
Task Runtime Prediction in Scientific Workflows Using an Online
Incremental Learning Approach

Muhammad Hafizhuddin Hilman, Maria A. Rodriguez and Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory

School of Computing and Information Systems
The University of Melbourne, Australia

Email: hilmanm@student.unimelb.edu.au, {marodriguez, rbuyya}@unimelb.edu.au

Abstract—Many algorithms in workflow scheduling and re-
source provisioning rely on the performance estimation of tasks
to produce a scheduling plan. A profiler that is capable of
modeling the execution of tasks and predicting their runtime
accurately, therefore, becomes an essential part of any Workflow
Management System (WMS). With the emergence of multi-tenant
Workflow as a Service (WaaS) platforms that use clouds for
deploying scientific workflows, task runtime prediction becomes
more challenging because it requires the processing of a significant
amount of data in a near real-time scenario while dealing with
the performance variability of cloud resources. Hence, relying
on methods such as profiling tasks’ execution data using basic
statistical description (e.g., mean, standard deviation) or batch
offline regression techniques to estimate the runtime may not be
suitable for such environments. In this paper, we propose an online
incremental learning approach to predict the runtime of tasks in
scientific workflows in clouds. To improve the performance of the
predictions, we harness fine-grained resources monitoring data in
the form of time-series records of CPU utilization, memory usage,
and I/O activities that are reflecting the unique characteristics of
a task’s execution. We compare our solution to a state-of-the-art
approach that exploits the resources monitoring data based on
regression machine learning technique. From our experiments,
the proposed strategy improves the performance, in terms of the
error, up to 29.89%, compared to the state-of-the-art solutions.

Keywords-task runtime prediction; online incremental learning;
scientific workflow

I. INTRODUCTION

Cloud computing environments provide a broad range of

advantages for the deployment of scientific applications, es-

pecially the ability to provision a large number of resources

with a pay-per-use pricing scheme. This characteristic meets

the need of scientists that define applications in the form

of workflows. Scientific workflows are composed of multiple

tasks with dependencies between them. Such workflows are

large-scale applications and require a considerable amount

of resources to execute. Recent studies show a plethora of

algorithms were designed to schedule scientific workflows in

clouds [1]. The majority of the solutions are based on heuristic

and metaheuristic approaches which attempt to find a near-

optimal solution to this NP-hard problem. These optimization

techniques in scheduling rely on the estimation of task runtime

and resource performance to make scheduling decisions. This

estimate is vital, especially in cost-centric, dynamic environ-

ment like clouds. An inaccurate estimate of a task’s runtime in

scientific workflows has a snowball effect that may eventually

lead to all of the successors of the task taking longer time

than expected to complete. In the end, this will have a negative

impact on the total workflow execution time (i.e., makespan)

and inflict an additional cost for leasing the cloud resources.

With the emergence of multi-tenant WaaS platforms that deal

with a significant amount of data, having a module within

the system that can predict the task’s runtime in an efficient

and low-cost fashion is an ultimate requirement. WaaS is an

emerging concept that offers workflow execution as a service

to the scientific community. WaaS can be categorized as either

Platform as a Service (PaaS) or Software as a Service (SaaS)

on the cloud stack service model. WaaS provides a holistic

service for scientific workflows execution and deals with the

complexity of multi-tenancy, in contrary to a regular WMS

that is commonly used for managing the scientific workflow

execution of a single user. WaaS platforms are designed to

process multiple workflows from different users. In this case,

the workload of workflows is expected to arrive continuously,

and the workflows must be handled as soon as they arrive

due to the quality of service (QoS) constraints defined by the

users. Hence, these platforms need to be capable of processing

requests in a near real-time fashion. The runtime prediction of

tasks must be achieved in a fast and reliable way due to the

nature of the environment. Moreover, WaaS platforms make

use of the distributed resources provided by the Infrastructure

as a Service (IaaS) providers. Therefore, the prediction method

should be able to adapt to a variety of IaaS cloud computational

infrastructure seamlessly.

Predicting task runtime in clouds is non-trivial, mainly due

to the problem in which cloud resources are subject to per-

formance variability [2]. This variability occurs due to several

factors–including virtualization overhead, multi-tenancy, geo-

graphical distribution, and temporal aspects [3]–that affect not

only computational performance but also the communication

network used to transfer the input/output data [4]. In this area,

most of the existing approaches are based on the profiling of

tasks using basic statistical description (e.g., mean, standard

deviation) to summarize the existing historical data of scientific

workflow executions to characterize the tasks, which then is

exploited to build a performance model to predict the task

runtime. Another approach uses a profiling mechanism that

executes a task in a particular type of resource and utilizes the

measurement as an estimate. These methods are impractical to

adopt in cloud computing environments. Relying only on the

profiling based on the statistical description does not capture

sudden changes in the cloud’s performance. For example, it is

not uncommon for a task to have a longer execution time during

93

2018 IEEE/ACM 11th International Conference on Utility and Cloud Computing (UCC)

978-1-5386-5504-7/18/$31.00 ©2018 IEEE
DOI 10.1109/UCC.2018.00018

a specific time in cloud instances (i.e., peak hours). Hence,

averaging the runtime data without considering the temporal

factors will only lead to inaccurate predictions. Meanwhile,

profiling tasks by executing them in the desired type of

resources will lead to an increase in the total execution cost

because the profiler requires an extra budget to estimate the

runtime.
On the other hand, machine learning approaches can be

considered as a state-of-the-art solution for prediction and

classification problems. Machine learning approaches learn the

relation between a set of input and its related output through

intensive observation from characteristics of the data, usually

referred to as features. To capture several aspects that affect the

cloud’s performance variation, machine learning may provide

a better solution by considering temporal changes and other

various factors in task’s performance as features.
In the case of predictions, the conventional machine learning

approaches are based on a regression function that estimates

the runtime of a task from a set of features. Evaluating these

techniques to predict the task runtime in WaaS platforms is

out of our scope. We are interested in exploring various ways

of determining the features on which the regression functions

depend on. Typical variables that are being used as features

to predict the task runtime are based on the workflow appli-

cation attributes (e.g., input data, parameters) and the specific

hardware details (e.g., CPU capacity, memory size) in which

the workflows are deployed. This information is relatively easy

to extract, and their values are available before the runtime.

