delaying response time.

Fig. 8, Task 2 and Task 3 will be dismissed while executing and send to the waiting queue. However, after scheduling using CAA,
the tasks are ordered and executed so that no task is obligated to send to the waiting queue, as portrayed in Fig. 9, which decreases
the execution time for the task.

In the three-layer FCFS Fog Computing Framework in iFogSim, when a CF receives a task from the end device, it attempts to
execute the Task. If the CF is unable to execute the Task, it transfers the Task to the gateway device. The gateway device tries to
execute the Task as well, and when it cannot execute the Task, it forwards the Task to the cloud. Consequently, to execute a task,
it requires waiting in CF, gateway, and, at last, in the cloud’s queue. Fig. 10 shows the resource requirement and availability for
15

Simulation Modelling Practice and Theory 111 (2021) 102336M.R. Hossain et al.
Fig. 9. Tasks executing in SDFC, no waiting queue and decreases response time.

Fig. 10. Required and available resource comparison between SDFC and the three-layer Fog Computing Framework in iFogSim.

executing all the tasks in CF and gateway devices. The negative values signify the shortage of resources to execute all the tasks in
the Fog Computing Framework in iFogSim. Consequently, the dependency on the cloud increase, and this causes delays in real-time
services. Conversely, our SDFC framework uses the LASA algorithm to ensure the proper utilization of all the available resources
of other CFs. If a CF is unable to execute a task, it immediately sends the Task to the MF, and MF assigns it to the most eligible
CF from FST. This process continues until all the resources are used. Fig. 10 shows that many resources such as RAM and MIPS
entirely occupied at the end of the execution. The CFs not only executed their tasks but also executed tasks of other CF as much
as possible. The Fig. 10(d) shows that CF4 consumed more energy than other citizen fogs. This indicates that the tasks that other
CFs are unable to execute, are executed by the CF4 instead of sending them to the cloud. Only when all the resources are occupied,
the tasks are sent to the cloud in no time. The entire cluster of CFs under an MF serves as a larger Fog. Therefore reduces the
dependency on the cloud and lessens the delay in real-time services. Fig. 11 shows that in our simulation, the three-layer FCFS Fog
16

Simulation Modelling Practice and Theory 111 (2021) 102336M.R. Hossain et al.

C
t
t
e
n

Fig. 11. Average successful and delayed task execution rate comparison.

Fig. 12. Application execution time Comparison between SDFC and the three-layer Fog Computing Framework in iFogSim.

omputing Framework in iFogSim executes 42% of tasks successfully and 58% of tasks are delayed. Whereas in SDFC, 80%–85%
ask is successfully executed, and CFs share their resources for 15%–20% of tasks. Fig. 12 depicts that the application execution
ime for the three-layer Fog Computing FCFS Framework in iFogSim increases rapidly with the increase in tasks and in RTES, the
xecution time for a small number of tasks is almost similar to SDFC. However, it starts to take more time than our SDFC as the
umber of tasks increases. However, for SDFC, the increase is relatively low. From the 100 tasks to 500 tasks, on each iteration of

100, SDFC requires 45%–50% less time than the FCFS Fog Computing Framework in iFogSim.

4.3. Discussion

Our SDFC framework was simulated in iFogSim, implemented the CAA and the LASA algorithm, and compared the results with
a three-layer fog computing framework in iFogSim. The algorithms ensure that the waiting time for high priority tasks is minimized
17

Simulation Modelling Practice and Theory 111 (2021) 102336M.R. Hossain et al.

f
T
t
L
r
d
a
r

A

D

R

and allocated to the CF with the most available resources. The simulation results in Fig. 10 explains that the available resources
are fully utilized, Fig. 11 represents that 15%–20% of tasks are executed on behalf of other tasks, therefore lessening the cloud
dependency and increasing the successful execution of tasks up to 80%–85% and finally, Fig. 12 shows that the total execution time
decreases by 45%–50%.

