
SDCon: Integrated Control Platform
for Software-Defined Clouds

Jungmin Son , Student Member, IEEE and Rajkumar Buyya , Fellow, IEEE

Abstract—Cloud computing has been empowered with the introduction of Software-Defined Networking (SDN) which enabled

dynamic controllability of cloud network infrastructure. Despite the increasing popularity of studies for joint resource optimization in the

cloud environment with SDN technology, the realization is still limited for developing integrated management platform providing a

simultaneous controllability of computing and networking infrastructures. In this paper, we propose SDCon, a practical platform

developed on OpenStack and OpenDaylight to provide integrated manageability for both resources in cloud infrastructure. The platform

can perform VM placement and migration, network flow scheduling and bandwidth allocation, real-time monitoring of computing and

networking resources, and measuring power usage of the infrastructure with a single platform. We also propose a network topology

aware VM placement algorithm for heterogeneous resource configuration (TOPO-Het) that consolidates the connected VMs into

closely connected compute nodes to reduce the overall network traffic. The proposed algorithm is evaluated on SDCon and compared

with the results from the state-of-the-art baselines. Results of the empirical evaluation with Wikipedia application show that the

proposed algorithm can effectively improve the response time while reducing the total network traffic. It also shows the effectiveness of

SDCon to manage both resources simultaneously.

Index Terms—Cloud computing, software-defined networking, resource management, software-defined clouds, IaaS, OpenStack,

OpenDaylight

Ç

1 INTRODUCTION

THE emergence of software-defined networking (SDN)
has brought many opportunities and challenges to both

networking and computing community. Decoupling of the
network control logic from data forwarding plane is a key
innovation which contributes to the introduction of network
programmability. With the global view of the entire net-
work, the centralized controller can manage the network
through the customized control logic programmed for an
individual use case. SDN can slice the network bandwidth
into multiple layers and provide different quality of service
(QoS) on each slice for different applications. Network func-
tion virtualization (NFV) becomes more feasible with the
introduction of SDN, where the virtualized network func-
tion can move around the network dynamically with SDN’s
network reconfiguration functionality.

SDN also triggers new innovations in cloud computing.
The massive scale of a cloud data center where tens of thou-
sands of compute nodes connected through thousands of
network switches raises network manageability and perfor-
mance issues. Cloud data centers also need to provision
computing and network resources dynamically to adapt to

the fluctuating requests from customers. Adoption of SDN
in a cloud data center can address the networking issues
raised from the aforementioned characteristic of clouds.
Recently, researchers have introduced a new terminology,
software-defined clouds (SDC), that integrates SDN and
other SDx concepts in cloud computing where the program-
mable controller provides dynamic and autonomic configu-
ration and management of the underlying physical layer,
similar to the network controller managing the underlying
forwarding plane in SDN [1], [2].

Since both cloud computing and SDN have been widely
accepted in the industry and open-source community, many
platforms are introduced and developed in each area. For
cloud management, various full-stack softwares have been
developed by companies and open-source communities, such
as OpenStack, VMWare, and Xen Cloud Platform. For
instance, OpenStack is an open source cloud management
platform that has been employed by many institutions for
years to run their private clouds. It provides manageability
and provisioning for computing, networking, and storage
resources based on the users and projects. OpenStack sup-
ports network virtualization on compute nodes for virtual
machines (VM) so that cloud tenants can create their own vir-
tual network to communicate between leasedVMs.

SDN controllers are also actively developed by open
source communities including OpenDaylight, Floodlight,
NOX, Open Network Operating System, and Ryu. OpenDay-
light is an open source SDN controller based on a modular
structurewhich has been actively developed under The Linux
Foundation. OpenDaylight provides comprehensive func-
tionalities through its modular plug-ins, such as OpenFlow
switch management, OpenVSwitch database management,

� The authors are with the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, School of Computing and Information Systems,
The University of Melbourne, VIC 3010, Australia.
E-mail: jungmins@student.unimelb.edu.au, rbuyya@unimelb.edu.au.

Manuscript received 12 Dec. 2017; revised 6 July 2018; accepted 8 July 2018.
Date of publication 11 July 2018; date of current version 12 Dec. 2018.
(Corresponding author: Jungmin Son.)
Recommended for acceptance by R. Prodan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2855119

230 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

1045-9219� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6278-2368
https://orcid.org/0000-0001-6278-2368
https://orcid.org/0000-0001-6278-2368
https://orcid.org/0000-0001-6278-2368
https://orcid.org/0000-0001-6278-2368
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
mailto:
mailto:

network virtualization, group-based policy, and so on. Users
can select features to install for their purpose. Other control-
lers provide similar functions with different architecture and
programming languages.

Although the platforms are matured in SDN and cloud
computing individually, it is difficult to find a software plat-
form in practice for integration of SDN and clouds to jointly
control both networking and computing devices for clouds.
For example, OpenStack adopts OpenVSwitch,1 a software
virtual switch compatiblewith SDN, in its networkingmodule
to provide network virtualization of VMs. However, in Open-
Stack, OpenVSwitch is created andmanagedonly for compute
nodes to establish virtual tunnels with other compute nodes.
OpenStack does not provide any feature to control the net-
work fabric of the cloud; network switches in a data center
cannot be controlled byOpenStack’s internal network control-
ler (Neutron). Similarly, OpenDaylight canmanage the virtual
network of OpenStack clouds using its NetVirt feature, but it
controls virtual switches on compute nodes separately from
network switches that connect compute nodes. OpenDaylight
and other SDN controllers do not support integrated control-
lability of both compute nodes and network switches. Cisco
developed Unified Computing System,2 on the other hand,
integrates computing and networking resource management
into a single platform tomanage Cisco’s servers and network-
ing switches. While it provides integrated controllability for
cloud infrastructure, only Cisco’s products can be managed
by the platform which is in lack of the openness and innova-
tive features of SDN.

In this paper, we propose an integrated control platform,
named SDCon (Software-Defined Clouds Controller),3 which
can jointlymanage both computing and networking resources
in the realworld in the perspective of a cloudprovider. SDCon
is implemented on top of the popular cloud and SDN control-
ler software: OpenStack and OpenDaylight. It is designed to
support various controllers with the implementation of sepa-
rate driver modules, but for simplicity of development, we
adopted OpenStack and OpenDaylight as underlying soft-
ware. We integrate cloud’s computing fabric and SDN’s net-
work fabric controllability into a combined SDC controller. In
addition, we propose TOPO-Het, a topology-aware resource
allocation algorithm in heterogeneous configuration, in order
to demonstrate the effectiveness and capabilities of SDCon
platform in empirical systems.

The key contributions of the paper are:

� the design of a practical SDC controller that integra-
tes the controllability of network switches with the
management of computing resources;

� the implementation of the integrated SDC control
system on a small-scale testbed upon existing soft-
ware solutions with 8 compute nodes connected
through 2-pod modified fat-tree network topology;

� a topology aware joint resource provisioning
algorithm for heterogeneous resource configuration
(TOPO-Het);

� an evaluation of the joint resource provisioning algo-
rithm on the testbed with the proposed SDC control
platform.

The rest of the paper is organized as follows: Section 2 pro-
vides the relevant literature studied and developed for SDN
integration platform for cloud computing. In Section 3, we
depict the design concept of the proposed platform and the
control flows betweenmodules and external components, fol-
lowed by the detailed explanation of the implementation
method and the functionalities of each component of SDCon
in Section 4. The heterogeneity and network topology aware
VM placement algorithm is proposed in Section 5 in addition
to the explanation of baseline algorithms. Section 6 provides
the validation results of SDCon with bandwidth measure-
ments, and Section 7 shows the evaluation of SDCon and the
proposed algorithm with Wikipedia application by compar-
ing with baselines. Finally, Section 8 concludes the paper
alongwith directions for futurework.

2 RELATED WORK

Increasing number of studies have investigated the joint
provisioning of networking and computing resources in
clouds [3], [4], [5], [6], [7], [8], in which experiments have
been conducted either in simulation environment [3], [4], or
on their in-house customized empirical system [5], [6], [7],
[8]. In this section, we review the recent studies in the inte-
gration of SDN and clouds and the joint resource provision-
ing algorithms.

2.1 Integrated Platform of SDN and Clouds

Wepreviously proposed SDN-enabled cloud computing sim-
ulator, CloudSimSDN, to enable large-scale experiment of
SDN functionality in cloud computing [9]. CloudSimSDN can
simulate various use-case scenarios in cloud data centers with
the support of SDN approaches, such as dynamic bandwidth
allocation, dynamic path routing, and central view and con-
trol of the network. Although simulation tools are useful to
evaluate the impact of new approaches in a large-scale data
center, there are still significant gaps between the simulation
and real implementation.

Mininet [10] has gained a great popularity for SDN emula-
tion to experiment practical OpenFlow controllers. Any SDN
controllers supporting OpenFlow protocol can be tested with
Mininet, where a customized network topology with multiple
hosts can be created and used for several evaluations, such as
measuring bandwidthutilizationwith the iperf4 tool. Although
Mininet opened up great opportunities in SDN studies, a lack
of supporting multi-interface emulation limited its usage in
cloud computing studies. Because researchers need to experi-
ment with virtual machines in hosts, it is impractical to use
Mininet to test common cloud scenarios such as VMmigration
or consolidation in a data center.