However, with the rising trend of cloud computing to deploy

the scientific workflows, some of these variables that are related

to the specific hardware details may become inaccurate to

represent the computational capacity due to the performance

variability of cloud instances.
Moreover, we found that, as a part of the anomaly detection

in executing scientific workflows, some WMS are equipped

with the capability to monitor the runtime of tasks by collecting

their resource consumptions in a time-series manner. This is

a more advanced approach than typical resource consumption

monitoring method that store only the single value of the total

resource usage of a task’s execution. We argue that time-series

data of a task’s resource consumption may represent better

information of a task’s execution to be used as features.
Based on these requirements, we propose an online in-

cremental learning approach for task runtime prediction of

scientific workflows in cloud computing environments. The

online approach can learn as data becomes available through

streaming. The online approach is fast since the model only

sees and processes a data point once when the task finishes.

The incremental approach enables the model to capture the

environmental changes such as peak hours in clouds and is

capable of adapting to the heterogeneity of different IaaS

cloud providers. We also propose to utilize resource monitoring

data such as memory consumption and CPU utilization that is

collected continuously based on a configurable time interval

in the form of time-series records. In summary, the main

contributions of this paper are:

1) The adoption of online incremental learning approach to

predict task runtime in cloud environments.

2) The use of fine-grained resources monitoring data in the

form of time-series records to enhance the task runtime

prediction.

The rest of this paper is organized as follows. Section II

reviews works that are related to our paper. Section III describes

the problem definition. Meanwhile, Section IV explains online

incremental learning and Section V describes the proposed

solution. Performance evaluation is presented in Section VI.

Furthermore, Section VII discusses the results and analysis.

Finally, the conclusions and future work are depicted in Section

VIII.

II. RELATED WORK

The profiling of task’s performance in scientific workflows

has been extensively studied to create a model that can be

used to estimate runtime. The work is useful for improving the

scheduling of workflows as the estimation accuracy affects the

precision of scheduling algorithms’ performance. A study by

Juve et al. [5] discusses the characterization and profiling of

workflows based on the system usage and requirements that can

be used for generating a model for estimating the task runtime

based on a basic statistical description. Our work differs in that

we use machine learning to predict task runtime instead of the

statistical description to summarize the profiling data.

Another work of task runtime prediction for scientific work-

flows uses an evolutionary programming approach in searching

the workflow execution similarities to create a template based

on the workflow structure, application type, execution envi-

ronment, resource state, resource sharing policy, and network

[6]. The template that refers to a set of selected attributes

of scientific workflow execution is later used to generate a

prediction model for task runtime in a grid computing envi-

ronment. The use of evolutionary programming is known for

its computational intensiveness as the search space increases.

It differs from our work which is based on an online approach

to achieve fast predictions.

A runtime estimation framework built for ALICE (A Large

Ion Collider Experiment) profiles a sample of tasks by exe-

cuting them before the real workflow execution to predict their

runtime [7]. The framework captures the features of sample task

execution records and uses them as an input for the prediction

model. This approach is suitable for massive established com-

putational infrastructures, but may not be appropriate for cloud

computing environments. Our work considers clouds, therefore,

we avoid additional costs as much as possible by doing extra

execution for the sake of profiling to predict task runtime.

The works that consider machine learning approaches are

dominating the state-of-the-art of task runtime prediction. Re-

gardless of the type of machine learning techniques that are

being used, the proposal by Da Silva et al. [8] exploited the

workflow application attributes–such as input data, parameters,

and workflow structure–as features to build the prediction

models. These attributes uniquely adhere to the tasks and are

available before the execution. However, in WaaS platforms

94

Fig. 1: Workflow as a Service (WaaS) architecture

where the resources are leased from third-party IaaS providers,

the hardware heterogeneity may result in different performance

even for the same task of the workflow.

In this case, the other works combine the workflow ap-

plication attributes with specific hardware details where the

workflows are deployed, as features. Matsunaga and Fortes

[9] used application attributes (e.g., input data, application

parameters) in combination with the system attributes (e.g.,

CPU microarchitecture, memory, storage) to build the predic-

tion model for resource consumption and task runtime. Another

work by Monge et al. [10] exploited the task’s input data

and historical provenance data from several systems to predict

task runtime in the gene-expression analysis workflow. The

combination of application and hardware attributes provides

better profiling of task’s execution that arguably results in the

improvement of task runtime prediction.

However, only using features for which the values are

available before runtime–such as application attributes and

hardware details–may not be sufficient to profile the task’s

execution time in cloud environments. Therefore, further works

in this area consider the specific execution environment (e.g.,

cloud sites, submission time) and the resource consumption

status (e.g., CPU utilization, memory, bandwidth) as features.

Some of these may be available before runtime (e.g., execution

enviroment) but most of them (e.g., resource consumption

status) can only be accessed after the task’s execution. Hence,

the latest variables are mostly known as runtime features

as their collection occurs during the task’s execution. This

runtime features plausibly provide better profiling of the task’s

execution in cloud environments. The works that exploit this

approach such as Seneviratne and Levy [11], used linear regres-

sion to estimate this runtime features–such as CPU and disk

load–before using them to predict the task runtime. Meanwhile,

Pham et al. [12] proposed a similar approach, called two-

stage prediction, to estimate the resources consumption (e.g.,

CPU utilization, memory, storage, bandwidth, I/O) of a task’s

execution in particular cloud instances before exploiting them

for task runtime prediction.

Nonetheless, these related works are based on batch offline

machine learning approaches. The batch offline approach poses

an inevitable limitation in WaaS platforms. This limitation is

related to the streaming nature of workloads in WaaS platforms

that need to be processed as soon as they arrive in a near

real-time fashion. Our work differs in that we use an online

incremental approach and exploit the time-series resource mon-

itoring data to predict the task runtime.