5. Conclusion

In this paper, we presented a three-layer framework to enhance resource utilization in a fog computing paradigm. Our SDFC
ramework includes a Master Fog layer that resides in between the general-purpose fog nodes called Citizen Fogs and the Cloud.
he Master Fog is dedicated to bear all the computing overheads to schedule the tasks and allocating the highest priority task to
he most eligible CF immediately. The Master Fog uses the CAA algorithm to schedule the tasks based on their priority and the
ASA algorithm to sort the citizen fogs according to their available computing ability. Moreover, SDFC assures that the CF layer’s
esources are utilized adequately, hence reducing the dependency on the cloud. Consequently, not only the task execution time
ecreases but also the delay in real-time based services reduces. We validated the impact of our SDFC framework and integrated
lgorithms by simulating in iFogSim. We found that the dependency on the cloud lessens by 15%–20%, and the total execution time
educes by 45%–50%. This reduction in execution time and cloud dependency implicitly decreases delays in real-time services.

cknowledgment

The authors acknowledge that this research is supported through the Australian Research Council Discovery Project:
P190100314, ‘Re-Engineering Enterprise Systems for Microservices in the Cloud’.

eferences

[1] J. Ni, K. Zhang, X. Lin, X.S. Shen, Securing fog computing for internet of things applications: Challenges and solutions, IEEE Commun. Surveys Tutor. 20
(1) (2017) 601–628.

[2] B.L.R. Stojkoska, K.V. Trivodaliev, A review of internet of things for smart home: Challenges and solutions, J. Cleaner Prod. 140 (2017) 1454–1464.
[3] R. Mahmud, R. Kotagiri, R. Buyya, Fog computing: A taxonomy, survey and future directions, in: Internet of Everything, Springer, 2018, pp. 103–130.
[4] Global number of connected IoT devices 2015-2025 | Statista, https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/

(Accessed on 07 January 2020).
[5] K. Kundhavai, S. Sridevi, IoT and big data-the current and future technologies: A review, Int. J. Comput. Sci. Mob. Comput. 5 (1) (2016) 10–14.
[6] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I.A.T. Hashem, A. Siddiqa, I. Yaqoob, Big IoT data analytics: architecture, opportunities, and open research

challenges, IEEE Access 5 (2017) 5247–5261.
[7] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the internet of things, in: Proceedings of the First Edition of the MCC Workshop

on Mobile Cloud Computing, ACM, 2012, pp. 13–16.
[8] P. Brous, M. Janssen, A systematic review of impediments blocking internet of things adoption by governments, in: Conference on E-Business, E-Services

and E-Society, Springer, 2015, pp. 81–94.
[9] F. Aliyu, T. Sheltami, E.M. Shakshuki, A detection and prevention technique for man in the middle attack in fog computing, Procedia Comput. Sci. 141

(2018) 24–31.
[10] A.M. Rahmani, T.N. Gia, B. Negash, A. Anzanpour, I. Azimi, M. Jiang, P. Liljeberg, Exploiting smart e-health gateways at the edge of healthcare

internet-of-things: A fog computing approach, Future Gener. Comput. Syst. 78 (2018) 641–658.
[11] M. Islam, M. Biswas, M. Mahi, J. Nayeen, M. Whaiduzzaman, et al., LBRP: A resilient energy harvesting noise aware routing protocol for under water

sensor networks (UWSNS), Int. J. Found. Comput. Sci. Technol. 8 (2018).
[12] M.J. Islam, M. Mahin, S. Roy, B.C. Debnath, A. Khatun, Distblacknet: A distributed secure black SDN-IoT architecture with NFV implementation for smart

cities, in: 2019 International Conference on Electrical, Computer and Communication Engineering, ECCE, IEEE, 2019, pp. 1–6.
[13] A. Barros, U. Kylau, Service delivery framework - an architectural strategy for next-generation service delivery in business network, in: 2011 Annual SRII

Global Conference, 2011, pp. 47–58, http://dx.doi.org/10.1109/SRII.2011.15.
[14] G. Decker, A. Barros, F.M. Kraft, N. Lohmann, Non-desynchronizable service choreographies, in: A. Bouguettaya, I. Krueger, T. Margaria (Eds.),