To overcome the shortcoming of Mininet, OpenStackEmu
is proposed to integrateOpenStackwith a large-scale network
emulator named CORE (Common Open Research Emula-
tor) [11]. The proposed system combines OpenStack platform
with a network emulator to perform evaluations considering
both cloud and networking. All network switches are

1. http://openvswitch.org
2. http://www.cisco.com/c/dam/en/us/solutions/collateral/

data-center-virtualization/unified-computing/at_a_glance_c45-523181.
pdf

3. Source code available at: http://github.com/cloudslab/sdcon 4. http://iperf.fr

SON AND BUYYA: SDCON: INTEGRATED CONTROL PLATFORM FOR SOFTWARE-DEFINED CLOUDS 231

http://openvswitch.org
http://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/unified-computing/at_a_glance_c45-523181.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/unified-computing/at_a_glance_c45-523181.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/unified-computing/at_a_glance_c45-523181.pdf
http://github.com/cloudslab/sdcon
http://iperf.fr

emulated in one physical machine with the capability of
Linux software bridges and OpenVSwitch. A real SDN con-
troller manages the emulated switches on which transfer net-
work frames fromphysical compute nodes. OpenStackEmu is
a useful approach to build an SDN-integrated cloud testbed
infrastructure with limited budget and resources, but the sys-
tem does not provide an integrated control platform for both
OpenStack and SDN. In our approach,we propose a joint con-
trol platform which can even run on OpenStackEmu infra-
structure to control its networking and computing resources.

In their recent paper, Cziva et al. proposed S-SCORE, a
VM management and orchestration system for live VM
migration to reduce the network cost in a data center [7].
This platform is extended from Ryu SDN controller and
includes VM management function by controlling hypervi-
sors (Libvirt) in compute nodes. The authors implemented
the system on the canonical tree topology testbed with eight
hosts and showed the effectiveness of their migration algo-
rithm to reduce the overall VM-to-VM network cost by
moving VMs into closer hosts. The proposed system is suit-
able for studies focusing on networking resources, but is
lack of optimizing computing resources such as CPU utili-
zation of compute nodes.

Adami et al. also proposed an SDN orchestrator for cloud
data centers based on POX as an SDN controller and Xen
Cloud Platform as a VM management platform [12], [13],
[14], [15]. The system provides a web portal for end users to
submit VM requests which are handled by resource selec-
tion and composition engine in the core of the system. The
engine utilizes virtual machine and OpenFlow rule handlers
to configure VMs in hypervisors and flow tables in switches
respectively. Similar to S-SCORE, this system focuses more
on networking aspects of clouds without a comprehensive
consideration of computing resources such as VM and hosts
utilization and virtual networks for VMs.

2.2 Joint Resource Provisioning Algorithms

Many studies considering resource heterogeneity in clouds
have focused on the level of brokers for different providers or
geographically distributed data centers. For example, VM
placement algorithm across different providers was studied
to reduce the leasing cost of virtual machines while providing
the same level of throughput from the hosted application [16].
Recently, a renewable-aware load balancing algorithm across

geologically distributeddata centerswas proposed to increase
the sustainability of data centers [17]. This algorithm selects a
data center operated by more portion of renewable power
sources (e.g., data center sourced by a solar power plant in a
clear day) and places more VMs on the data center to reduce
the carbon footprint. Also, researchers studied the resource
optimization within a data center considering heterogeneity
to reduce the energy consumption of the data center [18]. The
on-line deterministic algorithm consolidates VMs dynami-
cally into the smaller number of compute nodes and switches
off the idle nodes to save electricity.

VM management method considering network topology
was proposed by Cziva et al. [7] that migrates a VM with a
high level of network usage onto the destination host to
reduce the network cost for VMs and the traffic over the data
center. For a VM, the algorithm calculates a current communi-
cation cost for eachVM-to-VMflow and estimates a new com-
munication cost if the VM is migrated onto the other end of
the flow. When it finds a new location for the VM which can
reduce the total communication cost, the VM is migrated to
the other host. However, the approach does not consider the
capacity of compute nodes, thus it may not migrate a large
VM if the available computing resource of the selected host is
not enough for the VM. Also, this algorithm limits migration
target candidates by considering only the compute node that
hosts the other VM of the flow. If no connected VM is placed
in a host, it is not considered as a migration target, which in
practice can be a proper destination if all the candidates in the
first place cannot host the VM because of the resource limita-
tion. Our algorithm deals with this limitation by considering
the group of hosts, instead of an individual host, as a candi-
date of VMplacement.

Although the heterogeneity in the cloud environment has
been addressed in these studies, they are either considering
only high-level entities (e.g., different data centers or pro-
viders) or only computing resources within a data center
without considering joint optimization for both computing
and networking resources in heterogeneous infrastructure
in a data center.

3 SDCON: SOFTWARE-DEFINED CLOUDS

CONTROLLER

SDCon is designed to provide integrated controllability for
both clouds and networks and implemented with popular
software widely used in practice. The conceptual design and
the control flows between components are shown in Fig. 1. As
described in the previous section, cloud management plat-
forms and SDN controller software have been developed and
widely adopted for years. Therefore, in this study, we
designed our platform on top of those mature software plat-
forms. Cloud Management Platform, e.g., OpenStack, man-
ages computing resources including CPU, memory, and
storage which are provided by multiple underlying compute
nodes. Monitored data, such as CPU utilization of VMs and
the compute node, is sent back to Cloud Management Plat-
form from each compute node, so that the information can be
used for resource provisioning and optimization. Similarly,
networking resources are controlled by SDN Controller, e.g.,
OpenDaylight. Switches are connected and managed by the
SDN Controller, and the network utilization monitored in

Fig. 1. Design principle and control flows.

232 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

each switch is gathered by the controller. Both CloudManage-
ment Platform and SDNController are deployed and properly
configuredwith existing software solutions.

Based on the separate platform for cloud management
and SDN control, SDCon is designed to manage and moni-
tor both of them jointly. When tenants request resources
from a cloud data center, Joint Resource Provisioner in
SDCon accepts the request and controls both Cloud Man-
agement Platform and SDN Controller simultaneously to
provide the required amount of resources. In the traditional
cloud platform, tenants can specify only computing resour-
ces in detail, such as the number of CPU cores, the amount
of memory and storage. With SDCon, we introduce addi-
tional configuration in the resource request regarding
networking requirements, such as requested bandwidth
between VMs, which can be specified along with the type of
VMs. Joint Resource Provisioner is in charge of not only
allocating the requested resources for tenants, but also opti-
mizing both computing and networking resources based on
the optimization policy provided by the system administra-
tor of the cloud provider. For example, it can migrate low-
utilized VMs and flows into the smaller number of hard-
ware and power off the unused resources to increase power
efficiency of the cloud data center. System administrators in
the data center can also set a customized default path policy
for the network, especially effective for multi-path network
topology.

Resource provisioning and optimization at Joint Resource
Provisioner is performed based on the network topology and
real-time monitored data acquired from Cloud Management
Platform and SDN Controller. Topology Discovery receives
the network topology and its capacity from SDN Controller
and the hardware specification of compute nodes from Cloud
Management Platform. Real-time ResourceMonitor also gath-
ers the monitored data from both cloud and SDN controller.
Contrary to Topology Discovery, Resource Monitor keeps
pulling measurements from compute nodes and switches
periodically to update real-time resource utilization, including

CPU utilization of VMs and compute nodes, and bandwidth
utilization of network links. Please note that the pulling inter-
val should be properly configured by the administrator con-
sidering the size of monitored data and the number of
monitoring compute nodes and switches to prevent the sys-
temoverload.

In addition to the resource provisioning, SDCon supports a
visualization of computing and networking resources
through Status Visualizer components. Based on the topology
information andmonitoredmeasurements, the visualizer dis-
plays current utilization of network links and compute nodes
in real-time. System administrators can check the status of all
resources on a graphical interface. In the following subsection,
we explain the implementation of the proposed system in
detail.

4 SYSTEM IMPLEMENTATION

We implemented SDCon by utilizing OpenStack cloud man-
agement platform and OpenDaylight SDN controller to con-
trol computing and networking resources respectively.
Fig. 2 shows the implemented architecture of SDCon plat-
form. The system is implemented with Python, on top of
OpenStack Python SDK,5 Gnocchi Python API,6 OpenDay-
light OpenFlow plugin7 and OVSDB plugin,8 and sFlow-RT
REST API.9 SDCon utilizes these existing open-source soft-
ware solutions to provide integrated controllability and
optimization to manage both computing and networking
resources. Please note that another software can be adopted
in SDCon by modifying the relevant API.

OpenStack platform is exploited to manage compute
nodes. Compute nodes are running OpenStack Nova-
compute component to provide a bridge between the hyper-
visor and the OpenStack controller. VM creation, migration,
or deletion is managed by Nova-API and Nova-Conductor
components in the controller through messages passed to
Nova-compute component in each compute node. Aside
from Nova components, OpenStack Neutron is in charge of
managing virtual networks for VMs. Neutron-OVS-Agent
running on each compute node is creating and deleting
virtual tunnels between compute nodes by updating
OpenVSwitch rules, instructed by Neutron-Server in the
controller. OpenStack Telemetry services are running on the
controller to monitor compute nodes and VMs. OpenStack
Ceilometer gathers computing resource measurements,
such as CPU utilization and RAM usage, of both VMs and
compute nodes. The monitored measurements are stored
with Gnocchi component, which can be retrieved by its Rest
API.