III. PROBLEM DEFINITION

This work considers workflows that are modeled as directed

acyclic graphs (DAGs), graphs that have directed edges and

have no cycles. A workflow W is composed of a set of tasks

T = (t1, t2, . . . , tn) and a set of edges E = (e12, e13, ..., emn)
in which an edge eij represents a dependency between task ti
that acts as a parent task and task tj as child task. Hence, tj will

only be ready for execution after ti has been completed. We

assume the execution of these workflows is done via a WaaS

platform, and a reference architecture for this system focusing

on the scheduler component is shown in Figure 1.

The platform consists of a submission portal in which work-

flows are continuously arriving for execution. These workflows

are processed by the scheduler, which is responsible for placing

the tasks on either existing or newly acquired resources. The

scheduler has four main components: task runtime estimator,

task scheduler, resource provisioner, and resource monitor. The

task runtime estimator is used to predict the amount of time a

task will take to complete in a specific computational resource

(i.e., virtual machine). The task scheduler is used to map a

task into a selected virtual machine for execution. The resource

provisioner is used to acquire and release virtual machines from

third-party providers and allocate. The resource monitor is used

to collect the resource consumption data of a task executed in

a particular virtual machine and the collected data are stored

in a monitoring database.

In this work, we focus on the task runtime estimator. We as-

sume running tasks are continuously monitored to measure their

resource consumption in a specific computational resource. The

usage of different resources such as CPU, memory, and I/O are

captured by different metrics. These are described in Table I.

As a result, the data collected for each task and each metric

correspond to a series of tuples consisting of a timestamp t
and a value v (< t, v >), where the value corresponds to

a specific resource consumption measurement. The measure-

ment’s frequency is configurable by a time interval τ . Smaller

τ values translate into more frequent resource consumption

measurements, while larger values reduce the frequency and

result in less monitoring data. These time-series records are

95

Table. I: Description of runtime resource consumption metrics

Resource Metric Description

CPU

procs Number of process
stime Time spent in user mode
threads Number of threads
utime Time spent in kernel mode

Memory vmRSS Resident set size
vmSize Virtual memory usage

I/O

iowait Time spent waiting on I/O
rchar Number of bytes read using any read-like syscall
read bytes Number of bytes read from disk
syscr Number of read-like syscall invocations
syscw Number of write-like syscall invocations
wchar Number of bytes written using any write-like syscall
write bytes Number of bytes written to disk

stored in a monitoring database, which are later used by the

task runtime estimator.

We also assume some features describing a given task and

its execution environment are available. In particular the task’s

profile, virtual machine configuration used for the task’s execu-

tion, and the task’s submission time. These are shown in Table

II and are referred to from now on as pre-runtime features. The

problem becomes then on efficiently utilizing these pre-runtime

data in conjunction with the resource monitoring time-series

data to accurately estimate the runtime of a task in an online

incremental manner, that is, as it arrives for execution.

IV. ONLINE INCREMENTAL MACHINE LEARNING

In general, machine learning methods are employed to learn

some insights from patterns in available data and to predict

future events. Classical batch offline learning, which learns

from an already collected, and accessible dataset, is not suitable

for processing a rapid volume of data in a short amount of time.

A reason for this is the fact that these methods usually require

the entire dataset to be loaded into memory. Furthermore,

batch offline methods do not continuously integrate additional

information as the model incrementally learns from new data,

but instead reconstruct the entire model from scratch. This is

not only time consuming and compute intensive, but also may

not be able to capture the temporal dynamic changes in the

data statistics. As a result, batch offline learning methods are

not appropriate for dynamic environments that introduce and

analyze a significant amount of data in a streaming way, such

as WaaS platforms.

Instead, online incremental learning has gained significant

attention with the rise of big data and internet of things (IoT)

trends as it deals with a vast amount of data that does not

fit into memory and may come in a streaming fashion. As

a result, we propose the use of two algorithms implemented

using online incremental learning approaches to estimate the

runtime of tasks in a near real-time fashion, namely Recurrent

Neural Network (RNN) and K-Nearest Neighbors (KNN).

Online incremental learning methods fit naturally into WaaS

environments since they incrementally incorporate new insights

from new data points into the model and traditionally aim to use

minimal processing resources as the algorithms read the new

data once available. The other advantage worth noting is that

incremental learning enables the model to adapt to different

Table. II: Description of pre-runtime configuration

Name Description

Task
name Name of the task
id ID for a particular type of task
input Input name for a task

VM Type
memory Memory capacity
storage Storage capacity
vcpu Number of virtual processor

Submission Time day submission day
hour submission hour

underlying infrastructures. Hence, it enables the creation of

models that are agnostic to platforms for deployment.

A. Recurrent Neural Networks

A special type of RNN called Long Short-Term Memory

networks (LSTMs) is capable of remembering information for

an extended period of time [13]. Instead of having a simple

layer as in regular RNNs, an LSTM network has four unique

plus one hidden layers in repeating modules that enable them

to learn the context and decide whether the information has to

be remembered or forgotten. These layers are a memory unit

layer c, three types of gate layers- the input gate i, the forget

gate f , and the output gate o- plus a hidden state h.

For each time step t, LSTM receives a set of values xt

corresponding to the different features of the data, and the

previously hidden state ht−1 that contains the context from

previous information as input. Then, LSTM computes the

output of the gates based on the activation function which

includes the weights and biases of each gates. Finally, this

process can be repeated and configured for it to produce an

output sequence {ot, ot+1, ot+2, ot+3, . . ., ot+n} as the

prediction result.

Based on these capabilities, LSTM becomes a suitable ap-

proach and shows promising results for time-series analysis

[14]. Moreover, it supports online learning since the imple-

mentation of LSTM in Keras1 provides batch size variable

that limits the number of data to be trained. A batch size
value of 1 is used for an online learning approach. Keras

also accommodates incremental learning as it incorporates the

ability to update the LSTM model whenever new information

is obtained continuously.