Service-Oriented Computing – ICSOC 2008, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 331–346.
[15] A.P. Barros, A. Grosskopf, Process model control flow with multiple synchronizations, 2013, Google Patents, US Patent 8, 429, 653.
[16] F. Al-Doghman, Z. Chaczko, A.R. Ajayan, R. Klempous, A review on fog computing technology, in: 2016 IEEE International Conference on Systems, Man,

and Cybernetics, SMC, IEEE, 2016, pp. 001525–001530.
[17] M. Aazam, S. Zeadally, K.A. Harras, Fog computing architecture, evaluation, and future research directions, IEEE Commun. Mag. 56 (5) (2018) 46–52.
[18] L.F. Bittencourt, J. Diaz-Montes, R. Buyya, O. Rana, M. Parashar, Mobility-aware application scheduling in fog computing, IEEE Cloud Comput. 4 (2017)

26–35, http://dx.doi.org/10.1109/MCC.2017.27.
[19] ZDNet, Real-time data generation by 2025, 2020, https://www.zdnet.com/article/by-2025-nearly-30-percent-of-data-generated-will-be-real-time-idc-says/.
[20] J. Liu, J. Li, L. Zhang, F. Dai, Y. Zhang, X. Meng, J. Shen, Secure intelligent traffic light control using fog computing, Future Gener. Comput. Syst. 78

(2018) 817–824.
[21] S. Sukode, S. Gite, Vehicle traffic congestion control & monitoring system in IoT, Int. J. Appl. Eng. Res. 10 (8) (2015) 19513–19523.
[22] Q. Fan, N. Ansari, Towards workload balancing in fog computing empowered IoT, IEEE Trans. Netw. Sci. Eng. (2018).
[23] M. Whaiduzzaman, A. Gani, A. Naveed, PEFC: Performance enhancement framework for cloudlet in mobile cloud computing, in: 2014 IEEE International

Symposium on Robotics and Manufacturing Automation, ROMA, IEEE, 2014, pp. 224–229.
[24] B. Sikdar, A study of the environmental impact of wired and wireless local area network access, IEEE Trans. Consum. Electron. 59 (1) (2013) 85–92.
[25] S.K. Datta, C. Bonnet, J. Haerri, Fog computing architecture to enable consumer centric internet of things services, in: 2015 International Symposium on

Consumer Electronics, ISCE, IEEE, 2015, pp. 1–2.
[26] A. Gyrard, S.K. Datta, C. Bonnet, K. Boudaoud, Integrating machine-to-machine measurement framework into oneM2M architecture, in: 2015 17th

Asia-Pacific Network Operations and Management Symposium, APNOMS, IEEE, 2015, pp. 364–367.
[27] I. Stojmenovic, Fog computing: A cloud to the ground support for smart things and machine-to-machine networks, in: 2014 Australasian Telecommunication
18

Networks and Applications Conference, ATNAC, IEEE, 2014, pp. 117–122.

http://refhub.elsevier.com/S1569-190X(21)00053-8/sb1
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb1
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb1
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb2
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb3
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb5
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb6
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb6
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb6
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb7
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb7
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb7
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb8
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb8
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb8
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb9
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb9
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb9
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb10
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb10
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb10
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb11
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb11
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb11
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb12
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb12
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb12
http://dx.doi.org/10.1109/SRII.2011.15
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb14
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb14
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb14
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb15
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb16
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb16
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb16
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb17
http://dx.doi.org/10.1109/MCC.2017.27
https://www.zdnet.com/article/by-2025-nearly-30-percent-of-data-generated-will-be-real-time-idc-says/
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb20
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb20
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb20
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb21
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb22
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb23
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb23
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb23
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb24
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb25
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb25
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb25
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb26
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb26
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb26
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb27
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb27
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb27

Simulation Modelling Practice and Theory 111 (2021) 102336M.R. Hossain et al.
[28] E. Yigitoglu, M. Mohamed, L. Liu, H. Ludwig, Foggy: a framework for continuous automated IoT application deployment in fog computing, in: 2017 IEEE
International Conference on AI & Mobile Services, AIMS, IEEE, 2017, pp. 38–45.

[29] M. Whaiduzzaman, S.R. Tuly, N. Haque, M. Hossain, A. Barros, Credit based task scheduling process management in fog computing, in: Pacific Asia
Conference on Information Systems (PACIS) Proceedings, 2020, pp. 232.

[30] D. Santoro, D. Zozin, D. Pizzolli, F. De Pellegrini, S. Cretti, Foggy: a platform for workload orchestration in a fog computing environment, in: 2017 IEEE
International Conference on Cloud Computing Technology and Science, CloudCom, IEEE, 2017, pp. 231–234.