For networking resources, OpenDaylight controls Open-
Flow switches that connect compute nodes. Each switch has
OpenFlow forwarding tables managed by OpenDaylight
L2-Switch and OpenFlow-Plugin modules which can install
or modify forwarding rules for specific flows. OpenDaylight
also manages QoS queues in a switch to enable dynamic

Fig. 2. System architecture of SDCon and underlying software
components.

5. http://docs.openstack.org/openstacksdk/latest/
6. http://gnocchi.xyz/gnocchiclient/api.html
7. http://wiki.opendaylight.org/view/

OpenDaylight_OpenFlow_Plugin:End_to_End_Flows
8. http://docs.opendaylight.org/en/stable-carbon/user-guide/

ovsdb-user-guide.html
9. http://www.sflow-rt.com/reference.php

SON AND BUYYA: SDCON: INTEGRATED CONTROL PLATFORM FOR SOFTWARE-DEFINED CLOUDS 233

http://docs.openstack.org/openstacksdk/latest/
http://gnocchi.xyz/gnocchiclient/api.html
http://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:End_to_End_Flows
http://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:End_to_End_Flows
http://docs.opendaylight.org/en/stable-carbon/user-guide/ovsdb-user-guide.html
http://docs.opendaylight.org/en/stable-carbon/user-guide/ovsdb-user-guide.html
http://www.sflow-rt.com/reference.php

bandwidth allocation. Due to the OpenFlow’s limited sup-
port for QoS queues, queue management is provided
through OpenDaylight’s OpenVSwitch plug-in which can
create and delete Hierarchical Token Bucket (HTB)10 queues
directly in switches. For network monitoring, our platform
employed the sFlow protocol which can provide real-time
measurements of the network by capturing sampled pack-
ets. sFlow agents are set up in switches and send sampled
data to the sFlow engine running on the controller which
gathers the data and provide the measurements through the
Rest API.

On top of these services, SDCon is implemented to jointly
manage both computing and networking resources. SDCon
platform aims at integrating an SDN controller with a cloud
manager to perform:

� allocating resources for VMs and flows with the
information of applications and resources;

� monitoring both compute nodes and network
switches for their utilization, availability, and capac-
ity with the knowledge of network topology;

� dynamic provisioning of both computing and net-
working resources based on the real-time monitored
matrices;

� providing management toolkit for system adminis-
trators to monitor power consumption and visualize
the operational status of a data center.

Below, we explain the detail of each component in
SDCon, data flows between components, and sequence dia-
gram of VM allocation with SDCon.

4.1 Cloud Manager

Cloud Manager is in charge of controlling OpenStack Con-
troller through OpenStack SDK. It can create or migrate a
VM on a specific compute node by specifying the target
node. Current allocation status of compute nodes is also
retrieved through OpenStack so that SDCon can identify the
number of used and available cores and memory in each
node. This information is passed to Topology Discovery in
order to keep the up-to-date resource allocation information
in the topology database. It also provides other functions
related to VMs and compute nodes, such as getting the IP
address of a VM, VM types (Flavor), VM disk images, and
virtual networks for VMs. Note that the virtual network
configured in a compute node is managed by OpenStack
Neutron through OpenVSwitch installed on compute
nodes, whereas switches are controlled by OpenDaylight.
Thus, the IP address of a VM is retrieved by Cloud Man-
ager, not by Network Manager.

4.2 Cloud Monitor

Cloud Monitor is to retrieve real-time measurements of com-
puting resources monitored at compute nodes and VMs. We
use OpenStack Ceilometer and Gnocchi components to mea-
sure and collect the monitored data in the implementation.
Ceilometer installed on each compute node measures CPU
and memory utilization of all VMs and the compute node
itself, and sends to Gnocchi that collects and aggregates the

data from every compute node. By default, Gnocchi polls and
stores the resource utilization measurement every 60 seconds
from all VMs and compute nodes, which can be customized
by changingGnocchi configuration settings. Our CloudMoni-
tor uses Gnocchi Python API to retrieve the collected data,
such as CPU utilization of both VMs and compute nodes. It is
also utilized by Power Consumption Estimator to calculate
the estimated power consumption of compute nodes, in
which the detail is explained later.

4.3 Network Manager

In SDCon, OpenDaylight SDN Controller is managed byNet-
work Manager module to push OpenFlow forwarding tables,
default path setting for multi-path load balancing, and QoS
configurations. In SDN, we can add a specific flow rule based
on source and destination IP/MAC addresses, TCP/UDP
port numbers, protocol types, and other criteria supported by
OpenFlow standard. SDCon uses this feature to install or
remove a flow rule onto switches through OpenDaylight
OpenFlow plugin. This feature can be used for dynamic flow
control or flow consolidation to change the path of a flow
dynamically for performance improvement or power effi-
ciency. We also implement a default path routing module
enabling the load-balancing routing in fat-tree topology as
suggested in the original paper [19]. Because the default L2
switch module in OpenDaylight only supports STP for multi-
path topology, we cannot use the benefit of multiple paths
with the default module. Thus, we needed to implement our
own routing module to set the default path between compute
nodes based on the source address of the node. Our default
path module installs flow rules on each switch to forward the
packet to different ports by looking at source address if there
are multiple paths. With the default path module, packets
are forwarded to the pre-configured path based on the source
nodewithout flooding them to the entire network or dumping
all traffic to the SDN controller.

SDCon’s Network Manager is also capable of configuring
QoS queues on each switch to provide bandwidth allocation
for a specific flow if a resource request includes specific band-
width requirements. For a priority flowwhich needs a higher
priority over other traffics, a tenant can request a certain
amount of bandwidth, then SDCon can allocate it by configur-
ingminimum andmaximum bandwidth inQoS queues on an
output port in a switch. For example, OpenVSwitch supports
traffic shaping functionality, similar to the tc tool in Linux,
which can control the network bandwidth for different QoS
level using HTB. We implement this QoS management fea-
ture in Network Manager. For VM-to-VM bandwidth alloca-
tion, Network Manager installs QoS queues on each port in
every switch along the path passing the traffic. NetworkMan-
ager at first aggregates all the requests for different source
and destination VMs, because the flows have to bemapped to
output ports simultaneously if the link is shared by multiple
flows. Once the number of flows to be configured at each port
in each switch is calculated, Network Manager sends QoS
and queue creation request to OpenDaylight OVSDB plugin
which controls OpenVSwitch entries on each switch. Then,
we push OpenFlow rules for the specific flow in need of the
bandwidth allocation, so that packets for the specific flow can
be enqueued at the createdQoS queue.We show the effective-
ness of our bandwidth allocationmethod in Section 7.

10. http://www.tldp.org/HOWTO/Adv-Routing-HOWTO/lartc.
qdisc.classful.html

234 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

http://www.tldp.org/HOWTO/Adv-Routing-HOWTO/lartc.qdisc.classful.html
http://www.tldp.org/HOWTO/Adv-Routing-HOWTO/lartc.qdisc.classful.html

4.4 Network Monitor

Similar to Cloud Monitor, Network Monitor pulls a real-time
network status from switches and compute nodes. We lever-
age sFlow protocol that collects sampled packets from sFlow
agents in switches and sends them to the collector in the con-
troller. By default, the sampling rate of sFlow is 1 in 500 for
100 Mbps link and 1 in 1000 for 1 Gbps link,11 which sends a
packet for every 500 packets passing the 100 Mbps link. For
data collection and aggregation, sFlow-RT is installed in the
controller node aside from the SDN controller. SDCon Net-
work Monitor utilizes REST APIs provided by sFlow-RT to
retrieve aggregated measurements of bandwidth usage and
traffic flows on each link. Although OpenDaylight provides
statistics of every port on OpenFlow switches, we decide to
use sFlow because it providesmore detailed information such
as the source and destination address of the flow and encap-
sulated packets for tunneling protocols. Please note that the
collected monitoring data from both Cloud and Network
Monitor is stored in the monitor modules which can be
accessed by SDCon at any time. Thus, the up-to-date informa-
tion can be simultaneously provided from both monitors and
utilized by SDCon.

4.5 Topology Discovery

Network topology information is retrieved from OpenDay-
light through Network Manager. With the support of host
tracker in OpenDaylight, SDCon can acknowledge compute
nodes and switch devices on the network along with ports
and links. Topology Discovery module internally generates
a graph structure to store the topology information. In addi-
tion, it also retrieves the hardware configuration of compute
nodes through Cloud Manager. With the retrieved informa-
tion about computing resources, e.g., the number of CPU
cores, size of RAM, etc., Topology Discovery can provide
the detailed information to other modules. Unlike Cloud
and Network Monitor modules which needs a periodic
update for real-time data, Topology Discovery is created
when the platform starts and updated only when there is an
update on the topology.

4.6 Joint Resource Provisioner

Themain control logic of SDCon resides in Joint Resource Pro-
visioner module. When VM and flow requests are submitted
from cloud tenants, Joint Resource Provisioner module
decideswhich compute nodes to place the VMandwhich net-
work path to transfer the VM flows. With the retrieved infor-
mation of the topology information through Topology
Discovery and real-time utilization via Cloud and Network
Monitor, the decision is made with the provisioning algo-
rithm provided by the system administrator. A customized
VM allocation and migration policy can be implemented for
VM provisioning, as well as a network flow scheduling algo-
rithm for network provisioning.