B. K-Nearest Neighbor

K-Nearest Neighbor (KNN) is a machine learning algorithm

that generates classification/prediction by comparing new prob-

lem instances with instances seen in training. KNN computes

distances or similarities of new instances to the training in-

stances when predicting a value/class for them. Given a data

point x, the algorithm computes the distance between that data

and the others in the training set. Then, it picks the nearest K
training data and determines the prediction result by averaging

the output values of these K points.

KNN is widely used for prediction in many areas from signal

processing [15] to time-series analysis [16] that resembles

1https://keras.io/

96

sequential problems. One of the implementations of KNN is the

IBk algorithm [17] that is included in the WEKA data mining

toolkit [18]. It incorporates the capability to learn the data

incrementally. While the lazy behavior of KNN is compute-

intensive and may slow down the performance as the training

set increases, IBk incorporates a window size variable that

enables the algorithm to maintain a number of records from

the training set. This capability achieves the trade-off between

learning accuracy and speed that is determined by the size of

the window by dropping the older data as new data is added

to the set. This basic function becomes an advantage for the

algorithm to handle the changes in the statistics of the data.

V. TASK RUNTIME PREDICTION USING TIME-SERIES

MONITORING DATA

In this study, we aim to predict the runtime of the task in a

WaaS platform. Given a set of pre-runtime features as listed

in Table II, we build a model using an online incremental

approach that can give an estimate of the time needed to

complete a task in a specific virtual machine. In particular, we

implement a task runtime estimator module that can be easily

plugged in into a WaaS platform and the only requirements

being (i) access to the pre-runtime features of a task and

(ii) a resource consumption monitoring system that records

data in a time-series database. We make use of these data to

incrementally build the model as a task finishes its execution.

Specifically, when a task is fed into the WaaS scheduler,

the algorithm extracts its pre-runtime features and predicts

its resource consumption estimation for each metric using

LSTM. Then, each resource consumption of a task (i.e., first

phase prediction result) is processed to get a representative

and distinctive value from the time-series. This process is

called feature extraction. Afterward, this value from the feature

extraction along with the pre-runtime features are fed to IBk to

predict the task’s runtime. This process is outlined in Algorithm

1. From now on, we refer to our proposed approach as the time-

series scenario.

We propose a framework in which multiple prediction mod-

els, one for each task in the workflow, are maintained, rather

than having a single prediction model for all tasks submitted

into the system. We argue that this approach has three main

benefits (i) a single prediction model contains information that

may act as noise for different tasks, (ii) the size of a single

model will grow as the number of tasks increases; this may

not be scalable to the size of memory, (iii) multiple models

can be maintained by temporarily saving unused models into

disk and being loaded whenever the corresponding task needs

to be processed. Furthermore, multiple models allow the system

to optimize predictions as each model can be fine-tuned to a

specific task’s requirements (e.g., feature selection).

To execute the workflows and collect the monitoring data

as outlined in Section III, we use the Pegasus [19] WMS that

is equipped with a monitoring plugin as part of the Panorama

[20] project. The monitoring is done at a task level. Therefore,

the measurements correspond to the independent execution of

a task in a particular type of resource at a specified time.

Algorithm 1 Task runtime prediction

Input: a task of the workflow ti
Input: a virtual machine type vi
Input: submission time si
Output: runtime prediction α for ti on vi at si

1: while incoming task t in WaaS do
Phase 1:

2: σi ← extract pre-runtime features for ti on vi at si
Phase 2:

3: for selected runtime features R of task ti do
4: {rj1 , rj2 , .., rjn} ← predict resource

consumption rj of ti using σi

5: ςj ← extract feature of time-series
{rj1 , rj2 , .., rjn} using Equation 1

Phase 3:
6: α← predict runtime of ti using σi

and a set of features {ς1, ς2, .., ςn} from R

The first phase of task runtime prediction extracts the pre-

runtime configurations σi of a task ti and the particular

computational resource type vi where the task will run. These

are listed in Table II. We decided to include the submission

time (i.e., day and hour) to capture performance variability in

clouds. For instance, a study by Jackson et al. [2] show that

the CPU performance of VMs in clouds was varied by 30% in

compute time. Furthermore, Leitner and Cito [3] suggest that

different running time may affect the performance of cloud’s

resources.

Then, in the second phase, given the set of pre-runtime

features σi of a task ti, we estimate the resource consumption

time-series Ri for each metric defined in Table I using LSTM.

The LSTM model is incrementally updated using data obtained

after task th finishes executing. These data consist of its

pre-runtime features σh and a set of resource consumption

time-series Rh collected during the runtime. LSTM learns the

resource consumption sequence per time step t and predicts the

value of time step t+ 1 that are separated by time interval τ ,

and repeats the process until it reaches a desired time-series

length n of time step t + n. Since every task has a different

length of resource consumption record, we padded the end of

the sequence with zeros until a specified length and removed

the padded values at the end of the prediction. It needs to

be noted that not all collected metrics have to be used in the

prediction model as features. Feature selection can be done at

this stage by calculating the Pearson’s correlation coefficient ρ
of each metric to the actual task runtime [21].

The next step in the second phase is time-series feature

extraction. The estimated time-series resource consumption Ri

for a particular task ti is pre-processed before being used as

feature to estimate the task runtime in the third phase. We used

time-reversal asymmetry statistic [22] to extract values ςi from

the estimated resource consumption Ri as shown in Equation

1,

ςi(l) =
〈(xt+l − xt)

3〉
〈(xt+l − xt)2〉 3

2

(1)

The feature that is extracted using this algorithm may represent

the distinct time-series instance characteristics by calculating a

97

(a) 1000 Genome workflow (b) Autodock Vina workflow

Fig. 2: Sample of bioinformatics workflows

value of specified sub-sequence with a window size determined

by lag value l and performing surrogate data test 〈.〉 across the

time-series. In a study by Fulcher and Jones [22], this technique

has been proven to be able to classify the time-series dataset

of four classes using only one feature without error.