[31] X. Masip-Bruin, E. Marín-Tordera, G. Tashakor, A. Jukan, G.-J. Ren, Foggy clouds and cloudy fogs: a real need for coordinated management of fog-to-cloud
computing systems, IEEE Wirel. Commun. 23 (5) (2016) 120–128.

[32] J. Das, A. Mukherjee, S. Ghosh, R. Buyya, Spatio-fog: A green and timeliness-oriented fog computing model for geospatial query resolution, Simul. Model.
Pract. Theory 100 (2019) 102043, http://dx.doi.org/10.1016/j.simpat.2019.102043.

[33] P. Habibi, S. Baharlooei, M. Farhoudi, S. Kazemian, S. Khorsandi, Virtualized SDN-Based End-to-End Reference Architecture for Fog Networking, 2018,
pp. 61–66, http://dx.doi.org/10.1109/WAINA.2018.00064.

[34] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, R. Boutaba, Network function virtualization: State-of-the-art and research challenges, IEEE
Commun. Surv. Tutor. 18 (1) (2016) 236–262.

[35] E. Haleplidis, K. Pentikousis, S. Denazis, J. Salim, D. Meyer, O. Koufopavlou, RFC 7426: Software-defined networking (SDN): Layers and architecture
terminology, IRTF (2015).

[36] K. Velasquez, D. Perez Abreu, D. Goncalves, L.F. Bittencourt, M. Curado, E. Monteiro, E. Madeira, Service Orchestration in Fog Environments, 2017, pp.
329–336, http://dx.doi.org/10.1109/FiCloud.2017.49.

[37] M. Brito, S. Hoque, T. Magedanz, R. Steinke, A. Willner, D. Nehls, O. Keils, F. Schreiner, A Service Orchestration Architecture for Fog-Enabled Infrastructures,
2017, pp. 127–132, http://dx.doi.org/10.1109/FMEC.2017.7946419.

[38] X.-Q. Pham, E.-N. Huh, Towards task scheduling in a cloud-fog computing system, in: 2016 18th Asia-Pacific Network Operations and Management
Symposium, APNOMS, IEEE, 2016, pp. 1–4.

[39] T. Choudhari, M. Moh, T.-S. Moh, Prioritized task scheduling in fog computing, ACMSE ’18 Proceedings of the ACMSE 2018 Conference (2018) 1–8,
http://dx.doi.org/10.1145/3190645.3190699.

[40] S. Agarwal, S. Yadav, A. Yadav, An efficient architecture and algorithm for resource provisioning in fog computing, Int. J. Inform. Eng. Electron. Bus. 8
(2016) 48–61, http://dx.doi.org/10.5815/ijieeb.2016.01.06.

[41] M. Verma, N. Bhardwaj, A.K. Yadav, Real time efficient scheduling algorithm for load balancing in fog computing environment, Int. J. Inf. Technol.
Comput. Sci. 8 (4) (2016) 1–10.

[42] H.-M. Chu, S.-W. Yang, P. Pillai, Y.-K. Chen, Scheduling in visual fog computing: NP-completeness and practical efficient solutions, in: Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[43] W. Lin, C. Zhu, J. Li, B. Liu, H. Lian, Novel algorithms and equivalence optimisation for resource allocation in cloud computing, Int. J. Web Grid Serv.
11 (2) (2015) 193–210.

[44] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, R.F. Freund, Dynamic mapping of a class of independent tasks onto heterogeneous computing systems,
J. Parallel Distrib. Comput. 59 (2) (1999) 107–131.

[45] T. Brauny, H. Siegely, N. Becky, et al., A comparison study of static mapping heuristics for a class of meta-tasks on heterogeneous computing systems, J.
Parallel Distrib. Comput. 61 (6) (2001) 810–837.

[46] H. Wang, J. Gong, Y. Zhuang, H. Shen, J. Lach, Healthedge: Task scheduling for edge computing with health emergency and human behavior consideration
in smart homes, in: 2017 IEEE International Conference on Big Data (Big Data), IEEE, 2017, pp. 1213–1222.