Once the decision is made at the control logic, Joint
Resource Provisioner exploits Cloud Manager and Network
Manager, to create a VM on the selected node and push new
flow entries respectively. For bandwidth allocation, QoS rules
and queues are created in switches by updatingOpenVSwitch
configuration through Network Manager. Joint Resource

Provisioner can utilize the real-time monitored data at any
time whenever necessary. For example, a VM migration pol-
icy can be implemented upon Joint Resource Provisioner
which constantly monitors the current status of VMs, com-
pute nodes, and network bandwidth usage, then dynamically
migrates a busy VM to less utilized resources in real time. If
the migration policy is implemented, it can schedule the
migration process by sending migration command to Open-
Stack throughCloudManager.

4.7 Power Consumption Estimator

For supporting energy-related experiments, we additionally
implement Power Consumption Estimator that calculates
the power consumption of the infrastructure based on the
utilization of compute nodes and switch links using an
energy model. Although the best practice to measure the
power consumption is to use a commercialized monitoring
device, we add this feature to provide a simple alternative
approximation method at no additional cost. Accumulated
utilization data from both monitors is input to the energy
model, and the estimated power consumption is calculated
and output based on the energy model provided to SDCon.

For compute nodes, we use the linear power model
derived from Pelly et al. [20] for its simplicity and ease of
implementation. Please note that the power model can be
replaced with other linear or quadratic models for more
accurate estimates by changing the source code. In our
implementation, the power consumption of the host hi with
the utilization ui is calculated by:

P ðhiÞ ¼ PidleðhiÞ þ ðPpeakðhiÞ � PidleðhiÞÞ � ui;

where Pidle refers to the power consumption of the host in
idle state (0 percent utilization), and Ppeak refers to the peak
power consumption at 100 percent utilization. The power
model of switches is derived from Wang et al. [21] which
can be calculated by:

P ðsiÞ ¼ PstaticðsiÞ þ PportðsiÞ � qi;

where qi refers to the number of active ports of the switch,
Pstatic being the static power consumption for no network traf-
fic, andPport being per port power consumption of the switch.

4.8 Status Visualizer

Status Visualizer is implemented to intuitively visualize the
current state of the data center. This module retrieves the
topology information to draw the physical infrastructure
with network links, and then draws the real-time monitored
flows with different colors. We use D3 JavaScript library12

to visualize the data onto web interface. By refreshing the
page periodically, the Visualizer continuously updates the
monitored measurements in real time.

4.9 Data Flow and Sequence Diagram

Fig. 3 depicts the overall data flow between components in
SDCon. Once application deployment request is submitted to
Joint Resource Provisioner, it calls Cloud Manager and Net-
workManager to request VM creation and flowplacement for

11. http://blog.sflow.com/2009/06/sampling-rates.html 12. http://d3js.org

SON AND BUYYA: SDCON: INTEGRATED CONTROL PLATFORM FOR SOFTWARE-DEFINED CLOUDS 235

http://blog.sflow.com/2009/06/sampling-rates.html
http://d3js.org

computing and networking resources respectively. In order to
decide where and how to provision the resources, it retrieves
the topology information prepared by TopologyDiscovery, as
well as the monitoring data gathered from Cloud Monitor
and Network Monitor. In addition, Power Consumption Esti-
mator calculates the power usage based on the monitored

measurements and topology information. Measured informa-
tion is visualized with Status Visualizer through a web
interface.

To provide an in-depth understanding of the working pro-
cess of SDCon, we also depict sequence diagram of VMs and
flows deploymentwith SDcon (see Fig. 4). The diagram shows
the process to get VM and host information from OpenStack
API and network topology information from OpenDaylight
API. For VMdeployment, it first runs the VMplacement algo-
rithm to select the compute node and create a VM in the
selected compute node through CloudManager and Open-
Stack. For network deployment, we depict the procedure of
updating a flow path based on the real-time bandwidth usage
of each link as an example. IP address of source and destina-
tion VMs are retrieved from Cloud Manager and passed to
Network Manager to start the dynamic flow scheduling for
the specified pair of IP addresses. Network Manager periodi-
cally selects a series of switches along the pathwith the lowest
bandwidth utilization by obtaining monitored data. Then,
new forwarding rules with the updated path are pushed into
the switches of the selected path.

5 JOINT RESOURCE PROVISIONING IN

HETEROGENEOUS CLOUDS

In this section, we propose a joint computing and networking
optimization algorithm for heterogeneous resource configura-
tionwhich can beusedwith SDCon in empirical environment.
Many approaches have been proposed for joint optimization
in clouds, but most of them consider a homogeneous configu-
ration where the hardware of physical hosts and switches are
identical across the data center [4], [7], [8]. This is an effective
assumption in large-scale public cloud considering the

Fig. 3. Data flow diagram of SDCon components.

Fig. 4. Sequence diagram to deploy VMs and flows with SDCon.

236 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

identical hardware within the same rack which is procured at
the same time. However, as the data center grows in need of
upgrading or purchasing new hardware, the configuration of
newmachines can become different from old machines. Also,
it is often impractical to purchase manymachines at the same
time in a small scale private cloud, which can lead to having
different hardware configuration even in the same rack.

Resource optimization in heterogeneous configuration
needs a different approach from the one for homogeneous
resources because of the varied per-unit performance and
power consumption. For example, power optimization of a
homogeneous cloud by consolidation considers only the
number of hosts, whereas in heterogeneous it needs to con-
sider per-unit power consumption level of each compute
node. When VMs can be consolidated into the smaller num-
ber of physical hosts, unused hosts can be powered off to
save energy of the data center. In a homogeneous model,
reducing the number of turned-on hosts obviously leads to
the reduction of energy consumption of the entire data cen-
ter, whereas in heterogeneous configuration, we have to
consider the different capacity and power consumption
level of each physical machine. If VMs are consolidated into
a less power-efficient host consuming more energy than
two or more hosts, consolidation can actually increase the
total power consumption of a data center. Thus, the power
consumption level of different host types must be taken into
an account for power optimization in heterogeneous clouds.

5.1 Topology-aware VM Placement Algorithm for
Heterogeneous Cloud Infrastructure (TOPO-Het)

VM placement in heterogeneous resources can be considered
as a variable-sized bin packing problem, which is an NP-hard
problem to find the optimal solution [22]. As it is impractical
to find an optimal solution in real-time, we present a heuristic
algorithm in order to reduce the problem complexity suitable
for on-line VM placement. Our algorithm aims at network-
aware VM allocation for heterogeneous cloud infrastructure
for improved network performance of VMs.

For compute nodeswith different computing capacity (e.g.,
number of cores and size of memory), there is higher possibil-
ity that the compute node with larger capacity runs more
numbers of VMs than the one with smaller capacity. Assum-
ing that all compute nodes have the same network capacity,
those VMs in the larger compute node will utilize less band-
width when the VMs use the network simultaneously,
because the same amount of network bandwidth is shared by
more numbers of VMs in the larger node. On the other hand,
VMs placed in the same node can communicate to each other
via in-memory transfer rather than through network interface,
which can provide far more inter-VM bandwidth within a
node. Thus, we need to consider the connectivity of VMs for
placing VMs into the smaller number of compute nodes. If the
connected VMs are placed into the same node, it not only pro-
vides more bandwidth for VMs but also reduces the amount
of traffic in network infrastructure. However, if unrelated
VMs are placed in the same node, it consumesmore network-
ing resources and reduces per-VM bandwidth because the
limited bandwidth of a network interface should be shared by
more number of VMs.

Algorithm 1 is proposed to address the contradiction of
VM placement in the same or closer compute nodes. The

algorithm considers the connectivity between VMs and
finds the nearest compute node if the other VM is already
placed, or the group of closely-connected compute nodes
which can collectively provide the requested resources for
VMs. In Line 5, VMs are grouped based on the network con-
nectivity information gathered from the additional network-
ing requests of SDCon input data in JSON format. If there is
a connection request between two VMs, they are put into
the same VM group. In Line 7, VMs in the same group are
sorted in the order of required resources from high to low
to make sure a large VM is placed before smaller VMs.
Please note that sort function in the Algorithm 1 is a general
sort function, such as quick sort, which has the complexity
of Oðn � lognÞ. HG on Line 8 refers a list of the set of com-
pute nodes (hosts) which collectively provide sufficient
resources to the group of VMs. The algorithm overall con-
structs HG with the available host groups in the order of
closely connected host groups in the network topology.