Finally, in the third phase, the extracted relevant features

ςi for a task ti from the second phase are combined with its

pre-runtime features σi to predict the runtime using the IBk

algorithm.

VI. PERFORMANCE EVALUATION

We evaluate the proposed approach with two workflows from

the bioinformatics field. The first workflow is based on the 1000

Genomes Project2, an international effort to establish a human

genetic variation catalog. Specifically, we use an existing 1000

Genome workflow3 developed by Pegasus to identify overlap-

ping mutations. It provides a statistical evaluation of potential

disease-related mutations. Its structure is shown in Figure 2a.

For our experiments, we analyze the data corresponding to three

chromosomes (chr20, chr21, and chr22) across five populations:

African (AFR), Mixed American (AMR), East Asian (EAS),

European (EUR), and South Asian (SAS).

The second workflow uses AutoDock Vina [23]–a molec-

ular docking application–to screen a large number of ligand

libraries for plausible drug candidates (i.e., virtual screening).

In particular, we use a virtual screening case of one receptor and

forty ligands with various sizes and search spaces of docking

box taken from the Open Science Grid Project4. The molecular

docking tasks (i.e., AutoDock Vina) in this workflow can be

considered as a bag of tasks where every task of receptor-

ligand docking can be executed in parallel before the compound

selection task takes place to select the drug candidates. The

structure of the virtual screening workflows using AutoDock

Vina is depicted in Figure 2b.

To the best of our knowledge, this is the first work that

predicts the runtime of workflow tasks using an online incre-

mental learning approach. Hence, to compare our work with

existing state-of-the-art solutions of task runtime prediction,

we reproduce the batch offline learning work by da Silva et

2http://www.internationalgenome.org/about
3https://github.com/pegasus-isi/1000genome-workflow
4https://confluence.grid.iu.edu/display/CON/Autodock-Vina workflow

al. [8] that makes use of a task’s input data as a feature to

predict the task runtime. We refer to this approach as the

baseline scenario. We also replicate the two-stages task runtime

prediction in batch offline learning methods by Pham et al. [12],

which combined the use of input data, system configuration,

and resource consumption to predict task runtime. We refer

to this solution as the two-stages scenario. The latest solution

is similar to our work except that we use the fine-grained

resource consumption time-series data instead of an aggregated

value of the consumed resources. We also implement an online

incremental version of both solutions to be compared with our

proposed approach. To ensure the fairness of each evaluation,

we use the IBk algorithm with the default configuration for

both batch offline and online incremental learning scenarios.

A. Experiment Setup

We set up the system on NeCTAR5 cloud resources to evalu-

ate the approaches. We use three different virtual machine types

from NeCTAR which are small, medium, and large flavors with

eight, four, and two nodes configuration respectively. They are

configured to have the same storage capacity and operating

system as depicted in Table III.

For the experiment, we have generated between 900 and

12,000 executions for every task. The details of these tasks are

depicted in Table IV. The resource consumption metrics for

each running task are collected every time interval τ seconds,

where 1 ≤ τ ≤ 30. Specifically, we use τ values of 1, 5, 10, 15,

and 30 to analyze the trade-off between time-series granularity

and learning performance. Furthermore, we define the lag

values l as l = 2 and l = 3 to see the effect of time-series

data length on the feature extraction algorithm. The average

runtime for task individuals is 158 seconds while individuals
merge is 37 seconds. The shortest average runtime that can

be monitored is 10 seconds for task mutation overlap while

frequency records 178 seconds on average and the autodock
vina task shows the average runtime of 353 seconds. In this

work, we do not consider the sifting task from the 1000 genome

workflow and the compound selection task from the virtual

screening workflow in our experiments since it has a very short

runtime (under 1 second).

5https://nectar.org.au/

98

Table. III: NeCTAR virtual machines configuration

VM Type vCPU Memory Storage Operating System
m2.small 1 4GB 100GB CentOS 7 (64-bit)
m2.medium 2 6GB 100GB CentOS 7 (64-bit)
m2.large 4 12GB 100GB CentOS 7 (64-bit)

Regarding the machine learning algorithms, there are several

configurable parameters for each of them. In general, we use

the default configurations from their original implementation.

It needs to be noted that we do not fine-tune the algorithms to

get the optimal configurations for this problem. Hence, further

study to analyze the optimal configurations should be done as

future work.

For the LSTM in resource consumption estimation, we use

batch size = 1 since the system requires the data is only

seen once. Our LSTM implementation uses sigmoid as gates

activation function, ten hidden layers, and one hundred epochs
to train the model. Meanwhile, for IBk, we use the default

parameter values used by the version 3.8 of the WEKA library

where k = 1, no distance weighting, and linear function for

the nearest neighbors search algorithm. For our batch offline

learning experiments, we use various sizes of training data d to

see the performance of classical batch offline learning related

to the amount of data collection needed for building a good

model for prediction. Specifically, we use the d values of 20%,

40%, 60%, and 80% in the experiments.

To validate the performance of our approach, we use relative

absolute error (RAE) as a metric for evaluation as recomended

in an empirical study by Armstrong et al. [24] over several

alternative metrics as shown in Equation 2,

RAE =

∑n
i=1 | rij − eij |

∑n
i=1 | rij − 1

n

∑n
i=1 rij |

(2)

where n is the number of predictions. The smaller the RAE

value, the smaller the difference between the predicted value

and the actual observed value.

VII. RESULTS AND ANALYSIS

In this section, we present and analyze the results of the

experiments. We evaluate our proposed approach against the

modified online incremental version of the baseline and two-

stages scenarios. To ensure the fair comparison, we also present

the results of their original batch offline version for task run-

time prediction. Furthermore, we discuss the feature selection

evaluation for our proposed approach that can improve the

performance of the model for predictions.