[47] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, S. Davy, Design and evaluation of algorithms for mapping and scheduling of virtual network
functions, in: Proceedings of the 2015 1st IEEE Conference on Network Softwarization, NetSoft, IEEE, 2015, pp. 1–9.

[48] M. Al-khafajiy, T. Baker, H. Al-Libawy, A. Waraich, C. Chalmers, O. Alfandi, Fog computing framework for internet of things applications, in: 2018 11th
International Conference on Developments in ESystems Engineering, DeSE, IEEE, 2018, pp. 71–77.

[49] D. Tychalas, H. Karatza, A scheduling algorithm for a fog computing system with bag-of-tasks jobs: Simulation and performance evaluation, Simul. Model.
Pract. Theory 98 (2019) 101982, http://dx.doi.org/10.1016/j.simpat.2019.101982.

[50] M.A.A. Mostafa, A.M.K. Mohammad, Cognitive management framework for fog computing in IoT case study: Traffic control system, in: 2017 8th
International Conference on Information Technology, ICIT, IEEE, 2017, pp. 875–882.

[51] M.B. Yassein, M.Q. Shatnawi, S. Aljwarneh, R. Al-Hatmi, Internet of things: Survey and open issues of MQTT protocol, in: 2017 International Conference
on Engineering & MIS, ICEMIS, IEEE, 2017, pp. 1–6.

[52] D.B. LD, P.V. Krishna, Honey bee behavior inspired load balancing of tasks in cloud computing environments, Appl. Soft Comput. 13 (5) (2013) 2292–2303.
[53] M. Whaiduzzaman, M. Sookhak, A. Gani, R. Buyya, A survey on vehicular cloud computing, J. Netw. Comput. Appl. 40 (2014) 325–344.
[54] University of Minnesota, The performance equation, 2020, https://www.d.umn.edu/~gshute/arch/performance-equation.xhtml.
[55] H. Gupta, A. Dastjerdi, S. Ghosh, R. Buyya, iFogSim: A toolkit for modeling and simulation of resource management techniques in internet of things, edge

and fog computing environments, Softw. - Pract. Exp. (2016) http://dx.doi.org/10.1002/spe.2509.
[56] A. Beloglazov, R. Buyya, Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of

virtual machines in cloud data centers, Concurr. Comput.: Pract. Exper. 24 (2012) http://dx.doi.org/10.1002/cpe.1867.
19

http://refhub.elsevier.com/S1569-190X(21)00053-8/sb28
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb28
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb28
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb30
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb30
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb30
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb31
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb31
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb31
http://dx.doi.org/10.1016/j.simpat.2019.102043
http://dx.doi.org/10.1109/WAINA.2018.00064
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb34
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb34
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb34
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb35
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb35
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb35
http://dx.doi.org/10.1109/FiCloud.2017.49
http://dx.doi.org/10.1109/FMEC.2017.7946419
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb38
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb38
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb38
http://dx.doi.org/10.1145/3190645.3190699
http://dx.doi.org/10.5815/ijieeb.2016.01.06
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb41
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb41
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb41
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb43
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb43
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb43
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb44
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb44
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb44
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb45
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb45
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb45
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb46
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb46
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb46
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb47
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb47
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb47
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb48
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb48
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb48
http://dx.doi.org/10.1016/j.simpat.2019.101982
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb50
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb50
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb50
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb51
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb51
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb51
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb52
http://refhub.elsevier.com/S1569-190X(21)00053-8/sb53
https://www.d.umn.edu/~gshute/arch/performance-equation.xhtml
http://dx.doi.org/10.1002/spe.2509
http://dx.doi.org/10.1002/cpe.1867

	A scheduling-based dynamic fog computing framework for augmenting resource utilization
	Introduction
	Background and rationale
	Cloud-fog computing frameworks
	Scheduling based fog computing frameworks
	Generalized scheduling algorithms

	System model and methodology
	Task scheduling fog computing framework
	Component description
	Citizen Fog (CF)
	Master Fog (MF)
	Cloud

	Task scheduling mathematical model
	Capacity and performance
	Priority

	Process and algorithm
	Comparative attributes algorithm (CAA)
	Sorting citizen fog in master fog manager

	Performance evaluation
	Simulation platform
	Result and analysis
	Discussion

	Conclusion
	Acknowledgment
	References