Algorithm 1. TOPO-Het: Topology-Aware Collective
VM Placement Algorithm in Heterogeneous Cloud Data
Center

1: Data: VM: List of VMs to be placed.
2: Data: F : List of network flows between VMs.
3: Data:H: List of all hosts in data center.
4: Data: topo: Network topology of data center.
5: VMG Group VM based on the connection in F .
6: for each VM group vmg in VMG do
7: sort(vmg, key=vm.size, order=desc)
8: HG empty list for available host groups;
9: VMconn topo.getConnectedVMs(vmg);
10: if VMconn is not empty then
11: Hhost topo.findHostRunningVMs(VMconn);
12: Hedge topo.getHostGroupSameEdge(Hhost);
13: Hpod topo.getHostGroupSamePod(Hhost);
14: HG.append(Hhost,Hedge,Hpod);
15: end if
16: HGhost topo.findAvailableHost(vmg);
17: sort(HGhost, key=hg.capacity, order=desc);
18: HGedge topo.findAvailableHostGroupEdge(vmg);
19: sort(HGedge, key=hg.capacity, order=desc);
20: HGpod topo.findAvailableHostGroupPod(vmg);
21: sort(HGpod, key=hg.capacity, order=desc);
22: HG.appendAll(HGhost,HGedge,HGpod);
23: for each vm in vmg do
24: for each host group hg inHG do
25: sort(hg, key=h.freeResource, order=asc);
26: isPlaced place(vm, hg);
27: if isPlaced then
28: break;
29: end if
30: end for
31: if not isPlaced then
32: place(vm,H);
33: end if
34: end for
35: end for

Line 9 finds if any VMs are already deployed in the infra-
structure. If there are VMs already placed, it tries to place
new VMs to nearby compute nodes close to the placed VMs,
e.g., the same node (Line 11), the connected nodes under the

SON AND BUYYA: SDCON: INTEGRATED CONTROL PLATFORM FOR SOFTWARE-DEFINED CLOUDS 237

same edge switch (Line 12), or the nodes within the same
pod (Line 13). In Lines 16-22, the algorithm tries to find the
rest of host groups (a host, a host group under the same
edge network, or a host group in a same pod) regardless of
the placed VMs, if they can provide the requested resources
to construct a complete HG that assure the VMs are placed
in any hosts regardless of the VM connectivity. These host
groups are sorted by the available bandwidth calculated
from the number of VMs running on the entire host group
with the information of network topology. If there are more
VMs running on the host group, it is more likely congested
even if the total computing capacity of the group is higher.
Note that the heterogeneity of resources is considered at
this step when the VMs are assigned to the less congested
host group regarding the difference in the capacity of each
host group.

Once the algorithm found all the candidate host groups
for the VM group, each VM in the group is tried to place in
a host within the higher priority host group on Lines 23-34.
Note that the host list within a group is sorted by the num-
ber of free CPU cores before placing VM Line 25, in order to
consolidate VMs into a smaller number of hosts. If the host
is not fit for the VM, the next candidate host is tried until
the available one is found. If all the candidate host groups
are failed, the algorithm places the VM onto any available
host in the data center regardless of the network topology.

The time complexity of the proposed algorithm depends
on the number of hosts jHj, VMs to be placed jVMj, and the
VM groups jVMGj which can be at most jVMj if each group
has only one VM. Sorting the VMs on Line 7 takes at most
OðjVMj � log jVMj, and for each VM group sorting the host
group takes at most OðjHjlog jHjÞ in the case of jHGj ¼ jHj.
As topo uses a tree data structure, all finding functions using
topo structure takes log jHj time. Once the candidate host
groups are constructed, placing each VM in one of the can-
didate hosts takes OðjHj � log jHjÞ as it needs to sort the can-
didate hosts, which needs to be done for all VMs. Therefore,
the total time complexity of TOPO-Het is:

OðjVMjlog jVMjÞ þOðjVMGj � jHjlog jHjÞ
þOðjVMj � jHjlog jHjÞ

¼ OðjVMj � jHjlog jHj þ jVMjlog jVMjÞ;

which is feasible time for online VM placement.

5.2 Baseline Algorithms

Our heterogeneity-aware resource allocation algorithm is
compared with First-Fit Decreasing (FFD) algorithm in con-
junction with Bandwidth Allocation (BWA) and Dynamic
Flow Scheduling (DF) network management schemes. FFD
is a well-known heuristic algorithm for a bin-packing prob-
lem which allocates the largest VM to the most full compute
node capable of the VM adopted in many studies [23], [24].
VMs are sorted in descending order of the size of the
required resource, and compute nodes are sorted in ascend-
ing order of available resources. As it chooses the most full
node first, the algorithm consolidates VMs into a smaller
number of compute nodes which can benefit to the energy
efficiency and network traffic consolidation.

Further, we implement two network management meth-
ods, Bandwidth Allocation and Dynamic Flow Scheduling

(DF), in combination with FFD to empower FFD baseline
algorithm and show the effectiveness of SDCon. In BWA,
the requested network bandwidth is allocated for traffic
flows between VMs using the aforementioned method in
Section 4.3. SDCon renders flow settings provided with VM
request and creates QoS queues along switches forwarding
the VM traffic. DF (Dynamic Flow Scheduling), on the other
hand, updates the network path of the VM-to-VM flow peri-
odically by monitoring real-time traffic, which can be seen
in many approaches [25], [26], [27]. It first finds the shortest
path between VMs and retrieves monitored traffic of the
candidate path. After collecting bandwidth usage statistics
of every link on each path, it selects the less congested path
and updates forwarding tables on switches along the
selected path through SDN controller. In our implementa-
tion, DF checks and updates each network path every
60 seconds using the monitored data, which can be adjusted
in SDCon for delay sensitive applications.

We combine the network management methods with
FFD VM allocation algorithm. In the following sections, we
refer BWA and DF as a combination of FFD VM allocation
method with the referred network management scheme.
The key difference between the baselines and TOPO-Het is
that TOPO-Het considers network topology and distance
between compute nodes in a data center for allocating VMs
and network flows. TOPO-Het also considers the heteroge-
neous configuration of compute nodes in the decision pro-
cess. It is also worth to note that both TOPO-Het and FFD
utilize the topology information obtained from Topology
Discovery module in SDCon, and DF utilizes the real-time
monitored bandwidth utilization data from Network Moni-
tor module. BWA installs flow rules in each OpenFlow
switch through SDCon’s Network Manager.

6 SYSTEM VALIDATION

In this section, we describe a testbed setup and the experiment
for validating the systemby testing bandwidth allocation func-
tionality of SDCon. Additional validations, such as VM place-
ment, dynamic flow scheduling, and power usage estimation,
are also undertaken in conjunction with the performance eval-
uation of the topology-aware resource provisioning algorithm
and networkmanagement schemes in Section 7.

6.1 Testbed Configuration

In order to evaluate the proposed system and algorithm on
the empirical environment, we deployed SDCon on our
testbed equipped with 8 compute nodes, a controller node,
and 10 OpenFlow switches. Fig. 5 shows the architectural
configuration of our testbed. The network topology is built
as a modified 2-pod fat-tree architecture which has less
number of pods from the original proposal [19]. With the
cost and physical limitation, we built two pods connected
with two core switches instead of four. This modified topol-
ogy still provides multiple paths between two hosts with
the full support of 1:1 over-subscription ratio within the
same pod as proposed in the original fat-tree topology.

Core, aggregate, and edge switches are implemented with
10 Raspberry-Pi hardware with external 100 Mbps USB 2.0
Ethernet connectors on which cables are connected to the
other Raspberry-Pi or compute nodes. A similar approach
was proposed by researchers from Glasgow University [28]

238 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

that Raspberry-Pi was used for compute nodes in clouds. In
our testbed, we use Raspberry-Pi to build SDN switches, not
compute nodes, as we have enough servers for compute
nodeswhereaswe cannot procure OpenFlow switches.

In each Raspberry-Pi switch, OpenVSwitch is running as a
forwarding plane on a Linux-based operating system. A vir-
tual OpenVSwitch bridge is created in each Raspberry Pi to
include all Ethernet interfaces as ports and connected to
OpenDaylight SDN controller running on the controller node.
All links between Raspberry-Pi switches and compute nodes
are set to 100 Mbps due to the limited bandwidth of the exter-
nal USB Ethernet adapters of Raspberry-Pi. Please note that
packet processing in OpenVSwitch uses run to completion
model without buffering.13 We configured a separate man-
agement network for controlling and API communications
between switches, compute nodes, and the controller.

Each compute nodes are running OpenStack Nova-
Compute component to provide computing resources to
VMs as well as OpenStack Neutron-OVS Agent for virtual
network configuration for the hosted VMs. OpenStack com-
ponents in compute nodes are connected to the OpenStack
server running on the controller node through a separate
management network. Due to our limited device availabil-
ity, three different types of computers are used for the con-
troller and compute nodes. Table 1 shows the different
hardware configuration of each computer.

In OpenStack configuration, we create a flat network for
VM communications instead of using tunneling methods,
due to the limitation of flow matching rules in OpenFlow.
Tunneled addresses are invisible at OpenFlow switches
unless decapsulating packets in each switch which can result
in severe overheads at switches. Instead, IP addresses of VMs
are assigned with the same range of the compute nodes in the
flat network, thus switches can differentiate flows based on
the pair of source and destination VM addresses without
decapsulation and re-encapsulation at every switch.

6.2 Bandwidth Allocation with QoS Settings

As described in Section 4, we implement network bandwidth
allocation by applying OpenVSwitch’s QoS and Queue con-
figuration. This experiment is to see the effectiveness of the
implemented bandwidthmanagementmethod in SDCon.We
use iperf tool to measure the bandwidth of a flow between

VMs sharing the same network path. In order tomake the net-
work bandwidth to be shared by different flows, we run iperf
on two or three different VMs simultaneously. Also, various
combinations of TCP and UDP protocols are used in experi-
ments to compare the impact of our bandwidth allocation
mechanism on different protocols. Note that the maximum
bandwidth of our testbed is measured at approximately
95 Mbps (bits/s), due to the Ethernet port limitation of our
Raspberry-Pi switches. We set up QoS configuration with
HTB policy and specify the minimum bandwidth of 70 Mbps
for QoS flows and 10 Mbps for other flows, and maximum of
95Mbps for all flows.