A. Proposed Approach Evaluation

We evaluate our proposed approach with various time in-

tervals τ , and time-series lags l. The value of time interval τ
affects how often the system records the resource consumption

of a particular task and impacts the length of the time-series

data. Meanwhile, the value of the lag l that defines the time-

reversal asymmetry statistics in feature extraction relies on the

length of the time-series. Larger lag values may not be able to

Table. IV: Summary of datasets

Workflow Task Name Tasks per Total Tasks
Workflow Generated

1000 Genome

individuals 10 9000
individuals merge 1 900
sifting 1 900
mutation overlap 7 6300
frequency 7 6300

Virtual Screening autodock vina 40 12000
compound selection 1 3000

capture the distinctive profile of a short resource consumption

time-series. Hence, we fine-tune these parameters for each task

differently. The results of these experiments are depicted in

Table V; It is important to note that these do not include

the feature selection mechanism in learning as we separate its

evaluation in a different section.

In general, our proposed approach produces lower RAE

compared to the baseline scenario and two-stages scenario.

From Figure 3 we can see that exploiting fine-grained resource

consumption significantly reduces the RAE of task runtime

prediction for individuals, individuals merge, and frequency.

Our proposed strategy shows a better result than baseline and

two-stages for mutation overlap and autodock vina although the

difference is marginal. In this case, the fine-grained resource

consumption features extracted using time-reversal asymmetry

statistics may have a higher distinctive property that can

characterize each instance uniquely compared to the aggregated

value of resource consumption that is being used in the two-

stages scenario.

Further analysis from Figure 3 can explain the impact of

lag values l on the performance. This graph shows the result

from baseline scenario, two-stages scenario, the best result from

time-series (l = 2) and (l = 3) scenarios. As we can see

the lag value l = 3 produces better results than l = 2 for

all cases except mutation overlap and autodock vina with a

marginal difference. In general, a higher lag value means a

wider window size of the time-series to be inspected during

the time-series feature extraction. However, if the length of the

Fig. 3: Summary of task estimation errors (RAE) using online

incremental learning approach

99

Table. V: Results of task estimation errors (RAE) using online incremental learning approach

Task Baseline Two-Stages Time-Series (l = 2) Time-Series (l = 3)
τ = 1s τ = 5s τ = 10s τ = 15s τ = 1s τ = 5s τ = 10s τ = 15s

individuals 64.200 57.571 41.748 41.675 41.722 41.175 39.180 40.680 46.601 41.710
individuals merge 42.162 36.144 34.706 31.474 36.417 42.162 33.300 29.553 42.162 42.162
mutation overlap 5.778 3.615 3.413 3.682 5.729 5.778 3.861 3.949 5.778 5.778
frequency 48.971 37.327 35.523 31.039 30.812 32.251 35.386 30.499 35.108 32.368

autodock vina 5.380 5.153 4.170 4.062 4.023 4.081 4.140 4.045 4.049 4.090

Table. VI: Results of task estimation errors (RAE) using batch offline learning approach

Task Baseline Two-Stages
d = 20% d = 40% d = 60% d = 80% d = 20% d = 40% d = 60% d = 80%

individuals 65.543 62.587 64.523 66.049 59.117 57.625 57.113 55.080
individuals merge 42.522 42.256 37.936 37.424 37.177 35.227 34.312 31.129
mutation overlap 4.952 4.192 4.138 3.967 4.037 3.598 3.188 2.936
frequency 51.919 50.257 49.101 45.740 44.048 39.675 38.493 36.622
autodock vina 5.036 4.820 4.654 4.597 4.847 4.651 4.529 4.627

time-series is not long enough, the time-reversal asymmetry

statistics cannot fully capture the distinctive characteristics of

time-series instance. In mutation overlap case, many of the

resource consumption time-series length is too short to be

evaluated using value l = 3. Hence, the performance of the

algorithm with lag value l = 2 achieves the lowest RAE.

Meanwhile, for autodock vina, the trade-off between frequency

measurement τ and lag l cannot be determined as the difference

in error results in these various scenarios is insignificant.

Comprehensive results of the online incremental learning

approaches can be seen in Table V. From the table, we can

analyze the impact of configurable parameters to the algo-

rithm’s performance. Individuals achieves the lowest RAE for

l = 3 and τ = 1s. Moreover, individuals merge presents

the best result for l = 3 and τ = 5s and mutation overlap
shows the best result for l = 2 and τ = 1s. Meanwhile,

frequency gets the lowest RAE for l = 3 and τ = 5s.

Lastly, autodock vina achieves the lowest RAE for l = 2
and τ = 10s. These results confirm our analysis from the

previous discussion related to the length of time-series record

and the configurable parameters. Furthermore, from the table,

we can see that in several cases, the performance deteriorates

to the value of baseline performance. This happens when the

time-reversal asymmetry statistics cannot capture the time-

series feature property because of the length limitation and the

feature extraction algorithm simply gives zero values. Hence,

it produces the same result as the baseline scenario.

Therefore, the value of two configurable parameters in time-

series feature extraction is an essential aspect in fine-tuning

the prediction model. While in general, we can see that a

higher lag l value produce a lower RAE, assigning appropriate

measurement interval τ must be further analyzed. There is no

exact method to determine this frequency measurement value

that is related to the prediction performance. The only known

fact that this value inflicts the size of time-series records to be

stored in the monitoring database. We leave this problem as

future work to improve the task runtime prediction method.

B. Batch Offline Evaluation

Since the original version of the baseline and two-stage

scenarios are implemented in batch offline methods, we also

evaluate these approaches to compare with their online incre-

mental version. We use various sizes of training data d and test

it using the rest of the data (i.e., 100% − d) for the baseline

and two-stages scenarios. The result of this experiments is

depicted in Table VI. In general, the performance of prediction

model improves as the size of data training increases. The

results show the same trend for both baseline and two-stages

scenarios, but it clearly shows that the two-stages outperform

the baseline scenario for all cases. However, the performance of

algorithms on more considerable data training becomes a trade-

off to the temporal aspect that is critical in WaaS platforms.

This criticality is related to the juncture for collecting the

data needed to build the model and the speed to compute the

data training. Hence, more extensive data training may result

in the better algorithm performance but on the other hand,

a disadvantage to the WaaS platform. The results show the

dependency of batch offline learning methods to the size of

data collection for building a prediction model.