Fig. 6 shows the measured bandwidth of different flows
sharing the same network path. When iperf was used in
TCP mode (Fig. 6a), the bandwidth is equally shared by two
flows without QoS configuration. After applying QoS con-
figuration for Flow 1, the bandwidth for Flow 1 is increased
to 73.6 Mbps, whereas Flow 2 can acquire only 14.9 Mbps.
Fig. 6b shows the measured bandwidth for two UDP flows.
In UDP mode, we run iperf at a constant rate of 70 Mbps
which causes a heavy congestion when two or more flows
are shared the same path. Because of the heavy congestion,
the shared bandwidth between two flows, in this case,
decreased to about 30 Mbps for each flow without QoS set-
ting. However, similar to the TCP result, Flow 1’s band-
width is increased to 56.1 Mbps after applying QoS, which
is slightly less than the minimum bandwidth specified in
the QoS setting. This is due to the characteristic of UDP
which does not provide any flow and congestion control
mechanism. For three UDP flows sharing the same path
(Fig. 6c), Flow 1 with QoS configuration acquires 46.8 Mbps
while the other two flows acquire less than 8.5 Mbps.

The last case is to measure the bandwidth with a mixed
flow of TCP and UDP protocol (see Fig. 6d). When QoS was
not configured, the UDP flow could obtain 61.1 Mbps while
the TCP flow acquired 28.1Mbps, because TCP’s flow control
mechanism adjusts the transmission rate to avoid network
congestion and packet drop. However, after applying QoS to
the TCP flow (Flow 1), its bandwidth is drastically increased
to 70.6 Mbps, although Flow 2 is constantly sending UDP
packets at 70Mbps. This shows that the QoS queue could for-
ward TCP packets at 70 Mbps speed as specified in the set-
tings, whereas UDP packets in a non-QoS queue were mostly
dropped resulting in 5.5 Mbps bandwidth measurement at
the receiver. A similar result is observed when we applied
QoS configuration for the UDP flow. The UDP flow (Flow 2)
with QoS setting can obtain 65Mbps while the bandwidth for
Flow 1 ismeasured at 25.5Mbps.

The results show that our QoS configuration mechanism
for bandwidth allocation is effective for both TCP and UDP
flows in the situation of multiple flows simultaneously shar-
ing the same network path, although the acquired bandwidth
is varied depending on the network status. Configuring QoS
and queue settings on OpenVSwitch in addition to the flow
rules added for a specific flow can make the priority flow
exploit more bandwidth than non-priority flows in the con-
gested network.

7 PERFORMANCE EVALUATION

We evaluate the proposed system and the algorithm with a
real-world application andworkload:Wikipedia application.

Fig. 5. Testbed configuration.

13. http://docs.openvswitch.org/en/latest/faq/design/

SON AND BUYYA: SDCON: INTEGRATED CONTROL PLATFORM FOR SOFTWARE-DEFINED CLOUDS 239

http://docs.openvswitch.org/en/latest/faq/design/

Wikipedia publishes its web application, named MediaWiki,
and all database dump files online14 so that we can replicate
Wikipedia application on our own environment with various
settings. Testing with Wikipedia application becomes more
straightforward with the introduction of WikiBench [29], a
software to deploy Wikipedia database dumps and measure
web requests to MediaWiki servers based on the historical
traffic trace. Thanks to the open-sourced MediaWiki applica-
tion and WikiBench tool, Wikipedia application is widely
adopted in cloud computing research for evaluation. Our
experiments with Wikipedia are conducted on the same
testbed explained in the previous section, comparing our
proposed algorithm with baseline algorithms discussed in
Section 5.

7.1 Application Settings and Workloads

For empirical evaluations, we deploy two Wikipedia applica-
tions consisting of multiple VMs across our testbed using
SDCon to measure the response time. A general web applica-
tion architecture is exploited to configure the Wikipedia with
three types of VMs: client (presentation tier), web server
(application tier), and database (data tier) VMs. Client VM is
acting as a client which sends requests parsed from the trace
toweb servers, inwhich providesweb responsewith the local
file or the data retrieved from the database server. Client VMs
run WikiBench program to read trace files and measure the
response time of the request. Web server VMs are configured
withApache2 server to hostMediaWiki applicationwritten in
PHP language. Database VMs run MySQL which retrieves
Wikipedia database rebuilt from the dumpfile.

We set two applications to represent two different ten-
ants using the data center with a different number of VMs
to check the impact of the TOPO-Het algorithm on the scale
of the application. Application 1 (App 1) is deployed with
four client VMs, four web server VMs, and one database
VM, whereas Application 2 (App 2) consists of two clients,
two web servers, and one database VM. Although they

are separate applications without any network traffic in
between, we deploy and run both applications at the same
time to see the impact of multiple applications run by differ-
ent tenants sharing the network resources of a data center.
Each VM is configured with a predefined VM Type shown
in Table 2. Before running the experiment, we created sev-
eral VMs in some compute nodes (12 cores in Compute
node 2, 4 cores in Compute node 4, and 1 core in Compute
node 5 and 9) to represent the other tenants occupying
resources. We also manually placed the database VM of
App 2 onto Compute 5 node in order to evaluate the case
when some VMs of the application are pre-deployed. VM
images are prepared with proper software settings to boost
the speed of application deployment.

In addition to VM configurations, network flow settings
are defined for VM traffics (Table 3). We set 30 Mbps for
traffics from web server VM to client VM, and 70 Mbps
from the database to web server VM. Since the maximum
bandwidth available for each physical link in our testbed is
100 Mbps, a web server still can utilize the entire bandwidth
when it needs to send data to both database and client if a

TABLE 1
Hardware Specification of Controller and Compute Nodes

Nodes CPU model Cores (VCPUs) RAM Quantity

Controller, Compute 1,2 Intel(R) E5-2620 @ 2.00 GHz 12 (24) 64 GB 3
Compute 3-6 Intel(R) X3460 @ 2.80 GHz 4 (8) 16 GB 4
Compute 7,8 Intel(R) i7-2600 @ 3.40 GHz 4 (8) 8 GB 2

Fig. 6. Bandwidth measurement of multiple flows sharing the same network resource.

TABLE 2
VM Types for Wikipedia Application Deployment

of VMs

VM Type CPU cores RAM Disk Software App 1 App 2

Client 1 2 GB 20 GB WikiBench 4 2
Web server 4 7 GB 80 GB MediaWiki 4 2
Database 8 15.5 GB 160 GB MySQL 1 1

TABLE 3
Network Flow Settings for VM Traffic

Source VM Destination VM Requested Bandwidth

Database Web server 70 Mbits/s
Web server Client 30 Mbits/s

14. http://dumps.wikimedia.org

240 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

http://dumps.wikimedia.org

whole compute node is excursively occupied by a web
server VM. Please note that all the VMs in the same applica-
tion are grouped as a same VM group in TOPO-Het algo-
rithm, because they have connections to each other. Thus,
there are two VM groups (one group per application) in the
scenario.

7.2 Analysis of VM Allocation Decision

We submit the VM configurations and flow definitions for
two applications to SDCon and run the VM allocation algo-
rithms. Fig. 7 shows CPU capacity of compute nodes in the
testbed before and after allocating VMs with different algo-
rithms. Before deploying two Wikipedia applications, Com-
pute node 1, 6, and 7 were empty, while the other nodes had
running VMs representing other tenants, which is shown as
Initial in the figure. FFD algorithm allocates VMs for App 2 to
Compute 3 and 4 nodes, and VMs for App 1 across the data
center filling up empty slots. Because FFD does not consider
network topology, VMs of bothApp 1 andApp 2 are scattered
across the data center. VMs for App 1 are placed almost every
compute node, whereas VMs for App 2 are consolidated in
Compute 3, 4, and 5 which are still scattered on different net-
work pods. Note that Compute 7 and 8 could not host more
VMs because of RAM limitation, even though they have free
CPUs.

In comparison, TOPO-Het considers network topology,
and the VMs for the same application are consolidated within
the same pod or edge network (Fig. 7b). For App 2, new VMs
are placed in Compute 5 and 8, which are under the same net-
work pod with the already placed VM (in Compute 5). Simi-
larly, all VMs of App 1 are placed either in Compute 1 or 2,
which are connected to the same edge switch. Also, Compute
7 remains empty after VM allocation so that the data center
can save more power consumption if Compute 7 is turned
into idle mode or powered off. In short, the proposed algo-
rithm allocates VMs to nearby compute nodes aware of net-
work topology while still provides VM consolidation to the
minimumnumber of compute nodes.