Furthermore, we evaluate our online incremental learning

version of the baseline and two-stages scenarios. The results of

the online incremental learning approaches are shown in Table

V. For the baseline and two-stages scenario, the difference in

batch offline and online incremental learning is similar in all

cases. We notice that the batch offline approaches outperform

the online incremental methods in most cases. However, it

needs to be noted that such performance is gained after

collecting–at least–40% of the data.

In the end, the improvement of task runtime prediction by

using online incremental learning with time-series monitoring

data is pretty much significant compared to the conventional

batch offline learning methods that rely on the collection of

data training beforehand to produce a good prediction model.

This criticality limits the batch offline approach to be used

in task runtime prediction for WaaS platforms. We argue that

100

Table. VII: Results of Pearson’s correlation based feature selection

Features individuals individuals merge mutation overlap frequency autodock vina
stime 0.074 0.924 0.435 0.195 0.570
utime 0.003 0.060 0.995 0.935 0.974
iowait 0.216 0.053 0.006 0.121 -0.008
vmSize 0.027 -0.193 0.518 -0.112 -0.108
vmRSS 0.533 -0.255 0.946 -0.189 -0.129
read bytes 0.004 0.322 0 -0.085 -0.278
write bytes 0.187 -0.463 0.029 -0.237 -0.210
syscr 0.977 -0.608 -0.232 0.130 0.103
syscw -0.810 -0.470 -0.153 -0.097 -0.582
rchar 0.981 -0.490 0.080 0.279 0.071
wchar -0.032 -0.454 0.127 -0.212 -0.184
threads -0.087 -0.103 -0.408 -0.052 0.019
procs -0.087 -0.100 -0.412 -0.052 0.019

both in the case of practicality and performance results, online

incremental learning approach using time-series monitoring

data may better suit the WaaS environment for task runtime

prediction.

C. Feature Selection Evaluation

Further evaluation is done for the feature selection mecha-

nism. We separate the evaluation to see the real impact of each

feature on the learning performance. Hence, we consider the

best scenarios from the previous experiment for this evaluation

which are time-series scenario with l = 3 and τ = 1s for

individuals; l = 3 and τ = 5s for individuals merge; l = 2
and τ = 2 for mutation overlap; and l = 3 and τ = 5s
for frequency. In Table VII we can see various correlation

coefficient values for each feature for each task. A coefficient

of zero means the feature is not correlated at all to the task

runtime. Meanwhile, a positive correlation value means there

is a positive relationship between the feature and the runtime; as

the feature value increases or decreases, the runtime follows the

same trend. In this case, we select the features with |ρ| values

larger than a threshold and evaluate the performance of our

approach. There is no exact rule on how to choose the threshold.

We choose the value based on small-scale experiments done

beforehand, although it needs to be noticed that this value

can easily be updated during runtime. Morover, despite various

features impacting differently for each task, CPU time (utime

Fig. 4: Results of task estimation errors (RAE) with feature

selection

and stime), I/O system call (syscr and syscw), and I/O read

(rchar) are the most frequent features that exceed the threshold.

From Figure 4 we can see that feature selection impacts the

task runtime prediction performance. Significant improvement

can be observed for individuals and frequency with 6.49%

and 3.49% error reductions respectively.Individuals merge show

a slightly observed improvement of 0.59% while the im-

provement for mutation overlap is marginal with 0.04% error

reduction. Frequency experiment uses |ρ| = 0.5 (two features).

It only uses a small number of features to outperform the

without feature selection scenario. Furthermore, individuals
experiment uses |ρ| = 0.4 (six features), mutation overlap uses

|ρ| = 0.09 (nine features), and the threshold for individuals
merge is |ρ| = 0.08 (nine features). The number of selected

features are different for each task due to the difference in

computational characteristics. The most distinctive features that

represent the I/O intensive tasks are syscr and syscw. These

features are observed in relatively high correlation value for

task individuals and individuals merge. Meanwhile, the CPU

intensive characteristics can be distinguished from high stime

and utime feature correlation values as seen in task mutation
overlap, frequency, and autodock vina.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented online incremental approach

for task runtime prediction of scientific workflows in cloud

computing environment using time-series monitoring data. The

problem of task runtime prediction is modeled based on the

requirements for WaaS platforms which offer the service to

execute scientific workflows in cloud computing environments.

Hence, approaches to task runtime prediction which use batch

offline machine learning may not be suitable in this dynamic

environment.

The strategy of using online incremental learning approach

is combined with the use of fine-grained resource consumption

data in the form of time-series records such as CPU utilization

and memory usage. We use a highly distinctive feature extrac-

tion technique called time-reversal asymmetry statistics that is

capable of capturing the characteristics of a time-series record.

Our proposal also considers the selection of features based

on Pearson correlation to improve the task runtime prediction

101

and to reduce the computational resources as the system only

records the selected relevant features for all tasks.

From our experiments, the proposed approach outperforms

baseline scenario and state-of-the-art approaches in task run-

time prediction. Although the variation of configurable pa-

rameters shows different results, in general, our proposal is

better than previous solutions for task runtime prediction. The

further result shows that our proposal achieves a best-case and

worst-case estimation error of 3.38% and 32.69% respectively.

These results improve the performance, in terms of error, up

to 29.89% compared to the state-of-the-art strategies.

As part of future work, we plan to evaluate different ma-

chine learning algorithms, configurable parameters, and fea-

ture selection techniques that best suit specific task runtime

prediction as different settings of algorithms can result in

different performance. In addition, the variation of workflow

tasks based on their sizes and computational characteristics

such as data-intensive and compute-intensive tasks need to be

explored to generate an effective strategy for enhancing the

performance of the prediction model. Furthermore, the impact

of cloud instances variability in the scheduling accuracy–which

can affect the overall makespan–and the overhead performance

impacting on the cost efficiency need to be analyzed more in-

depth. This will help in demonstrating the eminence of online

incremental learning approach over classical batch offline one.

ACKNOWLEDGMENTS

This research is partially supported by LPDP (Indonesia

Endowment Fund for Education) and ARC (Australia Research

Council) research grant.