The network traffic visualized by SDCon Status Visualizer
shows the effectiveness of TOPO-Het in network resources.
Fig. 8 depicts the screenshot of Status Visualizer web UI cap-
tured two minutes after starting each experiment. The net-
work topology follows the testbed architecture (Fig. 5), with
orange circles with dash line refer to network switches
(Core1-2, Aggr1-4, Edge1-4), and blue circles refer to compute
nodes (Compute1-8) and VMs. Please note that both VMs and
compute nodes are represented as blue dots because we use a

flat network for VMs instead of VLAN or other tunneling
methods. The arc lines between dots refer to the network traf-
fic between those nodes, separated by the end-to-end VM
flows. Thus, more numbers of lines with different colors indi-
cate that the link had more network traffics for different
source-destination pairs of VMs. When VMs are placed with
FFD that is lack of the information of network topology, net-
work traffics for both applications flood across all the network
links in the testbed. In contrast, VMs placed with TOPO-Het
are consolidated under the same pod or edge switches which
results in significant reduction of network traffics.

7.3 Analysis of Response Time

The average response time of Wikipedia applications mea-
sured with WikiBench program from App 1 and App2 are
shown in Fig. 9 and 10 respectively. Web requests are sent for
30 minutes duration with 20 percent for App 1 (approx.
140,000 requests per client) and 10 percent (approx. 75,000
requests per client) for App 2 from the original trace from
Wikipedia. Each client injects the workload individually from
a local file to avoid the network latency and traffic between cli-
ent VMs. For clear comparison, we further separate the aver-
age response time based on the type of request. DB access is
the request that needs a database access to retrieve the

Fig. 7. Used and available CPU cores of compute nodes after VM place-
ment in different algorithm.

Fig. 8. Screenshots of Status Visualizer showing network traffic between
compute nodes and switches after Wikipedia application deployment
with different algorithms.

SON AND BUYYA: SDCON: INTEGRATED CONTROL PLATFORM FOR SOFTWARE-DEFINED CLOUDS 241

requested contents, whereas static file is to transfer files from
theweb server without access to the database.

Fig. 9 shows the average and CDF of response times mea-
sured from App 1. The overall response time is measured at
45.4 ms with the TOPO-Het algorithm which is about one-
third of the response time from FFD algorithm (153.8 ms).
Because TOPO-Het places the connected VMs in a short dis-
tance to each other, the network latency is significantly low-
ered transferring within an edge or pod network. On the
other hand, FFD distributes VMs across the data center
which leads to increasing the response time. The result also
shows that applying network management mechanism in
addition to the FFD allocation can improve the perfor-
mance. The average response time is reduced to 102.8 ms by
applying BWA method, and further to 59.3 ms with DF
algorithm. Even for the VMs spread out across the data cen-
ter by FFD algorithm, network traffic engineering schemes
supported by SDCon can improve the performance of the
application. We can see the response times for DB access
requests are longer than the static files because they obvi-
ously need to access database server involving more net-
work transmission between the web server and database
VMs and file operation in the database. Nonetheless, the
response time for DB access and static file requests follow
the same tendency as the overall result: TOPO-Het resulting
in the best performance whereas FFD without a network
management scheme being the worst. CDF graph of
response time from all requests (Fig. 9b) also shows that
TOPO-Het outperforms compared to baselines.

For App 2 which has been running simultaneously with
App 1, a similar result can be observed in Fig. 10. Compared

to App 1, the overall average response time is increased to
between 155.5 ms and 236.6 ms mainly because of the poor
performance of database VM. In our heterogeneous testbed,
the disk I/O performance of Compute 5 node hosting the
database VM for App 2 is lower than Compute 1 and 2
nodes, because of the hardware specification. Due to the
poor performance, longer response time is observed espe-
cially for DB access requests in App 2. Another reason is
that VMs for App 2 are more scattered across the data center
into smaller compute nodes as observed in Fig. 7 leading to
increasing the network latency.

Nonetheless, we can still see that TOPO-Het outperforms
other baselines although the average response time is
increased compared to App 1. However, network manage-
ment schemes are less effective for App 2 not improving the
response time significantly. In fact, DF method degrades the
overall performance slightly compared to the original FFD,
increasing the response time from 233.3 ms to 236.6 ms. The
reason is that the smaller scale with less number of VMs and
workloads did not generate asmuch network traffic as App 1,
which results in the network bandwidth not a significant bot-
tleneck for the overall performance. Rather than bandwidth
which could be improved by SDCon’s network management
schemes, the poor performance of App 2 is mainly due to the
network latency caused by switches. As shown in Fig. 10a, the
time difference for static file requests are not as high as the dif-
ference for DB access requests between FFD and TOPO-Het.
This implies the network traffic between the database and
web server is improved by TOPO-Het which allocates web
server VMs into the compute node under the same edge as
the database VM.

Fig. 9. Average and CDF of response time measured with Wikipedia workload from App 1.

Fig. 10. Average and CDF of response time measured with Wikipedia workload from App 2.

242 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

In summary, results show that SDCon can perform VM
placement with the intended algorithm, either FFD or
TOPO-Het, as well as configure network settings dynami-
cally through SDN controller based on the selected traffic
engineering scheme. TOPO-Het can improve the applica-
tion performance for both application scenarios by allocat-
ing VMs to nearby compute nodes aware of network
topology, although the level of improvement is different
based on the application configuration, the workload and
the current status of the infrastructure.

7.4 Analysis of Power Consumption

We also measured the power consumption of the testbed
using SDCon. Fig. 11 depicts the aggregated power usage of
all infrastructure per time unit measured at every minute.
Note that the measurement is estimated by calculating from
energy models with the CPU utilization level for compute
nodes and the number of online ports for switches as
explained in Section 4.7. We set Pidle at 147W, 111W, 102W,
and Pidle at 160W, 80W, 80W, for Compute 1-2, 3-6, and 7-8
respectively. For switches, we set Pstatic at 66.7W and Pport at
1W. Although TOPO-Het could leave one compute node
empty, the estimated power consumption is not signifi-
cantly different between two algorithms. Because we did
not implement the method to power off idle compute nodes
and the aggregated CPU utilization level remains similar in
both algorithms, the power consumption was not signifi-
cantly differentiated between algorithms. In summary, the
power consumption of data center with TOPO-Het remains
at least as the same level as the baseline.

Nevertheless, the result of power consumption measure-
ment shows the potential application of SDCon for energy-
related research such as energy-efficient joint resource pro-
visioning. With the full integrity controlling both computing
and networking resources, measuring power usage, and
real-time resource monitoring, empirical studies on SDC are
feasible with SDCon platform.

8 CONCLUSIONS AND FUTURE WORK

The introduction of SDN brings up many opportunities and
challenges when it is applied in cloud computing environ-
ment. The increasing popularity of applying SDN in cloud
data centers demands a management platform which can
jointly control both networking and cloud resources. In this
paper, we introduced SDCon, an integrated control platform
for SDN and clouds to enable orchestrated resource manage-
ment for both resources. SDCon is capable of placing VM
requests and configuring network forwarding rules and QoS

queues with the knowledge of networking and computing
information of the data center. It also implements real-time
monitoring for computing and networking resources which
can be further exploited for dynamic resource provisioning.
The power monitoring module can calculate the estimated
power consumption based on the resource utilization using a
power model, and the visualizer displays an overall status of
the data center.

We also proposed a VM placement algorithm for jointly
considering both computing and networking resources in het-
erogeneous infrastructure. The algorithm consolidates VMs
for the same application with network connectivity into
closely connected compute nodes in order to decrease the net-
work traffic as well as to improve the application perfor-
mance. The algorithm is evaluated on our testbed controlled
by SDCon platform and comparedwith baselines. The results
show that the proposed algorithm outperforms the compared
state-of-the-art baselines. The effectiveness of SDCon’s con-
trollability is also shown through the validation and evalua-
tion experiments, including bandwidth allocation with QoS
configuration and dynamic flow scheduling.

The current version of SDCon has a flaw on the scalabil-
ity for large-scale infrastructure such as those involving
multiple data centers. When we designed and implemented
SDCon, it aims at working on a small-scale testbed config-
ured within the lab, due to the limited infrastructure resour-
ces. Scalability can be achieved by creating a cluster with
multiple instances of SDCon with the introduction of East-
West-bound APIs adopted from SDN controller design [30].
In addition to SDCon, the underlying cloud and SDN con-
trollers (OpenStack and OpenDaylight) have to be able to
scale out in accordance with the size of cloud infrastructure,
e.g., the monitoring modules need more careful attention in
scalability to be able to collect and aggregate the real-time
information in a timely manner.

For the same reason, the evaluation of TOPO-Het algo-
rithm was performed only within the small-scale testbed in
our laboratory with a Wikipedia application. More exten-
sive evaluations can be performed to show the effectiveness
of TOPO-Het in a large-scale infrastructure with various
application models. To support large-scale evaluations, we
have developed a simulator called CloudSimSDN [9] and
evaluated several joint host-network provisioning algo-
rithms [4], [31] in the simulation environment setting. In
these earlier research work, we conducted simulation-based
experiments in large-scale and demonstrated the scalability
of similar joint VM and network resource provisioning
approaches with hundreds of compute nodes and network
switches. In this paper, we followed a similar approach for
designing the integrated platform and the joint provisioning
algorithm, so that our approaches are essentially scalable as
shown in the previous work.

In the future, SDCon can be extended to support alterna-
tive cloud management platforms and SDN controller soft-
wares other than OpenStack and OpenDaylight. The power
monitoring module can be improved for accurate measure-
ments by installing a physicalmonitoring equipment for com-
pute nodes and switches instead of model-based theoretical
calculation. Also, the platform can be improved to support a
variety of network topologies whereas the initial version was
developed in consideration of three-tier Fat-tree topology

Fig. 11. Overall power usage of the testbed estimated from CPU and
network utilization.

SON AND BUYYA: SDCON: INTEGRATED CONTROL PLATFORM FOR SOFTWARE-DEFINED CLOUDS 243

only. More functional features, such as managing virtual net-
work functionalities, network middleboxes, and security
modules, can be added to the platform for autonomic
software-defined clouds. Such features will allow SDCon to
be employed for developing innovative approaches dealing
with energy-aware resource provisioning, NFV scheduling,
and security threat protection. TOPO-Het algorithm can be
improved by importing various migration policies for VMs
and flows to adapt to the dynamic update of the infrastruc-
ture. More evaluations with complex application models
including Map-Reduce and batch processing can be further
performedwith a large-scale testbed.

ACKNOWLEDGMENTS

This work is partially supported by ARC Discovery
Project. We thank Adel Nadjaran Toosi, Minxian Xu,
Editor-in-Chief (Manish Parashar), Associate Editor, and
reviewers for their valuable comments and suggestions that
helped in improving the paper significantly.

REFERENCES

[1] R. Buyya, R. N. Calheiros, J. Son, A. V. Dastjerdi, and Y. Yoon,
“Software-defined cloud computing: Architectural elements and
open challenges,” in Proc. 3rd Int. Conf. Adv. Comput. Commun.
Informat., 2014, pp. 56–74.

[2] Y. Jararweh, M. Al-Ayyoub, A. Darabseh, E. Benkhelifa, M. Vouk,
and A. Rindos, “Software defined cloud: Survey, system and eval-
uation,” Future Generation Comput. Syst., vol. 58, pp. 56–74, 2016.

[3] H. Jin, T. Cheocherngngarn, D. Levy, A. Smith, D. Pan, J. Liu, and
N. Pissinou, “Joint host-network optimization for energy-efficient
data center networking,” in Proc. IEEE 27th Int. Symp. Parallel Dis-
trib. Process., May 2013, pp. 623–634.

[4] J. Son, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “SLA-aware
and energy-efficient dynamic overbooking in SDN-based cloud data
centers,” IEEE Trans. Sustainable Comput., vol. 2, no. 2, pp. 76–89,
Apr. 2017.

[5] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint vm
placement and routing for data center traffic engineering,” in
Proc. IEEE INFOCOM, Mar. 2012, pp. 2876–2880.

[6] K. Zheng, X. Wang, L. Li, and X. Wang, “Joint power optimization
of data center network and servers with correlation analysis,” in
Proc. IEEE INFOCOM, Apr. 2014, pp. 2598–2606.

[7] R. Cziva, S. Jout, D. Stapleton, F. P. Tso, and D. P. Pezaros,
“SDN-based virtual machine management for cloud data cen-
ters,” IEEE Trans. Netw. Serv. Manage., vol. 13, no. 2, pp. 212–
225, Jun. 2016.

[8] K. Zheng, W. Zheng, L. Li, and X. Wang, “PowerNetS: Coordi-
nating data center network with servers and cooling for power
optimization,” IEEE Trans. Netw. Serv. Manage., vol. 14, no. 3,
pp. 661–675, Sep. 2017.

[9] J. Son, A. V. Dastjerdi, R. N. Calheiros, X. Ji, Y. Yoon, and R. Buyya,
“CloudSimSDN: Modeling and simulation of software-defined
cloud data centers,” in Proc. 15th IEEE/ACM Int. Symp. Cluster Cloud
Grid Comput., May 2015, pp. 475–484.

[10] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
rapid prototyping for software-defined networks,” in Proc. 9th
ACM SIGCOMMWorkshop Hot Top. Netw., 2010, Art. no. 19.

[11] C. H. Benet, R. Nasim, K. A. Noghani, and A. Kassler, “Open-
StackEmu - a cloud testbed combining network emulation with
OpenStack and SDN,” in Proc. 14th IEEE Annu. Consum. Commun.
Netw. Conf., Jan. 2017, pp. 566–568.

[12] B. Martini, D. Adami, A. Sgambelluri, M. Gharbaoui, L. Donatini,
S. Giordano, and P. Castoldi, “An SDN orchestrator for resources
chaining in cloud data centers,” in Proc. Eur. Conf. Netw. Commun.,
Jun. 2014, pp. 1–5.

[13] B. Martini, D. Adami, M. Gharbaoui, P. Castoldi, L. Donatini, and
S. Giordano, “Design and evaluation of SDN-based orchestration
system for cloud data centers,” in Proc. IEEE Int. Conf. Commun.,
May 2016, pp. 1–6.

[14] M. Gharbaoui, B. Martini, D. Adami, S. Giordano, and P. Castoldi,
“Cloud and network orchestration in SDN data centers: Design
principles and performance evaluation,” Comput. Netw., vol. 108,
no. Supplement C, pp. 279–295, 2016.

[15] D. Adami, B. Martini, A. Sgambelluri, L. Donatini, M. Gharbaoui,
P. Castoldi, and S. Giordano, “An SDN orchestrator for cloud
data center: System design and experimental evaluation,” Trans.
Emerging Telecommun. Technol., vol. 28, no. 11, 2017, Art. no. e3172.

[16] J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, and
I. M. Llorente, “Cloud brokering mechanisms for optimized place-
ment of virtual machines across multiple providers,” Future Gen-
eration Comput. Syst., vol. 28, no. 2, pp. 358–367, 2012.

[17] A. N. Toosi, C. Qu, M. D. de Assuno, and R. Buyya, “Renewable-
aware geographical load balancing of web applications for sustain-
able data centers,” J. Netw. Comput. Appl., vol. 83, pp. 155–168, 2017.

[18] A. Beloglazov and R. Buyya, “Optimal online deterministic algo-
rithms and adaptive heuristics for energy and performance effi-
cient dynamic consolidation of virtual machines in cloud data
centers,” Concurrency Comput.: Practice Exp., vol. 24, no. 13,
pp. 1397–1420, 2012.

[19] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” in Proc. ACM SIGCOMM
Conf. Data Commun., 2008, pp. 63–74.

[20] S. Pelley, D. Meisner, T. F. Wenisch, and J. W. VanGilder,
“Understanding and abstracting total data center power,” in
Workshop Energy-Efficient Des., 2009.

[21] X.Wang, Y. Yao, X.Wang, K. Lu, andQ.Cao, “CARPO: Correlation-
aware power optimization in data center networks,” in Proc. IEEE
INFOCOM, Mar. 2012, pp. 1125–1133.

[22] J. Kang and S. Park, “Algorithms for the variable sized bin pack-
ing problem,” Eur. J. Oper. Res., vol. 147, no. 2, pp. 365–372, 2003.

[23] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for
cloud computing,” Future Generation Comput. Syst., vol. 28, no. 5,
pp. 755–768, May 2012.

[24] R. Wang, R. Esteves, L. Shi, J. A. Wickboldt, B. Jennings, and
L. Z. Granville, “Network-aware placement of virtual machine
ensembles using effective bandwidth estimation,” in Proc. 10th
Int. Conf. Netw. Serv. Manage. Workshop, Nov. 2014, pp. 100–108.

[25] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A.M. Tekalp, “OpenQoS:
An OpenFlow controller design for multimedia delivery with end-
to-end quality of service over software-defined networks,” in Proc.
Asia-Pacific Signal Inf. Process. Assoc. Annu. Summit Conf., Dec. 2012,
pp. 1–8.

[26] R. Wang, S. Mangiante, A. Davy, L. Shi, and B. Jennings, “QoS-
aware multipathing in datacenters using effective bandwidth esti-
mation and SDN,” in Proc. 12th Int. Conf. Netw. Serv. Manage.,
Oct. 2016, pp. 342–347.

[27] K. Zheng, X. Wang, and J. Liu, “DISCO: Distributed traffic flow
consolidation for power efficient data center network,” in Proc.
16th Int. IFIP TC6 Netw. Conf. Netw., 2017, pp. 1–9.

[28] F. P. Tso, D. R. White, S. Jouet, J. Singer, and D. P. Pezaros, “The
Glasgow Raspberry Pi cloud: A scale model for cloud computing
infrastructures,” in Proc. IEEE 33rd Int. Conf. Distrib. Comput. Syst.
Workshops, Jul. 2013, pp. 108–112.

[29] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload
analysis for decentralized hosting,” Elsevier Comput. Netw., vol. 53,
no. 11, pp. 1830–1845, Jul. 2009.

[30] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of
software-defined networking,” IEEE Commun. Mag., vol. 51, no. 2,
pp. 136–141, Feb. 2013.

[31] J. Son and R. Buyya, “Priority-aware VM allocation and network
bandwidth provisioning in software-defined networking (SDN)-
enabled clouds,” IEEE Trans. Sustainable Comput., 2018. [Online].
Available: http://doi.org/10.1109/TSUSC.2018.2842074

Jungmin Son is a Research Associate within CLOUDS Laboratory,
University of Melbourne, Australia.

Rajkumar Buyya is a Redmond Barry distinguished professor and the
director with CLOUDS Laboratory, University of Melbourne, Australia.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

244 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

http://doi.org/10.1109/TSUSC.2018.2842074

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