REFERENCES

[1] G. Kousalya, P. Balakrishnan, and C. Pethuru Raj, Workflow
Scheduling Algorithms and Approaches. Cham: Springer In-
ternational Publishing, 2017, pp. 65–83.

[2] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia,
J. Shalf, H. J. Wasserman, and N. J. Wright, “Performance
Analysis of High Performance Computing Applications on The
Amazon Web Services Cloud,” in Proceedings of The 2nd IEEE
International Conference on Cloud Computing Technology and
Science, 2010, pp. 159–168.

[3] P. Leitner and J. Cito, “Patterns in the Chaos: A Study of
Performance Variation and Predictability in Public IaaS Clouds,”
ACM Transaction on Internet Technology, vol. 16, no. 3, pp.
15:1–15:23, Apr. 2016.

[4] R. Shea, F. Wang, H. Wang, and J. Liu, “A Deep Investigation
Into Network Performance in Virtual Machine Based Cloud
Environments,” in Proceeding of The IEEE Conference on Com-
puter Communications, April 2014, pp. 1285–1293.

[5] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and
K. Vahi, “Characterizing and Profiling Scientific Workflows,”
Future Generation Computer Systems, vol. 29, no. 3, pp. 682–
692, 2013.

[6] F. Nadeem and T. Fahringer, “Optimizing Execution Time Pre-
dictions of Scientific Workflow Applications in the Grid Through
Evolutionary Programming,” Future Generation Computer Sys-
tems, vol. 29, no. 4, pp. 926–935, 2013.

[7] S. Pumma, W. Feng, P. Phunchongharn, S. Chapeland, and
T. Achalakul, “A Runtime Estimation Framework for ALICE,”
Future Generation Computer Systems, vol. 72, pp. 65–77, 2017.

[8] R. F. da Silva, G. Juve, M. Rynge, E. Deelman, and M. Livny,
“Online Task Resource Consumption Prediction for Scientific
Workflows,” Parallel Processing Letters, vol. 25, no. 3, 2015.

[9] A. Matsunaga and J. A. B. Fortes, “On the Use of Machine
Learning to Predict the Time and Resources Consumed by Ap-
plications,” in Proceedings of The 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, May 2010,
pp. 495–504.

[10] D. A. Monge, M. Holec, F. Železný, and C. Garino, “Ensemble
Learning of Runtime Prediction Models for Gene-expression
Analysis Workflows,” Cluster Computing, vol. 18, no. 4, pp.
1317–1329, Dec 2015.

[11] S. Seneviratne and D. C. Levy, “Task Profiling Model for
Load Profile Prediction,” Future Generation Computer Systems,
vol. 27, no. 3, pp. 245–255, 2011.

[12] T. P. Pham, J. J. Durillo, and T. Fahringer, “Predicting Workflow
Task Execution Time in the Cloud Using A Two-Stage Machine
Learning Approach,” IEEE Transactions on Cloud Computing,
vol. PP, no. 99, pp. 1–1, 2017.

[13] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to
Forget: Continual Prediction with LSTM,” Neural Computation,
vol. 12, pp. 2451–2471, 1999.

[14] W. Groß, S. Lange, J. Boedecker, and M. Blum, “Predicting Time
Series with Space-Time Convolutional and Recurrent Neural
Networks,” in Proceeding of European Symposium on Artifi-
cial Neural Networks, Computational Intelligence and Machine
Learning, 2017, pp. 71–76.

[15] T. A. Babu and P. R. Kumar, “Characterization and Classification
of Uterine Magnetomyography Signals Using KNN Classifier,”
in Proceeding of The Conference on Signal Processing And
Communication Engineering Systems, Jan 2018, pp. 163–166.

[16] B. Li, Y. Zhang, M. Jin, T. Huang, and Y. Cai, “Prediction
of Protein-Peptide Interactions with a Nearest Neighbor Algo-
rithm,” Current Bioinformatics, vol. 13, no. 1, pp. 14–24, 2018.

[17] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based
Learning Algorithms,” Machine Learning, vol. 6, no. 1, pp. 37–
66, Jan 1991.

[18] E. Frank, M. A. Hall, G. Holmes, R. Kirkby, B. Pfahringer, I. H.
Witten, and L. Trigg, Weka-A Machine Learning Workbench for
Data Mining. Boston, MA: Springer US, 2010, pp. 1269–1277.

[19] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J.
Maechling, R. Mayani, W. Chen, R. F. da Silva, M. Livny,
and K. Wenger, “Pegasus, A Workflow Management System
for Science Automation,” Future Generation Computer Systems,
vol. 46, pp. 17–35, 2015.

[20] E. Deelman, C. Carothers, A. Mandal, B. Tierney, J. S.
Vetter, I. Baldin, C. Castillo, G. Juve, D. Król, V. Lynch,
B. Mayer, J. Meredith, T. Proffen, P. Ruth, and R. F. da Silva,
“PANORAMA: An Approach to Performance Modeling and Di-
agnosis of Extreme-scale Workflows,” The International Journal
of High Performance Computing Applications, vol. 31, no. 1, pp.
4–18, 2017.

[21] M. A. Hall, “Correlation-based Feature Selection for Machine
Learning,” Ph.D. dissertation, University of Waikato, Hamilton,
1999.

[22] B. D. Fulcher and N. S. Jones, “Highly Comparative Feature-
Based Time-Series Classification,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 26, no. 12, pp. 3026–3037, Dec
2014.

[23] O. Trott and A. J. Olson, “AutoDock Vina: Improving the
Speed and Accuracy of Docking with A New Scoring Function,
Efficient Optimization, and Multithreading,” Journal of Compu-
tational Chemistry, vol. 31, no. 2, pp. 455–461.

[24] J. S. Armstrong and F. Collopy, “Error Measures for Generalizing
About Forecasting Methods: Empirical Comparisons,” Interna-
tional Journal of Forecasting, vol. 8, no. 1, pp. 69–80, 1992.

102

